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We present a new approximate method for constructing gravitational radiation driven inspirals of test bodies
orbiting Kerr black holes. Such orbits can be fully described by a semilatus rggtameccentricitye, and an
inclination anglet, or, by an energye, an angular momentum compondnt, and a third constan®. Our
scheme uses expressions that are egwithin an adiabatic approximatiorior the rates of changep(e,:) as
linear combinations of the fluxe€(L,,Q), but uses quadrupole-order formulas for these fluxes. This scheme
thus encodes the exact orbital dynamics, augmenting it with an approximate radiation reaction. Comparing
inspiral trajectories, we find that this approximation agrees well with numerical results for the special cases of
eccentric equatorial and circular inclined orbits, far more accurate than corresponding weak-field formulas for
(b,é,i). We use this technique to study the inspiral of a test body in inclined, eccentric Kerr orbits. Our results
should be useful tools for constructing approximate waveforms that can be used to study data analysis prob-
lems for the future Laser Interferometer Space Antenna gravitational-wave observatory, in lieu of waveforms
from more rigorous techniques that are currently under development.
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I. BACKGROUND AND MOTIVATION The integrals of the motion are not constant in the pres-

ence of gravitational radiation—they evolve as energy and
The capture of stellar-mass compact objects by massivangular momentum are carried away by the waves. Because
black holes residing in galactic nuclei is expected to be on®f the small mass ratio, they should change adiabatically, on
of the most important sources of gravitational radiation fortime scales much longer than any orbital time scale. Hence,
the future Laser Interferometer Space Antefld$A) space- the orbit looks geodesic on short time scales. This fact can be
based detectdil,2]. Observing such events will provide in- Used to calculate gravitational perturbations induced by the

formation about stellar dynamics in galactic nuclei, angParticle at infinity and at the hole’s event horizon, using the

should make possible precise measurements of black holEEUKOISky-Sasaki-Nakamura formaligi]. In this way, one
masses and spins. Indeed, the waves generated by suctf! explicitly find the gravitational waveform at infinity and

il i e f the black hole'€ompute the corresponding fluxes®andL, to infinity and
capture will encode a detailed description of the black ho eSlcnto the hole. If one also knows the evolution of the Carter

spacetime, making it possible to test whether the “large ob- . ) S
ject” in the galactic nucleus is indeed a Kerr black hole asconstant, then the adiabatic n.ature of the mspyral allows one
J to treat the small body’s motion as an evolution through a

predicted b)_/ general relativity, or is some exotic masslveSequence of orbits: the body's world lirt) is that of a
compact objecf3,4].

X : . . _ geodesic orbitzy,{t) whose orbital constants are slowly
Extracting such information will require accurate model- changing:
ing of the gravitational waveform. The smallness of the sys-
tem’s mass ratiotypically, u/M~10"4—10"°, where u Z(t) = Zgeod LE(1),L(1),Q(1)]. (1.7
andM are the masses for the captured body and the central
hole, respectivelyallows one to treat the small body as a Computing the inspiral properties is reduced to computing
“test particle” moving in the gravitational field of the black the parameter space trajectdify(t),L,(t),Q(t)].
hole. In the absence of radiation, the small body moves on a One can in fact infer the change @ and thus fix the
geodesic orbit of the black ho[&]. These orbits have three Small body’s inspiral in two special cases: orbits that are
integrals of motion(apart fromu): energyE; angular mo-  €quatorial, and orbits that are circular but inclined. A_con5|d-
mentum projected on the hole’s spin axis,; and Carter’s era_ble amount of effqrt has been de_vo'Fed to studymg_ th_ese
third constan, related to the square of the angular momen-0rbits and their evolut|pn due to grawtatlongl-wave emission
tum projected onto the equatorial plane. A body in a generi¢7—12. In these special cases, the evolution of the Carter
(eccentric and inclinedKerr orbit traces an open ellipse pre- constanRQ is constrained: it remains constantat0 (equa-
cessing about the black hole’s spin axis, resulting in a comtorial orbits or evolves such that the system’s eccentricity is
plicated overall motion. Astrophysical captured bodies willconstant ae=0 (circular, inclined orbits[13—13. Accurate
move in such complicated orbits. numerical computations, based on extractthgndL, from
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fluxes of gravitational waves to infinity and down the eventdetails are presented in Appendix B. In Sec. lll we then
horizon, have detailed the effects of radiation reaction andompare this technique’s predictions to those of detailed nu-
the nature of gravitational-wave emission in these cases. merical calculations for the two special cases that are well-

Unfortunately, this “flux-balancing” prescription fails in understood now, equatorial orbits and inclined, circular or-

general—there is no known method for computing the Gate bits. We compare with the leading order results developed by

from the gravitational-wave fluxes in the absence of specialfann [13], and show that the hybrid scheme qualitatively

recovers features seen in the strong-field numerical calcula-

constraints. At the moment, the only applicable result is a. : L
. . ions. Our results show that holding the inclination angle
weak-field, quadrupole-order calculation by Ryd3], who . S X
constant is more accurate than letting it evolve in the way

used a weak-field radiation reaction force to infer Not  that the weak-field fluxes “want” it to evolvéas compared
surprisingly, Ryan's results become increasingly inaccuratgy strong-field numerical calculationsie argue in Sec. Il
and unreliable as the orbit comes closer to the black hole. lind Appendix A that this tells us that the “gravitational po-
is likely that a strong-field gravitational self-force prescrip- tential” felt by the inspiraling body is nearly spherical, and
tion will be needed to comput®. Many groups are now argue further that holding constant should work well for
working on this problenj16]. It is generally acknowledged arbitrary orbits.
that no result applicable to strong-field Kerr orbits should be In Sec. IV we move to “generic” configurations, studying
expected within the next few years. In the meantime, thereinspirals through a sequence of inclined, eccentric orbits. In
fore, an investigation of possible approximation schemes fomost cases we find that the inspiral trajectories are qualita-
describing radiation reaction and wave emission by thes#vely similar to inspiral in the equatorial plane. In particular,
orbits is highly desirable. Such schemes will play an impor-we find that most configurations plunge into the black hole
tant role in mapping out the scope of the data analysis taswith substantial residual eccentricity. We also map out the
that the LISA community faces, making possible a realisticrange of parameter space where we do not trust the hybrid
assessment of issues such as the amount of computing powa@proximation: when orbits reach too deeply into the strong
needed, the accuracy with which black hole characteristicfeld, or spiral in near inclination 90°, the weak-field fluxes
can be measured, and the difficulty of measuring signals ithat we use do not appear to be reliable. We conjecture in
the inspiral rate is large enough to create a confusion-limitedec. V on how an approximation could be developed to bet-
background17]. ter understand the Carter constant’s evolution. This approxi-
In the remainder of this paper we present such an approximation is based on the “zoom-whirl” behavior of strong-
mate scheme. The essential idea is to use the exact Kefield eccentric orbits, recently described in REf2]. We
black hole geodesics to describe the system’s dynamics, bgrovide a concluding discussion and suggest directions for
to evolve through a sequence of those geodesics using thigture work on this problem in Sec. VI. Throughout this

weak-field quadrupole-order fluxes f& andL,. Because Paper, we use units in whicB=c=1.

this scheme mixes an exact notion of short-time-scale motion

with an approximate description of the long-time-scale radia- Il. THE HYBRID APPROXIMATION
tion effects, we call it a “hybrid” approximation. We find G ic K desi b trized by a trivlet of
that the hybrid approximation faithfully reproduces features ENErc Kerr geodesics can be parametrized by a triplet o

seen in the numerical strong-field analyses of radiation reaq([;onstant orbital elements: the semi-latus recpyne eccen-

tion. For example, we find that the rate of change of eccen—”cIty e and the inclination angle. The elementp ande

tricity will typically switch sign prior to plunging into the d_eflne the orbit's radial turning points, the apastron and pe-
black hole; as a consequence, the orbit has substantial eccdlfstron:

tricity near the end of inspiral. Self-consistent leading order D D
calculationgwhich approximate the orbital dynamics as well ra=>——, Tp=7 =
as the radiation reactigistrongly underestimate this residual 1-e 1+e
eccentricity. In some cases, they predict that the orbit is cir- )
cular at tr)(e end of inspiral. Tr):isp incorrect circularization In the strong field .Of a Ke“r_r bl_ack_hole, theIe are many ways
could have a big effect on the waveform models that are user‘é:at one could _defme an |ncl|_n,at|on_ angle — fo_r example,
to lay the foundations of LISA data analysis, since a circula e turning points of the orbits latitudinal motion, or the
inspiral produces waves with less interesting harmonic strucz—irlgle at which the small body Crosses the e.qgato.r as seen by
ture than eccentric inspirals. We advocate this hybrid schemg'stant observers. We use the following definition:

as a method that is simple enough to produce waveforms that

(2.9

are “fast and dirty,” but accurate enough to qualitatively co&zi. (2.2)
reproduce features that should exist in real inspirals. We em- VQ+L:2

phasize that the hybrid waveforms aret the ultimate mod-

els one would want to use as templates for analyzing th&his definition does not correspond to either of these ex-

LISA data stream. Instead, we advocate them as tools faamples, but is very convenient: it depends simply on orbital

exploring issues in LISA data analysis, as described in theonstants and has a useful intuitive description, suggesting

paragraph above. that the Carter consta} is essentially just the square of the
The ideas behind the hybrid approximation and key equaangular momentum projected into the equatorial plénbis

tions are given in Sec. Il; some of the more cumbersomelescription is in fact exactly correct for Schwarzschild black
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holes; for non-zero spin it is not quite correct, but is good 97 37 211

enough to be useful. We discuss this issue in more detail in fe(€)=75+ 592+ 564- (2.13
Appendix A) The orbital elements can be written as func-

tions of (E,L;,Q), and vice versa. Consequently, we canin the a=0 limit, Egs. (2.5 and (2.6) reduce to the cel-
write their time derivatives ap=p(p,e,,E,L,,Q), and ebrated Peters-Mathews formulds].

similarly for e and . The ratesy;={p,e,.} can be written
As already mentioned, we do not yet know how to accu- _ ) ) )
rately calculateQ. It is only known to leading order ivl/p gj=H *(bjE+ciL,+d|Q). (2.14

and in the spin of the black ho[@3]. The orbital parameters
P 143] P The quantitiesH and b;, c;, d; are all constructed in a

useo_I " I_?ef.[l:_%]_a re an ecgent_rlcn_ye (dlfferent. from €). a straightforward way from derivatives &, L,, Q with re-
semi-major axisa, and an inclination angle (identical to  gpect top, €, ¢; the resulting expressions are rather cumber-

our ¢). The two sets of parameters are related by some, and so are written out in Appendix B. We emphasize
32 that these functions encode the exact geodesic motion.
1-e?=(1-€?)|1— I _) e?cost|, (2.3 The main idea behind the hybrid scheme is simple: calcu-
p

late the time derivatives; using theexactcoefficientsb; ,
¢;, dj and theapproximatefluxes (2.5—(2.7). A consistent

) (2.4 leading-order calculatiofthat is, leading order itM/p and
a/M) would instead approximate the coefficients along with

The parametrizations are consistent in the weak field, and af@€ fluxes. Knowing the rateg; makes it possible to build
identical for zero spin. Rewriting Ryan’s fluxes in terms of the parameter space trajectorigst) followed by a small
our parameters yields body spiraling into a black hole: given initial valueg(0),
one simply “integrates up” the derivativeg to generate the
32 u? (M\® 232 inspiral trajectory. For example, a simple-minded Euler-
~T 5 W(E) (1-e9) method integration would step from parameter space coordi-

nates (,q;) to (t+ dt,q; +q;ét). Generalization to more so-
phisticated integration techniques is straightforward. The
' (2.9 trajectoriesq;(t) are the main result of this paper. From
them, it is a simple matter to compute quantities such as the
32 u? M\ . gravitational waveform generated during an inspiral, and
Lz:—gm(g) (1—e%) Z[cosﬁg(e) thus to begin testing ideas more directly related to data
analysis. We will not develop such waveforms here, but will

a1 a2
p=a(l—e) v

3/2
1- —(—) e? cost
p

X
M

3/2
fi(e)— _(F) coscfy(e)

a[M\3? instead defer them to a later analysis.
v F) [fi(e)—cogifs(e)]], (2.6)
lll. COMPARISON WITH NUMERICAL RESULTS
— 64 3 ° 2\3/2
C=- 5 M P (1-€% The reliability of this method can be assessed by applying
32 it to specific families of orbits where accurate numerical re-
x| f4(e)— _(_) cosufe(e) 2.7 sults are already known. We first consider equatorial eccen-
8 M\ p 6 ' ' tric orbits, recently studied by Glampedakis and Kennefick

) [12]. Such orbits always have=0° (prograde or =180°
whereC=Q+L;, and (retrogradg, leaving p and e as unspecified parameters.
Equation(2.14) becomes

. _1+73 2, 37, -

1(€)=1+ 5 e+ gee, (2.8 b= Hod(—Edl L), 3.1
73 823, 949 . 491 el NE 1

fo(e)= 5+ €%+ o5 e+ e (2.9 e=Hgq (E L, —L;pE), (3.2

12 24 32 192
whereH=E L, .—E (L, ,. The leading-order approxima-

! tion for these expressions [i8]
fa(e)=1+ge? (2.10
N — 64 u 213/2) M)? 7 2
; _61,63,, 9, - P=—5 y1-¢) ) 1+ge’l, (33
A=t g e @4 304 M4 121
; M
61 91 , 461 e=—l—5We(1—ez)3’Z(F 1+@e2)_
fs(e)= =+ —e’*+ —-e* (2.12
8 4 64 (3.9
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FIG. 1. Comparing equatorial inspiral. We show inspiral into a hole with apif0.5M (left pane) and into a hole witta=0.9M (right
pane). In each panel, the top half shows prograde inspirals and the bottom retrograde inspirals. In each set, the dashed line represents the
separatrix separating stable from unstable orbits. We used the hybrid approximation discussed in the text to radiatively evolve orbits with
initial parametersy; ,e;) =(20M,0.4), (2M,0.99), (141,0.99), and (1M,0.99). The inspiral trajectories are shown as the heavy lines in
each plot.(The final set is not included in the retrograde inspirals since the initial conditions are not stable in thogeTtasdstted
trajectories in each plot show the leading-order predictions generated usifg BgNote the significant qualitative difference between the
two calculations at the vicinity of each separatrix. Note also the extremely large growth in eccentricity seen in the prograde inspirals for
a=0.9M just before reaching the separatrix. Comparison with accurate strong-field numerical results shows that this growth is excessive.

Note that we could equally well use the corresponding exdricity. This is in marked contrast with the rigorous strong-
pressions with the leading-order spin terms includede field calculationgnumerical and analyticabf Refs.[7,8,12
[12]), but it turns out that they essentially give the sameshowing that there exists a region near the separatrix be-
results as Eqs3.3) and(3.4). These equations can be cOM- yyeen stable and unstable orbits whereeverses sign: the

bined .to give a simple expression that describes the Orbitaéccentricity shouldgrow near the separatrix. It is very en-
evolution on thep-e plane: couraging that the eccentricity does in fact grow when the

hybrid approximation is used. Moreover, the location of the

(3.5 critical points in these curves whees=0 is in good agree-
ment (at the order of a few percenwith the numerical re-
sults of Refs.[8,12]; see Table I. Three of the four cases

wherep; ande; are initial values. We are now ready to com- shown in Fig. 1 appear “good” in the sense that the trajec-
pare the inspiral trajectories generated by E85) with tories appear to agree reasonably well with what we expect
those obtained by the hybrid scheme. based on strong-field numerical analysefs Ref.[12]). The

Representative results for astrophysically relevant initialsame comparison for the fourth cas®=0.9M, prograde;
parameters are shown in Fig. 1. We compare the leading/Pper plot in the right-hand panel of Fig\ teveals that both
order trajectories found using E¢3.5) (dotted lineg with ~ the eccentricity growth near the separatrix and the distance
the trajectories predicted by the hybrid schefwelid lines. of the critical curvee=0 from the separatrix are excessive.
Note that the time dependence of the inspiral is suppressed Prograde orbits of rapidly rotating black holes reach rather
this figure: most time is actually spent at langeThe total  deep into the black hole’s strong field where the weak-field
duration of an inspiral scales withM?/ . The shape of a fluxes(2.5 and(2.6) cannot be trusted. As we shall see when
curve, however, does not depend on this ratio, provided thawe move on to generic inspiralSec. IV), this breakdown of
the mass ratio is extreme: these curves are universagk for the weak-field flux formulas means that the hybrid approxi-
<M. We show inspiral for both prograde and retrogrademation does not accurately describe the inspiral of shallow
orbits, for black hole spina=0.5M anda=0.9M. inclination orbits ¢=20° or sg into rapidly rotating black

In all cases, the hybrid and the leading-order calculationdioles @=0.85M or s0.
agree forp>M, as expected. Differences between the two It is possible to get some insight into the superior quali-
methods become apparent in the strong field. The leadingative description of the inspiral in the strong field region
order inspiral trajectory exhibits constantly decreasing eccergiven by our approach. The phenomenon of orbital circular-

870/2299

e) 12’“[ 1+ 121e%/304
€

e =DNn.| — —
p(e) p'( 1+ 121e?/304
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TABLE I. Comparing critical curve valuep for equatorial  equatorial orbits the residual eccentricity prior to plunge
eccentric orbits. These are tipevalues at which the eccentricity should be substantial, in strong contrast to the prediction of
evolution switches sign, beginning to grow rather than shrink. Wethe leading order formulé3.5). In many cases, the leading
show the values b, calculated numericall{8,12] (third column  order results predict that the orbit will actually circularize
and using the hybrid approximatidfourth column, for a variety  prior to plunge. Because the harmonic structure of a circular

of black hole spingnegativea/M represents retrograde orbiend  jnqpira| is rather different from that of an inspiral with sub-

eccentricities. The_flfth column shows the fractional dn"fer_ence be'stantial eccentricity, these results have strong implications
tween the numerical and the approximate resg#pproximate

icall ’ for the waveform models to be used in LISA's data analysis.
—numerical/(numerica) We next consider circular inclined orbits, which were re-
cently studied by HugheglO]. One of the most important

Perit/ M Perit/ M Fractional " - .
/M o (numerical  (hybrid approx. _ difference findings o_f Re.f.[lol] is that the angle remains almost con-
stant during inspiral, even when the particle is crossing
0 0.2 6.76 6.92 0.0237 strong field regions.
0 0.4 6.99 7.13 0.0200 For these orbits, the ratgsand . are given by
0.5 0.3 4.85 5.06 0.0433 _ _ _
0.5 0.5 5.08 5.21 0.0250 p=Hg i-L, E+E L), (3.6
-0.99 0.3 10.25 10.53 0.0273
099 05 10.59 10.78 0.0179 L=Hg(L,,E—E L), (3.7

L L . whereH.=E L, ,—L,,E . Inorder to obtain these for-
ization as a result of some form of dissipation is seen in oo N

many astrophysical situations, such as that of sateIIiteleaS‘)N.e first expressd@_ n ter:ns ofE andL, mfakmg use
whose orbits are decaying due to atmospheric friction. Th f the “circular goes to.C|rcuIar theo_ren{§3—15, see Ref.
reason is that the dissipating mechanism causes the parti él] for further discussion. The leading-order expression for
to “drop” in its potential well, the usual geometry of which ¢ 1S [19]

ensures that the orbital eccentricity decreases. In our case

another mechanism becomes significant as the unstable . %‘i a
plunge orbit is approached at the end of the inspiral. As this ‘15 M2 M
occurs the potential becomes shallow@s the minimum

turns into a saddle point at plung@nd this tends to increase p follows from Eq.(3.3), settinge=0.
the eccentricity of the orbit. Shortly before plunge this

mechanism overcomes f[he circulqrizir)g tendency. .It i.s nobroximation to the the results obtained using E&s3) and
surprising that the hy_bn(_j apprO_X|mat|on can qual|tat|\_/ely(3_8) together with accurate numerical results from Ref.
replicate the eccentricity increasing behavior, because it eja—) '

v d ibes the sh fth bital ol which i 10]. Figure 2 shows inspirals of circular inclined orbits with
actly describes the shape of the orbital potential, which Is sQ - ethod and using the leading-order formulas. Both ap-

critical to this effect. ) . ) proximations predict that changes in such a way as to drive
Table Il compares data fqu ande. In this sample, the the orbit to an equatorial retrograde configuratitimat is, ¢
hybrid approach clearly is more accurate than the leadingncreases The two calculations agree at large radii. In the
order approximation. This comparison is a very strict test Ofstrong field, the leading-order formulas break down — the
the accuracy of this scheme. As discussed above, we belieygclination angle tends to increase dramatically. The behavior
that the hybrid approximation is reliable as long Bs  of the hybrid-scheme inspiral is more reasonable.
=5M. The weak-field fluxes that we use cannot be trusted Although the hybrid scheme is much better behaved in the
very deep in the strong field — the spin correction terms instrong field, the growth of we see is still quite a bit larger
Egs. (2.5 and (2.6) dominate the leading order term. The than detailed numerical calculations preditd,11]. Based
method therefore fails when we push to smallgr This  on those numerical results, a more accurate scheme would be

effectively constrains the black hole spin &=0.5M for  to simply require that remain constant. Combinind./dt

prograde motion — for larger spins, the innermost stable= g with Eq. (2.2 yields the rule
orbit and hence , come too close to the horizon. For retro-
grade orbits, the results are much more accurate sigce . 2Q

never comes close to the horizon, regardless of the spin. Q_L_ZLZ' 3.9

Finally, we emphasize the essential role Ryan’s flu¢&5)

and (2.6) play in calculatingp ande. Had we used instead This rule is consistent with our description Qfas roughly

the Peters-Mathews fluxes, the resulting inspirals would prethe squared component of angular momentum projected into

dict a rapid circularization under radiation reaction: we findthe equatorial plane. If the spacetime is perfectly spherical

that the Peters-Mathews fluxes reduce the eccentricity to zerd €., Schwarzschild black holesthenQ is exactly such an

well before reaching the saddle point of the orbital potentialangular momentum componeQggnericar L2+ L§. Itis easy

and so the eccentricity never grows. This is in sharp disto show that an inspiral in this spacetime would proceed at

agreement with the numerical results. exactly constant inclination angle: gravitational waves carry
A major prediction of the hybrid approximation is that for off exactly the right amounts df, andL, to hold . constant,

M 11/2
p) sin; (3.8

Table 11l compares data fqu and ¢ using the hybrid ap-
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TABLE Il. Comparing the rate;'a, e for several equatorial eccentric orbits. The fifth column in this table sﬁnwbe seventh column
showse. Within each section of the table, the first row of columns five and seven contains accurate numerical dialfpithe second
row shows data using the hybrid scheme outlined in this paper, and the third row shows data using quadrupole order results. The sixth and
eighth columns show the fractional differences between the two approximation schemes and the accurate numerical results. In all cases but
one, the hybrid approximation is closer to the accurate numerical calculation, sometimes substantially so.

a/M p/M e Calculation (M/u)p Frac. diff. inp (M?/u)e Frac. diff. ine
0 7.505 0.189 Numerical —7.475< 1072 — —1.967x 1073 —
Hybrid —6.859x 10 2 0.0824 —1.291x10°3 0.3434
Leading order ~ —2.957x 10 2 0.6044 —1.159x 103 0.4108
0 6.9 0.4 Numerical —4.240x 1071 — +1.047x 1072 —
Hybrid —3.056x10* 0.2792 +1.506x 102 -0.4384
Leading order —3.420<10°? 0.9193 —2.929x10°3 1.2797
0.5 6.5 0.4 Numerical —5.999< 10 2 — —5.155< 103 —
Hybrid —4.606x 10 ? 0.2322 —3.356x10 3 0.3490
Leading order —4.091x 10 ? 0.3181 —-3.719x10°3 0.2786
0.5 15 0.4 Numerical —3.371x 1073 — —1.341x 1074 —
Hybrid —3.358x 1073 0.0039 —1.334x 1074 0.0052
Leading order —3.328x10°3 0.0128 —1.311x 1074 0.0224
0.5 438 0.3 Numerical —6.354x 1071 — +1.369x 1072 —
Hybrid —4.858< 107 ¢ 0.2354 +3.519x 1072 -1.5705
Leading order —4.849x 1072 0.9237 —4.432x10°8 1.3237
0.9 5 0.4 Numerical —7.507x 1072 — —9.266x 1073 —
Hybrid —4.617x 1072 0.3850 —1.965x 1073 0.7879
Leading order —2.698<10°° 0.9641 —9.732<10°° 0.9895
-05 10 0.4 Numerical —3.115x10 2 — —1.379x 1078 —
Hybrid —2.494x 1072 0.1993 -9.107x10™* 0.3396
Leading order —1.337x10°? 0.5708 —7.931x10* 0.4249
-0.99 10.5 0.4 Numerical —7.516x10 2 — —5.312x10°4 —
Hybrid —5.506x 10 2 0.2674 —5.223x10°* 0.0168
Leading order —9.704x 103 0.8709 —5.461x 104 0.0281
-0.99 15 0.4 Numerical —5.766x 1073 — —2.141x 1074 —
Hybrid —5.295¢ 103 0.0817 —1.875¢10°* 0.1242
Leading order —3.328x10°3 0.4228 —1.311x 1074 0.3877

so Eq.(3.9) is exactly correct in this case. One would expect
¢ to remain nearly constant if the spacetime does not deviate Having established the reliability and limitations of the
too strongly from sphericity. Rigorous numerical results forhybrid scheme, we move to the main subject of this paper:
the circular inclined case show thaindeed remains nearly the study of inspirals of test bodies in generic orbits where
constant; it thus appears that the Kerr metric is not too asonly leading-order results are currently availapls]. We

pherical over much of the inspir@nodulo frame dragging

IV. EVOLVING GENERIC ORBITS

began this analysis employing Ryan’s fluxes, E(&5—

Additional evidence for the validity of this statement is given (2.7), but quickly faced disappointing results. We found that
by the discussion in Appendix A. Since the orbit’s eccentric-hybrid-scheme inspirals produced with these fluxes did not
ity does not enter this argument at all, it is likely that Eq. behave well far from the two limits discussed above, particu-

(3.9 will work well for inclined eccentric orbits also.
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TABLE IIl. Comparing the ratep, ¢ for several inclined circular orbits. The fifth column shopsthe seventh column shows Within
each section of the table, the first row of columns five and seven contains accurate numerical dai®frtime second row shows data
using the hybrid scheme outlined in this paper, and the third row shows data using leading order results. The sixth and eighth columns show
the fractional differences between the two approximation schemes and the accurate numerical results. In most cases in this sample, the hybrid
scheme performs much better than the leading-order approximation when compared to the rigorous numerical data. The only case which this
is not true is for. of retrograde orbits. Nevertheless, this small inaccuracy has no impact on the calculation of generic inspirals, as we assume
that.=const. Note the enormous difference between the numerical and the leading order results in the table’s final entry. This is because that
point is fairly close to the separatrix between stable and unstable orbits. Since the leading-order calculation has no notion of this separatrix,
it is particularly inaccurate here.

a/M p/M «(degrees) Calculation (M/w)p Frac. diff. inp (M2/ )1 Frac. diff. in¢
0.95 7 62.43 Numerical —4.657x 1072 — 1.207x10™* —
Hybrid —4.497< 10 2 0.0344 2.63%10 % 1.1864
Leading order ~ —2.750<10 ? 0.4095 3.08%x 10 4 1.5518
0.05 7 60.17 Numerical —1.096x 1071 — 1.087x10°° —
Hybrid —1.048<107% 0.0438 1.20%x10°° 0.1104
Leading order —3.676x1072 0.6642 1.58%10°° 0.4500
0.5 10 67.56 Numerical —1.583x 1072 — 1.546x10°° —
Hybrid —1.645< 1072 0.0392 2.04%10°5 0.3215
Leading order —1.194x10 2 0.2457 2.37%10°° 0.5375
0.5 10 126.76 Numerical —2.329x 102 — 1.892<10°° —
Hybrid —2.341x 1072 0.0051 1.64%10°° 0.1316
Leading order —1.414x 102 0.3929 2.06x10°° 0.0888
0.9 10 74.07 Numerical —1.544x 1072 — 2.715x10°° —
Hybrid —1.567x 102 0.0149 3.85%10°° 0.4206
Leading order —1.169x 1072 0.2429 4.45%10°° 0.6398
0.9 10 131.57 Numerical —3.253x 1072 — 3.887x10°° —
Hybrid —3.082x 1072 0.0526 2.61x10°° 0.3280
Leading order —1.545<10 2 0.5250 3.46%10°° 0.1088
0.5 6 48.33 Numerical —1.237x10°¢ — 1.410< 1074 —
Hybrid —1.135x10°% 0.0824 2.61%10°% 0.8539
Leading order —4.440x 1072 0.6411 3.19¢10°* 1.2624
0.5 6 67.81 Numerical —2.020x107% — 2.094x 10™4 —
Hybrid —1.779<10°¢ 0.1193 2.99x10 % 0.4288
Leading order —5.082x10? 0.7484 3.95%10 4 0.8882
0.9 6 54.64 Numerical —7.846x 1072 — 2.015x 1074 —
Hybrid —6.950x 1072 0.1142 548610 1.7226
Leading order —3.598x 1072 0.5674 6.26& 107 2.1107
0.9 6 99.55 Numerical —74.32 — 6.33%10°* —
Hybrid —48.02 0.3539 5.244104 0.1729
Leading order —6.593x 10 ? 0.9991 7.58 104 0.1961

to grow extremely large very rapidly in some cases. The rooinstead, forcing to be constant. Following the discussion at

of the problem lies in the expression for @eflux, Eq.(2.7),

the end of Sec. Il and in Appendix A, it is likely that this

which apparently is not as accurate as we would require it toule is accurate enough for our purposes anyway, and so we
be. The qualitative behavior of our inspirals is more reasonshall use it from this point onward. In all likelihood, detailed

able when the rule given by E.9) is used to comput€®

064005-7
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go 2 =05 M — approximation predicts that many of these inspirals com-
/ ] pletely circularize prior to reaching the separatrix. We do not
60 J- ] believe that this behavior is robust. Indeed, we find that the

/ ] behavior of inspirals exhibits a rather sharp transition as the
inclination angle goes from slightly below 90° to slightly

I ] above. This behavior arises from the cterms in Eqs(2.5

l’- ] and(2.6), which switch sign at this transition. We thus do not
|

Lav]
o

«(degrees)
.
o
|||||||||||||||

] believe that this rapid circularization is physical, but instead
T S S R attribute it to poor behavior of the hybrid approximation at

0 10 20 30 L=90°.
go (2 =09M I I Having established that the behavior of hybrid approxi-
C / ' iy mation inspirals forc=90° is probably not reliable, it is
6o L /== ] worth reexamining the behavior fex90°. Good examples
w LA ] of this behavior are the plots for=80° (lower leftmost pan-
Ea0 b [— ] els of Figs. 3 and ¥ In these cases, the coserms in Egs.
g C /\\ ] (2.5 and(2.6) will be small but positive. Indeed, we see that
oo L] ] the trajectories shown in this case are somewhat odd. Con-
C ] sider the trajectories that begin a (e,)=(20M,0.2). The
ol v v points where the eccentricity evolution switches sign are at
10 =0 30 rather large semi-latus rectunp{16.59M for a=0.5M; p
p/M ~25M for a=0.9M). This is quite a bit further out than is

FIG. 2. Comparing circular, inclined inspiral. We show inspiral seen in any analysis of rad'?'t'on rea_Ct'Qn Qn equator'al c_)rb'ts
into a hole with spina=0.5M (top) and spina=0.9M (bottom. [7,8,13. We §uspect that this behavior is I|keW|se.an artn‘aqt
The solid lines show inspiral using the hybrid approximation; theOf the weak-field fluxes, and do not trust the hybrid approxi-
dotted lines show the leading order inspiral prediction. The dashefhation’s predictions for inspirals near 90°.
curve shows the separatrix between stable and unstable orbits. Both We conclude that the hybrid inspiral scheme — the weak-
approximations show that the inclination angle increases, especialffeld fluxes (2.5 and (2.6) plus the “constant inclination”
right before reaching the separatrix. However, the increase prerule (3.9) applied to exact, strong-field Kerr geodesics — is,
dicted by the leading-order prediction is far too large, particularlyin most cases, reliable and accurate enough to be used for
for rapidly spinning black holes. The inspiral predicted by the hy-exploring issues in LISA's data analysis. In some cases, the
brid approximation is closer to what is seen in rigorously computechybrid scheme willnot be accurate enough: the weak-field
inspirals. Nonetheless, it too shows an increasethat is probably  fluxes behave badly when the orbit goes too deep into the
excessive. As we argue in the text, holdingonstant produces an strong field, and so we do not trust this scheme’s results
inspiral sequence that is probably closest of all to strong-field Ca'wheanSSM. Also, the spin correction terms in Eq.5)

culations and should be acceptably accurate. and (2.6) become either very small or very large relative to
h inclinati | the leading quadrupole term wher 90°, and so we do not
the constant inclination rule. trust the hybrid approximation for inclination angles 80¢

Using the fluxes given in Eqs{g.S) gnd (2.6) with the. =<120°. More rigorous strong-field analyses will be needed
constant_e rule Eq.(3.9 produces |nsp|r_als that agree with in order to validate the inspiral behavior at these inclination
the leading-order results whey®>M, which smoothly con- angles.
verge to the equatorial case for-0° and¢— 180" and that In all cases in which the inspiral behavior is reasonable,
exhibit ane>0 region near the separatrix. Examples of thiswe find that small body’s orbits will have significant eccen-
behavior are shown in Fig.3pina=0.5M) and Fig. 4spin  tricity upon reaching the separatrix. Eccentricity will be a
a=0.9M). Several interesting features can be seen in thessignificant factor that must be incorporated into plans for
figures. The trajectories far<90° are qualitatively similar LISA data analysis.
to the equatorial, prograde trajectories shown in Fig. 1. In
particular, each such trajectory passes through a critical point |, ~on3JECTURE: APPROXIMATE O FOR GENERIC
at whichE=0 after which eccentricity grows. The system ZOOM-WHIRL ORBITS
typically has substantial non-zero eccentricity when it
reaches the separatrix. Also, note the excessive growth in We have repeatedly emphasized that the hybrid approxi-
eccentricity near the separatrix fa=0.9M and.=30°. At ~ mation presented here is reliable as long as the orbiting body
shallow inclination angle, the separatrix is very deep in thedoes not come too close to the central black hole. This ex-
black hole’s strong f|e|d, so the inspira| proceeds to small cludes shallow inclination orbits of rapldly rOtating black
before plunging. Just as in the case of equatorial orbits fopoles — an unfortunate exclusion, since those orbits are in
a=0.9M, the weak-field flux formulas that we use cannot beMmany cases very strongly “stamped” by the features of the
trusted this far into the Kerr black hole strong field. strong-field spacetime, and thus may be the most interesting

The qualitative appearance of the inspirals for90° is inspiral sources observed by LISR0]. These are also the

quite a bit different from the<90° inspirals. Looking at the orbits for which the “constant inclinatio®” rule (3.9) is
right hand sides of Figs. 3 and 4, we see that the hybrignost likely to be inaccurate, since they are deepest in the
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a=05M, (=30 a=05M, = 100°
e |
0.8 F = 0.8 F
L 06 F 4 LO6F
04 F - 0.4 F
0R & & = 02 F
0 1_' 1 /‘ Il 1 1 1 ‘ 1 1 1 | 1 1 Il :F O 1_' 1 |
5 10 15 20 5
1 = ? 1 o 427
0.8 F = 0.8 F
L 06 F 3 L06F
0.4 F = 04
0.2 & = 0.2
ok i 0 E_u |
20 5
1 i - 1 f T \a |= T T T
0.8 & = 0.8 =
L, 06 4 L08F =
04 = 04 -
02 E /[~ E 02 E / E
0 e L | /\ L L L | L L L L | L ) L7 0 " | L ! m
5 10 15 20 5 10 15 20
p/M p/M

FIG. 3. Comparing generic inspiral at several inclination angles into a hole wittasph5M. In all plots the dashed line represents the
separatrix between stable and unstable orbits; because we force the inspiral to lie in surfaces ofcdhstargxists a separatrix in tpee
plane of each such surface. We use the hybrid inspiral scheme to evolve orbits with initial parame®js=(20M,0.2), (20M,0.4),
(20M,0.99), and (1M,0.99), and.=30°, 60°, 80°, 100°, 120°, and 150°. Inspirals that are roughly “progratie¥e .<<90°) are
qualitatively similar to the equatorial inspirals shown in Fig. 1: there is a turnaround in the eccentricity evolution, so that all inspirals finish
with a substantial non-zero eccentricity. By contrast, the roughly “retrograde” inspitad9@°) exhibit rather different behavior: particu-
larly when the inclination is not too far from 90°, many inspirals completely circularize, reaehifly As discussed in the text, we believe
this behavior is incorrect.

a =09 M, 1= 30° a =09 M, (= 100°
1p — = R
0.8 F = 0.8 F /
L 06 F = , 06 F
0.4 F - 0.4 F /
02 E/ E 02 E /
o L L — P L .1 0 L/ |
5 10 15 20 5 10 15 20
1 a =09 M, (=60 1 a=09M, = 120°
J__ T T J__ T T | T T T /\ |
0.8 F = 0.8 F
L06F 3 L06F
04 F - 04 F
0.2 / = 0.2
o /i 1 L. Ll d 0 E_u L
5 10 15 20 5 10 15 20
1 a=09M, (=80 1 a=09M, (= 150°
f T T | \__‘—-—"l///‘ f T T | T T T T T
0.8 = 0.8 -
, 06 F 3 L08F -
04 F /\’\ 04 F E
02 F / = 02 F / -
0 " /{ L L L L | L L L L | L L I L3 0 " | L L m
5 10 15 20 5 10 15 20
p/M p/M

FIG. 4. Comparing generic inspiral at several inclination angles into a hole wittaspth9M. Aside from the faster black hole spin, the
trajectories shown here have identical initial parameters as those shown in Fig. 3. The inspiral9@drare again qualitatively similar to
equatorial inspirals, shown in Fig. 2. In particular, we see that at shallow inclination angle, the growth in eccentricity is very large. We
believe this is because these orbits go so deeply into the strong field that the weak-field flux formulas used in the hybrid approximation are
no longer reliable. We also see the rapid circularization of inspirals whisngreater than but near 90°, very similar to the behavior
encountered for spia=0.5M.
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Kerr black hole’s strong field and are most likely to feel the For strictly circular orbits, on the other hand, this term is

asphericity of the Kerr spacetime. Ultimately, self-force gpsent sincei’=0. The remaining expressid@=Q(E,L,)
computations will provide the toolsets needed to rigorouslyaIIOWS the explicit calculation of; this is how Hughes
compute strong-field inspirals in this regime, and will side- ’

step all difficulties regarding the calculation &. In the evolves circular, inclined orbits by reading the fluwesand

meantime, while such computations remain unavailable, it i¢-z & infinity and down the holg10,11.

worth exploring other possibilities that may provide accurate NFor a zoom-whirl orbit ?Ed for motion near the periastron,
approximations to the Carter constant’s evolution. r~ry, sowe should have'~0; consequently, the unknown

Strong-field eccentric equatorial orbits of rapidly rotating t€rM i Ea.(5.4) should be negligible. Owonjectureis that
holes have a “zoom-whirl” charactel2]: orbits near the the resulting expression f& describes the evolution of the
separatrix in thep-e plane “whirl” around the black hole Carter constant for all generic zoom-whirl orbits and with
repeatedly near periastron, so that the amount of azirputh increasing accuracy as the orbit approaches the separatrix.
accumulated in a single radial cyd@pastron to periastron to We emphasize that this approximation should hold even for
apastroiis much greater than2 During this whirl phase, Orbits deep in the black hole’s strong-field. This conje_cture
the body’s motion is very close to a circular orbit. Explor- could become a practical tool once a code that calculates

atory studies[21] show that this behavior carries over to andL, for generic orbits is developed. Furthermore, a direct
non-equatorial orbits, particularly for a fairly shallow incli- comparison between Eq&3.9) and (5.4) should be a useful
nation angle. guide for the accuracy of the=const rule in strong-field

~ The equatorial zoom-whirl orbits studied in Rgt2] ra-  sjtyations. Future computation of the self-force will provide
diate energy and angular momentum as if they were nearlhe yltimate test for both approximations.

circular:
. . VI. CONCLUDING DISCUSSION
E~Q,4L,, (5.1)
The hybrid approximation presented in this paper should
where (), is the frequency associated with azimuthal mo-be a valuable tool for the gravitational-wave astrophysics
tion. This property follows quite naturally from the motion of community as studies of LISA's data analysis requirements
a test body in a zoom-whirl orbit: a large fraction of the begin, and thence models of the waves generated by compact
orbital period is spent “whirling” in the vicinity of the peri- bodies spiraling into massive black holes become needed.
astron, where the motion is nearly circular. This is also theSuch approximate “kludged” waveforms are obviously too
part of the orbit where the body is closest to the black holecrude to actually be used in future measurements of compact
and thus where most of the radiation will be generated. Thushodies spiraling into massive black holes; data analysis strat-
the radiation from a zoom-whirl orbit should be very similar egies based on waveforms built from rigorous strong-field
to radiation from a circular orbit, which is exactly what Eq. radiation reaction will be needed. Waveforms from approxi-
(5.1 suggests. Extrapolating this behavior to generic zoommate inspiral models should be adequate to begin the process
whirl orbits, we expect that most of the radiatedL,, and  of developing a data analysis infrastructure. For example,
Q will come from the motion of the body near(general-  they will be useful for counting the number of analysis filters
ized) separatrix in the§, :,e) phase space. The whirl motion needed, assessing the computational cost of data analysis,
of such orbits will be well described as nearly circular andand experimenting with data analysis techniques. As rigorous

inclined. and reliable waveform models become available, they can
Following Kennefick and Ori[14], we can write the simply be dropped into the codes and infrastructure devel-
Carter constant as oped using the hybrid approximation.
Because this approximation combines the exact strong-
Q=G(r,E,L,)—-Auf, (5.2 field Kerr geodesics with weak-field radiation reaction for-
mulas, it is somewhat limited: inspiral cannot go too deeply
where into the strong field, thereby making it inaccurate for shallow

(¢=20°) inspirals of rapidly rotating §=0.85M) holes.
Also, the cos dependence of terms within the flux formulas
behaves badly near~90°, so that the approximation is

G=A"YE(r?+a?—al,]>—(L,—aE)?—r?, (5.3

with A=r2—2Mr +a? and u, denoting the radial compo- . L o
nent of the body’s four-velocityThe function that we have [iroba?ly not refiable within an inclination range 807

denotedG is writtenH in [14].) It is then straightforward to =120°. Despite these limitations, we have found the hybrid
show that[14] approximation reliably and robustly duplicates many of the

inspiral properties that we expect will be found when it is
oS ur po_ssible to _stu_dy these_ systems u;ing trgly strong-fie]d gr_avi-
—F,, (5.4 tational radiation reaction. In particular, it produces inspiral
u' trajectories that retain substantial non-zero eccentricity just
before plunging into the hole, as is expected from strong-
whereX =r?+a’cos’d andF, is the radial component of the field analyses in special casEg8,17. We emphasize this
self-force. It is the unknown last term in this equation thatpoint because the harmonic structure of gravitational waves
presently prohibits the calculation @ for generic orbits. from eccentric orbits is quite a bit different from that of

.QZG’E.E‘F G,LZLZ_
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waves generated by circular orbits. The residual eccentricity 0 == 10M, e = 0.7|, 1= 60°, a =|0.9|99N|I
of typical inspirals is likely to impact data analysis rather
strongly. ~, —0.001

Obviously, waveforms constructed from hybrid approxi- «©
mation inspirals are by no means the ultimate models tha
will be needed for LISA data analysis — we strongly advo-
cate continuing to develop techniques for understanding
strong-field radiation reaction. Future insight from such stud- 0
ies may make it possible to improve the hybrid approxima-  _g 592
tion. Even when strong-field radiation reaction is matureyy _ o,
enough to model arbitrary compact body inspirals, the calcu-

lation may be computationally expensive, so that an approxi-
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mation scheme of some sort may remain useful. )
Although our overall .gogl is to provide a tool that can be p = 4M, e = 0.7, 1= 60, a — 0.999M
used to model the gravitational waves produced by compac O T A A T T A ' i
body inspiral, we have presented no such waves in this pa —0.002 & E
per. That is the next step. The calculations we have presentex :8'882 3 E
explicitly construct the parameter space trajectories —0008 [ 3
[E(t),L,(t),Q(t)] describing an inspiral. It is then a simple ' EyY LM AR AL R R LI E
0 500 1000

matter to combine such a trajectory with the geodesic equa

tions for the Kerr spacetimg22] to produce the Boyer- t/M

Lindquist coordinate space inspirfi (t), 6(t), #(t)]. This FIG. 5. Examining our notion of “total angular momentum” for

set of functions specifies the world line of the inspiraling gyong.field Kerr black hole orbits. Each panel compares the angular

body, and one can use it to compute the gravitational waves,omentum squareti?= p2+ (sin 9)le0§5 to Q+L2: the quantity

form seen by distant observeisee, for example, Ref23]).  yjotteq isSL2=L2/(Q+L2)—1. The top panel shows these quan-

Codes to perform this next step are under developf®t tities over an orbit withp=10M, the center panel the quantities

results should be presented in the near future. over an orbit withp=5M, and the bottom over an orfpt=4M. In

all cases, the orbits have eccentricéy 0.7, inclination.=60°,

and are about a hole with spin=0.999M. Even deep in the strong

field, L2 differs very little fromQ+ L2 — the greatest deviation in
We thank Kip Thorne for pressing us to develop “fast andthis sample is about 1%. Sin@-+L? is a constant by definition,

dirty” techniques to compute inspiral waveforms, and Tevietthis also shows that? is approximately conserved over the orbit.

Creighton for helping to test and debug the code that under- _

lies parts of this analysis. K. G. thanks B. S. SathyaprakasWhere p, denotes the particle’s four-momentum. For the

and Nils Andersson for useful interactions related to thisCarter constan@ we have[22]

work and also acknowledges support from PPARC Grant
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APPENDIX A

e ] ] In other wordsQ can be interpreted as the projection of the

The occurrence of a “third” orbital consta in axisym-  tqta| angular momentum on the equatorial plane, modulo the
metric gravitational fields is not an exclusive feature of gen-aspherical” terma2co£é(1—E?). This interpretation makes
eral relativity. For example, it is familiar from Newtonian ganse when the aspherical term is small — that is, wnen
cele§tlal mechamcg applied to orbital motion in galactic ¢ (slow rotation and/orE~ 1 (weak-field orbit3. In prac-
gravitational potentialgsee, for example, Ref24], where  ice e find that this term is often significantly smaller than
th2e th;rd constant is denoteld. The departure oD from  the preceding terms even for motion in strong-field regions
Lx+Ly can then be attributed to the asphericity of the po-of rapidly rotating holes. We illustrate this in Fig. 5, showing
tential. If such a potential does not deviate very much fromhgw the quantitysL2=L2%/(Q+ Lﬁ)—l varies with time for
sphericity, L (the square of the total angular momenjum 45 variety of generic orbits around a rapidly spinning hole.
turns out to be almost constant, so tashould be, after all, Examining Fig. 5, we see thaf deviates very little from

2
nearlyL®—L7. _ . Q+L2 even when the small body is deep in the black hole’s
It is straightforward to check whether this behaviot8f  trong field — in this sample, the difference is no more than

occurs in Kerr spacetime. The definition we use E3ris  aphout 1%. This shows that interpretiyas a squared pro-

identical to that used in Schwarzschild spacetime, jection of angular momentum into the equatorial plane is
sensible. Becaus@®+ L2 is a constant quantity, this figure
_ 2 H —2.2 . .
L2=p§+(sin6) ?pj, (Al)  also demonstrates thaf is nearly constant. This is exactly
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what we expect for motion in an axisymmetric potential that ¢,=E Q. EQ.,, (B3)
is almost spherical. These pieces of evidence suggest that the R
Kerr spacetime is not as “aspherical” as we might have ex- dy=Ecl,,—E L. (B4)

pected, at least for the purposes of this argument, lending
credence to our suggestion that the=‘const” assumption Fgr e we find
should be reliable, as discussed in the paper’s main body.

be: LZ,LQ,p_Q,LLz,pv (B5)

c.=Q E.—E,Q,, B6

This appendix contains explicit expressiofits terms of e=QuE,EQp (B6)

E, L,, Q and their derivativesfor the various functions ap- de=E L, p—E L. (B7)
pearing in the formulag2.14 for the ratesp, E, ¢. First, ST

H= Q,pE,eLz,L_ Q,pE,LLz,e_ Q,eE,pLz,L

APPENDIX B

Finally, for . the coefficients are

+QeE Ly p+Q Epl,e=Q Eel,p.  (BY) b, =Qelzp=Qplze: (B8)
For p we find C.=QpEe=QeE,, (B9)
bp:Q,LLz,e_Q,eLz,u (BZ) dL:E,pLz,e_ E,e'—z,p- (BlO)
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