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Approximating the inspiral of test bodies into Kerr black holes
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We present a new approximate method for constructing gravitational radiation driven inspirals of test bodies
orbiting Kerr black holes. Such orbits can be fully described by a semilatus rectump, an eccentricitye, and an
inclination anglei, or, by an energyE, an angular momentum componentLz , and a third constantQ. Our

scheme uses expressions that are exact~within an adiabatic approximation! for the rates of change (ṗ,ė, i̇) as

linear combinations of the fluxes (Ė,L̇z ,Q̇), but uses quadrupole-order formulas for these fluxes. This scheme
thus encodes the exact orbital dynamics, augmenting it with an approximate radiation reaction. Comparing
inspiral trajectories, we find that this approximation agrees well with numerical results for the special cases of
eccentric equatorial and circular inclined orbits, far more accurate than corresponding weak-field formulas for

( ṗ,ė, i̇). We use this technique to study the inspiral of a test body in inclined, eccentric Kerr orbits. Our results
should be useful tools for constructing approximate waveforms that can be used to study data analysis prob-
lems for the future Laser Interferometer Space Antenna gravitational-wave observatory, in lieu of waveforms
from more rigorous techniques that are currently under development.

DOI: 10.1103/PhysRevD.66.064005 PACS number~s!: 04.30.Db, 04.25.Nx, 95.30.Sf
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I. BACKGROUND AND MOTIVATION

The capture of stellar-mass compact objects by mas
black holes residing in galactic nuclei is expected to be
of the most important sources of gravitational radiation
the future Laser Interferometer Space Antenna~LISA! space-
based detector@1,2#. Observing such events will provide in
formation about stellar dynamics in galactic nuclei, a
should make possible precise measurements of black
masses and spins. Indeed, the waves generated by su
capture will encode a detailed description of the black ho
spacetime, making it possible to test whether the ‘‘large
ject’’ in the galactic nucleus is indeed a Kerr black hole
predicted by general relativity, or is some exotic mass
compact object@3,4#.

Extracting such information will require accurate mod
ing of the gravitational waveform. The smallness of the s
tem’s mass ratio~typically, m/M;102421026, where m
andM are the masses for the captured body and the ce
hole, respectively! allows one to treat the small body as
‘‘test particle’’ moving in the gravitational field of the blac
hole. In the absence of radiation, the small body moves o
geodesic orbit of the black hole@5#. These orbits have thre
integrals of motion~apart fromm): energyE; angular mo-
mentum projected on the hole’s spin axis,Lz ; and Carter’s
third constantQ, related to the square of the angular mome
tum projected onto the equatorial plane. A body in a gene
~eccentric and inclined! Kerr orbit traces an open ellipse pre
cessing about the black hole’s spin axis, resulting in a co
plicated overall motion. Astrophysical captured bodies w
move in such complicated orbits.
0556-2821/2002/66~6!/064005~12!/$20.00 66 0640
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The integrals of the motion are not constant in the pr
ence of gravitational radiation—they evolve as energy a
angular momentum are carried away by the waves. Beca
of the small mass ratio, they should change adiabatically
time scales much longer than any orbital time scale. Hen
the orbit looks geodesic on short time scales. This fact can
used to calculate gravitational perturbations induced by
particle at infinity and at the hole’s event horizon, using t
Teukolsky-Sasaki-Nakamura formalism@6#. In this way, one
can explicitly find the gravitational waveform at infinity an
compute the corresponding fluxes ofE andLz to infinity and
into the hole. If one also knows the evolution of the Car
constant, then the adiabatic nature of the inspiral allows
to treat the small body’s motion as an evolution through
sequence of orbits: the body’s world linez(t) is that of a
geodesic orbitzgeod(t) whose orbital constants are slow
changing:

z~ t !5zgeod@ t;E~ t !,Lz~ t !,Q~ t !#. ~1.1!

Computing the inspiral properties is reduced to comput
the parameter space trajectory@E(t),Lz(t),Q(t)#.

One can in fact infer the change inQ and thus fix the
small body’s inspiral in two special cases: orbits that a
equatorial, and orbits that are circular but inclined. A cons
erable amount of effort has been devoted to studying th
orbits and their evolution due to gravitational-wave emiss
@7–12#. In these special cases, the evolution of the Ca
constantQ is constrained: it remains constant atQ50 ~equa-
torial orbits! or evolves such that the system’s eccentricity
constant ate50 ~circular, inclined orbits! @13–15#. Accurate
numerical computations, based on extractingĖ and L̇z from
©2002 The American Physical Society05-1
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fluxes of gravitational waves to infinity and down the eve
horizon, have detailed the effects of radiation reaction a
the nature of gravitational-wave emission in these cases

Unfortunately, this ‘‘flux-balancing’’ prescription fails in

general—there is no known method for computing the rateQ̇
from the gravitational-wave fluxes in the absence of spe
constraints. At the moment, the only applicable result i
weak-field, quadrupole-order calculation by Ryan@13#, who

used a weak-field radiation reaction force to inferQ̇. Not
surprisingly, Ryan’s results become increasingly inaccur
and unreliable as the orbit comes closer to the black hol
is likely that a strong-field gravitational self-force prescri

tion will be needed to computeQ̇. Many groups are now
working on this problem@16#. It is generally acknowledged
that no result applicable to strong-field Kerr orbits should
expected within the next few years. In the meantime, the
fore, an investigation of possible approximation schemes
describing radiation reaction and wave emission by th
orbits is highly desirable. Such schemes will play an imp
tant role in mapping out the scope of the data analysis
that the LISA community faces, making possible a realis
assessment of issues such as the amount of computing p
needed, the accuracy with which black hole characteris
can be measured, and the difficulty of measuring signal
the inspiral rate is large enough to create a confusion-lim
background@17#.

In the remainder of this paper we present such an appr
mate scheme. The essential idea is to use the exact
black hole geodesics to describe the system’s dynamics
to evolve through a sequence of those geodesics using
weak-field quadrupole-order fluxes forĖ and L̇z . Because
this scheme mixes an exact notion of short-time-scale mo
with an approximate description of the long-time-scale rad
tion effects, we call it a ‘‘hybrid’’ approximation. We find
that the hybrid approximation faithfully reproduces featu
seen in the numerical strong-field analyses of radiation re
tion. For example, we find that the rate of change of ecc
tricity will typically switch sign prior to plunging into the
black hole; as a consequence, the orbit has substantial ec
tricity near the end of inspiral. Self-consistent leading ord
calculations~which approximate the orbital dynamics as w
as the radiation reaction! strongly underestimate this residu
eccentricity. In some cases, they predict that the orbit is
cular at the end of inspiral. This incorrect circularizatio
could have a big effect on the waveform models that are u
to lay the foundations of LISA data analysis, since a circu
inspiral produces waves with less interesting harmonic st
ture than eccentric inspirals. We advocate this hybrid sche
as a method that is simple enough to produce waveforms
are ‘‘fast and dirty,’’ but accurate enough to qualitative
reproduce features that should exist in real inspirals. We
phasize that the hybrid waveforms arenot the ultimate mod-
els one would want to use as templates for analyzing
LISA data stream. Instead, we advocate them as tools
exploring issues in LISA data analysis, as described in
paragraph above.

The ideas behind the hybrid approximation and key eq
tions are given in Sec. II; some of the more cumberso
06400
t
d

al
a

te
It

e
-
r
e
-
sk
c

er
s
if
d

i-
err
ut
he

n
-

s
c-
-

en-
r

r-

d
r
c-
e
at

-

e
or
e

-
e

details are presented in Appendix B. In Sec. III we th
compare this technique’s predictions to those of detailed
merical calculations for the two special cases that are w
understood now, equatorial orbits and inclined, circular
bits. We compare with the leading order results developed
Ryan @13#, and show that the hybrid scheme qualitative
recovers features seen in the strong-field numerical calc
tions. Our results show that holding the inclination anglei
constant is more accurate than letting it evolve in the w
that the weak-field fluxes ‘‘want’’ it to evolve~as compared
to strong-field numerical calculations!. We argue in Sec. III
and Appendix A that this tells us that the ‘‘gravitational p
tential’’ felt by the inspiraling body is nearly spherical, an
argue further that holdingi constant should work well for
arbitrary orbits.

In Sec. IV we move to ‘‘generic’’ configurations, studyin
inspirals through a sequence of inclined, eccentric orbits
most cases we find that the inspiral trajectories are qua
tively similar to inspiral in the equatorial plane. In particula
we find that most configurations plunge into the black h
with substantial residual eccentricity. We also map out
range of parameter space where we do not trust the hy
approximation: when orbits reach too deeply into the stro
field, or spiral in near inclination 90°, the weak-field fluxe
that we use do not appear to be reliable. We conjecture
Sec. V on how an approximation could be developed to b
ter understand the Carter constant’s evolution. This appr
mation is based on the ‘‘zoom-whirl’’ behavior of strong
field eccentric orbits, recently described in Ref.@12#. We
provide a concluding discussion and suggest directions
future work on this problem in Sec. VI. Throughout th
paper, we use units in whichG5c51.

II. THE HYBRID APPROXIMATION

Generic Kerr geodesics can be parametrized by a triple
constant orbital elements: the semi-latus rectump, the eccen-
tricity e, and the inclination anglei. The elementsp and e
define the orbit’s radial turning points, the apastron and
riastron:

r a5
p

12e
, r p5

p

11e
. ~2.1!

In the strong field of a Kerr black hole, there are many wa
that one could define an ‘‘inclination angle’’ — for exampl
the turning points of the orbit’s latitudinal motion, or th
angle at which the small body crosses the equator as see
distant observers. We use the following definition:

cosi5
Lz

AQ1Lz
2

. ~2.2!

This definition does not correspond to either of these
amples, but is very convenient: it depends simply on orb
constants and has a useful intuitive description, sugges
that the Carter constantQ is essentially just the square of th
angular momentum projected into the equatorial plane.~This
description is in fact exactly correct for Schwarzschild bla
5-2
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holes; for non-zero spin it is not quite correct, but is go
enough to be useful. We discuss this issue in more deta
Appendix A.! The orbital elements can be written as fun
tions of (E,Lz ,Q), and vice versa. Consequently, we c
write their time derivatives asṗ5 ṗ(p,e,i,Ė,L̇z ,Q̇), and
similarly for ė and i̇.

As already mentioned, we do not yet know how to acc
rately calculateQ̇. It is only known to leading order inM /p
and in the spin of the black hole@13#. The orbital parameters
used in Ref.@13# are an eccentricityē ~different frome), a
semi-major axisā, and an inclination anglei ~identical to
our i). The two sets of parameters are related by

12e25~12ē2!F12
4a

M S M

p D 3/2

e2 cosiG , ~2.3!

p5ā~12e2!F12
2a

M S M

p D 3/2

e2 cosiG . ~2.4!

The parametrizations are consistent in the weak field, and
identical for zero spin. Rewriting Ryan’s fluxes in terms
our parameters yields

Ė52
32

5

m2

M2 S M

p D 5

~12e2!3/2

3F f 1~e!2
a

M S M

p D 3/2

cosi f 2~e!G , ~2.5!

L̇z52
32

5

m2

M S M

p D 7/2

~12e2!3/2Fcosi f 3~e!

1
a

M S M

p D 3/2

@ f 4~e!2cos2i f 5~e!#G , ~2.6!

Ċ52
64

5
m3S M

p D 3

~12e2!3/2

3F f 3~e!2
a

M S M

p D 3/2

cosi f 6~e!G , ~2.7!

whereC[Q1Lz
2 , and

f 1~e!511
73

24
e21

37

96
e4, ~2.8!

f 2~e!5
73

12
1

823

24
e21

949

32
e41

491

192
e6, ~2.9!

f 3~e!511
7

8
e2, ~2.10!

f 4~e!5
61

24
1

63

8
e21

95

64
e4, ~2.11!

f 5~e!5
61

8
1

91

4
e21

461

64
e4, ~2.12!
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f 6~e!5
97

12
1

37

2
e21

211

32
e4. ~2.13!

In the a50 limit, Eqs. ~2.5! and ~2.6! reduce to the cel-
ebrated Peters-Mathews formulas@18#.

The ratesq̇ j5$ ṗ,ė, i̇% can be written

q̇ j5H21~bjĖ1cj L̇z1djQ̇!. ~2.14!

The quantitiesH and bj , cj , dj are all constructed in a
straightforward way from derivatives ofE, Lz , Q with re-
spect top, e, i; the resulting expressions are rather cumb
some, and so are written out in Appendix B. We emphas
that these functions encode the exact geodesic motion.

The main idea behind the hybrid scheme is simple: cal
late the time derivativesq̇ j using theexactcoefficientsbj ,
cj , dj and theapproximatefluxes ~2.5!–~2.7!. A consistent
leading-order calculation~that is, leading order inM /p and
a/M ) would instead approximate the coefficients along w
the fluxes. Knowing the ratesq̇ j makes it possible to build
the parameter space trajectoriesqj (t) followed by a small
body spiraling into a black hole: given initial valuesqj (0),
one simply ‘‘integrates up’’ the derivativesq̇ j to generate the
inspiral trajectory. For example, a simple-minded Eul
method integration would step from parameter space coo
nates (t,qj ) to (t1dt,qj1q̇ jdt). Generalization to more so
phisticated integration techniques is straightforward. T
trajectoriesqj (t) are the main result of this paper. Fro
them, it is a simple matter to compute quantities such as
gravitational waveform generated during an inspiral, a
thus to begin testing ideas more directly related to d
analysis. We will not develop such waveforms here, but w
instead defer them to a later analysis.

III. COMPARISON WITH NUMERICAL RESULTS

The reliability of this method can be assessed by apply
it to specific families of orbits where accurate numerical
sults are already known. We first consider equatorial ecc
tric orbits, recently studied by Glampedakis and Kennefi
@12#. Such orbits always havei50° ~prograde! or i5180°
~retrograde!, leaving p and e as unspecified parameter
Equation~2.14! becomes

ṗ5Heq
21~2E,eL̇z1Lz,eĖ!, ~3.1!

ė5Heq
21~E,pL̇z2Lz,pĖ!, ~3.2!

whereHeq5E,pLz,e2E,eLz,p . The leading-order approxima
tion for these expressions is@8#

ṗ52
64

5

m

M
~12e2!3/2S M

p D 3S 11
7

8
e2D , ~3.3!

ė52
304

15

m

M2
e~12e2!3/2S M

p D 4S 11
121

304
e2D .

~3.4!
5-3
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FIG. 1. Comparing equatorial inspiral. We show inspiral into a hole with spina50.5M ~left panel! and into a hole witha50.9M ~right
panel!. In each panel, the top half shows prograde inspirals and the bottom retrograde inspirals. In each set, the dashed line rep
separatrix separating stable from unstable orbits. We used the hybrid approximation discussed in the text to radiatively evolve o
initial parameters (pi ,ei)5(20M ,0.4), (20M ,0.99), (14M ,0.99), and (10M ,0.99). The inspiral trajectories are shown as the heavy line
each plot.~The final set is not included in the retrograde inspirals since the initial conditions are not stable in those cases.! The dotted
trajectories in each plot show the leading-order predictions generated using Eq.~3.5!. Note the significant qualitative difference between t
two calculations at the vicinity of each separatrix. Note also the extremely large growth in eccentricity seen in the prograde insp
a50.9M just before reaching the separatrix. Comparison with accurate strong-field numerical results shows that this growth is ex
ex

-
it

-

tia
in

d

th
r
d

on
wo
in
e

g-

be-

-
the
he

s
c-
ect

nce
e.
her
eld
en

xi-
low

li-
n

ar-
Note that we could equally well use the corresponding
pressions with the leading-order spin terms included~see
@12#!, but it turns out that they essentially give the sam
results as Eqs.~3.3! and ~3.4!. These equations can be com
bined to give a simple expression that describes the orb
evolution on thep-e plane:

p~e!5pi S e

ei
D 12/19F11121e2/304

11121ei
2/304

G 870/2299

, ~3.5!

wherepi andei are initial values. We are now ready to com
pare the inspiral trajectories generated by Eq.~3.5! with
those obtained by the hybrid scheme.

Representative results for astrophysically relevant ini
parameters are shown in Fig. 1. We compare the lead
order trajectories found using Eq.~3.5! ~dotted lines! with
the trajectories predicted by the hybrid scheme~solid lines!.
Note that the time dependence of the inspiral is suppresse
this figure: most time is actually spent at largep. The total
duration of an inspiral scales withM2/m. The shape of a
curve, however, does not depend on this ratio, provided
the mass ratio is extreme: these curves are universal fom
!M . We show inspiral for both prograde and retrogra
orbits, for black hole spinsa50.5M anda50.9M .

In all cases, the hybrid and the leading-order calculati
agree forp@M , as expected. Differences between the t
methods become apparent in the strong field. The lead
order inspiral trajectory exhibits constantly decreasing ecc
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tricity. This is in marked contrast with the rigorous stron
field calculations~numerical and analytical! of Refs.@7,8,12#
showing that there exists a region near the separatrix

tween stable and unstable orbits whereė reverses sign: the
eccentricity shouldgrow near the separatrix. It is very en
couraging that the eccentricity does in fact grow when
hybrid approximation is used. Moreover, the location of t

critical points in these curves whereė50 is in good agree-
ment ~at the order of a few percent! with the numerical re-
sults of Refs.@8,12#; see Table I. Three of the four case
shown in Fig. 1 appear ‘‘good’’ in the sense that the traje
tories appear to agree reasonably well with what we exp
based on strong-field numerical analyses~cf. Ref. @12#!. The
same comparison for the fourth case (a50.9M , prograde;
upper plot in the right-hand panel of Fig. 1! reveals that both
the eccentricity growth near the separatrix and the dista
of the critical curveė50 from the separatrix are excessiv
Prograde orbits of rapidly rotating black holes reach rat
deep into the black hole’s strong field where the weak-fi
fluxes~2.5! and~2.6! cannot be trusted. As we shall see wh
we move on to generic inspirals~Sec. IV!, this breakdown of
the weak-field flux formulas means that the hybrid appro
mation does not accurately describe the inspiral of shal
inclination orbits (i&20° or so! into rapidly rotating black
holes (a*0.85M or so!.

It is possible to get some insight into the superior qua
tative description of the inspiral in the strong field regio
given by our approach. The phenomenon of orbital circul
5-4
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APPROXIMATING THE INSPIRAL OF TEST BODIES . . . PHYSICAL REVIEW D 66, 064005 ~2002!
ization as a result of some form of dissipation is seen
many astrophysical situations, such as that of satell
whose orbits are decaying due to atmospheric friction. T
reason is that the dissipating mechanism causes the pa
to ‘‘drop’’ in its potential well, the usual geometry of whic
ensures that the orbital eccentricity decreases. In our
another mechanism becomes significant as the unst
plunge orbit is approached at the end of the inspiral. As
occurs the potential becomes shallower~as the minimum
turns into a saddle point at plunge!, and this tends to increas
the eccentricity of the orbit. Shortly before plunge th
mechanism overcomes the circularizing tendency. It is
surprising that the hybrid approximation can qualitative
replicate the eccentricity increasing behavior, because it
actly describes the shape of the orbital potential, which is
critical to this effect.

Table II compares data forṗ and ė. In this sample, the
hybrid approach clearly is more accurate than the lead
order approximation. This comparison is a very strict tes
the accuracy of this scheme. As discussed above, we be
that the hybrid approximation is reliable as long asr p
*5M . The weak-field fluxes that we use cannot be trus
very deep in the strong field — the spin correction terms
Eqs. ~2.5! and ~2.6! dominate the leading order term. Th
method therefore fails when we push to smallerr p . This
effectively constrains the black hole spin toa&0.5M for
prograde motion — for larger spins, the innermost sta
orbit and hencer p come too close to the horizon. For retr
grade orbits, the results are much more accurate sincr p
never comes close to the horizon, regardless of the s
Finally, we emphasize the essential role Ryan’s fluxes~2.5!
and ~2.6! play in calculatingṗ and ė. Had we used instead
the Peters-Mathews fluxes, the resulting inspirals would p
dict a rapid circularization under radiation reaction: we fi
that the Peters-Mathews fluxes reduce the eccentricity to
well before reaching the saddle point of the orbital potent
and so the eccentricity never grows. This is in sharp d
agreement with the numerical results.

A major prediction of the hybrid approximation is that fo

TABLE I. Comparing critical curve valuespcrit for equatorial
eccentric orbits. These are thep values at which the eccentricit
evolution switches sign, beginning to grow rather than shrink.
show the values ofpcrit calculated numerically@8,12# ~third column!
and using the hybrid approximation~fourth column!, for a variety
of black hole spins~negativea/M represents retrograde orbits! and
eccentricities. The fifth column shows the fractional difference
tween the numerical and the approximate results~approximate
2numerical!/~numerical!.

a/M e
pcrit /M

~numerical!
pcrit /M

~hybrid approx.!
Fractional
difference

0 0.2 6.76 6.92 0.0237
0 0.4 6.99 7.13 0.0200
0.5 0.3 4.85 5.06 0.0433
0.5 0.5 5.08 5.21 0.0250
-0.99 0.3 10.25 10.53 0.0273
-0.99 0.5 10.59 10.78 0.0179
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equatorial orbits the residual eccentricity prior to plun
should be substantial, in strong contrast to the prediction
the leading order formula~3.5!. In many cases, the leadin
order results predict that the orbit will actually circulariz
prior to plunge. Because the harmonic structure of a circu
inspiral is rather different from that of an inspiral with su
stantial eccentricity, these results have strong implicati
for the waveform models to be used in LISA’s data analys

We next consider circular inclined orbits, which were r
cently studied by Hughes@10#. One of the most importan
findings of Ref.@10# is that the anglei remains almost con-
stant during inspiral, even when the particle is cross
strong field regions.

For these orbits, the ratesṗ and i̇ are given by

ṗ5Hcirc
21~2Lz,iĖ1E,iL̇z!, ~3.6!

i̇5Hcirc
21~Lz,pĖ2E,pL̇z!, ~3.7!

whereHcirc5E,iLz,p2Lz,iE,p . In order to obtain these for
mulas we first expressedQ̇ in terms ofĖ andL̇z making use
of the ‘‘circular goes to circular’’ theorems@13–15#; see Ref.
@11# for further discussion. The leading-order expression
i̇ is @19#

i̇5
244

15

m

M2

a

M S M

p D 11/2

sini; ~3.8!

ṗ follows from Eq.~3.3!, settinge50.
Table III compares data forṗ and i̇ using the hybrid ap-

proximation to the the results obtained using Eqs.~3.3! and
~3.8!, together with accurate numerical results from R
@10#. Figure 2 shows inspirals of circular inclined orbits wi
our method and using the leading-order formulas. Both
proximations predict thati changes in such a way as to driv
the orbit to an equatorial retrograde configuration~that is, i
increases!. The two calculations agree at large radii. In t
strong field, the leading-order formulas break down — t
inclination angle tends to increase dramatically. The beha
of the hybrid-scheme inspiral is more reasonable.

Although the hybrid scheme is much better behaved in
strong field, the growth ofi we see is still quite a bit large
than detailed numerical calculations predict@10,11#. Based
on those numerical results, a more accurate scheme wou
to simply require thati remain constant. Combiningdi/dt
50 with Eq. ~2.2! yields the rule

Q̇5
2Q

Lz
L̇z . ~3.9!

This rule is consistent with our description ofQ as roughly
the squared component of angular momentum projected
the equatorial plane. If the spacetime is perfectly spher
~i.e., Schwarzschild black holes!, thenQ is exactly such an
angular momentum component:Qspherical[Lx

21Ly
2 . It is easy

to show that an inspiral in this spacetime would proceed
exactly constant inclination angle: gravitational waves ca
off exactly the right amounts ofLx andLy to holdi constant,

e

-

5-5
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TABLE II. Comparing the ratesṗ, ė for several equatorial eccentric orbits. The fifth column in this table showsṗ; the seventh column

showsė. Within each section of the table, the first row of columns five and seven contains accurate numerical data from@8,12#, the second
row shows data using the hybrid scheme outlined in this paper, and the third row shows data using quadrupole order results. The
eighth columns show the fractional differences between the two approximation schemes and the accurate numerical results. In al
one, the hybrid approximation is closer to the accurate numerical calculation, sometimes substantially so.

a/M p/M e Calculation (M /m) ṗ Frac. diff. in ṗ (M2/m)ė Frac. diff. in ė

0 7.505 0.189 Numerical 27.47531022 — 21.96731023 —

Hybrid 26.85931022 0.0824 21.29131023 0.3434

Leading order 22.95731022 0.6044 21.15931023 0.4108

0 6.9 0.4 Numerical 24.24031021 — 11.04731022 —

Hybrid 23.05631021 0.2792 11.50631022 -0.4384

Leading order 23.42031022 0.9193 22.92931023 1.2797

0.5 6.5 0.4 Numerical 25.99931022 — 25.15531023 —

Hybrid 24.60631022 0.2322 23.35631023 0.3490

Leading order 24.09131022 0.3181 23.71931023 0.2786

0.5 15 0.4 Numerical 23.37131023 — 21.34131024 —

Hybrid 23.35831023 0.0039 21.33431024 0.0052

Leading order 23.32831023 0.0128 21.31131024 0.0224

0.5 4.8 0.3 Numerical 26.35431021 — 11.36931022 —

Hybrid 24.85831021 0.2354 13.51931022 -1.5705

Leading order 24.84931022 0.9237 24.43231023 1.3237

0.9 5 0.4 Numerical 27.50731022 — 29.26631023 —

Hybrid 24.61731022 0.3850 21.96531023 0.7879

Leading order 22.69831023 0.9641 29.73231025 0.9895

20.5 10 0.4 Numerical 23.11531022 — 21.37931023 —

Hybrid 22.49431022 0.1993 29.10731024 0.3396

Leading order 21.33731022 0.5708 27.93131024 0.4249

-0.99 10.5 0.4 Numerical 27.51631022 — 25.31231024 —

Hybrid 25.50631022 0.2674 25.22331024 0.0168

Leading order 29.70431023 0.8709 25.46131024 0.0281

20.99 15 0.4 Numerical 25.76631023 — 22.14131024 —

Hybrid 25.29531023 0.0817 21.87531024 0.1242

Leading order 23.32831023 0.4228 21.31131024 0.3877
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so Eq.~3.9! is exactly correct in this case. One would expe
i to remain nearly constant if the spacetime does not dev
too strongly from sphericity. Rigorous numerical results
the circular inclined case show thati indeed remains nearly
constant; it thus appears that the Kerr metric is not too
pherical over much of the inspiral~modulo frame dragging!.
Additional evidence for the validity of this statement is giv
by the discussion in Appendix A. Since the orbit’s eccentr
ity does not enter this argument at all, it is likely that E
~3.9! will work well for inclined eccentric orbits also.
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IV. EVOLVING GENERIC ORBITS

Having established the reliability and limitations of th
hybrid scheme, we move to the main subject of this pap
the study of inspirals of test bodies in generic orbits wh
only leading-order results are currently available@13#. We
began this analysis employing Ryan’s fluxes, Eqs.~2.5!–
~2.7!, but quickly faced disappointing results. We found th
hybrid-scheme inspirals produced with these fluxes did
behave well far from the two limits discussed above, parti
larly in the strong field. For example, the eccentricity tend
5-6
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TABLE III. Comparing the ratesṗ, i̇ for several inclined circular orbits. The fifth column showsṗ; the seventh column showsi̇. Within
each section of the table, the first row of columns five and seven contains accurate numerical data from@10#, the second row shows dat
using the hybrid scheme outlined in this paper, and the third row shows data using leading order results. The sixth and eighth colu
the fractional differences between the two approximation schemes and the accurate numerical results. In most cases in this sample
scheme performs much better than the leading-order approximation when compared to the rigorous numerical data. The only case

is not true is fori̇ of retrograde orbits. Nevertheless, this small inaccuracy has no impact on the calculation of generic inspirals, as we
thati5const. Note the enormous difference between the numerical and the leading order results in the table’s final entry. This is be
point is fairly close to the separatrix between stable and unstable orbits. Since the leading-order calculation has no notion of this s
it is particularly inaccurate here.

a/M p/M i(degrees) Calculation (M /m) ṗ Frac. diff. in ṗ (M2/m) i̇ Frac. diff. in i̇

0.95 7 62.43 Numerical 24.65731022 — 1.20731024 —
Hybrid 24.49731022 0.0344 2.63931024 1.1864

Leading order 22.75031022 0.4095 3.08031024 1.5518

0.05 7 60.17 Numerical 21.09631021 — 1.08731025 —
Hybrid 21.04831021 0.0438 1.20731025 0.1104

Leading order 23.67631022 0.6642 1.58731025 0.4500

0.5 10 67.56 Numerical 21.58331022 — 1.54631025 —
Hybrid 21.64531022 0.0392 2.04331025 0.3215

Leading order 21.19431022 0.2457 2.37731025 0.5375

0.5 10 126.76 Numerical 22.32931022 — 1.89231025 —
Hybrid 22.34131022 0.0051 1.64331025 0.1316

Leading order 21.41431022 0.3929 2.06031025 0.0888

0.9 10 74.07 Numerical 21.54431022 — 2.71531025 —
Hybrid 21.56731022 0.0149 3.85731025 0.4206

Leading order 21.16931022 0.2429 4.45231025 0.6398

0.9 10 131.57 Numerical 23.25331022 — 3.88731025 —
Hybrid 23.08231022 0.0526 2.61231025 0.3280

Leading order 21.54531022 0.5250 3.46431025 0.1088

0.5 6 48.33 Numerical 21.23731021 — 1.41031024 —
Hybrid 21.13531021 0.0824 2.61431024 0.8539

Leading order 24.44031022 0.6411 3.19031024 1.2624

0.5 6 67.81 Numerical 22.02031021 — 2.09431024 —
Hybrid 21.77931021 0.1193 2.99231024 0.4288

Leading order 25.08231022 0.7484 3.95431024 0.8882

0.9 6 54.64 Numerical 27.84631022 — 2.01531024 —
Hybrid 26.95031022 0.1142 5.48631024 1.7226

Leading order 23.59831022 0.5674 6.26831024 2.1107

0.9 6 99.55 Numerical 274.32 — 6.33731024 —
Hybrid 248.02 0.3539 5.24131024 0.1729

Leading order 26.59331022 0.9991 7.58031024 0.1961
oo
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to grow extremely large very rapidly in some cases. The r
of the problem lies in the expression for theQ̇ flux, Eq.~2.7!,
which apparently is not as accurate as we would require
be. The qualitative behavior of our inspirals is more reas
able when the rule given by Eq.~3.9! is used to computeQ̇
06400
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to
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instead, forcingi to be constant. Following the discussion
the end of Sec. III and in Appendix A, it is likely that thi
rule is accurate enough for our purposes anyway, and so
shall use it from this point onward. In all likelihood, detaile
self-force calculations will be needed to test the accuracy
5-7
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GLAMPEDAKIS, HUGHES, AND KENNEFICK PHYSICAL REVIEW D66, 064005 ~2002!
the constant inclination rule.
Using the fluxes given in Eqs.~2.5! and ~2.6! with the

constant-i rule Eq. ~3.9! produces inspirals that agree wi
the leading-order results whenp@M , which smoothly con-
verge to the equatorial case fori→0° andi→180° and that
exhibit anė.0 region near the separatrix. Examples of th
behavior are shown in Fig. 3~spina50.5M ) and Fig. 4~spin
a50.9M ). Several interesting features can be seen in th
figures. The trajectories fori,90° are qualitatively similar
to the equatorial, prograde trajectories shown in Fig. 1.
particular, each such trajectory passes through a critical p
at which Ė50 after which eccentricity grows. The syste
typically has substantial non-zero eccentricity when
reaches the separatrix. Also, note the excessive growt
eccentricity near the separatrix fora50.9M and i530°. At
shallow inclination angle, the separatrix is very deep in
black hole’s strong field, so the inspiral proceeds to smar
before plunging. Just as in the case of equatorial orbits
a50.9M , the weak-field flux formulas that we use cannot
trusted this far into the Kerr black hole strong field.

The qualitative appearance of the inspirals fori.90° is
quite a bit different from thei,90° inspirals. Looking at the
right hand sides of Figs. 3 and 4, we see that the hyb

FIG. 2. Comparing circular, inclined inspiral. We show inspir
into a hole with spina50.5M ~top! and spina50.9M ~bottom!.
The solid lines show inspiral using the hybrid approximation;
dotted lines show the leading order inspiral prediction. The das
curve shows the separatrix between stable and unstable orbits.
approximations show that the inclination angle increases, espec
right before reaching the separatrix. However, the increase
dicted by the leading-order prediction is far too large, particula
for rapidly spinning black holes. The inspiral predicted by the h
brid approximation is closer to what is seen in rigorously compu
inspirals. Nonetheless, it too shows an increase ini that is probably
excessive. As we argue in the text, holdingi constant produces a
inspiral sequence that is probably closest of all to strong-field
culations and should be acceptably accurate.
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approximation predicts that many of these inspirals co
pletely circularize prior to reaching the separatrix. We do n
believe that this behavior is robust. Indeed, we find that
behavior of inspirals exhibits a rather sharp transition as
inclination angle goes from slightly below 90° to slight
above. This behavior arises from the cosi terms in Eqs.~2.5!
and~2.6!, which switch sign at this transition. We thus do n
believe that this rapid circularization is physical, but inste
attribute it to poor behavior of the hybrid approximation
i*90°.

Having established that the behavior of hybrid appro
mation inspirals fori*90° is probably not reliable, it is
worth reexamining the behavior fori&90°. Good examples
of this behavior are the plots fori580° ~lower leftmost pan-
els of Figs. 3 and 4!. In these cases, the cosi terms in Eqs.
~2.5! and~2.6! will be small but positive. Indeed, we see th
the trajectories shown in this case are somewhat odd. C
sider the trajectories that begin at (pi ,ei)5(20M ,0.2). The
points where the eccentricity evolution switches sign are
rather large semi-latus rectum (p;16.5M for a50.5M ; p
;25M for a50.9M ). This is quite a bit further out than is
seen in any analysis of radiation reaction on equatorial or
@7,8,12#. We suspect that this behavior is likewise an artifa
of the weak-field fluxes, and do not trust the hybrid appro
mation’s predictions for inspirals neari590°.

We conclude that the hybrid inspiral scheme — the we
field fluxes ~2.5! and ~2.6! plus the ‘‘constant inclination’’
rule ~3.9! applied to exact, strong-field Kerr geodesics —
in most cases, reliable and accurate enough to be used
exploring issues in LISA’s data analysis. In some cases,
hybrid scheme willnot be accurate enough: the weak-fie
fluxes behave badly when the orbit goes too deep into
strong field, and so we do not trust this scheme’s res
when r p&5M . Also, the spin correction terms in Eqs.~2.5!
and ~2.6! become either very small or very large relative
the leading quadrupole term wheni;90°, and so we do no
trust the hybrid approximation for inclination angles 80°&i
&120°. More rigorous strong-field analyses will be need
in order to validate the inspiral behavior at these inclinat
angles.

In all cases in which the inspiral behavior is reasonab
we find that small body’s orbits will have significant ecce
tricity upon reaching the separatrix. Eccentricity will be
significant factor that must be incorporated into plans
LISA data analysis.

V. CONJECTURE: APPROXIMATE Q̇ FOR GENERIC
ZOOM-WHIRL ORBITS

We have repeatedly emphasized that the hybrid appr
mation presented here is reliable as long as the orbiting b
does not come too close to the central black hole. This
cludes shallow inclination orbits of rapidly rotating blac
holes — an unfortunate exclusion, since those orbits are
many cases very strongly ‘‘stamped’’ by the features of
strong-field spacetime, and thus may be the most interes
inspiral sources observed by LISA@20#. These are also the
orbits for which the ‘‘constant inclinationQ̇’’ rule ~3.9! is
most likely to be inaccurate, since they are deepest in
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APPROXIMATING THE INSPIRAL OF TEST BODIES . . . PHYSICAL REVIEW D 66, 064005 ~2002!
FIG. 3. Comparing generic inspiral at several inclination angles into a hole with spina50.5M . In all plots the dashed line represents t
separatrix between stable and unstable orbits; because we force the inspiral to lie in surfaces of constanti, there exists a separatrix in thep-e
plane of each such surface. We use the hybrid inspiral scheme to evolve orbits with initial parameters (pi ,ei)5(20M ,0.2), (20M ,0.4),
(20M ,0.99), and (14M ,0.99), andi530°, 60°, 80°, 100°, 120°, and 150°. Inspirals that are roughly ‘‘prograde’’~have i,90°) are
qualitatively similar to the equatorial inspirals shown in Fig. 1: there is a turnaround in the eccentricity evolution, so that all inspira
with a substantial non-zero eccentricity. By contrast, the roughly ‘‘retrograde’’ inspirals (i.90°) exhibit rather different behavior: particu
larly when the inclination is not too far from 90°, many inspirals completely circularize, reachinge50. As discussed in the text, we believ
this behavior is incorrect.

FIG. 4. Comparing generic inspiral at several inclination angles into a hole with spina50.9M . Aside from the faster black hole spin, th
trajectories shown here have identical initial parameters as those shown in Fig. 3. The inspirals fori,90° are again qualitatively similar to
equatorial inspirals, shown in Fig. 2. In particular, we see that at shallow inclination angle, the growth in eccentricity is very lar
believe this is because these orbits go so deeply into the strong field that the weak-field flux formulas used in the hybrid approxim
no longer reliable. We also see the rapid circularization of inspirals wheni is greater than but near 90°, very similar to the behav
encountered for spina50.5M .
064005-9
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GLAMPEDAKIS, HUGHES, AND KENNEFICK PHYSICAL REVIEW D66, 064005 ~2002!
Kerr black hole’s strong field and are most likely to feel t
asphericity of the Kerr spacetime. Ultimately, self-for
computations will provide the toolsets needed to rigorou
compute strong-field inspirals in this regime, and will sid
step all difficulties regarding the calculation ofQ̇. In the
meantime, while such computations remain unavailable,
worth exploring other possibilities that may provide accur
approximations to the Carter constant’s evolution.

Strong-field eccentric equatorial orbits of rapidly rotati
holes have a ‘‘zoom-whirl’’ character@12#: orbits near the
separatrix in thep-e plane ‘‘whirl’’ around the black hole
repeatedly near periastron, so that the amount of azimutf
accumulated in a single radial cycle~apastron to periastron t
apastron! is much greater than 2p. During this whirl phase,
the body’s motion is very close to a circular orbit. Explo
atory studies@21# show that this behavior carries over
non-equatorial orbits, particularly for a fairly shallow incl
nation angle.

The equatorial zoom-whirl orbits studied in Ref.@12# ra-
diate energy and angular momentum as if they were ne
circular:

Ė'VfL̇z , ~5.1!

where Vf is the frequency associated with azimuthal m
tion. This property follows quite naturally from the motion o
a test body in a zoom-whirl orbit: a large fraction of th
orbital period is spent ‘‘whirling’’ in the vicinity of the peri-
astron, where the motion is nearly circular. This is also
part of the orbit where the body is closest to the black h
and thus where most of the radiation will be generated. Th
the radiation from a zoom-whirl orbit should be very simil
to radiation from a circular orbit, which is exactly what E
~5.1! suggests. Extrapolating this behavior to generic zoo
whirl orbits, we expect that most of the radiatedE, Lz , and
Q will come from the motion of the body near a~general-
ized! separatrix in the (p,i,e) phase space. The whirl motio
of such orbits will be well described as nearly circular a
inclined.

Following Kennefick and Ori@14#, we can write the
Carter constant as

Q5G~r ,E,Lz!2Dur
2 , ~5.2!

where

G5D21@E~r 21a2!2aLz#
22~Lz2aE!22r 2, ~5.3!

with D5r 222Mr 1a2 and ur denoting the radial compo
nent of the body’s four-velocity.~The function that we have
denotedG is written H in @14#.! It is then straightforward to
show that@14#

Q̇5G,EĖ1G,Lz
L̇z2

2Sur

ut
Fr , ~5.4!

whereS5r 21a2cos2u andFr is the radial component of th
self-force. It is the unknown last term in this equation th
presently prohibits the calculation ofQ̇ for generic orbits.
06400
y
-

is
e

ly

-

e
e
s,

-

t

For strictly circular orbits, on the other hand, this term
absent sinceur50. The remaining expressionQ̇5Q̇(Ė,L̇z)
allows the explicit calculation ofQ̇; this is how Hughes
evolves circular, inclined orbits by reading the fluxesĖ and
L̇z at infinity and down the hole@10,11#.

For a zoom-whirl orbit and for motion near the periastro
r'r p , so we should haveur'0; consequently, the unknow
term in Eq.~5.4! should be negligible. Ourconjectureis that
the resulting expression forQ̇ describes the evolution of th
Carter constant for all generic zoom-whirl orbits and w
increasing accuracy as the orbit approaches the separa
We emphasize that this approximation should hold even
orbits deep in the black hole’s strong-field. This conjectu
could become a practical tool once a code that calculateĖ

and L̇z for generic orbits is developed. Furthermore, a dir
comparison between Eqs.~3.9! and ~5.4! should be a usefu
guide for the accuracy of thei5const rule in strong-field
situations. Future computation of the self-force will provid
the ultimate test for both approximations.

VI. CONCLUDING DISCUSSION

The hybrid approximation presented in this paper sho
be a valuable tool for the gravitational-wave astrophys
community as studies of LISA’s data analysis requireme
begin, and thence models of the waves generated by com
bodies spiraling into massive black holes become need
Such approximate ‘‘kludged’’ waveforms are obviously to
crude to actually be used in future measurements of com
bodies spiraling into massive black holes; data analysis s
egies based on waveforms built from rigorous strong-fi
radiation reaction will be needed. Waveforms from appro
mate inspiral models should be adequate to begin the pro
of developing a data analysis infrastructure. For exam
they will be useful for counting the number of analysis filte
needed, assessing the computational cost of data ana
and experimenting with data analysis techniques. As rigor
and reliable waveform models become available, they
simply be dropped into the codes and infrastructure de
oped using the hybrid approximation.

Because this approximation combines the exact stro
field Kerr geodesics with weak-field radiation reaction fo
mulas, it is somewhat limited: inspiral cannot go too dee
into the strong field, thereby making it inaccurate for shallo
(i&20°) inspirals of rapidly rotating (a*0.85M ) holes.
Also, the cosi dependence of terms within the flux formula
behaves badly neari;90°, so that the approximation i
probably not reliable within an inclination range 80°&i
&120°. Despite these limitations, we have found the hyb
approximation reliably and robustly duplicates many of t
inspiral properties that we expect will be found when it
possible to study these systems using truly strong-field gr
tational radiation reaction. In particular, it produces inspi
trajectories that retain substantial non-zero eccentricity
before plunging into the hole, as is expected from stro
field analyses in special cases@7,8,12#. We emphasize this
point because the harmonic structure of gravitational wa
from eccentric orbits is quite a bit different from that o
5-10
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waves generated by circular orbits. The residual eccentri
of typical inspirals is likely to impact data analysis rath
strongly.

Obviously, waveforms constructed from hybrid appro
mation inspirals are by no means the ultimate models
will be needed for LISA data analysis — we strongly adv
cate continuing to develop techniques for understand
strong-field radiation reaction. Future insight from such st
ies may make it possible to improve the hybrid approxim
tion. Even when strong-field radiation reaction is matu
enough to model arbitrary compact body inspirals, the ca
lation may be computationally expensive, so that an appr
mation scheme of some sort may remain useful.

Although our overall goal is to provide a tool that can
used to model the gravitational waves produced by comp
body inspiral, we have presented no such waves in this
per. That is the next step. The calculations we have prese
explicitly construct the parameter space trajector
@E(t),Lz(t),Q(t)# describing an inspiral. It is then a simp
matter to combine such a trajectory with the geodesic eq
tions for the Kerr spacetime@22# to produce the Boyer-
Lindquist coordinate space inspiral@r (t),u(t),f(t)#. This
set of functions specifies the world line of the inspirali
body, and one can use it to compute the gravitational wa
form seen by distant observers~see, for example, Ref.@23#!.
Codes to perform this next step are under development@21#;
results should be presented in the near future.
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APPENDIX A

The occurrence of a ‘‘third’’ orbital constantQ in axisym-
metric gravitational fields is not an exclusive feature of ge
eral relativity. For example, it is familiar from Newtonia
celestial mechanics applied to orbital motion in galac
gravitational potentials~see, for example, Ref.@24#, where
the third constant is denotedI ). The departure ofQ from
Lx

21Ly
2 can then be attributed to the asphericity of the p

tential. If such a potential does not deviate very much fr
sphericity,L2 ~the square of the total angular momentu!
turns out to be almost constant, so thatQ should be, after all,
nearlyL22Lz

2 .
It is straightforward to check whether this behavior ofL2

occurs in Kerr spacetime. The definition we use forL2 is
identical to that used in Schwarzschild spacetime,

L25pu
21~sinu!22pf

2 , ~A1!
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where pa denotes the particle’s four-momentum. For t
Carter constantQ we have@22#

Q5pu
21~sinu!22pf

2 2pf
2 1a2 cos2u~12E2!. ~A2!

Combining these two expressions gives

Q5L22Lz
21a2 cos2u~12E2!. ~A3!

In other words,Q can be interpreted as the projection of t
total angular momentum on the equatorial plane, modulo
‘‘aspherical’’ terma2cos2u(12E2). This interpretation makes
sense when the aspherical term is small — that is, whea
!M ~slow rotation! and/orE'1 ~weak-field orbits!. In prac-
tice, we find that this term is often significantly smaller th
the preceding terms even for motion in strong-field regio
of rapidly rotating holes. We illustrate this in Fig. 5, showin
how the quantitydL2[L2/(Q1Lz

2)21 varies with time for
a variety of generic orbits around a rapidly spinning hole

Examining Fig. 5, we see thatL2 deviates very little from
Q1Lz

2 even when the small body is deep in the black hol
strong field — in this sample, the difference is no more th
about 1%. This shows that interpretingQ as a squared pro
jection of angular momentum into the equatorial plane
sensible. BecauseQ1Lz

2 is a constant quantity, this figur

also demonstrates thatL2 is nearly constant. This is exactl

FIG. 5. Examining our notion of ‘‘total angular momentum’’ fo
strong-field Kerr black hole orbits. Each panel compares the ang
momentum squaredL2[pu

21(sinu)22pf
2 to Q1Lz

2 : the quantity
plotted isdL2[L2/(Q1Lz

2)21. The top panel shows these qua
tities over an orbit withp510M , the center panel the quantitie
over an orbit withp55M , and the bottom over an orbitp54M . In
all cases, the orbits have eccentricitye50.7, inclinationi560°,
and are about a hole with spina50.999M . Even deep in the strong
field, L2 differs very little fromQ1Lz

2 — the greatest deviation in
this sample is about 1%. SinceQ1Lz

2 is a constant by definition,
this also shows thatL2 is approximately conserved over the orbi
5-11
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what we expect for motion in an axisymmetric potential th
is almost spherical. These pieces of evidence suggest tha
Kerr spacetime is not as ‘‘aspherical’’ as we might have
pected, at least for the purposes of this argument, lend
credence to our suggestion that the ‘‘i5const’’ assumption
should be reliable, as discussed in the paper’s main bod

APPENDIX B

This appendix contains explicit expressions~in terms of
E, Lz , Q and their derivatives! for the various functions ap
pearing in the formulas~2.14! for the ratesṗ, Ė, i̇. First,

H5Q,pE,eLz,i2Q,pE,iLz,e2Q,eE,pLz,i

1Q,eE,iLz,p1Q,iE,pLz,e2Q,iE,eLz,p . ~B1!

For ṗ we find

bp5Q,iLz,e2Q,eLz,i , ~B2!
x-
.

-

s

ys

a

06400
t
the
-
g

cp5E,iQ,e2E,eQ,i , ~B3!

dp5E,eLz,i2E,iLz,e . ~B4!

For ė we find

be5Lz,iQ,p2Q,iLz,p , ~B5!

ce5Q,iE,p2E,iQ,p , ~B6!

de5E,iLz,p2E,pLz,i . ~B7!

Finally, for i̇ the coefficients are

bi5Q,eLz,p2Q,pLz,e , ~B8!

ci5Q,pE,e2Q,eE,p , ~B9!

di5E,pLz,e2E,eLz,p . ~B10!
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