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Power-law inflation from the rolling tachyon
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Modeling the potential by an inverse square law in terms of the tachyon[fig@l) = 8T 2] we find an
exact solution for a spatially flat isotropic universe. We show tha3for2/3/3 the model undergoes power-
law inflation. A way to construct other exact solutions is specified and exemplified.
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Several interesting attempts to reconcile the inflationary ds?=dt?—a?(t)(dx®+dy>+d7). (1)
paradigm with string theories have resulted recently in much
work (see, for exampld,1]). These efforts, however, did not ~ As shown by Sef2,3] a rolling tachyon condensate may
produce a completely successful union between string theoje described by an effective fluid with energy density and
and cosmology. It is fair to say, at this stage, that stringPressure given by
inspired cosmologies are not a match for standard inflation.

Yet, many believe that superstrings or their generalizations V(T)

provide an adequate description of fundamental interactions p= =’ @
including gravity. It is therefore important to pursue explor- 1-7

ing the connections between string theories and cosmology .

in order to find which, if any, relic or aspect of the funda- p=—V(T)V1-T% ©)

mental theory may adequately account for the expansion of ) ' .
the universe. HereT is the tachyon field andf(T) the tachyon potential. It

Much has been written and emphasized about the role cjf’ worth_ mentioning that th!s sort of model with an ordinary
the fundamental dilaton field in the context of string cosmol—scal"’\r field has been studied in cosmology on phenomeno-

ogy. Less is known about the tachyon component. This iéno1 g;?a:)groéj;r?\i‘g' -fl;g?nprtizsul_rggarg?]éir;end?jg?;gi g&i)ﬂu'd
mostly due to the fact that tachyons were considered rather a 1

nuisance in string theory. Recent developments in the fluig= —V(T) _1_T : ) _
description of the tachyon condensate in bosonic and super- '€ Friedmann equation and the entropy conservation
symmetric string theory due to S€8,3] have resulted in equation take the formis,6]:
enhancing our understanding of the role of the tachyon.

Based on these works, several papers studying such a fluid in Vv
the cosmological contexb—8] have appeared very recently.

The main purpose of this article is to show that, under the
assumption that the tachyon potential behaves as an inveraﬁd
square in terms of the field, the Einstein equations lead to
simpleexact analytic solutions in the case of a spatially flat p=—3H(p+p). (5)
isotropic universe. These solutions undergo the so-called

power-law inflationary expansion if the “slope” of the po- \we have set @G=1, H is the Hubble parameter, and the
tential,8>2\/§/3, and decelerate otherwise. The fact that thegverdot means differentiation with respect to time.
rolling tachyon condensate can lead to power-law inflation The entropy conservation equation is, in turn, equivalent
may have important consequences in our understanding @b the equation of motion for the tachyon fi€ld
cosmology.

We also indicate and exemplify how more general solu-
tions can be constructed. The choice of the inverse square
tachyon potential may at first sound artificial. Nevertheless,
we will see that the potential behaves qualitatively similarly hereV’

to some exact classical potentials derived in the context o Now szgg{{tizn oV from the Friedmann equation together
open string field theory. Otherwise, there is no need to stress ' N 9

. 4 : with the expressions for the pressure and the density into the
the importance of having a reasonable exact solution to the . . A
. o . . éntropy conservation equation, one gets the following inter-

coupled tachyon-gravity equations; we just mention that fur-__. . . >
. o ; . . esting relation expressing the change of the tachyon in terms

ther studies of qualitative behavior and numerical simula- . R
. : : . . of the Hubble parameter and its derivative:
tions, including the study of density perturbations, can be

contrasted against such an exact solution.

4

1__.|_2+3HVT+V’=0, (6)

To this end we consider a spatially flat Friedmann- T2= 2H @)

Robertson-WalkefFRW) line element given by - 3H2
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Below, we will show how this equation can be used to Con'ce|erating models |S‘@ﬁ<2\/§/3 In terms of the powern,

struct a variety of exact solutions, but first we derive solu-

tions with the inverse square potential.
Equation(7) and the Friedmann equation may be written
in yet different forms:

T

2 ’ 2
—§H /H(T) (8)

and

1
H’2—§H4(T)+ZV2(T)=O. 9

We now assume that the potential is an inverse square in

terms of the tachyon field:

V(T)=B8T"2, B>0. (10
Although this potential diverges a=0, it fairly mimics

the behavior of a typical potential in the condensate o

the last inequality translates into 2th<1.

We were lucky, of course, in choosing the form of the
potential to solve Eq(9) and the rest of the equations ex-
actly. Given a different potential, solving the coupled differ-
ential equations happens to be a rather difficult task. One
may, however, approach this problem from a different per-
spective. Rather then starting with a given potential, one can
start with a given expansion factaft). The Hubble param-
eterH(t) is then readily found and the tachyon fidiit) can
be read from Eq(7). The potential in the form o¥(t) is
then found from the equation

. 2H
v=3H2ﬁ=3H2\/1+—3H2.

Inverting T(t) to gett(T), we finally find V(T). The
main drawback in this scheme is that one may often end up

(15

fwith an unphysical tachyon potential; the advantage, on the

bosonic string theory. One expects the potential to have 3ther hand, is that, given a known cosmological expansion,

maximum atT—0 and to die off for a large field. Recently,
two groups[9,10] have given an exadfin string tension
form of the classical potential:

V(T)=Vo(1+T/T)exp(—T/Typ). (12)

one can figure out the tachyon potential and the field itself.
Alternatively, one can start with “favorable” behavior for
the tachyon. EquatiofY) is then easily integrated to give one
the Hubble scalél ~1=2[T2dt. From here, to find the scale
factor and the potential (T) is just a matter of algebra.
Let us see how it works. The case of exponential expan-

Apart from the unphysical divergence at vanishing tachyorsion with constant Hubble parameter corresponds to a con-

in our toy model, the exact potentiéll) has qualitatively
similar behavior.

With this assumption we can see that E®). has a solu-
tion H~T~1. Substituting this solution into Eq8) we find
that the tachyon field is linear in time. After some simple
algebra we have

a=t" (12
along with
1 1
n=3+5 4+9 B2, (13
The tachyon field has the form
T=1/2/3nt. (14)

The condition for inflation for these solutions is that
>1. These are the so-called power-law inflationary solution

stant tachyon and constant potential. The limiti#§ behav-

ior corresponds to pressureless dust. To exemplify the
procedure for less straightforward cases we assume that the
scale factor behaves as

a(t)=expmt"). (16)
After some algebra we find
H=mnt?! (17
together with
.. 2(1—n
2 2L o yt2=mre, (18)

3mn

Here y=2.6(1—n)/mn/3(2—n), and the integration
constant in Eq(18) has been ignored. We can now invert
T(t) to gett(T)=(T/y)??> " In terms ofT(t), the potential

%ecomes

[11,12 and in the inflaton driven models are associated with

an exponential potential. Limitations am come from the
reality of Eq.(7). This imposes the positivity of, and this is
why the negative branch of Eq13) was discarded. The

V(T) — AT4(n—l)/(2— n) \/Wm'

whereA, B, andC are constants expressed in termsmdnd

(19

same equation prohibits, in general, the so-called super- i The special casa=2 should be treated separately, and

pole inflation, by imposing a nonpositive sign on the time
derivative of the Hubble parameter. From K@) we imme-
diately find that the inflationary solutions with>1 corre-
spond toT?< 2/3 (cf. [5]). These models actually inflate for-
ever.

In terms of the potential paramet@, inflation occurs
wheneverg>2./3/3. The range of the parametgrfor de-

leads to a logarithmically divergent tachyontatO.

The reality condition for the tachyon derivative imposes
0<n<1 for m>0, and eithen<0 orn>1 for m<O0. The
sign of the acceleration depends basically on the form
mn t'(n—1+mnt"); depending therefore om andn one
can have a variety of models with different behaviors with
respect to inflation. Fon>1 (negativem) the expansion is
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regular att=0 but rather singular at— =«. These models exponential[12]. It would be interesting to see whether the
lead, however, to a singular tachyontat0. One can have power-law inflationary solutions driven by the inverse square
both a nonsingular tachyon and expansion=a® for 1<n potential of the tachyon have similar status. We also are
<2. Let us choose, for exampla=4/3; then for negative aware that in the inflaton driven expansion one may recon-
times the model expandslue to negativan and therefore struct the potential starting from the behavior of the density
positiveH) from the singularity at— — o, starts contracting perturbationg13], where the so-calletl(¢) formalism due
for t>0, and continues to contract toward the singularity atto Lidsey[14] is used. Here one can obviously undertake a
t—oo. As far as inflation is concerned this model acceleratesimilar task usingH(T) as an analogue dfi(¢), with Eq.
initially for large negative time, stops the acceleration, and7) being the input for such a study. Finally, it would be
decelerates nedr=0. It finally has an accelerated collapse interesting to study the effects of anisotropies and inhomo-
for large positive times. geneities in this setting. We hope to be able to address these

To sum up: Assuming a toy model potential for the questions in the near future.
tachyon field, we have shown that this choice leads to poten- Note addedAfter this paper was submitted an overlap-
tially very interesting power-law inflationary solutions. We ping paper by T. Padmanabhan, Phys. Rew@) 021301
have found a simple equatidii) which allows one by start- (2002, also appeared.
ing with a given expansion to find the exact form of the
tachyon field and its potential.

Some interesting questions remain open. It is well known This work was supported by the University of the Basque
that in the standard inflaton driven cosmology the power-lanCountry Grant UPV 172.310-GO 2/99 and The Spanish Sci-
inflation represents a late time attractor when the potential isnce Ministry Grant 1/CI-CYT 00172.310-0018-12205/2000.
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