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We study the evolution of perturbations on a moving probe D3-brane coupled to a four-form field in an
AdS;-Schwarzschild bulk. The unperturbed dynamics are parametrized by a conservedEenaryiead to a
Friedmann-Robertson-WalkéFRW) “mirage” cosmology on the brane with a scale factdrr). The fluctua-
tions about the unperturbed worldsheet are then described by a scalaﬁ(fbeﬁ:). We derive an equation of
motion for ¢, and find that in certain regimes afthe effective mass squared is negative. On an expanding
Bogomol'nyi-Prasad-Sommerfield®PS brane withE=0 superhorizon modes grow aé while subhorizon
modes are stable. When the brane contracts, all modes grow. We also briefly discuss the cdse WhBRS
antibranes as well as non-BPS branes. Finally, the perturbed brane embedding gives rise to scalar perturbations
in the FRW universe. We show thét is proportional to the gauge invariant Bardeen potentials on the brane.
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. INTRODUCTION AdS;-Schwarzschild geometry. Because of the generalized
Birkhoff theorem[25], this 5D geometry plays an important
The idea that our universe may be a three-brane embedole in work on codimension 1 brane cosmology. Hence links
ded in a higher dimensional space-time is strongly motivate¢an be made between the unperturbed probe brane FRW cos-
by string and M theory, and it has recently received a greainology discussed here and exact brane cosmology based on
deal of attention. Much work has focused on the case inhe junction conditions[18]. Similarly, the perturbation
which the universe 3-brane is of codimensio1t-3] and  theory we study here is just one limit of the full, self-
the resulting cosmologysee, e.g.[4—6]) and cosmological interacting and no,-symmetric brane perturbation theory
perturbation theorye.qg.,[7-13)) have been studied in depth. which has been studied elsewh¢i®]. Comments will be
When there is more than one extra dimension the Israel junanade in the conclusions regarding generalizations of this
tion conditions, which are central to the 5D studies, do noiork to the full 10D case.
apply and other approaches must be ugk#-16. In the Regarding the universe brane, the zeroth ofderback-
“mirage” cosmology approacti15,17] the bulk is taken to  ground solution is taken to be an infinitely straight brane
be a given supergravity solution, and our universe st whose motion is now constrained to be along the single extra
D3-brane which moves in this background spacetime so thalimension labeled by coordinate The brane motion is pa-
its back-reactions onto the bulk are neglected. If the bulkametrized by a conserved positive energy [15]. In
metric has certain symmetry properties, the unperturbedds.-Schwarzschild geometry and to an observer on the
brane motion leads to a Friedmann-Robertson-WelKBK)  brane, the motion appears to be FRW expansion or contrac-
cosmology with a scale facta( ) on the bran¢15,18. Our  tion with a scale factor given bger. Both the perturbed
aim in this paper is to study the evolution of perturbations orand unperturbed brane dynamics will be obtained from the
such a moving brane. Given the probe nature of the bran@irac-Born-Infeld action for type 11B superstring thedisee,
this question has many similarities with the study of the dy-e.g.,[26]),
namics and perturbations of cosmic topological defects such
as cosmic stringf19-22.
Though we derive the perturbation equations in a more SD3=—T3J d4a\/—det(§/ab+ 27’ F o p+ Bap)
general case, we consider in the end a bulk with
AdSs-Schwarzschiltk S; geometry which is the near hori- .
zon limit of the ten-dimensional black D3-brane solution. In —Paf d*oCy. (1.1
this limit [using the AdS conformal field theoCFT) cor-

respondendeblack-hole thermodynamics can be studied via .
P Ceb y Here % (a=0,1,2,3) are coordinates on the brane world-

the probe D3-brane dynami¢23,24]. As discussed in Sec. ; : .
Il A, we make the assumption that the D3-brane has no dy§heet,T3 is the brane tension, and in the second Wess-

namics around thes3so that the bulk geometry is effectively é‘;nr:]igr? | Egg; Ff)oguffotrrr]r? fg%nﬁvizgairgethingﬁlrk awzawiﬁnd-

write
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so that gq=(—)1 for Bogomol'nyi-Prasad-Sommerfield The outline of the paper is as follows. In Sec. Il we link
(BP9 (ant)branes. In Eq(1.1) ., is the induced metric and our five-dimensional metric to the ten-dimensional black D3-
Fap the field strength tensor of the gauge fields on the brandrane solution and specify the unperturbed embedding of the
The quantitiesB,;, and C, are the pullbacks of the Neveu- Probe brane. To determine its dynamics from the actiof)
Schwarz (NS) two-form, and the Ramond-Ramond four- the bulk four-form RR field must be specified. We discuss
form field in the bulk. In the background we consider, thethe normalization of_ this field. At the end of the section we
dilaton is a constant and we set it to zero. In general théummarize the motion of the probe brane by means of an
brane will not move slowly, and hence the square root in theéffective potential. Comments are made regarding the Fried-
Dirac-Born-Infeld DBI part of Eq.(1.1) may not be ex- Mann equation for_an observer on the brane. In Sec. Il we
panded: we will consider the full nonlinear action. Finally, consider small deviations from the background brane trajec-
notice that since the 4D Riemann scalar does not appear {7y and investigate their evolution. The equation of motion
Eq. (1.1) (and it is not inherited from the background in this for ¢ is derived, and we solve it in various regimes, com-
probe brane approagthere is no brane self-gravity. Hence menting on the resulting |n_stab|I|t|es. In Sec. I\_/ we I|¢kto
the “mirage” cosmology we discuss here is solely sourcedthe scalar B.ardeen potentials on the brane. Finally, in Sec. V
by the brane motion, and it leads to effects which are no¥e summarize our results.
present in four-dimensional Einstein gravity. The lack of
brane self-gravity is a serious limitation. However, in certain  Il. UNPERTURBED DYNAMICS OF THE D3-BRANE
cases it may be included, for instance by compactifying the
background space-time as discussedl2i| (see alsd14]).
Generally this leads to bimetric theories. Even in that cas
the mirage cosmology scale factaf7) which we discuss
below plays an important role and hence we believe it is 0
interest to study perturbations in this “probe brane” ap-
proach.

Deviations from the infinitely straight moving brane give A. Background metric and brane scale factor
rise to perturbations around the FRW solution. Are these For the reasons mentioned in the Introduction, we focus

‘wiggles” stretched away by the expansion, or on the con-mainly on an Adg-Sx S° bulk space-time. This is closely
trary do they grow, leading to instabilities? To answer thisjinked to the 10D black three-brane supergravity solution

question, we exploit the similarity with uncharged cosmic[30-32 which describesN coincident D3-branes carrying
topological defects and make use of the work developed IIRR chargeQ=NT, and which is given by

that context by Garriga and Vilenkir20], Guven[21], and

Battye and Cartef22]. The perturbation dynamics are stud- ds?,=Hz Y —Fdt?+dx-dx)
ied through a scalar fiele(o) whose equation of motion is
derived from the actioril.1). We find that, for an observer
comoving with the branegp has a tachyonic mass in certain
ranges of which depend on the conserved eneEjgharac-
terizing the unperturbed brane dynamics. We discuss the evQyhere the coordinated, k) are parallel to the\ D3-branes,
lution of the modesp, for differentE and show thatin many 42 s the line element on a five-sphere, and

cases the brane is unstable. In particular, both sub- and su-

In this section we discuss the background metric, briefly
Jeview the unperturbed D3-brane dynamics, and comment on
the cosmology as seen by an observer on the brane. The
]reader is referred tf15,29 for a more detailed analysis on
which part of this section is based.

dr?
3

+H? +r2dQ§> (2.9

perhorizon modes grow for a brane falling into the black 04 r4
hole. It remains an open question to see if brane self-gravity, Ha(r)=1+—, F=1- A (2.2
neglected in this approach, can stabilize the system. r4 r4

Finally, we also relatep to the standard 4D gauge invari-
ant scalar Bardeen potentialsand ¥ on the brane. We find The quantity¢ is the AdSg curvature radius and the horizon
that =W ¢ (no derivatives ofg enter into the Bardeen Ty vanishes when the Arnowitt-Deser-MisngkDM) mass
potential. equalsQ. The link between the metric parametérs,, and

The work presented here has some overlap with that othe string parametend, T3 is given, e.g., i 32]. The corre-
Carteret al. [28] who also studied perturbations on moving sponding bulk RR field may also be found[i82].
charged branes in the limit of negligible self-gravity. Their ~ The near horizon limit of the metri2.1) is AdS;-Sx S
emphasis was on trying to mimic gravity on the brane, and irspace time[31]. Our universe is taken to be a D3-brane
addition they included matter on the brane. Here we considenoving in this background. We make the following two as-
the simplest case in which there is no matter on the braneumptions. First, the universe brane is a probe so that its
namely,F,,=0 in Eq. (1.1). Our focus is on studying the back reaction on the bulk geometry is neglected. This may be
evolution of perturbations solely due to motion of the branejustified if N>1. Second, the probe is assumed to have no
we expect the contribution of these perturbations to be imdynamics around 3so that it is constrained to move only
portant also when matter is included. Moreover, we hope thaalong the radial directiom. This is a consistent solution of
this study may more generally be of interest for the dynamicghe unperturbeddynamics since the brane has a conserved
and perturbations of moving D-branes in non-BPS backangular momentum about thé,Sand this may be set to zero
grounds. [15,18. In Sec. Il we assume that is also true for the per-
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turbed dynamics. Thus in the remainder of this paper welhe properties of the resulting Friedmann equation depend

consider an Ad§S bulk Spacetime with metric on f(R),g(R),h(R) (i_e., the bulk geometbyas well asR

5 - - 5 (the brane dynamigsas discussed if15,18 and summa-
dsg=—f(r)dt?+g(r)dx-dx+h(r)dr (2.3 rized briefly below.

=0,,dx"dx 24 B. Brane action and bulk four-form field
where In AdS;-S geometryB,,, vanishes, and we do not con-
. sider the gauge fieléf,;, on the brane(For a detailed dis-
_ r’ H _ r? cussion of the unperturbed brane dynamics with and without
f(r)= 02 1- 4 9(r)= 02’ F.p. Which essentially corresponds to radiation on the brane,
see[15,18. NonzeroB,,, has been discussed [i84].) Thus
1 the brane actioril.1) reduces to

Spz= _Tsf d4X\/—_3’_ Psf d*xCy (2.10
(In the limit ry— 0 this becomes pure AdS

More generally, by symmetry, a stack of nonrotating D3-
branes generates a metric of the formisl,=ds
+k(r)dQ2, wheredss is given in Eq.(2.3 [33]. In this o
case, since the metric coefficients are independent of the an- - =de(A ) &.=cC ﬁ % ﬁ ‘9_Xp
gular coordinates ¢, . .. ,6°%), the unperturbed brane dy- 4 Yablh AT o 0 0l ok axd
namics are always characterized by a conserved angular mo- (2.1)
mentum around the S[15]. As a result of the second
assumption above, we are thus effectively led to consideandC,,,,, are components of the bulk RR four-form field.
metrics of the forn{2.3): hence for the derivation of both the The first term in Eq(2.10 is just the Nambu-Goto action.
unperturbed and perturbed equations of motion we keep | the gauge?2.6), ¥ andC, depend ort only throughR.
f,g.h arbitrary and consider the specific forf2.5 only at  Thys rather than varying E42.10 with respect tox* and
the end. then integrating the equations of motion, it is more straight-

The embedding of the probe D3-brane is givenXy  forward to obtain the equations of motion from the Lagrang-
=X*(x?). (We have used reparametrization invariance tojgp

choose the intrinsic worldsheet coordinate’s=x2.) For the

unperturbed trajectory we consider an infinitely straight N PN e s i
brane parallel to the?® hyperplane but free to move along L= y=C= fg"—g’hR°-C
ther direction:

where

(2.12

where C=C(R)=(p3/T3)C4=0qC,. Since£ does not ex-

Xa=x2,  X*=R(t). (2.6)  plicitly depend on time, the brane dynamics are parametrized
Later, in Sec. lll, we will consider a perturbed brane for\l,)v);]igh(posmve) conserved energ =(JL/IR)R—L, from
which X*=R(t) + 6R(t,X).
The induced metric on the brane is given by f fg3
RP=—|1- : 2.1
. IXH XV h( (E—C)2> (213
Yan= 90—~ 2.7

Transforming to brane time defined in Eq.(2.9) yields
(where the caret denotes a pullbacko that the line element

on the unperturbed brane worldsheet is (E-C)? 1
= — = (2.19
N b T fgth h
dsi= y,pdx2dx
= —[f(R)—h(R) Rz]dt2+g(R)d§~ dx where the subscript denotes a derivative with respeet to
In order to analyze the brane dynamics in AdSspace-
= —d7-2+a2(q-)d;<- dx. (2.9 time wheref,g andh are given in Eq(2.5), one must finally

specifyC(R) or equivalently the four-form potenti&
An observer on the brane therefore sees a homogeneous afad that end recall that the 5D bulk action is
isotropic universe in which the time and the scale factor
a(r) are given by

uvop

IFor the 10D Ad$-Sx S; geometry the solution for the four-form

_ B2 — 2By field is given, for example, if32]. For completeness, we rederive
T f (f=hR%dt, a(7) 9(R(7)). (2.9 the result starting directly from the 5D metii2.5).

063510-3



TIMON BOEHM AND D. A. STEER

1
S= F

Ks

Fs/\*Fs
(2.19

where A is the bulk cosmological constant akd=dC, is
the five-form field strength associated with the four-fd@m
The resulting equations of motion are

1
F dSX\/—g(R—ZA)—

Ks

2

1 Byde
R,u.v: §Ag/uz+ ﬁ F/Lﬁ‘y(sGFV
4 Bys
_EFQW"SEF& 7 Q| (2.16
d*Fom f,+3g,+h,)F
5_2 \/th f g h 01234

where the prime denotes a derivative with respect.tn
AdSs-S geometryR,,, = —(4/€Z)gw and Eq.(2.17) gives

€3
rd (
wherec is a dimensionless constafsiee, for exampld,35]).
(Note that this solution satisfiel=5=0 since the only non-

zero derivative i94F 1234Which vanishes on antisymmetriz-
ing.) Integration gives

3

€4

3
T Fo1234~ Fo1234) =0=Fo123~C

(2.18

r4
C0123:U F"’W

(2.19

where v=c/4 and w are again dimensionless constants.

Hence the functiorC(r) appearing in Eq(2.12) is

r4

C(r)=qC0123=qu+qW. (2.20

In ten dimensions the constamtand hence) is fixed by
J*F=Q , andw may be determined by imposiri¢pefore
taking the near horizon limit—hence with metii2.1)] that
the four-form potential should die off at infinit)32]. This
second argument is not applicable here. Instead, we &rd
w in the following way. Consider the motion of the unper-
turbed brane seen by a bulk observer with time coordihate
One can define an effective potent\'aﬂﬁ through

1'2 t —
SRP+Ve=E (2.20)
so that on using equatior2.13),
Vi«(E,q,R)=E 1R)421 R _a
e EAR)=E-5| 7] 1= (E-C2
(2.22
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FIG. 1. Vi(E,q,R) for E=0, q=1, ¢=4, and different values
of ry. For R—« the potential goes to zero according to our nor-

malization. Wherr =0, the potential is exactly flat.

(see Figs. 1 and)2where

and C=C(R) is given in Eq.(2.20. We now use the fact
that there is no net force between static BPS objects of like
charge, and hence in this case the effective potential should
be identically zero. Here, such a configuration is character-
ized byry=0,q = 1, E=0: imposing thav;=0 for all R,
forcesv==*1 and, in this limit,w=0. Second, we normal-
ize the potential such thati(E,q=1, R—%=)=0 for arbi-
trary values of the energlf andr . This leads to

Effective potential in bulk time

FIG. 2. VL(E,q,R) for E=2, r =1, £=4. For a BPS brane
(9=1), VL—0 as R— according to our normalization. This
should be contrasted with a non-BPS brane, e.g., g4tli.2. Note
that Vig(E,q,R=ry)=E. Any inwardly moving (contracting
brane takes an infinite amount bfime to reach the horizon.
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4 Effective potential in brane time

H
W=+ —. (2.23 ' ' ' '
2¢4 4t

v=-—1,

In particular forE=0, then the brane has zero kinetic energy
at infinity. Even in this case the potential is not flat, unless
ry=0, as can be see in Fig. 1. According to this normaliza-

tion

r4

4
My
-g—+q—

4 T2t

C(r)= (2.24

as in the 10D casf32]. Notice that, since the combination

appearing in the equation of motion fBris E— C, the con-

stantw only acts to shift the energy. For later purposes we

define the shifted enerdy by

r4

~ H
E=E—-qw=E—-q—. 2.2
q a4 (2.29

Finally, we comment that substitution of E.18 into

Eq. (2.16) determines the bulk cosmologiéalonstant to be
given by ¢2A =—6—c?/4=—10.

C. Brane dynamics and Friedmann equation

2 4 6 8 10 12

FIG. 3. V¢«(E,q,R) for the same parameters as in Fig. 2. ABPS
brane has zero kinetic energy at infinity corresponding to a vanish-
ing cosmological constant on the brane. Otherwise, the cosmologi-
cal constant is proportional ¢ — 1. A BPS antibrane is allowed to
move only in a restricted range & after having reached a maxi-
mal scale factor, the universe starts contracting. Any inwardly mov-
ing brane falls into the black hole in a finite

From Eqgs.(2.14) and(2.20 it is straightforward to derive
a Friedmann-like equation for the brane scale fa@br)

We now make some comments regarding the unperturbe@'ala:

motion of the three-brane through the bui,7), as seen for

an observer on the brane. This will be useful in Sec. Ill when

discussing perturbations. Recall that sinaér)=R(7)/¢

[see EQ.(2.9], an “outgoing” brane leads to cosmological
expansion. Contraction occurs when the brane moves in- 1
ward. For the observer on the brane, one may define an ef- =—

fective potential by

1 2 T
ERT+Veﬁ=E (2.26
whence, from Eq(2.14),
VI(E,q,R)=E LT (R) E—C)?
e B, AR)=E+ S| =] la| 7] —( )2].
(2.2

Consider a BPS brang=+1 (see Fig. 3 As noted
above, forry=E=0 one has/ ;=0 so that the potential is
flat. Forry+0, VI contains a term proportional te R,

and the probe brane accelerates toward the horizon, which
reached in finiter time. On the other hand, for a bulk ob-
server with timet, it takes infinite time to reach the horizon

whereVi,=E (see Fig. 2

2Equivalently we could have started from the 10D supergravity

(SUGRA) action, used the 10D solution fér[which is identical to

2+1<2”E+rﬁ'
a® a* g ¢4

+(ql—14. (2.28

The term in 148 (a “dark fluid” with equation of statep

=5/3p) dominates at early times. The second terma i,

is a “dark radiation” term. As discussed i8], the part
proportional tor, corresponds to the familiar dark radiation
term in conventionalZ,-symmetric (junction condition
brane cosmology, where it is associated with the projected

bulk Weyl tensor. WherE is nonzero,Z, symmetry is
broker? [18] and this leads to a further dark radiation term
[35,36. The last term in Eq(2.28 defines an effective four-
dimensional cosmological constant\ ,=(1/¢?)(g%>—1)
which vanishes if the€ant)brane is BPSi.e.,,g==*1). All
}Eese terms have previously been found in both “mirage”
cosmology and conventional brane cosmold§g,35.

Notice that the dark radiation term above has a coefficient

4 4

~ Iy o,
w=20E+ 3 =2qE-(a’~1) (2.29

Eq. (2.24)], and then integrated out over the five-sphere. After defi-

nition of the 5D Newton constant in terms of the 10D one, the “When making the link between mirage cosmology and the junc-
above cosmological constant term is indeed obtained, coming frortion condition approachE«<M _—M, where M. are the black-
the five-sphere Ricci scalar. hole masses on each side of the brptf.
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which is_positive forg=+1 (sinc_e_E>0). Hc_)wever, _for X“(t,)?)=§”(t)+¢(t,>2)n“(t) (3.
BPS antibranegj=—1, the coefficient(2.29 is negative

unlessE=0. Thus, wherE+# 0 andg= —1 there is a regime — ) ] )

of R for which H2 is negative. In Fig. 3 this is represented by Where X“(t) is the unperturbed embedding, and physical
the forbidden region where the potential exceeds the totdterturbations are only those transverse to the b(see also
energyE. At VI,—E the Hubble parameter is zero and an Sec. V. Th_e unit spacelike normal to the unperturbed brane,
initially expanding brane starts contracting. On the contraryn”(t)=n*(X*(t)), is defined through

we do not obtain bouncing solutions in our setup, regardless

of the values ofj andE. Bouncing and oscillatory universes IX?
are discussed in, e.g37-39. 9. —=0, g,,n*n"=1, (3.2
The Friedmann equatiof2.28 can be solved exactly. In 2
the BPS case) ,=0, the solution is
so that
a(7)*=a+ 4_5(7'_77)2 ( [ h [t )
4 n“=| R\/———-,0,00\/——|. (3.3
f(f—hR?) h(f—hR?)

ii(r— Ti)(E2+,uai4)1/2 (2.30
¢ Thus for a 5D observer comoving with the brare(which
has dimensions of lengklis the measured deviation from the
wherea; is the value of the scale factor at the initial time  background solution of the previous sect{@®]. For an ob-
and thex determines whether the brane is moving radiallyserver living on the brane, the perturbations in the FRW met-
inward or outward. In the next section when we solve theric generated by are discussed in Sec. IV in terms of the
perturbation equations, it will be sufficient to consider re-gauge invariant scalar Bardeen potentials.
gimes in which only one of the terms in E.28 domi- An equation of motion forp can be obtained by substi-
nates. These will be given in Sec. Ill. tuting Eq.(3.1) into the action(2.10 and expanding to sec-
One might wonder whether it is possible to obtain a termond order in¢. The terms linear inp give the background
proportional toa™* (dus} in the Friedmann equation, and (unperturbegi equations of motion studied in the previous
also one corresponding to physical radiation on the brangection—now we are interested in the terms quadrati¢ in
(rather than dark radiationPhysical radiation comes from which give the linearized equations of motion. A similar
taking F,,#0 in Eq.(1.1) [15], and a “dark” dust term has analysis was carried out by Garriga and Vilenk20] for
been obtained in the non-BPS background studiefPi@.  Nambu-Goto cosmic domain walls in Minkowski space and
Finally, a curvature terna~2 has been obtained {#0]. was generalized by Guve21] for arbitrary backgrounds.
For the action(2.10, the quadratic term if41]

Ill. PERTURBED EQUATIONS OF MOTION

1 =~ A ~
In this section we consider perturbations of the brane po- Sp2=— EJ d*xV=y[(Vagp)(V2¢)
sition about the zeroth order solutidR(t) given in Eq.
(2.13. Once again we work with the metr{@.3), specializ- —(K3KP,+R,,n“n") $2]. (3.4)

ing to AdS;-S geometry only at the end. The perturbed brane

; 4_ > - ~ ~
embeddmgx _R(t).+ OR(t,x) leads to perturbatlonﬁyab HereV is the covariant derivative with respect to the induced
of the induced metric on the brane and these are discussed in

Sec. IV. Note that these perturbations about the flat homogmetrlc %b, and the extrinsic curvature tengog, is given by
enous and isotropic solution are not sourced by matter on the o
brane, and their evolution will depend on the unperturbed . IXH gXV
brane dynamics and hence BnWe now derive an equation Kan= (anl’«)% P
for the evolution of the perturbed brane and try to see if there

are instabilities in the system.

(3.5

whereV is the covariant derivative with respect to the 5D
metricg,,. Finally, R,, is the Ricci tensor of the metric
9.»- Apart from¢, all the terms in Eq(3.4) are unperturbed
Since we consider a codimension 1 brane, the fluctuationguantities. Note that there is no contributionSg from the
about the unperturbed moving brane can be described by \&ess-Zumino term of actiof®.10: all terms quadratic irp
single scalar fieldg(x?) living on the unperturbed brane cancel sinceCgy;,3 is the only nonzero component of the
worldsheef{21]. To describe the dynamics @f(x?) (which  four-form field. HoweverC does enter into the term linear in
is defined beloy we use the covariant formalism developed ¢ and hence into the background equations of motion, as
in [21] to study perturbed Nambu-Goto wall@-or other analyzed in the previous sections.
applications, see ald®0,41].) The perturbed brane embed-  Variation of the actior(3.4) with respect tap leads to the
ding is given by equation of motion

A. The second order action
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VaV,4+[K3KE+R,,n*n"]$=0
or equivalently
VaV,p—mPp=0
where

m?=—[KEKO+R,,n“n"].

To determine the extrinsic curvature contribution to Eqg.
(3.9), it is simpler to calculate first the five-dimensional ex-

trinsic tensor defined by
K&=y*Vn,

where y#=gM*—n*n#* and then use
KEKR=KEK? .

On definingT by

d 2 ) f2 3
TE(_T) :f_hRZZ—g,
dt (E-C)?

the nonzero components K. are

1 f'._1h'._  1f
O = £32012/ B _ P24~ P2, =
Ko=qep' 1 (R YRR 20
hR
K= - —Kg,
f
1 f 1/21 gr
I -9 _w2_p3
H2
K4:_h_R 0
4 f 0
so that
o 1f g/ 2 g/ o C’ 2
apgb_— = ~ I
KpKa=7 hHg) 3y E-ctlE—C

(3.6

3.7

(3.9

(3.9

(3.10

(3.1

(3.12

(3.13

(3.19
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Effective mass squared

=2t

'41 1.5 2

25 3
a

3.5

FIG. 4. The dimensionless quanti§?¢? as a function of for
E=1,¢=1,ry=1. Here, the effective mass squared is positive in
a certain range only for the BPS brane. Note that the negktR&
region is not hidden behind the horizon.

Collecting these results gives

In the remainder of this section we try to obtain approximate
solutions forg from Eq.(3.7). Some aspects of this calcula-
tion are clearer in brane timeand others in conformal time

7 [where = [dr/a(7)]. Of course the results are indepen-
dent of the coordinate system. For these reasons we have
decided to present both approaches, beginning with brane
time.

B. Evolution of perturbations in brane time =

On using the definition of brane timein Eg. (2.9), the
kinetic term in Eq.(3.6) is given by

N 1
Vavad’: —¢.,—3Ho,+ ¥[¢x1x1+ Dyax2t hy3:3].

(In conformal time the factor o&~2 multiplying the spatial
derivatives disappears—see belpWe now change vari-
ables togp=a%?¢ so that Eq(3.7) becomes

1
Prr— ;[‘lexl'*_ ex2x2t o33+ M 2( 7)¢=0 (3.1

where
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M2 .2 3 a, 2aTT
(N=m=z\a a
_ 2_§[9_”R2_3(g_/)2R2+g_’R } (3.17
4 g T4 g T g T .
_3 (E—C)2 1 f’ gr gr/ 13 gr 2 1 gr h' 3gr c’
"4 fgih 2Tg g 4\g) 2gn °gE-C
4 C/ 2 1 7 ! 2 f! ’ f' h' ” 3 1\ 2 3 "R
BT R A LA LR T O A T @19
3\E-C ah| f f f g fh g 4\g 29 h

This expression is valid for arfy g, andh. We now special-  stitution into Eq.(3.19), givesM?( 7). A final substitution of
ize to AdS-S geometry, in which case M2(7) into the perturbation equatiof8.21) for ¢, enables
this equation to be solved in each regime. We consider the

1| 33E?2 31 _ 125 following casesi(1) g=+1, (2) g=—1, and(3) g>>1.
M| - BE L 3 e T B ey g @q ) q 3 q
€2 4 a8 4 a4 €4 4
1. BPS brane: g=+1
33, v 9°-1 For a BPS brane, the Friedmann equatiar?28 and ef-
= ht 02 2qE+ P +2 0z (319  fective masM?(7) are given by
- - M2 1|E? 2E
Notice that there are regimes @fn which M“<0—such as, H2="—|— +°— (3.23
for instance, for smath where thea8 term dominates—and 02l a® a*|

furthermore that the location of these regimes depends on the

energyE of the brane. We also see that sidé~H? insta- 1] 33?2 3E

bilities will occur for modes with a wavelength greater than M2(7) =2l "1 s +§ =2

H 1. Figure 4 shows the typical shape Mf> as a function ¢

of a for fixed energy and differend. In the following, we (3.24

. . 2 .
discuss only cases wity’>1 as the 4D cosmological con- The E dependence of these equations slightly complicates

stant is p(_)sitive. o ) ) the analysis of these equations, and hence we begin with the
Analysis of Eq.(3.16) is simpler in Fourier space where simplest case in whicE=0.

o Case 1 E=0. WhenE=0—the static limit in which the

(pk(q-):f d3xe(7,x)e” kX (3.20 probe has zero kinetic energy at infinityee Fig. 1—only

the term proportional ta 8 survives in Egs.(3.23 and

andk is a comoving wave number related to the physical(3'24>' Recall that whemy; vanishes the potentid is flat.

wave numbek, by k=ak,. Thus Eq.(3.16 becomes Furthermore, sinc&ocr,=0, it follows from Eq.(3.24) that
M?(7)=0 in this limit: as expected, a BPS probe brane with

1 ) zero energy in AdSspace-time has no dynamics and is com-
Purrt —[K2—ke(1)]@=0 (3.2  pletely stable.
a When r,#0, M2(7)<0 V7, and the solution of Eq.
where the time dependent critical wave numlké(r) is 323 is
given by 4

2
a(7)4=ai4t—aH(T— Ti). (3.29
k3(7)=—M?(7)a’. (3.22 ¢

One might suppose that fon2>0 all modes are stable. Here aiBaHErHlﬁ is the_ initial pos.ition of the brane at .
However, due to the-dependence i, this is not necessar- = 7i» @nd the choice of sign determines whether the brane is
ily true [as we shall see in Eq3.36]. moving r_gdlally myyard ) or outward (+): this is a ques-

Our aim now is to determine tredependence af,. We ~ tion of initial conditions. LeR,= 1/|Ha| denote thécomov-
proceed in the following way. Notice first that the Friedmannin@ Hubble fgﬂ_"US- Then it follows from Ed3.24) and the
equation(2.28 and the expression fdvi?(7) in Eq. (3.19  definition ofkg in Eq. (3.2 that
both contain terms im~ 8, a~*, anda®. We will focus on a
regime in which one of these terms dominates. Then the iN _ :i

: . . [ke(7)|~[Hal (3.26
Friedmann equation can be solved &(r) which, on sub- Ac R
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where we neglect numerical factors of order 1. Thus the 3
critical wavelength is\.~R;,. (Notice thatRy, is minimal at
ay and increases with.)
For superhorizonmodesA >R, or |k|<|k¢|, and in this ol
limit the perturbation equatiof8.21) becomes M2>0
k2(7) 2e
P 5 ok=0. (3.27 1 e
a ; : a,
On inserting solutior(3.25 into k2 one obtains
E_
Pk % 15 2 25 3
¢k=aTQ=Aka4+ Bka73 (328) E

FIG. 5. The curve represenas , the zero ofM?(7), as a func-
(where the constants, andB, are determined by the initial tion of the energyE as given in Eq(3.30. Below the curve the
conditiong. Hence if the brane moves radially outward the effective mass squared is negative; above it is positive. Eor
superhorizon modes grow aée 7. If the brane is contract- <E_ andE>E, theM?(7) already becomes negative outside the
ing they grow asa~3. In the near extremal limitr(y<I or) horizon, whereas for energies within the interval ,E, the
ay<1, the amplitude of these superhorizon modes can bV 2(7)<0 region is hidden within the horizon. The parameters cho-
come very large, suggesting that they are unstable. Of coursén ar&d=1, ry=1, and¢=1.

our linear analysis will break down whe# becomes too ) o ) o
large. The situation is shown schematically in Fig. 5.

Consider nowsubhorizonmodes A<R;, or |k|>|k|. Now considerH? given in Ecl.(3.2£s’). The two terms are
Then Eq.(3.21) is just ¢ ..+ (k¥a?) ¢,=0. However, in of equal magnitude whera=a.=(E*2E)"*~a.. Thus
this case it is much easier to solve the equation in conformarhena<a. (and hence in the regions in whid?<0 in
time » where the factor ofa 2 is no longer present. We Fig. 5), the dominant term irtH? is the one proportional to
anticipate the result from Sec. lll C: it is a8 The system is therefore analogous to the one consid-

i ik ered above whe&=0, and for superhorizon modes the so-
—A e—+B € (3.29 lution is given in Eg.(3.28: for an outgoing branep,
A=A B ' ~a* WhenE=E, or ESE_, these regimes extend down
to the black-hole horizon: thus in the near extremal limit the
For an outgoing brana increases and subhorizon modes arecontracting brane will again be unstable sirte-a 2.
stable. For an ingoing brareedecreases, and the amplitude  \Whena>a, (and hence in the regimes in whidh?>0

of the perturbation becomes very large in the near extremah Fig. 5), the dominant term iti?2 is proportional toa™* so
limit. (Note that, as the brane expands, superhorizon modeggat

eventually become subhorizon, and similarly, on a contract-
ing brane, subhorizon modes become superhornizon. 2E
To conclude, whem,#0, E=0, and the brane expands, a(r)?=al*2 7 (7= 7) (3.33
superhorizon modes are unstable while subhorizon modes
are stable. For a contracting brane, and in the near extremghq
limit, both super- and subhorizon modes are unstable.
Case 2: E£0. When the energy of the brane is nonzero 3 E
the situation is more complicated. Notice first from Eq. Ki(r)=—M%(r)a’=— - —. (3.39

(3.24 that M?(7) has one zero a=a, given by 2 ¢?%a?
=2 On superhorizorscales the mode equation is
11E
=%z (3.30
+ 3 E =0 (3.35
Hence M?(7) is negative whera<a. and positive fora Pl 2 (2ga P '

>a. (see Fig. 5 However, sincen, is E dependent, there
may be ranges oE for which the negative mass region is At first sight one might expect the solution to this equation to

hidden within the black-hole horizon. Indeed, we find be stable sinc&1?>0. However, surprisingly, it is notIn-
deed, below we will see that in conformal time the effective
a,say=E_<E<E, (3.3)  mass is actually negative in this regimA. change of vari-

ables tou=a? shows that the solution of E¢3.35) is
where

o or=A@>*+Ba'? (3.36
H

= —+
E. 22(13_4\/5)' @32 hich grows asr>/4 74 respectively. Finally,
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o =A+Ba (3.37)
For E within the bandE_<E<E, , the solution(3.37) for
the modes is valid for akh so thatsuperhorizormodes grow
asa ! as the brane approaches the black hole horizon.
WhenE=E, or E<E_ these solutions are valid fa
>a.. Thus for an expanding brang, tends to a constant
value. For a contracting brane, the term proportionad td
could become important, although for small enowglhe

PHYSICAL REVIEW D66, 063510(2002

9°-1
a(r)=a(r)e" M=) where A,= 72
(3.40
In this regime, howeve? is negative with
25
M2(7)=— ey (3.4)

relevant regime is that considered above, in which case the
solution is given by Eq(3.28 and the superhorizon modes andR,=1/Ha|=A, "“a

grow asa °.

—-1/24-1
For subhorizonmodes {<Ry) the solution fore¢, is

For subhorizormodes, the solution is still as given in Eq. again given by Eq(3.29. For superhorizormodes, and con-

(3.29.

2. BPS antibranes: g —1

Now the Friedmann equatio(2.28 and effective mass
M?2(7) become

, 1|E* 2E
REET 538
, . 1|3E? 3E
M (T)__ﬁ Z;‘FE; (339)

so thatM? is always negative, independently Bf Note that
H?>0 for a<a, wherea,= (E%/2E)Y% However, sinceE

sidering an outgoing brane, there is an exponentially growing
unstable mode

b=AeM T T=A a. (3.42
Hence, this non-BPS brane is unstable for laagét is not
clear to us why the acceleration due to the positive cosmo-
logical constant does not rather stretch the perturbations
away.

C. Comments on an analysis in conformal timen

It is instructive to carry out a similar analysis in confor-
mal time rather than brane time, and we comment briefly on
it here. In conformal time and transformed to Fourier space,
Eq. (3.7 becomes

=E + aﬂ'/2 for antibranes, it follows thaa.=a, for all E (3.43
(i.e., there are no energy bands to consider in the case of

antibranes Whena«ﬁc, H2xM?2ca~® and once again this where HzaH.. The friction term can be eIiminateq by a
is analogous to the case studied aboveHer0: superhori- ~ change of variables tg=a¢, and the above equation be-
zonmodes grow as®, and in the near extremal limit the ©OMes
subhorizonmodes on an ingoing brane are unstable.

¢k,7]7)+ 2H¢k,7]+ (k2+ a2m2) d)k: 0

i ny+ [KP= k() 1 =0 (3.44
3. Non-BPS branes: £ =1 where
Here we shall only briefly discuss the cage> 1 for large
a. Now, independently o, there is a cosmological constant kg( n)=—M?3(73)
dominated regimgsee Eq(2.28)]. There the solution for the
scale factor is and
M?(p)=a’m?-a,,la (3.45
1 g// 1 g/ 2 g/
N S B =y Sl B A B Y S
gm+2 gR”+2(g)R’7 ger
E_CZ 1f/ ! " 1\ 2 1 rh/ 5 ’ CI Cr 2
:_<_>{__9__9_ 3(9_) +_9__+_9__+(_) }
fgch (2f 9 ¢ g 2gh 2gE-C \E-C
f// 1 f/ 2 Sf/ ! 1f/h/ n 1 /h/
g L) 30g 10N o' 1g'h] 2.4
2h| f 2\ f 2f g 2fh g 2gh
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Specializing to Ad$-S space-time yields the perturbed brane embedding gives rise to perturbations
5 about the FRW geometry. Rec@fiee Eq.(2.8)] that for the
2 unperturbed brane

+6(g°—1)a

. (3.47

2 1
MA(n)=— 72| a8 o
dsi= y,p,dx2dx?

Notice that in conformal time and fdg|=1 M?(7) is ) . -
alwaysnegative independently &. From this, one can im- =—[f(R)—h(R)R*]dt*+g(R)dx-dx
mediately see the instability for smadlin Eq. (3.36), even s -
thoughMyz(r) can be positiv); in that case. ?t i(s cls)ar that the =—n*()dt*+a*(t)dx-dx (4.2)

results on branén)stability must be independent of whether — o
or not the analysis is carried out ipor r time. We will see Where the overbar ory denotes that it is an unperturbed

that this is indeed the case: the reason is that not only thguantity. Note that the scale factar(t) anda*(t) p|cI§ up
sign of the effective mass squared but also its functionaln€ir time dependence througR(t)—for instance a*(t)
dependence on time determine the stability properties. We=g(R(t)). In this section we calculatéy,, resulting from
now summarize briefly some of the aspects that differ bethe perturbed embeddin@.1) and relate it to the Bardeen
tween ther and » analysis. potentials.

Consider the simplest casg=+1 andE=0. The solu- Initially, rather than using the covariant for(8.1), let us
tion of the (conformal tim¢ Friedmann equation ia®=a>  write more generally
+3aZ(n—7)/2¢, andk.(7)~|H|=1/R,. For superhori-

zonmodes|k| <|k.|, Eq.(3.44) reduces tog ,,,— K(7) ¢ XO(tx) =t+ (1), (4.2
=0. Givena(#) and hence (a( 7)) it is straightforward to oL

find the solution which is, as expected, exactly that given in X(t,x)=x"+{'(t,x), 4.3
Eqg. (3.28. For subhorizormodes|k|> |k.|, the solution was

given in Eq.(3.29. XA(t,X)=R(t) + €(t,X). (4.4

Consider nowq=+1, E>0. Recall that in ther-time _
analysis botiV?(7) andH? contained terms ia~* anda~8  Below we will see that the perturbatiog5do not enter into
and, in particular, there was a regime in whigt?(7) was the two scalar Bardeen potentials which correspond to the
positive and proportional ta”%«H?. In 7 time, however, two degrees of freedong® and e. This is expected since
Hxa ®+a~2 with M2 always being negative, proportional Perturbations parallel to the brane are not physical and can be
to —a~®. Thus while thea<a, regime reduces to that dis- removed by a coordinate transformati¢#2]. Then only
cussed above fE =0, thea>a, regime is a little less clear. Tight at the end will we set®n°=e/n°=¢. We will find

ThereH2~a(n) 2, but M2~—a(7) . Thus thadt th?ﬁtwo Bardeen potentials are proportional to each other
and to¢.
\J2E By definition, the perturbed brane embedding is given by
a(m)=at—7—(n=n) (3.48

Yab= Yabt 6Yab
and

_ d — 9 _
= - 14 12 14 v
= g ( X+ 6X) aXa(x + 6X )—axb(x + 8XY).

1
Ke(7)?=—M(7)*=

ot (3.49

(4.5

Now |k.(7)|~|H[3¢2=¢%R3, and so one can no longer Evaluatingdy,y, to first order for the perturbed embedding
identify the critical wavelength with the Hubble radius. (4.2—(4.4) and the general bulk metri@.3), one obtains
For |k|<lk] Eg. (3.44 reduces to d?y/da?

—(5EE) (4, /a%)=0. The solution is expressed in terms 5ypo=e(—f'+h'R})+2(—- T +ehR), (4.6
of Bessel functions which, however, show exactly the same R - )

behavior as Eq(3.37): namely, ¢,= i /a tends to a con- 8y0i=— (3, f+'g+(de)hR, 4.7)
stant asa—o. The other limita—0 is not relevant as the

above equation is only valid fa>a. . 8yij= €9’ 8+ (3, + 3,410 (4.9

We do not discuss further the casef —1 andqg+#1
since the results obtained in this approach are exactly adote that the terms proportional 'tocome from the Taylor

discussed in Secs. IlIB 2 and IlI B 3. expansion ofy,,,(X+ 8X) in Eq. (4.5 to first order.
In the usual way, the perturbed line element on the brane
IV. BARDEEN POTENTIALS is written as
So far we have discussed the evolutiondafthe magni- ds2= —n?(1+2A)dt?— 2anB;dtdx
tude of the brane perturbation as seen by a 5D observer co- - =
moving with the brane. For an observer living the brane, +a2(5”- +h;;)dx'dx (4.9
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wheren(t) anda(t) are defined in Eq(4.1), and as usual only and not to any of its derivatives. Finally, the gauge
vectors are decomposed into a scalar part and a divergendevariant vector and tensor perturbations are identically zero.
less vector component, e.g., We now set

B;=;B+B; (4.10 e=n"¢p, ("=n% (4.13

(wheren” is the normal to the bramén order to make con-
tact with the covariant formalism of Sec. Ill. Then the com-
bination that appears in both and® is

with 9'B;=0. We will use a similar decomposition faf
defined in Eq.4.3) as well as the usual one for tensor per-
turbations. Thus from Eq%4.6)—(4.8) we have

o n2(t)
1lle . . .. "R—e=— n*| ¢ (4.149
A=—| 5 (F'=h'R)+({°f—ehR)|, f
—n
wheren* is the fourth component of the normal to the un-
perturbed brane. Thus
=—[§°f—§a —€hR], _ _
o a)n’ V= f’R nn’ 4.1
B . -_EE¢’ —_T_HEQS (4.19
Bi=—1di,
which, on going to Ad$'S space-time and using the expres-
e(g’ sion for R? in Eq. (2.13), yields
C:_ -
= 2\g ) =
_ (E-C(a) (4| [E ¢
s, ‘P——T )=\ aralle) (4.19
Ei=¢, W=3d+4q ?) (4.17

Even though there are no anisotropic stresses, the Bardeen

where we have used standard notation defined, e.gL0h potentials here are not equal. We suppose that this is due to
By considering coordinate transformations on the brane anH'® dabsence of self- dgravt|)ty We sheehtr;at for superhorizon
doing standard four-dimensional perturbation theory one caf'°5€s on an expanding ratfer which, from Sec. Il ¢
define the usual two Bardeen potentials, as well as the branfeé? %), we also havep,xa®. Similarly, ¢, also grows rap-

vector and tensor metric perturbations. For the first Bardeelflly for @ brane falling into the black-hole horizon. -
potential we find, after some algebra, To obtain a true(i.e., gauge invariantmeasure of the

“deviation” from the FRW case, it is useful to look at the

a a ratio of the components of the perturbed Weyl tensor and the
o=—-C+ - B+—E) background Riemann tensor, which in the FRW case is
— M= nh= roughly given by k7)?|®,+ W] (see[43]) For®,>a* this
P ratio grows, becausa~ 7' whenH?~a©
a 1 .
=| =5 =[¢{°R—€]. 4.1
(a) n? R[g €] @1 V. CONCLUSIONS
Notice that all terms containing in B andE have cancelled !N this paper we have studied the evolution of perturba-

as expected since they are not physical degrees of freedofionS On @ moving D3-brane coupled to a bulk four-form
Similaprly y pry g r}Ji1eld, focusing mainly on an AdsSchwarzschild bulk. For

an observer on the unperturbed brane, this motion leads to
a2. FRW expansion or contraction with scale factrr. We
aB+ FE> assumed that there is no matter on the brane and ignored the
back reaction of the brane onto the bulk. Instead, we aimed
. to investigate the growth of perturbations due only to mo-
o)

1
\1f=A——¢9t
— n

tion, and also to study the stability of moving D3-branes. For
such a probe brane, the only possible perturbations are those
(4.12 of the brane embedding. The fluctuations about the straight
brane worldsheet are described by a scalar filhich is
The important point to notice in this second case is not onlythe proper amplitude of a “wiggle” seen by an observer co-
the absence of', but that allderivativesof the perturbations moving with the unperturbed brane. Following the work of
£% ande (which appear imA) have also cancelled. Hence we [20,21,4] we derived an equation of motion fa¥, and in-
will find that the Bardeen potentials are proportional#o vestigated whether small fluctuations are stretched away by

11 or
:FEM R—e€]
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the expansion, or, on the other hand, whether they grow on ‘aMeyl to Riemann” which, expressed in terms &f and ¥,
contracting brane. The equation féris characterized by an gives a gauge invariant measure for the “deviation” from the
effective mass squared and we noted that if this mass IERW universe, also grows.
positive the system is not necessarily stable: indeed, in Sec. A limitation of this work is that the back reaction of the
[l we discussed a regime in which the effective massbrane onto the bulk was neglected. One may wonder whether
squared is positive in brane time but negative in conformalnclusion of the back reaction could stabilize To answer
time, and therefore the perturbations grow. Another importhat question, recall that the setup we have analyzed here
tant factor in the evolution o# is the time dependence of corresponds, in the junction condition approach, to one in
that mass. which Z, symmetry across the brane is broken. Then the
In Sec. Il we found that on an expanding the BPS branéorane is at the interface of two AgS space-times, and its
with total energyE=0, superhorizon modes grow ag$, total energy is related to the difference of the respective
whereas subhorizon modes decay and hence are stable. Fopigck-hole massesExM, —M_ . Perturbation theory in
contracting brane, on the contrary, both super- and subhoris,ciy g noriz,-symmetric self-interacting case has been set

-3 -1 H . oo . . .
zon modes grow aa"°, anda” " respectively. These fluc-  jn[10], though it is technically quite complicated. How-
tuations become large in the near extremal limjf;<1. We  gver, in the future we hope to try to use that formalism to
therefore concluded that the brane becomes unstaélethe  include the back reaction of the brane onto the bulk.

wiggles grow as it falls into the black hole. We also dis- |t would be interesting to extend this analysis to branes
cussed the case>0 for BPS branes and BPS antibranes.yith n codimensions: in this case one has to consitsralar
Non-BPS branes were found to be unstable at late timefie|ds—one for each normal to the brane. Formalisms to treat
when a positive cosmological constant dominates. this problem have been developed 22,44. In that case the

We have discussed the evolution of the fluctuatignas  equations of motion for the scalar fields are coupled, and it
measured by a five-dimensional observer moving with theyecomes a complicated task to diagonalize the system.
unperturbed brane. However, for an observer at rest in the Finally, it would also be interesting to consider nonzero
bulk, the magnitude of the perturbation is given by a Lorentz= ' and hence the effect of perturbations in the radiation on
contraction factor times the proper perturbatipn(For a flat  the brane.
bulk spacetime this was pointed out[iB0].) Hence, if per-
turbations grow for the “comoving” observer, they do not
necessarily grow for an observer at rest in the bulk.

Finally, the fluctuations around the unperturbed world-
sheet generate perturbations in the FRW universe. In Sec. IV We thank Ph. Brax, E. Dudas, S. Foffa, M. Maggiore, J.
we discussed these perturbations from the point of view of &ourad, M. Parry, A. Riazuelo, K. Stelle, and R. Trotta for
4D observer now living on the perturbed brane. We calcunumerous useful discussions and encouragement. We espe-
lated the Bardeen potentials andV which were both found cially thank R. Durrer for her comments on the manuscript.
to be proportional tap. Furthermore, we saw that the ratio T.B. thanks LPT Orsay for hospitality.
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