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Perturbations on a moving D3-brane and mirage cosmology
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Département de Physique The´orique, Universite´ de Gene`ve, 24 Quai E. Ansermet, CH-1211 Geneva 4, Switzerland

D. A. Steer†

Laboratoire de Physique The´orique, Bâtiment 210, Universite´ Paris XI, Orsay Cedex, France
and Fédération de Recherche APC, Universite´ Paris VII, Paris Cedex, France

~Received 18 June 2002; published 25 September 2002!

We study the evolution of perturbations on a moving probe D3-brane coupled to a four-form field in an
AdS5-Schwarzschild bulk. The unperturbed dynamics are parametrized by a conserved energyE and lead to a
Friedmann-Robertson-Walker~FRW! ‘‘mirage’’ cosmology on the brane with a scale factora(t). The fluctua-

tions about the unperturbed worldsheet are then described by a scalar fieldf(t,xW ). We derive an equation of
motion for f, and find that in certain regimes ofa the effective mass squared is negative. On an expanding
Bogomol’nyi-Prasad-Sommerfield~BPS! brane withE50 superhorizon modes grow asa4 while subhorizon
modes are stable. When the brane contracts, all modes grow. We also briefly discuss the case whenE.0, BPS
antibranes as well as non-BPS branes. Finally, the perturbed brane embedding gives rise to scalar perturbations
in the FRW universe. We show thatf is proportional to the gauge invariant Bardeen potentials on the brane.

DOI: 10.1103/PhysRevD.66.063510 PACS number~s!: 98.80.Cq, 04.25.Nx
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I. INTRODUCTION

The idea that our universe may be a three-brane em
ded in a higher dimensional space-time is strongly motiva
by string and M theory, and it has recently received a gr
deal of attention. Much work has focused on the case
which the universe 3-brane is of codimension 1@1–3# and
the resulting cosmology~see, e.g.,@4–6#! and cosmological
perturbation theory~e.g.,@7–13#! have been studied in depth
When there is more than one extra dimension the Israel ju
tion conditions, which are central to the 5D studies, do
apply and other approaches must be used@14–16#. In the
‘‘mirage’’ cosmology approach@15,17# the bulk is taken to
be a given supergravity solution, and our universe is atest
D3-brane which moves in this background spacetime so
its back-reactions onto the bulk are neglected. If the b
metric has certain symmetry properties, the unpertur
brane motion leads to a Friedmann-Robertson-Walker~FRW!
cosmology with a scale factora(t) on the brane@15,18#. Our
aim in this paper is to study the evolution of perturbations
such a moving brane. Given the probe nature of the bra
this question has many similarities with the study of the d
namics and perturbations of cosmic topological defects s
as cosmic strings@19–22#.

Though we derive the perturbation equations in a m
general case, we consider in the end a bulk w
AdS5-Schwarzschild3S5 geometry which is the near hor
zon limit of the ten-dimensional black D3-brane solution.
this limit @using the AdS conformal field theory~CFT! cor-
respondence# black-hole thermodynamics can be studied
the probe D3-brane dynamics@23,24#. As discussed in Sec
II A, we make the assumption that the D3-brane has no
namics around the S5 so that the bulk geometry is effectivel

*Electronic address: Timon.Boehm@physics.unige.ch
†Electronic address: steer@th.u-psud.fr
0556-2821/2002/66~6!/063510~14!/$20.00 66 0635
d-
d

at
in

c-
t

at
k
d

n
e,
-
h

e
h

y-

AdS5-Schwarzschild geometry. Because of the generali
Birkhoff theorem@25#, this 5D geometry plays an importan
role in work on codimension 1 brane cosmology. Hence lin
can be made between the unperturbed probe brane FRW
mology discussed here and exact brane cosmology base
the junction conditions@18#. Similarly, the perturbation
theory we study here is just one limit of the full, sel
interacting and non-Z2-symmetric brane perturbation theor
which has been studied elsewhere@10#. Comments will be
made in the conclusions regarding generalizations of
work to the full 10D case.

Regarding the universe brane, the zeroth order~or back-
ground! solution is taken to be an infinitely straight bran
whose motion is now constrained to be along the single e
dimension labeled by coordinater. The brane motion is pa
rametrized by a conserved positive energyE @15#. In
AdS5-Schwarzschild geometry and to an observer on
brane, the motion appears to be FRW expansion or cont
tion with a scale factor given bya}r . Both the perturbed
and unperturbed brane dynamics will be obtained from
Dirac-Born-Infeld action for type IIB superstring theory~see,
e.g.,@26#!,

SD352T3E d4sA2det~ ĝab12pa8Fab1B̂ab!

2r3E d4sĈ4 . ~1.1!

Here sa (a50,1,2,3) are coordinates on the brane wor
sheet,T3 is the brane tension, and in the second We
Zumino term r3 is the brane charge under a Ramon
Ramond~RR! four-form field living in the bulk. We will
write

r35qT3 ~1.2!
©2002 The American Physical Society10-1
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so that q5(2)1 for Bogomol’nyi-Prasad-Sommerfiel
~BPS! ~anti!branes. In Eq.~1.1! ĝab is the induced metric and
Fab the field strength tensor of the gauge fields on the bra
The quantitiesB̂ab and Ĉ4 are the pullbacks of the Neveu
Schwarz ~NS! two-form, and the Ramond-Ramond fou
form field in the bulk. In the background we consider, t
dilaton is a constant and we set it to zero. In general
brane will not move slowly, and hence the square root in
Dirac-Born-Infeld DBI part of Eq.~1.1! may not be ex-
panded: we will consider the full nonlinear action. Final
notice that since the 4D Riemann scalar does not appea
Eq. ~1.1! ~and it is not inherited from the background in th
probe brane approach! there is no brane self-gravity. Henc
the ‘‘mirage’’ cosmology we discuss here is solely sourc
by the brane motion, and it leads to effects which are
present in four-dimensional Einstein gravity. The lack
brane self-gravity is a serious limitation. However, in certa
cases it may be included, for instance by compactifying
background space-time as discussed in@27# ~see also@14#!.
Generally this leads to bimetric theories. Even in that ca
the mirage cosmology scale factora(t) which we discuss
below plays an important role and hence we believe it is
interest to study perturbations in this ‘‘probe brane’’ a
proach.

Deviations from the infinitely straight moving brane giv
rise to perturbations around the FRW solution. Are the
‘‘wiggles’’ stretched away by the expansion, or on the co
trary do they grow, leading to instabilities? To answer t
question, we exploit the similarity with uncharged cosm
topological defects and make use of the work developed
that context by Garriga and Vilenkin@20#, Guven@21#, and
Battye and Carter@22#. The perturbation dynamics are stu
ied through a scalar fieldf(s) whose equation of motion is
derived from the action~1.1!. We find that, for an observe
comoving with the brane,f has a tachyonic mass in certa
ranges ofr which depend on the conserved energyE charac-
terizing the unperturbed brane dynamics. We discuss the
lution of the modesfk for differentE and show that in many
cases the brane is unstable. In particular, both sub- and
perhorizon modes grow for a brane falling into the bla
hole. It remains an open question to see if brane self-gra
neglected in this approach, can stabilize the system.

Finally, we also relatef to the standard 4D gauge invar
ant scalar Bardeen potentialsFI andCI on the brane. We find
that FI }CI }f ~no derivatives off enter into the Bardeen
potentials!.

The work presented here has some overlap with tha
Carteret al. @28# who also studied perturbations on movin
charged branes in the limit of negligible self-gravity. The
emphasis was on trying to mimic gravity on the brane, and
addition they included matter on the brane. Here we cons
the simplest case in which there is no matter on the bra
namely,Fab50 in Eq. ~1.1!. Our focus is on studying the
evolution of perturbations solely due to motion of the bra
we expect the contribution of these perturbations to be
portant also when matter is included. Moreover, we hope
this study may more generally be of interest for the dynam
and perturbations of moving D-branes in non-BPS ba
grounds.
06351
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The outline of the paper is as follows. In Sec. II we lin
our five-dimensional metric to the ten-dimensional black D
brane solution and specify the unperturbed embedding of
probe brane. To determine its dynamics from the action~1.1!
the bulk four-form RR field must be specified. We discu
the normalization of this field. At the end of the section w
summarize the motion of the probe brane by means of
effective potential. Comments are made regarding the Fr
mann equation for an observer on the brane. In Sec. III
consider small deviations from the background brane tra
tory and investigate their evolution. The equation of moti
for f is derived, and we solve it in various regimes, co
menting on the resulting instabilities. In Sec. IV we linkf to
the scalar Bardeen potentials on the brane. Finally, in Se
we summarize our results.

II. UNPERTURBED DYNAMICS OF THE D3-BRANE

In this section we discuss the background metric, brie
review the unperturbed D3-brane dynamics, and commen
the cosmology as seen by an observer on the brane.
reader is referred to@15,29# for a more detailed analysis o
which part of this section is based.

A. Background metric and brane scale factor

For the reasons mentioned in the Introduction, we foc
mainly on an AdS5-S3S5 bulk space-time. This is closely
linked to the 10D black three-brane supergravity solut
@30–32# which describesN coincident D3-branes carrying
RR chargeQ5NT3 and which is given by

ds10
2 5H3

21/2~2Fdt21dxW•dxW !

1H3
1/2S dr2

F
1r 2dV5

2D ~2.1!

where the coordinates (t,xW ) are parallel to theN D3-branes,
dV5

2 is the line element on a five-sphere, and

H3~r !511
,4

r 4
, F512

r H
4

r 4
. ~2.2!

The quantity, is the AdS5 curvature radius and the horizo
r H vanishes when the Arnowitt-Deser-Misner~ADM ! mass
equalsQ. The link between the metric parameters,,r H and
the string parametersN,T3 is given, e.g., in@32#. The corre-
sponding bulk RR field may also be found in@32#.

The near horizon limit of the metric~2.1! is AdS5-S3S5

space time@31#. Our universe is taken to be a D3-bran
moving in this background. We make the following two a
sumptions. First, the universe brane is a probe so tha
back reaction on the bulk geometry is neglected. This may
justified if N@1. Second, the probe is assumed to have
dynamics around S5 so that it is constrained to move onl
along the radial directionr. This is a consistent solution o
the unperturbeddynamics since the brane has a conserv
angular momentum about the S5, and this may be set to zer
@15,18#. In Sec. III we assume that is also true for the p
0-2
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PERTURBATIONS ON A MOVING D3-BRANE AND . . . PHYSICAL REVIEW D66, 063510 ~2002!
turbed dynamics. Thus in the remainder of this paper
consider an AdS5-S bulk spacetime with metric

ds5
252 f ~r !dt21g~r !dxW•dxW1h~r !dr2 ~2.3!

[gmndxmdxn ~2.4!

where

f ~r !5
r 2

,2 S 12
r H

4

r 4 D , g~r !5
r 2

,2
,

h~r !5
1

f ~r !
. ~2.5!

~In the limit r H→0 this becomes pure AdS5.!
More generally, by symmetry, a stack of nonrotating D

branes generates a metric of the formds10
2 5ds5

2

1k(r )dV5
2 , where ds5 is given in Eq.~2.3! @33#. In this

case, since the metric coefficients are independent of the
gular coordinates (u1, . . . ,u5), the unperturbed brane dy
namics are always characterized by a conserved angular
mentum around the S5 @15#. As a result of the second
assumption above, we are thus effectively led to cons
metrics of the form~2.3!: hence for the derivation of both th
unperturbed and perturbed equations of motion we k
f ,g,h arbitrary and consider the specific form~2.5! only at
the end.

The embedding of the probe D3-brane is given byxm

5Xm(xa). ~We have used reparametrization invariance
choose the intrinsic worldsheet coordinatessa5xa.! For the
unperturbed trajectory we consider an infinitely straig
brane parallel to thexa hyperplane but free to move alon
the r direction:

Xa5xa, X45R~ t !. ~2.6!

Later, in Sec. III, we will consider a perturbed brane f
which X45R(t)1dR(t,xW ).

The induced metric on the brane is given by

ĝab5gmn~X!
]Xm

]xa

]Xn

]xb
~2.7!

~where the caret denotes a pullback!, so that the line elemen
on the unperturbed brane worldsheet is

ds4
25ĝabdxadxb

52@ f ~R!2h~R!Ṙ2#dt21g~R!dxW•dxW

[2dt21a2~t!dxW•dxW . ~2.8!

An observer on the brane therefore sees a homogeneou
isotropic universe in which the timet and the scale facto
a(t) are given by

t5E A~ f 2hṘ2!dt, a~t!5Ag„R~t!…. ~2.9!
06351
e

-

n-

o-

er

p

o

t

and

The properties of the resulting Friedmann equation dep
on f (R),g(R),h(R) ~i.e., the bulk geometry! as well asṘ
~the brane dynamics! as discussed in@15,18# and summa-
rized briefly below.

B. Brane action and bulk four-form field

In AdS5-S geometry,Bmn vanishes, and we do not con
sider the gauge fieldFab on the brane.~For a detailed dis-
cussion of the unperturbed brane dynamics with and with
Fab , which essentially corresponds to radiation on the bra
see@15,18#. NonzeroBmn has been discussed in@34#.! Thus
the brane action~1.1! reduces to

SD352T3E d4xA2ĝ2r3E d4xĈ4 ~2.10!

where

ĝ5det~ ĝab!, Ĉ45Cmnsr

]Xm

]x0

]Xn

]x1

]Xs

]x2

]Xr

]x3
,

~2.11!

and Cmnsr are components of the bulk RR four-form field
The first term in Eq.~2.10! is just the Nambu-Goto action.

In the gauge~2.6!, ĝ andĈ4 depend ont only throughR.
Thus rather than varying Eq.~2.10! with respect toXm and
then integrating the equations of motion, it is more straig
forward to obtain the equations of motion from the Lagran
ian

L52A2ĝ2C52Af g32g3hṘ22C ~2.12!

where C5C(R)5(r3 /T3)Ĉ45qĈ4. SinceL does not ex-
plicitly depend on time, the brane dynamics are parametri
by a ~positive! conserved energyE5(]L/]Ṙ)Ṙ2L, from
which

Ṙ25
f

h S 12
f g3

~E2C!2D . ~2.13!

Transforming to brane timet defined in Eq.~2.9! yields

Rt
25

~E2C!2

f g3h
2

1

h
~2.14!

where the subscript denotes a derivative with respect tot.
In order to analyze the brane dynamics in AdS5-S space-

time wheref ,g andh are given in Eq.~2.5!, one must finally
specifyC(R) or equivalently the four-form potentialCmnsr .
To that end1 recall that the 5D bulk action is

1For the 10D AdS5-S3S5 geometry the solution for the four-form
field is given, for example, in@32#. For completeness, we rederiv
the result starting directly from the 5D metric~2.5!.
0-3
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S5
1

2k5
2E d5xA2g~R22L!2

1

4k5
2E F5`* F5

~2.15!

whereL is the bulk cosmological constant andF55dC4 is
the five-form field strength associated with the four-formC4.
The resulting equations of motion are

Rmn5
2

3
Lgmn1

1

2•4! S FmbgdeFn
bgde

2
4

3•5
FabgdeF

abgdegmnD , ~2.16!

d* F55
1

2

1

Af g3h
F S f 8

f
13

g8

g
1

h8

h DF01234

22F012348 Gdr50, ~2.17!

where the prime denotes a derivative with respect tor. In
AdS5-S geometry,Rmn52(4/,2)gmn and Eq.~2.17! gives

,3

r 3 S 3

r
F012342F012348 D50⇒F012345c

r 3

,4
~2.18!

wherec is a dimensionless constant~see, for example,@35#!.
~Note that this solution satisfiesdF550 since the only non-
zero derivative is]4F01234which vanishes on antisymmetriz
ing.! Integration gives

C01235v
r 4

,4
1w ~2.19!

where v5c/4 and w are again dimensionless constan
Hence the functionC(r ) appearing in Eq.~2.12! is

C~r !5qC01235qv
r 4

,4
1qw. ~2.20!

In ten dimensions the constantc ~and hencev) is fixed by
** F5Q , and w may be determined by imposing@before
taking the near horizon limit—hence with metric~2.1!# that
the four-form potential should die off at infinity@32#. This
second argument is not applicable here. Instead, we fixv and
w in the following way. Consider the motion of the unpe
turbed brane seen by a bulk observer with time coordinat.
One can define an effective potentialVeff

t through

1

2
Ṙ21Veff

t [E ~2.21!

so that on using equation~2.13!,

Veff
t ~E,q,R!5E2

1

2 S R

, D 4

a2F12S R

, D 8 a

~E2C!2G
~2.22!
06351
.

~see Figs. 1 and 2! where

a512
r H

4

R4

and C5C(R) is given in Eq.~2.20!. We now use the fact
that there is no net force between static BPS objects of
charge, and hence in this case the effective potential sh
be identically zero. Here, such a configuration is charac
ized byr H50, q 5 1, E50: imposing thatVeff

t 50 for all R,
forcesv561 and, in this limit,w50. Second, we normal
ize the potential such thatVeff

t (E,q51, R→`)50 for arbi-
trary values of the energyE and r H . This leads to

FIG. 1. Veff
t (E,q,R) for E50, q51, ,54, and different values

of r H . For R→` the potential goes to zero according to our no
malization. Whenr H50, the potential is exactly flat.

FIG. 2. Veff
t (E,q,R) for E52, r H51, ,54. For a BPS brane

(q51), Veff
t →0 as R→` according to our normalization. This

should be contrasted with a non-BPS brane, e.g., withq51.2. Note
that Veff

t (E,q,R5r H)5E. Any inwardly moving ~contracting!
brane takes an infinite amount oft time to reach the horizon.
0-4
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v521, w51
r H

4

2,4
. ~2.23!

In particular forE50, then the brane has zero kinetic ener
at infinity. Even in this case the potential is not flat, unle
r H50, as can be see in Fig. 1. According to this normali
tion

C~r !52q
r 4

,4
1q

r H
4

2,4
~2.24!

as in the 10D case@32#. Notice that, since the combinatio
appearing in the equation of motion forR is E2C, the con-
stantw only acts to shift the energy. For later purposes
define the shifted energyẼ by

Ẽ5E2qw5E2q
r H

4

2,4
. ~2.25!

Finally, we comment that substitution of Eq.~2.18! into
Eq. ~2.16! determines the bulk cosmological2 constant to be
given by,2L5262c2/45210.

C. Brane dynamics and Friedmann equation

We now make some comments regarding the unpertur
motion of the three-brane through the bulk,R(t), as seen for
an observer on the brane. This will be useful in Sec. III wh
discussing perturbations. Recall that sincea(t)5R(t)/,
@see Eq.~2.9!#, an ‘‘outgoing’’ brane leads to cosmologica
expansion. Contraction occurs when the brane moves
ward. For the observer on the brane, one may define an
fective potential by

1

2
Rt

21Veff
t 5E ~2.26!

whence, from Eq.~2.14!,

Veff
t ~E,q,R!5E1

1

2 S ,

RD 6FaS R

, D 8

2~E2C!2G .
~2.27!

Consider a BPS braneq511 ~see Fig. 3!. As noted
above, forr H5E50 one hasVeff

t 50 so that the potential is
flat. For r HÞ0, Veff

t contains a term proportional to2R26,
and the probe brane accelerates toward the horizon, whic
reached in finitet time. On the other hand, for a bulk ob
server with timet, it takes infinite time to reach the horizo
whereVeff

t 5E ~see Fig. 2!.

2Equivalently we could have started from the 10D supergrav
~SUGRA! action, used the 10D solution forF @which is identical to
Eq. ~2.24!#, and then integrated out over the five-sphere. After d
nition of the 5D Newton constant in terms of the 10D one, t
above cosmological constant term is indeed obtained, coming f
the five-sphere Ricci scalar.
06351
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From Eqs.~2.14! and~2.20! it is straightforward to derive
a Friedmann-like equation for the brane scale factora(t)
@15,18#:

H25S at

a D 2

5
1

,2 F Ẽ2

a8
1

1

a4 S 2qẼ1
r H

4

,4D 1~q221!G . ~2.28!

The term in 1/a8 ~a ‘‘dark fluid’’ with equation of statep̃

55/3r̃) dominates at early times. The second term, ina24,
is a ‘‘dark radiation’’ term. As discussed in@18#, the part
proportional tor H corresponds to the familiar dark radiatio
term in conventionalZ2-symmetric ~junction condition!
brane cosmology, where it is associated with the projec
bulk Weyl tensor. WhenẼ is nonzero,Z2 symmetry is
broken3 @18# and this leads to a further dark radiation ter
@35,36#. The last term in Eq.~2.28! defines an effective four-
dimensional cosmological constantL4[(1/,2)(q221)
which vanishes if the~anti!brane is BPS~i.e., q561). All
these terms have previously been found in both ‘‘mirag
cosmology and conventional brane cosmology@18,35#.

Notice that the dark radiation term above has a coeffici

m[2qẼ1
r H

4

,4
52qE2

r H
4

,4
~q221! ~2.29!

y

-

m

3When making the link between mirage cosmology and the ju

tion condition approach,Ẽ}M 22M 1 where M 6 are the black-
hole masses on each side of the brane@18#.

FIG. 3. Veff
t (E,q,R) for the same parameters as in Fig. 2. A BP

brane has zero kinetic energy at infinity corresponding to a van
ing cosmological constant on the brane. Otherwise, the cosmo
cal constant is proportional toq221. A BPS antibrane is allowed to
move only in a restricted range ofR: after having reached a maxi
mal scale factor, the universe starts contracting. Any inwardly m
ing brane falls into the black hole in a finitet.
0-5
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TIMON BOEHM AND D. A. STEER PHYSICAL REVIEW D66, 063510 ~2002!
which is positive forq511 ~since E>0). However, for
BPS antibranesq521, the coefficient~2.29! is negative
unlessE50. Thus, whenEÞ0 andq521 there is a regime
of R for which H2 is negative. In Fig. 3 this is represented
the forbidden region where the potential exceeds the t
energyE. At Veff

t 5E the Hubble parameter is zero and
initially expanding brane starts contracting. On the contra
we do not obtain bouncing solutions in our setup, regard
of the values ofq andE. Bouncing and oscillatory universe
are discussed in, e.g.,@37–39#.

The Friedmann equation~2.28! can be solved exactly. In
the BPS case,L450, the solution is

a~t!45ai
41

4m

,2
~t2t i !

2

6
4

,
~t2t i !~Ẽ21mai

4!1/2 ~2.30!

whereai is the value of the scale factor at the initial timet i ,
and the6 determines whether the brane is moving radia
inward or outward. In the next section when we solve
perturbation equations, it will be sufficient to consider r
gimes in which only one of the terms in Eq.~2.28! domi-
nates. These will be given in Sec. III.

One might wonder whether it is possible to obtain a te
proportional toa23 ~dust! in the Friedmann equation, an
also one corresponding to physical radiation on the br
~rather than dark radiation!. Physical radiation comes from
taking FabÞ0 in Eq. ~1.1! @15#, and a ‘‘dark’’ dust term has
been obtained in the non-BPS background studied in@27#.
Finally, a curvature terma22 has been obtained in@40#.

III. PERTURBED EQUATIONS OF MOTION

In this section we consider perturbations of the brane
sition about the zeroth order solutionR(t) given in Eq.
~2.13!. Once again we work with the metric~2.3!, specializ-
ing to AdS5-S geometry only at the end. The perturbed bra
embeddingX45R(t)1dR(t,xW ) leads to perturbationsdĝab
of the induced metric on the brane and these are discuss
Sec. IV. Note that these perturbations about the flat hom
enous and isotropic solution are not sourced by matter on
brane, and their evolution will depend on the unperturb
brane dynamics and hence onE. We now derive an equation
for the evolution of the perturbed brane and try to see if th
are instabilities in the system.

A. The second order action

Since we consider a codimension 1 brane, the fluctuat
about the unperturbed moving brane can be described
single scalar fieldf(xa) living on the unperturbed bran
worldsheet@21#. To describe the dynamics off(xa) ~which
is defined below!, we use the covariant formalism develop
in @21# to study perturbed Nambu-Goto walls.~For other
applications, see also@20,41#.! The perturbed brane embed
ding is given by
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Xm~ t,xW !5X̄m~ t !1f~ t,xW !nm~ t ! ~3.1!

where X̄m(t) is the unperturbed embedding, and physic
perturbations are only those transverse to the brane~see also
Sec. IV!. The unit spacelike normal to the unperturbed bra
nm(t)5nm

„X̄m(t)…, is defined through

gmnnm
]X̄n

]xa
50, gmnnmnn51, ~3.2!

so that

nm5S ṘA h

f ~ f 2hṘ2!
,0,0,0,A f

h~ f 2hṘ2!
D . ~3.3!

Thus for a 5D observer comoving with the brane,f ~which
has dimensions of length! is the measured deviation from th
background solution of the previous section@20#. For an ob-
server living on the brane, the perturbations in the FRW m
ric generated byf are discussed in Sec. IV in terms of th
gauge invariant scalar Bardeen potentials.

An equation of motion forf can be obtained by subst
tuting Eq.~3.1! into the action~2.10! and expanding to sec
ond order inf. The terms linear inf give the background
~unperturbed! equations of motion studied in the previou
section—now we are interested in the terms quadratic inf
which give the linearized equations of motion. A simil
analysis was carried out by Garriga and Vilenkin@20# for
Nambu-Goto cosmic domain walls in Minkowski space a
was generalized by Guven@21# for arbitrary backgrounds
For the action~2.10!, the quadratic term is@41#

Sf252
1

2E d4xA2ĝ@~ ¹̂af!~¹̂af!

2~K̂a
bK̂b

a1Rmnnmnn!f2#. ~3.4!

Here¹̂ is the covariant derivative with respect to the induc
metric ĝab , and the extrinsic curvature tensorK̂ab is given by

K̂ab5~¹nnm!
]X̄m

]xa

]X̄n

]xb
~3.5!

where¹ is the covariant derivative with respect to the 5
metric gmn . Finally, Rmn is the Ricci tensor of the metric
gmn . Apart fromf, all the terms in Eq.~3.4! are unperturbed
quantities. Note that there is no contribution toSf2 from the
Wess-Zumino term of action~2.10!: all terms quadratic inf
cancel sinceC0123 is the only nonzero component of th
four-form field. However,C does enter into the term linear i
f and hence into the background equations of motion,
analyzed in the previous sections.

Variation of the action~3.4! with respect tof leads to the
equation of motion
0-6
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¹̂a¹̂af1@K̂b
aK̂a

b1Rmnnmnn#f50 ~3.6!

or equivalently

¹̂a¹̂af2m2f50 ~3.7!

where

m252@K̂b
aK̂a

b1Rmnnmnn#. ~3.8!

To determine the extrinsic curvature contribution to E
~3.8!, it is simpler to calculate first the five-dimensional e
trinsic tensor defined by

Kn
m5glm¹lnn ~3.9!

whereglm5glm2nlnm and then use

K̂b
aK̂a

b5Kn
mKm

n .

On definingT by

T[S dt

dt D
2

5 f 2hṘ25
f 2g3

~E2C!2
,

the nonzero components ofKn
m are

K0
05

1

T5/2
f 3/2h1/2S R̈2

f 8

f
Ṙ21

1

2

h8

h
Ṙ21

1

2

f 8

h D , ~3.10!

K4
052

hṘ

f
K0

0 , ~3.11!

K1
15

1

T1/2S f

hD 1/21

2

g8

g
5K2

25K3
3 , ~3.12!

K4
452

hṘ2

f
K0

0 ~3.13!

so that

K̂b
aK̂a

b5
1

T

f

h F3S g8

g D 2

13
g8

g

C8

E2C
1S C8

E2CD 2G .
~3.14!

The Ricci term is

Rmnnmnn52
1

4h F2
f 9

f
2S f 8

f D 2

13
f 8

f

g8

g
2

f 8

f

h8

h G
1

3

4

1

T

f

h F f 8

f

g8

g
22

g9

g
1S g8

g D 2

1
g8

g

h8

h G .
~3.15!
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Collecting these results gives

m252
3

4

~E2C!2

f g3h
F f 8

f

g8

g
22

g9

g
15S g8

g D 2

1
g8

g

h8

h
14

g8

g

C8

E2C
1

4

3 S C8

E2CD 2G
1

1

4h F2
f 9

f
2S f 8

f D 2

13
f 8

f

g8

g
2

f 8

f

h8

h G .
In the remainder of this section we try to obtain approxim
solutions forf from Eq. ~3.7!. Some aspects of this calcula
tion are clearer in brane timet and others in conformal time
h @whereh5*dt/a(t)]. Of course the results are indepe
dent of the coordinate system. For these reasons we h
decided to present both approaches, beginning with br
time.

B. Evolution of perturbations in brane time t

On using the definition of brane timet in Eq. ~2.9!, the
kinetic term in Eq.~3.6! is given by

¹̂a¹̂af52ftt23Hft1
1

a2
@fx1x11fx2x21fx3x3#.

~In conformal time the factor ofa22 multiplying the spatial
derivatives disappears—see below.! We now change vari-
ables tow5a3/2f so that Eq.~3.7! becomes

wtt2
1

a2
@wx1x11wx2x21wx3x3#1M2~t!w50 ~3.16!

where

FIG. 4. The dimensionless quantityM2,2 as a function ofa for
E51, ,51, r H51. Here, the effective mass squared is positive
a certain range only for the BPS brane. Note that the negativeM2,2

region is not hidden behind the horizon.
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M2~t!5m22
3

4 F S at

a D 2

12
att

a G
5m22

3

4 Fg9

g
Rt

22
1

4 S g8

g D 2

Rt
21

g8

g
RttG ~3.17!

5
3

4

~E2C!2

f g3h
F2

1

2

f 8

f

g8

g
1

g9

g
2

13

4 S g8

g D 2

2
1

2

g8

g

h8

h
23

g8

g

C8

E2C

2
4

3 S C8

E2CD 2G1
1

4h F2
f 9

f
2S f 8

f D 2

13
f 8

f

g8

g
2

f 8

f

h8

h
13

g9

g
2

3

4 S g8

g D 2

2
3

2

g8

g

h8

h G . ~3.18!
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This expression is valid for anyf, g, andh. We now special-
ize to AdS5-S geometry, in which case

M2~t!5
1

,2 F2
33

4

Ẽ2

a8
1

3

4

1

a4 S 2qẼ1
r H

4

,4D 2
25

4
~q221!G

52
33

4
H21

9

a4,2 S 2qẼ1
r H

4

,4D 12
q221

,2
. ~3.19!

Notice that there are regimes ofa in which M2,0—such as,
for instance, for smalla where thea28 term dominates—and
furthermore that the location of these regimes depends on
energyE of the brane. We also see that sinceM2;H2 insta-
bilities will occur for modes with a wavelength greater th
H21. Figure 4 shows the typical shape ofM2 as a function
of a for fixed energy and differentq. In the following, we
discuss only cases withq2>1 as the 4D cosmological con
stant is positive.

Analysis of Eq.~3.16! is simpler in Fourier space where

wk~t!5E d3xw~t,xW !e2 ikW•xW ~3.20!

and k is a comoving wave number related to the physi
wave numberkp by k5akp . Thus Eq.~3.16! becomes

wk,tt1
1

a2
@k22kc

2~t!#wk50 ~3.21!

where the time dependent critical wave numberkc
2(t) is

given by

kc
2~t!52M2~t!a2. ~3.22!

One might suppose that forM2.0 all modes are stable
However, due to thet-dependence ofkc this is not necessar
ily true @as we shall see in Eq.~3.36!#.

Our aim now is to determine thea dependence ofwk . We
proceed in the following way. Notice first that the Friedma
equation~2.28! and the expression forM2(t) in Eq. ~3.19!
both contain terms ina28, a24, anda0. We will focus on a
regime in which one of these terms dominates. Then
Friedmann equation can be solved fora(t) which, on sub-
06351
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stitution into Eq.~3.19!, givesM2(t). A final substitution of
M2(t) into the perturbation equation~3.21! for wk enables
this equation to be solved in each regime. We consider
following cases:~1! q511, ~2! q521, and~3! q2.1.

1. BPS brane: qÄ¿1

For a BPS brane, the Friedmann equation~2.28! and ef-
fective massM2(t) are given by

H25
1

,2 F Ẽ2

a8
1

2E

a4 G , ~3.23!

M2~t!5
1

,2 F2
33

4

Ẽ2

a8
1

3

2

E

a4G .

~3.24!

The E dependence of these equations slightly complica
the analysis of these equations, and hence we begin with
simplest case in whichE50.

Case 1: E50. WhenE50—the static limit in which the
probe has zero kinetic energy at infinity~see Fig. 1!—only
the term proportional toa28 survives in Eqs.~3.23! and
~3.24!. Recall that whenr H vanishes the potentialVeff

t is flat.

Furthermore, sinceẼ}r H
4 50, it follows from Eq.~3.24! that

M2(t)50 in this limit: as expected, a BPS probe brane w
zero energy in AdS5 space-time has no dynamics and is co
pletely stable.

When r HÞ0, M2(t),0 ;t, and the solution of Eq.
~3.23! is

a~t!45ai
46

2aH
4

,
~t2t i !. ~3.25!

Here ai>aH[r H /, is the initial position of the brane att
5t i , and the choice of sign determines whether the bran
moving radially inward (2) or outward (1): this is a ques-
tion of initial conditions. LetRh51/uHau denote the~comov-
ing! Hubble radius. Then it follows from Eq.~3.24! and the
definition of kc

2 in Eq. ~3.22! that

1

lc
;ukc~t!u;uHau5

1

Rh
~3.26!
0-8
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where we neglect numerical factors of order 1. Thus
critical wavelength islc;Rh . ~Notice thatRh is minimal at
aH and increases witha.!

For superhorizonmodesl@Rh or uku!ukcu, and in this
limit the perturbation equation~3.21! becomes

wk,tt2
kc

2~t!

a2
wk50. ~3.27!

On inserting solution~3.25! into kc
2 one obtains

fk5
wk

a3/2
5Aka

41Bka
23 ~3.28!

~where the constantsAk andBk are determined by the initia
conditions!. Hence if the brane moves radially outward t
superhorizon modes grow asa4}t. If the brane is contract-
ing they grow asa23. In the near extremal limit (r H! l or!
aH!1, the amplitude of these superhorizon modes can
come very large, suggesting that they are unstable. Of co
our linear analysis will break down whenf becomes too
large.

Consider nowsubhorizon modes l!Rh or uku@ukcu.
Then Eq.~3.21! is just wk,tt1(k2/a2)wk50. However, in
this case it is much easier to solve the equation in confor
time h where the factor ofa22 is no longer present. We
anticipate the result from Sec. III C: it is

fk5Ak

eikh

a
1Bk

e2 ikh

a
. ~3.29!

For an outgoing branea increases and subhorizon modes a
stable. For an ingoing branea decreases, and the amplitud
of the perturbation becomes very large in the near extre
limit. ~Note that, as the brane expands, superhorizon mo
eventually become subhorizon, and similarly, on a contra
ing brane, subhorizon modes become superhorizon.!

To conclude, whenr HÞ0, E50, and the brane expand
superhorizon modes are unstable while subhorizon mo
are stable. For a contracting brane, and in the near extre
limit, both super- and subhorizon modes are unstable.

Case 2: EÞ0. When the energy of the brane is nonze
the situation is more complicated. Notice first from E
~3.24! that M2(t) has one zero ata5ac given by

ac
45

11Ẽ2

2E
. ~3.30!

Hence M2(t) is negative whena,ac and positive fora
.ac ~see Fig. 5!. However, sinceac is E dependent, there
may be ranges ofE for which the negative mass region
hidden within the black-hole horizon. Indeed, we find

ac<aH⇔E2<E<E1 ~3.31!

where

E65
aH

4

22
~1364A3!. ~3.32!
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The situation is shown schematically in Fig. 5.
Now considerH2 given in Eq.~3.23!. The two terms are

of equal magnitude whena5ãc5(Ẽ2/2E)1/4;ac . Thus
when a!ac ~and hence in the regions in whichM2,0 in
Fig. 5!, the dominant term inH2 is the one proportional to
a28. The system is therefore analogous to the one con
ered above whenE50, and for superhorizon modes the s
lution is given in Eq. ~3.28!: for an outgoing branefk
;a4. WhenE*E1 or E&E2 , these regimes extend dow
to the black-hole horizon: thus in the near extremal limit t
contracting brane will again be unstable sincefk;a23.

Whena@ac ~and hence in the regimes in whichM2.0
in Fig. 5!, the dominant term inH2 is proportional toa24 so
that

a~t!25ai
262

A2E

,
~t2t i ! ~3.33!

and

kc
2~t!52M2~t!a252

3

2

E

,2a2
. ~3.34!

On superhorizonscales the mode equation is

wk,tt1
3

2

E

,2a4
wk50. ~3.35!

At first sight one might expect the solution to this equation
be stable sinceM2.0. However, surprisingly, it is not.~In-
deed, below we will see that in conformal time the effecti
mass is actually negative in this regime.! A change of vari-
ables tou5a2 shows that the solution of Eq.~3.35! is

wk5Aka
3/21Bka

1/2 ~3.36!

which grows ast3/4,t1/4 respectively. Finally,

FIG. 5. The curve representsac , the zero ofM2(t), as a func-
tion of the energyE as given in Eq.~3.30!. Below the curve the
effective mass squared is negative; above it is positive. FoE
,E2 andE.E1 the M2(t) already becomes negative outside t
horizon, whereas for energies within the intervalE2 ,E1 the
M2(t),0 region is hidden within the horizon. The parameters ch
sen areq51, r H51, and,51.
0-9



t

t
s

q.

e

e

nt

ing

o-
ons

r-
on
ce,

a
-

TIMON BOEHM AND D. A. STEER PHYSICAL REVIEW D66, 063510 ~2002!
fk5Ak1Bka
21. ~3.37!

For E within the bandE2&E&E1 , the solution~3.37! for
the modes is valid for alla so thatsuperhorizonmodes grow
asa21 as the brane approaches the black hole horizon.

When E*E1 or E&E2 these solutions are valid fora
@ac . Thus for an expanding branefk tends to a constan
value. For a contracting brane, the term proportional toa21

could become important, although for small enougha the
relevant regime is that considered above, in which case
solution is given by Eq.~3.28! and the superhorizon mode
grow asa23.

For subhorizonmodes, the solution is still as given in E
~3.29!.

2. BPS antibranes: qÄÀ1

Now the Friedmann equation~2.28! and effective mass
M2(t) become

H25
1

,2 F Ẽ2

a8
2

2E

a4 G , ~3.38!

M2~t!52
1

,2 F33

4

Ẽ2

a8
1

3

2

E

a4G ~3.39!

so thatM2 is always negative, independently ofE. Note that
H2.0 for a,ãc where ãc5(Ẽ2/2E)1/4. However, sinceẼ
5E ¿ aH

4 /2 for antibranes, it follows thatãc>aH for all E
~i.e., there are no energy bands to consider in the cas
antibranes!. Whena!ãc , H2}M2}a28 and once again this
is analogous to the case studied above forE50: superhori-
zon modes grow asa4, and in the near extremal limit th
subhorizonmodes on an ingoing brane are unstable.

3. Non-BPS branes: qÅÁ1

Here we shall only briefly discuss the caseq2.1 for large
a. Now, independently ofE, there is a cosmological consta
dominated regime@see Eq.~2.28!#. There the solution for the
scale factor is
06351
he

of

a~t!5a~t i !e
6AL4(t2t i ) where L4[

q221

,2
.

~3.40!

In this regime, however,M2 is negative with

M2~t!52
25

4
L4 ~3.41!

andRh51/uHau5L4
21/2a21.

For subhorizonmodes (l!Rh) the solution forwk is
again given by Eq.~3.29!. Forsuperhorizonmodes, and con-
sidering an outgoing brane, there is an exponentially grow
unstable mode

fk5AkeAL4(t2t i )5Aka. ~3.42!

Hence, this non-BPS brane is unstable for largea. It is not
clear to us why the acceleration due to the positive cosm
logical constant does not rather stretch the perturbati
away.

C. Comments on an analysis in conformal timeh

It is instructive to carry out a similar analysis in confo
mal time rather than brane time, and we comment briefly
it here. In conformal time and transformed to Fourier spa
Eq. ~3.7! becomes

fk,hh12Hfk,h1~k21a2m2!fk50 ~3.43!

where H5aH. The friction term can be eliminated by
change of variables toc5af, and the above equation be
comes

ck,hh1@k22kc
2~h!#ck50 ~3.44!

where

kc
2~h!52M2~h!

and
M2~h!5a2m22ahh /a ~3.45!

5gm21
1

2 F2
g9

g
Rh

21
1

2 S g8

g D 2

Rh
22

g8

g
RhhG

52
~E2C!2

f g2h
F1

2

f 8

f

g8

g
2

g9

g
13S g8

g D 2

1
1

2

g8

g

h8

h
1

5

2

g8

g

C8

E2C
1S C8

E2CD 2G
1

g

2h F f 9

f
2

1

2 S f 8

f D 2

1
3

2

f 8

f

g8

g
2

1

2

f 8

f

h8

h
1

g9

g
2

1

2

g8

g

h8

h G . ~3.46!
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Specializing to AdS5-S space-time yields

M2~h!52
1

,2 F10Ẽ2

a6
16~q221!a2G . ~3.47!

Notice that in conformal time and foruqu>1 M 2(h) is
alwaysnegative independently ofE. From this, one can im-
mediately see the instability for smallk in Eq. ~3.36!, even
thoughM2(t) can be positive in that case. It is clear that t
results on brane~in!stability must be independent of wheth
or not the analysis is carried out inh or t time. We will see
that this is indeed the case: the reason is that not only
sign of the effective mass squared but also its functio
dependence on time determine the stability properties.
now summarize briefly some of the aspects that differ
tween thet andh analysis.

Consider the simplest case:q511 andE50. The solu-
tion of the ~conformal time! Friedmann equation isa35ai

3

63aH
2 (h2h i)/2,, and kc(h);uHu51/Rh . For superhori-

zonmodesuku!ukcu, Eq. ~3.44! reduces tock,hh2kc
2(h)ck

50. Givena(h) and hencekc„a(h)… it is straightforward to
find the solution which is, as expected, exactly that given
Eq. ~3.28!. For subhorizonmodesuku@ukcu, the solution was
given in Eq.~3.29!.

Consider nowq511, E.0. Recall that in thet-time
analysis bothM2(t) andH2 contained terms ina24 anda28

and, in particular, there was a regime in whichM2(t) was
positive and proportional toa24}H2. In h time, however,
H}a261a22 with M2 always being negative, proportiona
to 2a26. Thus while thea!ac regime reduces to that dis
cussed above forE50, thea@ac regime is a little less clear
ThereH 2;a(h)22, but M 2;2a(h)26. Thus

a~h!5ai6
A2E

,
~h2h i ! ~3.48!

and

kc~h!252M~h!25
10Ẽ2

,2a6
. ~3.49!

Now ukc(h)u;uHu3,25,2/Rh
3 , and so one can no longe

identify the critical wavelength with the Hubble radiu
For uku!ukcu Eq. ~3.44! reduces to d2ck /da2

2(5Ẽ2/E)(ck /a6)50. The solution is expressed in term
of Bessel functions which, however, show exactly the sa
behavior as Eq.~3.37!: namely,fk5ck /a tends to a con-
stant asa→`. The other limita→0 is not relevant as the
above equation is only valid fora@ac .

We do not discuss further the case ofq521 andqÞ1
since the results obtained in this approach are exactly
discussed in Secs. III B 2 and III B 3.

IV. BARDEEN POTENTIALS

So far we have discussed the evolution off, the magni-
tude of the brane perturbation as seen by a 5D observe
moving with the brane. For an observer livingon the brane,
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the perturbed brane embedding gives rise to perturbat
about the FRW geometry. Recall@see Eq.~2.8!# that for the
unperturbed brane

ds̄4
25 ĝ̄abdxadxb

52@ f ~R!2h~R!Ṙ2#dt21g~R!dxW•dxW

[2n2~ t !dt21a2~ t !dxW•dxW ~4.1!

where the overbar onḡ denotes that it is an unperturbe
quantity. Note that the scale factorsn2(t) anda2(t) pick up
their time dependence throughR(t)—for instance a2(t)
5g„R(t)…. In this section we calculatedĝab resulting from
the perturbed embedding~3.1! and relate it to the Bardee
potentials.

Initially, rather than using the covariant form~3.1!, let us
write more generally

X0~ t,xW !5t1z0~ t,xW !, ~4.2!

Xi~ t,xW !5xi1z i~ t,xW !, ~4.3!

X4~ t,xW !5R~ t !1e~ t,xW !. ~4.4!

Below we will see that the perturbationsz i do not enter into
the two scalar Bardeen potentials which correspond to
two degrees of freedomz0 and e. This is expected since
perturbations parallel to the brane are not physical and ca
removed by a coordinate transformation@42#. Then only
right at the end will we setz0/n05e/n55f. We will find
that the two Bardeen potentials are proportional to each o
and tof.

By definition, the perturbed brane embedding is given

ĝab[ĝ̄ab1dĝab

5gmn~X̄1dX!
]

]xa
~X̄m1dXm!

]

]xb
~X̄n1dXn!.

~4.5!

Evaluatingdĝab to first order for the perturbed embeddin
~4.2!–~4.4! and the general bulk metric~2.3!, one obtains

dĝ005e~2 f 81h8Ṙ2!12~2 ż0f 1 ėhṘ!, ~4.6!

dĝ0i52~] iz
0! f 1 ż ig1~] ie!hṘ, ~4.7!

dĝ i j 5eg8d i j 1~] iz j1] jz i !g. ~4.8!

Note that the terms proportional toe come from the Taylor
expansion ofgmn(X̄1dX) in Eq. ~4.5! to first order.

In the usual way, the perturbed line element on the br
is written as

ds4
252n2~112A!dt222anBidtdxi

1a2~d i j 1hi j !dxidxj ~4.9!
0-11
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wheren(t) and a(t) are defined in Eq.~4.1!, and as usua
vectors are decomposed into a scalar part and a diverge
less vector component, e.g.,

Bi5] iB1B̃i ~4.10!

with ] i B̃i50. We will use a similar decomposition forz i

defined in Eq.~4.3! as well as the usual one for tensor pe
turbations. Thus from Eqs.~4.6!–~4.8! we have

A5
1

n2 F e

2
~ f 82h8Ṙ2!1~ ż0f 2 ėhṘ!G ,

B5
1

an
@z0f 2 ża22ehṘ#,

B̃i52
a

n
ż̃ i ,

C5
e

2 S g8

g D ,

E5z,

Ẽi5 z̃ i ,

Ẽ̃i j 50,

where we have used standard notation defined, e.g., in@10#.
By considering coordinate transformations on the brane
doing standard four-dimensional perturbation theory one
define the usual two Bardeen potentials, as well as the b
vector and tensor metric perturbations. For the first Bard
potential we find, after some algebra,

FI 52C1
ȧ

n S B1
a

n
ĖD

5S ȧ

a
D f

n2

1

Ṙ
@z0Ṙ2e#. ~4.11!

Notice that all terms containingz i in B andE have cancelled
as expected since they are not physical degrees of freed
Similarly,

CI 5A2
1

n
] tS aB1

a2

n
ĖD

5
1

n2

1

Ṙ
@z0Ṙ2e#F f 8Ṙ2 f S ṅ

n
D G .

~4.12!

The important point to notice in this second case is not o
the absence ofz i , but that allderivativesof the perturbations
z0 ande ~which appear inA) have also cancelled. Hence w
will find that the Bardeen potentials are proportional tof
06351
ce-

d
n
ne
n

m.

y

only and not to any of its derivatives. Finally, the gau
invariant vector and tensor perturbations are identically ze

We now set

e5n4f, z05n0f ~4.13!

~wherenn is the normal to the brane! in order to make con-
tact with the covariant formalism of Sec. III. Then the com
bination that appears in bothCI andFI is

z0Ṙ2e52S n2~ t !

f
n4Df ~4.14!

wheren4 is the fourth component of the normal to the u
perturbed brane. Thus

FI 52S ȧ

a
D n4

Ṙ
f, C5S f 8

f
Ṙ2

ṅ

n
D n4

Ṙ
f ~4.15!

which, on going to AdS5-S space-time and using the expre
sion for Ṙ2 in Eq. ~2.13!, yields

FI 52
~E2C~a!!

a4 S f

, D52S Ẽ

a4
1qD S f

, D , ~4.16!

CI 53F14qS f

, D . ~4.17!

Even though there are no anisotropic stresses, the Bar
potentials here are not equal. We suppose that this is du
the absence of self-gravity. We see that for superhori
modes on an expanding brane~for which, from Sec. III,fk
}a4), we also haveFI k}a4. Similarly, FI k also grows rap-
idly for a brane falling into the black-hole horizon.

To obtain a true~i.e., gauge invariant! measure of the
‘‘deviation’’ from the FRW case, it is useful to look at th
ratio of the components of the perturbed Weyl tensor and
background Riemann tensor, which in the FRW case
roughly given by (kh)2uFk1Cku ~see@43#!. ForFI k}a4 this
ratio grows, becausea;h1/3 whenH2;a26.

V. CONCLUSIONS

In this paper we have studied the evolution of perturb
tions on a moving D3-brane coupled to a bulk four-for
field, focusing mainly on an AdS5-Schwarzschild bulk. For
an observer on the unperturbed brane, this motion lead
FRW expansion or contraction with scale factora}r . We
assumed that there is no matter on the brane and ignored
back reaction of the brane onto the bulk. Instead, we aim
to investigate the growth of perturbations due only to m
tion, and also to study the stability of moving D3-branes. F
such a probe brane, the only possible perturbations are t
of the brane embedding. The fluctuations about the stra
brane worldsheet are described by a scalar fieldf which is
the proper amplitude of a ‘‘wiggle’’ seen by an observer c
moving with the unperturbed brane. Following the work
@20,21,41# we derived an equation of motion forf, and in-
vestigated whether small fluctuations are stretched away
0-12
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the expansion, or, on the other hand, whether they grow o
contracting brane. The equation forf is characterized by an
effective mass squared and we noted that if this mas
positive the system is not necessarily stable: indeed, in
III we discussed a regime in which the effective ma
squared is positive in brane time but negative in conform
time, and therefore the perturbations grow. Another imp
tant factor in the evolution off is the time dependence o
that mass.

In Sec. III we found that on an expanding the BPS bra
with total energyE50, superhorizon modes grow asa4,
whereas subhorizon modes decay and hence are stable.
contracting brane, on the contrary, both super- and subh
zon modes grow asa23, anda21 respectively. These fluc
tuations become large in the near extremal limit,aH!1. We
therefore concluded that the brane becomes unstable~i.e., the
wiggles grow! as it falls into the black hole. We also dis
cussed the caseE.0 for BPS branes and BPS antibrane
Non-BPS branes were found to be unstable at late tim
when a positive cosmological constant dominates.

We have discussed the evolution of the fluctuationsf as
measured by a five-dimensional observer moving with
unperturbed brane. However, for an observer at rest in
bulk, the magnitude of the perturbation is given by a Lore
contraction factor times the proper perturbationf. ~For a flat
bulk spacetime this was pointed out in@20#.! Hence, if per-
turbations grow for the ‘‘comoving’’ observer, they do n
necessarily grow for an observer at rest in the bulk.

Finally, the fluctuations around the unperturbed wor
sheet generate perturbations in the FRW universe. In Sec
we discussed these perturbations from the point of view o
4D observer now living on the perturbed brane. We cal
lated the Bardeen potentialsFI andCI which were both found
to be proportional tof. Furthermore, we saw that the rat
et

u

n-
s,’
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‘‘Weyl to Riemann’’ which, expressed in terms ofFI andCI ,
gives a gauge invariant measure for the ‘‘deviation’’ from t
FRW universe, also grows.

A limitation of this work is that the back reaction of th
brane onto the bulk was neglected. One may wonder whe
inclusion of the back reaction could stabilizef. To answer
that question, recall that the setup we have analyzed h
corresponds, in the junction condition approach, to one
which Z2 symmetry across the brane is broken. Then
brane is at the interface of two AdS5-S space-times, and it
total energy is related to the difference of the respect
black-hole masses:Ẽ}M 12M 2 . Perturbation theory in
such a non-Z2-symmetric self-interacting case has been
up in @10#, though it is technically quite complicated. How
ever, in the future we hope to try to use that formalism
include the back reaction of the brane onto the bulk.

It would be interesting to extend this analysis to bran
with n codimensions: in this case one has to considern scalar
fields—one for each normal to the brane. Formalisms to tr
this problem have been developed in@22,44#. In that case the
equations of motion for the scalar fields are coupled, an
becomes a complicated task to diagonalize the system.

Finally, it would also be interesting to consider nonze
Fab , and hence the effect of perturbations in the radiation
the brane.
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