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Primordial perturbations in a nonsingular bouncing universe model
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We construct a simple nonsingular cosmological model in which the currently observed expansion phase
was preceded by a contraction. This is achieved, in the framework of pure general relativity, by means of a
radiation fluid and a free scalar field having negative energy. We calculate the power spectrum of the scalar
perturbations that are produced in such a bouncing model under the assumption of initial vacuum state for the
quantum field associated with the hydrodynamical perturbation. The matching conditions applying to this
bouncing model are derived and shown to be different from those in the case of a sharp transition. We show
that if our bounce transition is smoothly connected to a slowly contracting phase, this provides a new way to
generate a scale invariant power spectrum.
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I. INTRODUCTION

For more than two decades, inflation@1# has been the only
available paradigm to solve the standard cosmological p
lems of flatness, homogeneity, and monopole excess. It
predicts, as a bonus, that primordial fluctuations, assume
be of quantum origin, could be enhanced to the level
quired to trigger large scale structure formation, with an
most scale-invariant spectrum. To date, no model has
come close to challenging this impressive list of success

Inflation cosmology suffers, however, from a few pro
lems of its own, whose seriousness is largely a matte
opinion. For instance, in a typical realization, the underlyi
parameters~mass and coupling constants of the inflat
field! must be assigned ‘‘un-natural’’ values in order to r
produce the observed temperature fluctuations in the Cos
Microwave Background Radiation~CMBR! which the
mechanism seeds. However, such a fine tuning can be
counted for in various realistic models.

The inflation paradigm is also endowed with two spec
problems, conceptually much more serious, that may u
mately be related, namely the meaning of the trans-Planc
@2# perturbations and the existence of a past singularity@3#.
Concerning the latter, many ideas were discussed, am
them the Tolman Phoenix universe@4# and many others in
the 1970s@5#, and recently revived under the name ‘‘ekp
rotic’’ @6# in the somewhat different context of superstri
@7# inspired brane cosmology@8#. This model, however, was
the subject of many criticisms, both from the string@9# and
cosmological@10# points of view. In its latest version@11#,
moreover, the model also contains a supposedly actual
gularity @12#. The singularity may also be avoided in oth
brane models@13#.

Quantum cosmology, in the framework of the Wheel
DeWitt ~WDW! equation, exhibits bouncing solutions@14#

*Electronic address: peter@iap.fr
†Electronic address: nelsonpn@cbpf.br
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which can be interpreted as truly avoiding the singular
even for flat (K50) spatial sections, a possibility strictl
forbidden in classical general relativity~GR! unless @15#
some exotic material, with negative energy density violat
the null energy condition~NEC! @16#, is introduced, which
most cosmologists are reluctant to do. Such a bouncing
verse model provides a solution to the horizon problem
geodesically completing the manifold in the past, and avo
the monopole formation if the bounce takes place at a te
perature below that of the grand unification theory~GUT!;
this class of models does not, however, address the que
of flatness and one must assumeK50 from the outset.
Moreover, in such a context, the trans-Planckian issue sim
does not exist because the initial conditions for the pertur
tions can be imposed during a phase where the universe
close to the Minkowski spacetime as one wishes, with
ever passing through a Planck phase. Thus, it could b
natural competitor to the inflationary paradigm, and it
therefore of interest to estimate the primordial perturbat
spectrum that it can produce.

In a previous work@17# we examined the stability of a
bouncing universe dominated, at the bounce, by a single
otic hydrodynamical perfect fluid. We showed, by computi
scalar perturbations using the gauge invariant Bardeen@18#
potential, that its adiabatic perturbations grow unbounde
either at the bouncing point, or at the time when the NE
was violated or restored, thereby contradicting the hypo
esis of low amplitude first order perturbation theory@19,20#.
Such models are thus incompatible with observational d
e.g., CMBR data@21# according to which these first orde
effects indeed still dominate~over nonlinear effects! at large
scales.

The next to simple possibility consists of combining tw
components, i.e., to allow for entropy modes. The purpose
this paper is to exhibit such a toy model in which a radiati
fluid is coupled to a negative energy free scalar field tha
supposed to be important in the universe for a limit
amount of time, during which the bounce occurs@22#. Our
universe thus comes from a low-density, radiatio
©2002 The American Physical Society09-1
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dominated, contracting state, passes through a bounce
connects again back to the usual hot big-bang phase@23#. In
this context, we shall be concerned with the scalar pertu
tions induced during the transition between the collaps
and expanding phases.

In Sec. II we set the various constraints our model ne
to satisfy, and we explain how it can be made phenome
logically reasonable. Then we calculate, in Sec. III, t
power spectrum of the perturbations by matching the
evant solutions in the various regions of interest, and
compare the results with numerical calculations. Contrary
what one would naively expect from a fluid analysis@17#, we
find that scalar perturbations are perfectly well behaved
along.

Setting vacuum initial conditions for the quantized hydr
dynamical perturbations deep in the low-density radiati
dominated phase, we find that the relevant spectrum of
turbations, at last horizon crossing during the expand
radiation-dominated era, has a spectral indexn

S
521. It is

thus incompatible with observational data. This result is
rectly related to the fact that, in order to calculate explici
the power spectrum of scalar perturbations, we have assu
the algebraic form of the scale factor to be valid for all time
and in particular when the relevant scales of perturba
leave the horizon. Changing this assumption, as is discu
below, changes the spectrum as the perturbation leaves
horizon, and therefore the power spectrum induced in
expanding phase. As it is a model-dependent result, fur
investigations of more realistic models@24,25#, from the
point of view of particle physics, need to be done@26#. We
show, by means of the example of an ekpyrotic-inspired s
collapse@6#, how one can obtain a scale invariant spectr
in a bouncing universe model.

While other models yield a scale invariant spectrum
making use of various assumptions@27#, the present calcula
tions are made with a specific model where the transit
through the bounce is made with an exact solution. T
allows one to obtain, qualitatively and numerically, the tra
sitions in the Bardeen potential and its derivative through
bounce, yielding indications on what kind of matching co
ditions @28# should be proposed for perturbations pass
through a general bounce. We obtain the perhaps not so
prising result that the Bardeen potential changes sign thro
the bounce, even though its derivative is continuous, c
trary to the case of a sharp transition@29,30#. This result is
discussed in more detail in Sec. IV, in which we explicit
indicate how to obtain a scale invariant spectrum for
scalar perturbation by connecting our bounce and radiat
dominated model with a slowly contracting phase. If suc
four-dimensional and singularity-free model can be co
structed, it will be able to reproduce all the available obs
vational data while avoiding most of the questions raised
the inflation solution.

This paper only deals with the scalar part of the pertur
tions, which we show does not yield a spectrum compat
with the data. The tensor part was already calculated in R
@12#, where the spectral indexn

T
5n

S
2152 was obtained,

and is therefore unable to reproduce the data. Finally, we
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not be concerned with vectorial~rotational! perturbations
even though, contrary to the usual inflationary case,
could think that those have no reason to bea priori negli-
gible with a time symmetric scale factor. However, the U
verse is torque-free@31# since at least the nucleosynthes
epoch that occurred at a redshift ofznucl;33108. Hence, the
present relative contributiondv for the vectorial perturbation
which scales asa22 @19#, is expected to bedv!10217, inde-
pendent of the scalek at which it is evaluated, and henc
observationally irrelevant.

II. THE MODEL

We shall consider a very simple toy model for which w
demand the following conditions to hold. First of all, w
want general relativity to be valid for all times. We als
impose that at late times, the model should reproduce
standard hot big bang case, i.e. there should exist a tim
which radiation dominates. This implies in particular that w
assume some amount of radiation to be present in our mo
We also restrict our attention to the spatially flat situatio
Finally, the model should have a bouncing phase. T
means, given that there is already some radiation pres
that, in the context of GR there must exist some other fl
having negative energy. In particular, for the special cas
hand for which the spatial curvatureK50, this means that
the null energy condition~NEC! must be violated at some
time near the bounce@15#.

Realizing such a model is in principle feasible with ju
another fluid, e.g., some stiff matter with negative ener
namely one for which the equation of state readsp5r,0,
and to combine this fluid with the radiation into a single o
to recover the bounce at the background level. At the per
bative level, though, this is no longer feasible as it was
cently shown@17# that such an approach will lead to an ove
production of large inhomogeneities at various differe
times, breaking the cosmological principle hypothesis lo
before nucleosynthesis. This is because such an appr
neglects the entropy modes, which turn out to cancel exa
the adiabatic mode divergences, so that the adiabatic-ent
mode decomposition is not feasible in a bounce context~see
the Appendix for a discussion of this issue!. We model the
second, stiff matter, fluid by a free massless scalar field
which it is equivalent both at the background and pertur
tive levels@32#. The action we shall start with thus reads

S5E S 2
1

16pG
R2e2

1

2
¹mf¹mf DA2gd4x, ~1!

whereR is the curvature scalar,e the energy density of the
radiation fluid, andf the scalar field. We assume that th
background metric takes the standard Friedmann-Robert
Walker ~FRW! form

ds25a2~h!~dh22d i j dxidxj !, ~2!

with h the conformal time. The cosmic time,t, is then ob-
tained as the solution of the equationadh5dt once the scale
factor a(h) is known. Note that throughout this paper, w
assume the background curvature to vanish,K50. In this
9-2
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PRIMORDIAL PERTURBATIONS IN A NONSINGULAR . . . PHYSICAL REVIEW D 66, 063509 ~2002!
context, it has to be a particular choice: this category
models does not indeed solve the flatness problem.

Varying the action~1! with respect to the fluid and field
yields the background dynamical equations

«814H«50, w912Hw850, ~3!

where H[a8/a, « and w are the background space
independent values of the radiation energy densitye and
scalar fieldf, respectively, and a prime denotes a differe
tiation with respect to the conformal timeh. These back-
ground equations imply

w85
c

a2 , «5
d

a4 , ~4!

wherec andd are constant. The energy density of the sca
field is given by

rw[2
w82

2a2
52

c2

2a6 , ~5!

and as such it is large whena is small and negligible whena
is very large. These solutions, together with the Friedm
equation

H 25,Pl
2 S a2«2

1

2
w82D , ,Pl

2 [
8pG

3
, ~6!

lead to the bouncing solution

a~h!5a0A11S h

h0
D 2

, ~7!

where the minimum scale factora0 and the characteristic
bouncing conformal timeh0 solely depend on the relativ
quantities of energy density in radiation and scalar field
some given timea0

25c2/(2d) andh0
25c2/(2d2,Pl

2 ). In what
follows, these two parameters will be considered as the
evant ones.

It is interesting to note here that this solution is essentia
the only possibility if one demands a late time radiatio
dominated phasea}h for (h/h0)@1 together with a bounce
with quadratic behavior (a2a0)}h2 for (h/h0)!1 @17#.
Moreover, there is only one way to get this solution, nam
by means of a negative energy stiff matter fluid or, equi
lently, a negative energy free scalar field, with radiation
both cases.

Before turning to first order perturbations of this bac
ground, which is the subject of the following section, w
want to emphasize a point of stability of this model related
the ‘‘wrong’’ sign chosen in Eq.~1!. Indeed, an expansion o
Eq. ~1! with respect to

gmn5gmn
(0)1hmn , f5w1df, ~8!

with @g(0),w# the classical part and (h,df) interpreted, re-
spectively, as gravitons and scalar particles in a semiclas
approach, will inevitably lead to two different kinds of inst
bilities, each arising at a different order in perturbation. T
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first one, with which we shall deal later since it is actua
the one responsible for the large scale structure formatio
this model, is second order in perturbation~first order in the
equations of motion! and goes essentially as}hmn]mdf]nw.
This term is absent in ordinary Minkowski space, but
present in the cosmological setup we are considering bec
of Eq. ~3! in which the classical part of the scalar field vari
with time and thus behaves as a source for the productio
gravitons and scalar particles. As it originates in a derivat
coupling @see Fig. 1~a!#, the characteristic time scale of th
instability is that of the classical scalar part, in our case
typical cosmological time scale.

The second instability that must be discussed is m
more serious, even though at first sight it looks innocuo
because of a higher order in perturbation: it is the same t
as before, but with the classical part replaced by a first or
perturbation, namely}hmn]mdf]ndf @see Fig. 1~b!#. The
presence of such a process means that the vacuum can
taneously decay into a pair of negative energy scalar p
ticles and a graviton, and, due to this fact, the energy lev
are not bounded from below. This sounds like a catastrop
and even more so because the only available time s
comes from the coupling constant, i.e., the Planck tim
However, it is clear from the figure that the process proba
ity amplitudeA is A}p2/M P

2 , with M P;,Pl
21.1019 GeV

the Planck mass andp the momentum at the vertex. Such a
amplitude therefore becomes important when the charac
istic scalep21 is comparable to,Pl . At this point, it should
be argued that the model of Eq.~1! is understood as an
effective low energy theory which must be implemented w
a cutoff scale much larger than the Planck one: as
reaches the Planck energy scale, the theory is expecte
break down into a completely different one such as, e
quantum gravity or superstring theory. As a result, for c
mological purposes, one can safely ignore this instability a
concentrate on the production of cosmological perturbatio

III. LINEAR PERTURBATION SPECTRUM

In what follows, we shall consider perturbations ste
ming from the model~1!, making use of the gauge invarian
formalism @18,20#. In order to perform explicit calculations

FIG. 1. Diagrams leading to instabilities in the theory~1!. ~a!
The dynamical instability whereby the energy contained in the s
lar field can be used to produce semiclassical perturbations, lat
be identified with primordial fluctuations.~b! Vacuum instability. As
this process in nonzero, the vacuum can spontaneously decay i
pair of negative energy scalar particles and a positive energy gr
ton.
9-3
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PATRICK PETER AND NELSON PINTO-NETO PHYSICAL REVIEW D66, 063509 ~2002!
we shall consider this model to be valid all through the h
tory of the Universe, including at the times at which t
perturbations leave the horizon. It is a simple matter
modify this assumption afterwards, as we do in the concl
ing section, to discuss the spectrum that a more real
theory with many different phases would have.

As there are no anisotropic stress perturbations in
model, the most general form of metric perturbations on
background given by Eq.~2! reads, in the longitudinal gauge

ds25a2~h!@~112F!dh22~122F!d i j dxidxj #, ~9!

whereF is the gauge invariant Bardeen potential@18#. Set-
ting also

f5w~h!1df~x,h! and e5«~h!1de~x,h!,
~10!

one obtains the radiation fluid current conservation a
Klein-Gordon equation, respectively, in the form

de814Hde5
4

3
«~3F81a21¹2ã !,

df912Hdf82¹2df54F8w8, ~11!

where ã is the gauge invariant fluid velocity potential, an
use has been made of the relationde5 1

3 dp between the
energy densityde and pressuredp fluctuation. Einstein
equations yield, after a bit of algebra@20#,

F81HF5
3

2
,Pl

2 S 2w8df1
4

3
aã D ,

¹2F23HF823H 2F5
3

2
,Pl

2 ~2w8df81w82F1a2de!,

F913HF81~2H81H 2!F

5
3

2
,Pl

2 S 2w8df81w82F1
1

3
a2de D . ~12!

Simple manipulations of Eqs.~11! and ~12! permit us to
eliminate the radiation fluctuation in favor of the Barde
potential through the relation

Fk916HFk81@2~H812H 2!1k2#Fk52,Pl
2 a2dek ,

~13!

where, from now on, we assume a Fourier decomposition
each variableA into its componentsAk defined through

Ak~h![E d3x

~2p!3/2
e2 ik•xA~ uxu,h!, ~14!

whereAk only depends on the amplitudek of the wave vec-
tor k.

The dynamical equations for the Bardeen potential a
the fluctuations of the scalar field therefore decouple fr
06350
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the radiation fluid perturbations and are then express
solely in terms of themselves as~making use of the back
ground Einstein equations!

Fk914HFk81
1

3
k2Fk52,Pl

2 w8dfk8 ~15!

and

dfk912Hdfk81k2dfk54w8Fk8. ~16!

We shall now investigate the solution of these equations
order to get the perturbation spectrum such a bounc
model predicts.

A. The relevant phases in the perturbations evolution

In order to investigate Eqs.~15! and ~16!, let us write
them in terms of the variablesuk[a2Fk , and wk[adfk .
Using Eq.~4!, they read

uk91F1

3
k222~H812H 2!Guk52,Pl

2 c

a
~wk82Hwk!,

~17!

and

wk91~k22H 22H8!wk54
c

a3 ~uk82Huk!. ~18!

Each of these equations can be seen as an inhomogen
equation, i.e., one with a source term not depending on
function itself. Asymptotically, since the scale factor grow
like uhu it can be checked explicitly, by means of an expa
sion in powers ofh21 for uk andwk , that the source terms
in both Eqs.~17! and ~18! are small for1 h@h0. Therefore,
in this limit, Eqs.~15! and ~16! can be reduced to the usu
parametric oscillator equations for the variablesuk andwk ,
namely

uk91F1

3
k22

~a2!9

a2 Guk50, ~19!

and

wk91S k22
a9

a Dwk50. ~20!

The potentials (a2)9/a252(H812H 2)52/(h21h0
2) for uk

and a9/a5H81H 25h0
2/(h21h0

2)2 for wk are shown in
Fig. 2 on which we also define the variablex[h/h0, as well
as the various corresponding matching valuesx1 andx2.

We shall be interested in the cosmologically relevant lim
k!1. However, asuhu→`, the k-dependent terms in Eqs
~19! and ~20! become important. More precisely, whe

1This is valid not only whenh→` but also whenk2,6(H8
12H 2) as long ash@h0. We shall return to this point in more
detail below.
9-4
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PRIMORDIAL PERTURBATIONS IN A NONSINGULAR . . . PHYSICAL REVIEW D 66, 063509 ~2002!
kuhu.A6, i.e., whenuxu.x1[A6/(kh0)@1, the solutions
of the above equations in terms ofFk anddfk can be writ-
ten in terms of Hankel functions, namely@33#,

Fk
rad5h23/2@F (1)H3/2

(1)~vh!1F (2)H3/2
(2)~vh!#,

dfk
rad5h21/2@X(1)H1/2

(1)~kh!1X(2)H1/2
(2)~kh!#, ~21!

wherev5k/A3.
When the potential terms dominate over thek-dependent

terms, which foruk is the case so long askuhu!A6, or 1
!uxu!x1, and for vk when kuhu!Akh0, or 1!uxu!x2,
wherex2[1/Akh0, the zeroth order solutions for Eqs.~19!
and ~20! read, whenx1!x!x2,

Fk
,5A11A2E a22dh1O~kh!'A12A2

h0
4

3a0
4h3 ,

~22!

dfk
,5B11B2E a21dh1O~kh!'B12B2

h0
2

a0
2h

.

~23!

In fact, solution~23! needs amelioration because arounduxu
5x2 the source term of Eq.~16! becomes important. This i
not the case of solution~22! because for 1!uxu,x2, the
source terms of Eq.~15! are still negligible, even taking into
account the corrections of Eq.~23!. Fortunately, for what
follows in the next section, only the solution~22! will be
needed.

Up to this point, one can assume that the two relev
perturbations, namelyde anddf, are decoupled. As we hav
imposed vacuum normalizations for the underlying quant
variables, this leads toFk anddfk behaving as two statis

FIG. 2. Potentials for the parametric oscillator equations giv
the dynamics of the Bardeen potential and the scalar field pertu
tions. The full line shows the potential for the variable associa
with uk @see Eq.~19!#, the dashed line the potential for the sca
field wk @Eq. ~20!#, and the dotted line, showing the value
(h0k)2, indicates visually the different regions where the differe
approximations hold. The pointsx1 andx2 are the matching points
for these two fields.
06350
t

tically independent Gaussian random fields, with fixed va
ance. In what follows, we shall not be concerned by
spectrum ofdf in the late epoch at which it decouples aga
from F: its distribution should not be observable during t
expanding era with which we shall ultimately be concern

Near the bounce, when the potentials andc/a are of order
1/h0

2 and a0 /(h0,Pl), the source terms become importan2

but the terms proportional tok2 are still negligible. In this
situation, one can neglect altogether thek2 term in Eqs.~15!
and ~16!, yielding the solutions

FBounce5Ã1B̃f 1~x!1C̃f 2~x!, ~24!

and

,PldfBounce5D̃1B̃f 3~x!1C̃f 4~x!, ~25!

with Ã, B̃, C̃ and D̃ arbitrary constants. The bounce fun
tions f i(x) are found to be

f 1~x![
x

~11x2!2 , f 2~x![
12x2

2~11x2!2 , ~26!

f 3~x![2
A2

~11x2!2, f 4~x![
x

A2

31x2

~11x2!2 ,

~27!

and are displayed on Fig. 3. These solutions will be used
match the asymptotic solutions through the bounce.

B. Matching the solutions and the power spectrum

In the limit h→6`, which is equivalent toa→6`, i.e.,
very far from the bounce, the Universe is radiation dom
nated, so that the coupling term in the left-hand side of E
~17! and ~18! can be neglected, as it was explained in S

2The constraints on the values ofa0 and h0 in order for the
bounce to happen at a scale much larger than the Planck scale
a long time before nucleosynthesis takes place are,Pl!a0h0

!108 cm. Hence, if one choosesh0 of order one, the potentials ar
of order one, andc/a@1 near the bounce.

g
a-
d

t

FIG. 3. The bounce functionsf i as functions ofx[h/h0.
9-5



l
/
n

e
th
th
se

io

e

is
a

th

r

io
n
-

he
r

th

ec-

nce,

g

Eq.

a-

is

sis
s
q.
n,

de-
in

pli-

ry
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III A. From Eq. ~21!, and forh→2`, the Bardeen potentia
and the scalar field perturbation respectively scale as 1a2

and 1/a. From Eq.~13! one can see that the fluid perturbatio
dek goes like 1/a4. Therefore, from Eq.~12! we find that the
scalar field and its perturbation are irrelevant in this regim
for the evolution of the Bardeen potential with respect to
radiation fluid. For this reason, one can conclude that
appropriate quantum gauge invariant variable to be u
must be the same as the one defined in Ref.@20# for the
quantum treatment of hydrodynamical fluids perturbat
theory, which, in the case of pure radiation, is related toF by

Fk53A3

2

,Plb

Hk2 S vk

z D 8
, ~28!

where b5H 22H8 and z[aA3b/H. Similarly, the gauge
invariant quantum variable connected to the scalar field p
turbation given in Ref.@20# is given by

vk5a@df1~w/H!8F#'wk . ~29!

It is interesting to note that the quantum fieldv leaves the
oscillatory regime at the same conformal time asdf does,
and that neither of them do so at horizon crossing. This
peculiarity of our model due to the fact that at the time
which the quantum fields leave the oscillatory regime,
space is almost radiation dominated, but not quite.

Imposing the initial vacuum state for these quantum va
ables implies that we can set

vk5
31/4e2 ik(h2h i)/A3

A2k

and

wk5
e2 ik(h2h j)

A2k

at h→2`, with h i andh j two a priori arbitrary conformal
times, having no influence on the subsequent evolut
From the solutions~21! and these initial conditions, one ca
write the Bardeen potentialFk and the scalar field perturba
tion dfk at kh!2A6 ~or uxu@x1@1) as

Fk
ini52

,Plh033/4

2a0h2k3/2SA3

kh
1 i D e2 ik(h2h i)/A3, ~30!

and

dfk
ini5

h0

a0hA2k
e2 ik(h2h j). ~31!

In order to be in a position to compare the model with t
cosmological data, in particular of the CMB, we are inte
ested in calculating the primordial power spectrum of
gravitational potentialF
06350
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P k[k3uFku2[A
S
kn

S
21, ~32!

evaluated at the time whenFk returns to its oscillatory re-
gime, i.e., atx5x1. As we shall see later, the values ofdfk
in the different phases of perturbation evolution are not n
essary to calculateFk at x5x1. Moreover, the fielddf itself
should not be observable during the expanding era. He
we will forget aboutdfk from now on.

Looking at Eq.~17!, one can see that the first matchin
must be imposed whenk2/352(H812H 2)5(a2)9/a2, for
uk5a2Fk . As k is very small, this happens whenuhu@1
~where we can ignore the source terms!. Matching the solu-
tion ~30! with solution ~22! at the pointkh'2A6 ~or x'
2x1) yields

A15
,Plh0Ak

35/42A2
ei (A21kh i)/A3, ~33!

and

A25
,Pla0

335/4

2h0
3k5/2

~123A2i !ei (A21kh j)/A3. ~34!

The solution~22! is valid up to the point wherex is of
order one, when we approach the bounce. Differentiating
~15! twice and making use of Eq.~16! as well as the back-
ground equations, we obtain the following fourth order equ
tion:

Fk
(IV) 110HFk-1F4

3
k2120~H812H 2!GFk9

16Hk2Fk81
1

3
k2@k214~H812H 2!#Fk50, ~35!

whose analysis indicates that the solution~22! is valid for
uxu!x2, up to uxu'1, where the source term in Eqs.~15!
become relevant butk is still completely negligible. We have
to match this solution with the other relevant solution in th
region, namely the bounce solution~24!, which have three
arbitrary constants. As confirmed by the numerical analy
below, we have to setC̃50 because the function it multiplie
goes like 1/x2, which should appear, and dominate, in E
~22! in a region where both solutions are valid. In this regio
the perturbations in the scalar field and in the fluid are
coupled, and therefore both of them should depend only
two unrelated constants. For the contracting phase,Ã and B̃
are well defined as they represent, respectively, the am
tudes of the decaying and growing modes~or the opposite if
one considers the expanding phase! of the dominant contri-
bution to the gravitational perturbation, so the third arbitra
constantC̃ must vanish.

Hence, we only need to determineB̃ and Ã. That is why
we do not need to calculate the evolution ofdfk in order to
9-6
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determine such constants; this also explains why the in
conditions we assume for the scalar field perturbation
irrelevant for the final power spectrum. It suffices that w
assumedfk not to dominate initially overFk ; this is in
particular the case for the vacuum initial state we consid
As shown later, to assume a vanishing initial distributi
dfku ini50 works equally well.

The solution~24! will propagate the Bardeen potential
the other side of the bounce, to the region wherex is of order
one. As we are in a region wherek is negligible, the point of
matching will be chosen to bex52N!21, whereN does
not depend onk but is large.3

The result of the matching reads

Ã5A12
8h0

45a0
4N5 A2 ~36!

and

B̃52
h0

3a0
4 A2 . ~37!

At x5N@1, on the other side of the bounce, these so
tions must be matched with a solution similar to Eq.~22!,
namely,

Fk
.5C12C2

h0
4

3a0
4h3 , ~38!

yielding

C15A12
16h0

45a0
4N5 A2 , ~39!

andC25A2. For the power spectrum, the important term
Eq. ~38! is the constantC1: as we are now back to a regula
expanding universe, the other term is a decaying mode w
rapidly becomes negligible. InC1, the dominant term when
k!1 is the one proportional toA2 which goes ask25/2, while
the other is proportional toAk. Hence, we get

k3uFk~x1!u2}k3uÃ2u2
h0

2

a0
8N10

'
,Pl

2

a0
2h0

4N10
k22, ~40!

yielding a spectral indexn
S
521.

One can then define a transfer function between ‘‘Horiz
exit’’ and ‘‘Horizon re-entry’’ as the ratio of the power spec
tra at the corresponding two different times. It is given in t
case of our bounce by the relation

3We considerN large but not large enough to neglect terms
order N5 in the expansion off 1 in Eq. ~24!. If we neglect such
terms, we lose the effect of the bounce in the evolution of
perturbations. Also, consideringN51, without approximations,
would not change our qualitative results and the power spectru
06350
al
re

r.

-

ch

n

T~k!5
k3uFk~x1!u2

k3uFk~2x1!u2
}~h0k!26. ~41!

This transfer function essentially depends on the behavio
the scale factor at both times, as well as on the nature of
bounce itself. It is represented in Fig. 4. Let us now check
these approximations through a numerical examination
Eqs.~15! and ~16!.

C. Numerical calculations

The system~15!,~16! can be solved numerically for an
value of k. For that purpose, we also include the charact
istic conformal timescaleh0 in the wavenumberk̃5kh0

~and correspondinglyṽ5vh0), and write the system as

d2Fk

dx2
1

4x

x211

dFk

dx
1ṽ2Fk52

A2

x211

dXk

dx
,

d2Xk

dx2
1

2x

x211

dXk

dx
1 k̃2Xk5

4A2

x211

dFk

dx
, ~42!

relations in whichXk[,Pldfk ~recall thatx[h/h0), subject
to initial conditions, far in the limitx→2`, given by Eqs.
~30! and ~31! with h i5h j50, namely

Fk
ini52

33/4a

2x2k̃3/2S A3

k̃x
1 i D e2 i k̃x/A3 ~43!

and

Xk
ini5

a

xA2k̃
e2 i k̃x, ~44!

f

e

.

FIG. 4. Transfer function for the bounce model. Full line: rat
of the squared gravitational potential amplitude between hori

exit and re-entry. The dashed line shows the same multiplied bk̃6

to emphasize the power law behavior obtained in Eq.~41!.
9-7



the

PATRICK PETER AND NELSON PINTO-NETO PHYSICAL REVIEW D66, 063509 ~2002!
FIG. 5. Top panel: spectrum of scalar perturbations, i.e.,k3uFku2 as function of the wave numberk, normalized withh0 as indicated. The
long wavelength part of the spectrum, as expected, is well fitted by a power-law with spectral indexn

S
521. The full line is for a vacuum

initial condition for dw, the dotted line is withdw5dw850 at the initial time (yini[kh ini52100 in the numerical calculation!, and the
dashed curve represents the fully decoupled situation for whichw8 is assumed negligible all along. Bottom panel: Time evolution of
gravitational potentialuFku2 for different wavelengths.
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where we have defined the only free dimensionless par
etera5,PlAh0/a0. In all the figures, this parameter has be
arbitrarily fixed to the valuea51023; the conclusions do
not, however, depend on this value, which acts as a sim
normalization constant.

The solution of Eqs.~42! for the square of the Bardee
potential uFku2 is shown on the bottom panel of Fig. 5 fo
various values of the wavenumber, renormalized with
bounce characteristic conformal time scale,k̃, ranging from
1026 to ;1 on the figure as a function of the renormaliz
conformal timey[ k̃x5kh. All calculations are started far in
the radiation-dominated epoch, fory52100, where the
boundary conditions hold. This is verified as, indeed,
small enough values ofkh0 , uFku2 behaves ash24, as ex-
pected. It can be checked that, as discussed above, in
long wavelength limit, the Bardeen potential starts with
negligible constant part and a growing,}h23, mode, for
2x1!x!1, which then connects to thef 1 part while cross-
ing the bounce, and then connects back to the usual grow
and decaying modes, although the new constant part has
acquired a piece from both modes of the previous epoch

Once the system~42! is solved, one can easily compu
the value of the Bardeen potential at horizon crossi
namely forx;1/k̃, i.e., h;1/k, or y;1. This provides the
spectrum shown on the top panel of Fig. 5. It is clear on t
figure that for small values ofk̃, the behavior of the powe
spectrum is indeed a power law, which we checked ind
corresponds ton

S
521. Also shown is a comparison be

tween various cases of interest, namely the vacuum cas
which the initial conditions given by Eqs.~43! and~44! hold,
the gravitational vacuum case for which Eq.~43! still holds,
but with Eq.~44! replaced byXk

ini50, and finally the decou-
pled case for which the coupling betweenFk andXk is made
06350
-

le

e

r

the

ng
ow

,

t

d

for

to vanish, i.e. for which the left-hand side of Eqs.~42! is
arbitrarily set to zero. The curves corresponding to eit
vacuum or gravitational vacuum initial conditions are seen
be almost undistinguishable, showing that, as expected
discussed in the preceding section, the final spectrum for
gravitational potential does not depend on the initial con
tions for the scalar field perturbations. The decoupled cu
shows that, fork̃!1, if one were to neglect the bounce d
ration and apply some matching conditions by brute for
one gets the same spectral indexn

S
521, but with a normal-

ization that is wrong by many orders of magnitude. The si
ation is even worse for intermediate scales for which ev
the index is wrong.

In Fig. 6 is shown an enhancement of the region s
rounding the bounce itself. This figure shows that the r
and imaginary parts of both the Bardeen potential and
scalar field perturbation connect, respectively, with t
bounce functionsf 1 and f 3, thereby confirming the predic
tion C̃50.

D. Junction conditions

The fact that the Bardeen potential only connects to
odd bounce functionf 1(x) suggests that in the limit in which
the bounce durationh0 can be neglected, one may apply th
following junction conditions across the surface at which t
bounce is located (h50):

@HF#65@F81HF#650, ~45!

where@A#65A(2hB)2A(1hB) is the jump in the geomet
ric quantityA. In Fig. 7 are shown the time evolution acro
the bounce of the quantities involved in Eq.~45!. For a fixed
surface thicknesshB , and in a way independent of this thick
9-8
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FIG. 6. Real~left! and imaginary~right! parts of the Bardeen potential~top! and the scalar field perturbation~bottom! as a function of

x5h/h0 for k̃51028.
an
ex
p
py

this
the
ness, the relevant quantities are indeed conserved and c
safely used. This is of course true only in the particular
ample presented here, but it can also be conjectured to a
for a symmetric bounce in general. In fact, taking the ek
06350
be
-
ply
-

rotic model @6# with our matching conditions~45!, one
would obtain a scale invariant spectrum; the relevance of
fact to observational physics is, however, not clear as
ekpyrotic bounce, even regularized, is not symmetric.
FIG. 7. Real~left! and imaginary~right! parts of the geometrical junction variablesHFk ~top! andHFk1Fk8, ~bottom! as a function of

x5h/h0 for k̃51028.
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IV. CONCLUSIONS: GENERATING A SCALE-INVARIANT
SPECTRUM THROUGH A BOUNCE

We have presented a cosmological model in which
bounce takes place in the framework of pure general rela
ity. This is achieved by assuming that, at some stage aft
contracting phase, a negative energy free scalar field bec
important. Performing a bounce with such a scalar field,
stead of an ordinary hydrodynamical fluid, permits us
regularize the perturbation, which otherwise grows u
bounded near the bounce@17#. We derived the last horizon
crossing spectrum and obtained, both analytically and
merically, a spectral indexn

S
521 in the long wavelength

limit, therefore ruling out such a model as a competitor to
inflationary paradigm. However, our study of a concre
bouncing model allowed us to obtain some intuition on w
happens with perturbations when they pass through
bounce. First of all, the bounce acts indeed as a ‘‘pump fie
for perturbations. Secondly, the field which produces
bounce in the background solution, and its perturbations
not relevant for the evolution of the Bardeen potential
almost the whole history of the model, except near
bounce itself, where it becomes very important for the pow
spectrum amplitude, although not for the spectral index.
nally, usual matching conditions are not valid for transitio
through a bounce. In fact, even for the background met
such conditions are not valid since the Hubble parameteH
5H/a changes sign through the bounce, by definitio
Through our bounce, the Bardeen potential also chan
sign, and what happens to be continuous is the combina
HF. Inspired by our concrete model, we suggested match
conditions to be applied to general models where the bou
is not specified, which are spelled out in the Sec. III C.
course, these suggestions must be checked within other
crete examples, or through a more general formal analys

The model we have discussed is admittedly over simp
tic. We may be confident in its latest part describing t
radiation-dominated epoch, which we know has taken pl
in our Universe, and accept that it may provide a reasona
description of an immediately preceding bouncing pha

FIG. 8. Scale factor for connecting a slowly contracting phase
our model. If such a four-dimensional model was effectively co
structed, it would produce a scale invariant spectrum of pertu
tions and would thus become a promising competitor to more u
inflationary models.
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There is, however, no reason to believe, even in the case
bounce, that the evolution of the Universe should have b
symmetric in time. One can instead set up a contract
phase with a different scale factor, assuming at some s
some form of entropy production, to end up with enou
radiation before the bounce, yielding a scale factor of
form ~7! that ultimately connects back to standard cosm
ogy. Such a model should originate in a realistic underly
particle physics theory.

Let us briefly discuss an example, which is reminiscent
the ekpyrotic proposal@6#, with a few differences. First, the
model we have in mind would be purely four-dimension
and does not intend to address the flatness problem. Sec
such a model would be effectively singularity free. Final
we would not need to impose arbitrary@12# matching condi-
tions across the bounce to obtain the required mixing in
growing and decaying modes before and after the boun
since its specific form would be known.

More precisely, a model satisfying the above-mention
requirements could consist of a bouncing model having
slowly contracting phase,a}(2h)p, with 0,p!1, con-
nected to the phase examined in the previous sections, a
one shown in Fig. 8. When the perturbation in the Barde
potential crosses the horizon for the first time, the dep
denceh22 in Eq. ~30!, stemming from the fact that the un
verse is supposed to be radiation dominated at that ti
would be substituted by a dependenceh22p, i.e., almost in-
dependent ofk when kh;1. Doing calculations along the
lines of those presented in Sec. III, the scale invariant sp
trum follows.
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APPENDIX: ADIABATIC AND ISOCURVATURE MODES

In Ref. @17# we claimed that a hydrodynamical perturb
tion should lead to a divergence in the second time deriva
of the Bardeen potential, and hence of the Einstein tensor
the adiabatic mode at the time at which the null energy c
dition ceases to be violated~referred to as the NEC transitio
in Ref. @17#!, which in the situation at hand readsh25h0

2/2:
this would mean the breakdown of perturbation theory at t
point. As no such divergence is observed during the bou
in the model discussed in the present paper, and as a
massless scalar field is equivalent to a stiff matter fluid@32#,
one would then be led to conclude that the entropy mo
diverge as well in such a way as to cancel exactly the a
batic divergence. In this appendix we take the hydrodyna
representation of the present model, a two-fluid model w

o
-
a-
al
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PRIMORDIAL PERTURBATIONS IN A NONSINGULAR . . . PHYSICAL REVIEW D 66, 063509 ~2002!
out interaction between them, with equations of statepr
5 1

3 e r and ps5es, with es,0, and we show that, indeed,
we take into account the perturbations on their full genera
~adiabatic plus entropy terms!, no such divergence appears

In the two-fluid model, energy conservation is valid sep
rately for both fluids, yieldinge r5cr /a

4 and es52cs/a6,
with cr and cs two positive constants. The perturbed Ei
stein’s equations in terms of the gauge invariant Bard
potential read~we use the notations of Ref.@20# for a spa-
tially flat, K50, FRW background!

¹2F23HF823H 2F54pGa2de (gi), ~A1!

F913HF81~2H81H 2!F54pGa2dp(gi), ~A2!

where de (gi)5de r
(gi)1des

(gi) and dp(gi)5dpr
(gi)1dps

(gi) . All
these quantities are defined in such a way as to be ga
invariant, as emphasized by the superscript ‘‘~gi!.’’

Using the linearity of the above equations, we can deco
pose the total gravitational perturbationF as the sumF
5F r1Fs and construct the two sets of decoupled equati

¹2F r23HF r823H 2F r54pGa2de r
(gi)

~A3!
F r913HF r81~2H81H 2!F r54pGa2dpr

(gi) ,

and

¹2Fs23HFs823H 2Fs54pGa2des
(gi)

~A4!
Fs913HFs81~2H81H 2!Fs54pGa2dps

(gi) .

Substitutingdpr
(gi)5 1

3 de r
(gi) and dps

(gi)5des
(gi) into Eqs.

~A3! and~A4!, we obtain the following equations forF r and
Fs:

F r914HF r82
1

3
¹2F r12~H81H 2!F r50, ~A5!
v.

A

f
d

06350
y

-

n

ge

-

s

Fs916HFs82¹2Fs12~H812H 2!Fs50, ~A6!

so that, plugging the scale factor given by Eq.~7! leads to
~for the sake of simplicity, and to avoid an unnecessary p
liferation of indices, we note simplyF r andFs the k modes
of F in the following equations!:

d2F r

dx2
1

4x

11x2

dF r

dx
1F k̃2

3
1

2

~11x2!2GF r50, ~A7!

and

d2Fs

dx2
1

6x

11x2

dFs

dx
1F k̃21

2

~11x2!GFs50. ~A8!

As the coefficient entering Eqs.~A7! and ~A8! are com-
pletely regular everywhere, and thus in particular around
point of NEC transition (x251/2), then, by Fuchs propert
@34#, F r , Fs and all their derivatives are also regular the
and can be expanded in the Taylor series. Of course,
same is true for the full Bardeen potentialFk5F r1Fs. As
we derived this result without performing any separation in
adiabatic and entropy perturbations, we arrive at the con
sion that, in such a case, the divergences obtained in
@17# for the adiabatic perturbations must be exactly comp
sated by divergences in pure entropy perturbations yieldin
finite total result. This is in agreement with the results o
tained in the present paper concerning the scalar field mo
Note that, as in the scalar field case, Eqs.~A7! and~A8! have
regular linear independent solutions near the NEC transit
which means that expansion into adiabatic and entr
modes is meaningless since they both diverge in such a c
In a forthcoming publication@35#, we will examine in more
detail the situations where such cancellations of divergen
may occur for hydrodynamical perturbations near gene
bounces, and when expansions into adiabatic and ent
modes are meaningful in order to complement the result
Ref. @17#.
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