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Primordial perturbations in a nonsingular bouncing universe model
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We construct a simple nonsingular cosmological model in which the currently observed expansion phase
was preceded by a contraction. This is achieved, in the framework of pure general relativity, by means of a
radiation fluid and a free scalar field having negative energy. We calculate the power spectrum of the scalar
perturbations that are produced in such a bouncing model under the assumption of initial vacuum state for the
qguantum field associated with the hydrodynamical perturbation. The matching conditions applying to this
bouncing model are derived and shown to be different from those in the case of a sharp transition. We show
that if our bounce transition is smoothly connected to a slowly contracting phase, this provides a new way to
generate a scale invariant power spectrum.
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I. INTRODUCTION which can be interpreted as truly avoiding the singularity,
even for flat (C=0) spatial sections, a possibility strictly
For more than two decades, inflatighl has been the only forbidden in classical general relativitfGR) unless[15]
available paradigm to solve the standard cosmological probsome exotic material, with negative energy density violating
lems of flatness, homogeneity, and monopole excess. It alshe null energy conditiofNEC) [16], is introduced, which
predicts, as a bonus, that primordial fluctuations, assumed tmost cosmologists are reluctant to do. Such a bouncing uni-
be of quantum origin, could be enhanced to the level reverse model provides a solution to the horizon problem by
quired to trigger large scale structure formation, with an al-geodesically completing the manifold in the past, and avoids
most scale-invariant spectrum. To date, no model has evehe monopole formation if the bounce takes place at a tem-
come close to challenging this impressive list of successesperature below that of the grand unification the¢8UT);
Inflation cosmology suffers, however, from a few prob- this class of models does not, however, address the question
lems of its own, whose seriousness is largely a matter obf flatness and one must assunte=0 from the outset.
opinion. For instance, in a typical realization, the underlyingMoreover, in such a context, the trans-Planckian issue simply
parameters(mass and coupling constants of the inflatondoes not exist because the initial conditions for the perturba-
field) must be assigned “un-natural” values in order to re-tions can be imposed during a phase where the universe is as
produce the observed temperature fluctuations in the Cosmidose to the Minkowski spacetime as one wishes, without
Microwave Background RadiatiofCMBR) which the ever passing through a Planck phase. Thus, it could be a
mechanism seeds. However, such a fine tuning can be apatural competitor to the inflationary paradigm, and it is
counted for in various realistic models. therefore of interest to estimate the primordial perturbation
The inflation paradigm is also endowed with two specificspectrum that it can produce.
problems, conceptually much more serious, that may ulti- In a previous work17] we examined the stability of a
mately be related, namely the meaning of the trans-Planckiabouncing universe dominated, at the bounce, by a single ex-
[2] perturbations and the existence of a past singuld8ty  otic hydrodynamical perfect fluid. We showed, by computing
Concerning the latter, many ideas were discussed, amorggalar perturbations using the gauge invariant Bard&8h
them the Tolman Phoenix univer§é] and many others in potential, that its adiabatic perturbations grow unboundedly
the 197045], and recently revived under the name “ekpy- either at the bouncing point, or at the time when the NEC
rotic” [6] in the somewhat different context of superstringwas violated or restored, thereby contradicting the hypoth-
[7] inspired brane cosmolody]. This model, however, was esis of low amplitude first order perturbation the¢i®,20Q.
the subject of many criticisms, both from the strif8] and  Such models are thus incompatible with observational data,
cosmologicall10] points of view. In its latest versiofl1], e.g., CMBR datd21] according to which these first order
moreover, the model also contains a supposedly actual sirffects indeed still dominat@®ver nonlinear effecjsat large
gularity [12]. The singularity may also be avoided in other scales.
brane model$13]. The next to simple possibility consists of combining two
Quantum cosmology, in the framework of the Wheeler-components, i.e., to allow for entropy modes. The purpose of
DeWitt (WDW) equation, exhibits bouncing solutiof$4]  this paper is to exhibit such a toy model in which a radiation
fluid is coupled to a negative energy free scalar field that is
supposed to be important in the universe for a limited
*Electronic address: peter@iap.fr amount of time, during which the bounce occii22]. Our
Electronic address: nelsonpn@cbpf.br universe thus comes from a low-density, radiation-
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dominated, contracting state, passes through a bounce, andt be concerned with vectoridtotationa) perturbations
connects again back to the usual hot big-bang pf23eIn  even though, contrary to the usual inflationary case, one
this context, we shall be concerned with the scalar perturbasould think that those have no reason to&eriori negli-
tions induced during the transition between the collapsinglible with a time symmetric scale factor. However, the Uni-
and expanding phases. verse is torque-fre¢31] since at least the nucleosynthesis
In Sec. Il we set the various constraints our model need§Poch that occurred at a redshiftzyf,~3x 10°. Hence, the
to satisfy, and we explain how it can be made phenomendPresent relative Contribu'FioﬁU for the vectorial perturpation,
logically reasonable. Then we calculate, in Sec. Ill, theWhich scales aa™?[19], is expected to bé,<10"*, inde-
power spectrum of the perturbations by matching the rejpendent .of the _scalk at which it is evaluated, and hence
evant solutions in the various regions of interest, and weéPservationally irrelevant.
compare the results with numerical calculations. Contrary to
what one would naively expect from a fluid analyisis], we

find that scalar perturbations are perfectly well behaved all \\e shall consider a very simple toy model for which we
along. demand the following conditions to hold. First of all, we
Setting vacuum initial conditions for the quantized hydro-want general relativity to be valid for all times. We also
dynamical perturbations deep in the low-density radiationimpose that at late times, the model should reproduce the
dominated phase, we find that the relevant spectrum of pestandard hot big bang case, i.e. there should exist a time in
turbations, at last horizon crossing during the expandingvhich radiation dominates. This implies in particular that we
radiation-dominated era, has a spectral indgx —1. Itis ~ assume some amount of radiation to be present in our model.

rectly related to the fact that, in order to calculate explicitly Finally, the model should have a bouncing phase. This
the power spectrum of scalar perturbations, we have assum&€ans, given that there is already some radiation present,
the algebraic form of the scale factor to be valid for all times,that, in the context of GR there must exist some other fluid
and in particular when the relevant scales of perturbatiof!2ving negative energy. In particular, for the special case at
leave the horizon. Changing this assumption, as is discussé@nd for which the spatial curvatuté=0, this means that
below, changes the spectrum as the perturbation leaves tiae¢ null energy conditiofNEC) must be violated at some
horizon, and therefore the power spectrum induced in th&me near the bouncegl5. _ o
expanding phase. As it is a model-dependent result, further R€alizing such a model is in principle feasible with just
investigations of more realistic modef@4,25, from the another fluid, e.g., some stiff m'atter with negative energy,
point of view of particle physics, need to be ddizs]. we Nnamely one for which the equation of state repdsp<0,
show, by means of the example of an ekpyrotic-inspired slownd to combine this fluid with the radiation into a single one
collapse[6], how one can obtain a scale invariant spectrum{© recover the bounce at the background level. At the pertur-
in a bouncing universe model. bative level, though, this is no longer fea_3|ble as it was re-
While other models yield a scale invariant spectrum bycently showr{17] that such an approach will lead to an over-
making use of various assumptiof2], the present calcula- productlon o_f large mhomog_eneltle_s at various dl_fferent
tions are made with a specific model where the transitiofimes, breaking the cosmological principle hypothesis long
through the bounce is made with an exact solution. Thidefore nucleosynthesis. This is because such an approach
allows one to obtain, qualitatively and numerically, the tran-N€gdlects the entropy modes, which turn out to cancel exactly
sitions in the Bardeen potential and its derivative through thdhe adiabatic mode divergences, so that the adiabatic-entropy
bounce, yielding indications on what kind of matching con-mode decomposition is not feasible in a bounce conftae:
ditions [28] should be proposed for perturbations passingh€ Appendix for a discussion of this issusVe model the
through a general bounce. We obtain the perhaps not so SLﬁec_onc_J, _st|ff m_atter, fluid by a free massless scalar field to
prising result that the Bardeen potential changes sign throughich it is equivalent both at the background and perturba-
the bounce, even though its derivative is continuous, contiVe levels[32]. The action we shall start with thus reads
trary to the case of a sharp transiti#9,30. This result is 1 1
discussed in more detail in Sec. IV, in which we explicitly Szf <_ ———R—e— -V, 6V*p|J—gd’, (1)
indicate how to obtain a scale invariant spectrum for the 167G 2"
scalar perturbation by connecting our bounce and radiation- hereR is th t lae th density of th
dominated model with a slowly contracting phase. If such gVnerer Is the curvature scalak, the energy density of e
four-dimensional and singularity-free model can be con—rad'atIon fluid, af_‘d‘f’ the scalar field. We_ assume that the
structed, it will be able to reproduce all the available obser_background meiric takes the standard Friedmann-Robertson-
vational data while avoiding most of the questions raised bQNaIker(FRV\/) form
the in_flation solution. _ ds?=a2(7)(dn?— 5ijdxidxj), )
This paper only deals with the scalar part of the perturba-
tions, which we show does not yield a spectrum compatibleyith 7 the conformal time. The cosmic timg, is then ob-
with the data. The tensor part was already calculated in Refained as the solution of the equatiadn= dt once the scale
[12], where the spectral index =n_—1=2 was obtained, factor a(7) is known. Note that throughout this paper, we

and is therefore unable to reproduce the data. Finally, we wilassume the background curvature to vanish;0. In this

Il. THE MODEL
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context, it has to be a particular choice: this category of 50 )
models does not indeed solve the flatness problem.

Varying the action(1) with respect to the fluid and fields ¢’
yields the background dynamical equations ~ ~°777777TTToC 5¢

e'+4He=0, ¢"+2He'=0, (3 v
where H=a'la, ¢ and ¢ are the background space- (a) b
independent values of the radiation energy densitgnd ®)

scalar fielde, respectively, and a prime denotes a differen-
tiation with respect to the conformal timg. These back-
ground equations imply

FIG. 1. Diagrams leading to instabilities in the thedfty. (a)
The dynamical instability whereby the energy contained in the sca-
lar field can be used to produce semiclassical perturbations, later to

c d be identified with primordial fluctuationgb) Vacuum instability. As
o'=—, &=-, (4) this process in nonzero, the vacuum can spontaneously decay into a
a a pair of negative energy scalar particles and a positive energy gravi-

. ton
wherec andd are constant. The energy density of the scalar

field is given b . . . . i
g y first one, with which we shall deal later since it is actually
12

o c2 the one responsible for the large scale structure formation in
Pe=—""5=" 55 (5 this model, is second order in perturbati@inst order in the
2a 2a equations of motionand goes essentially ah*"d,6¢d,¢.
" _ . This term is absent in ordinary Minkowski space, but is
and as such it is large whenis small and negligible whea 1 reqent in the cosmological setup we are considering because
is very large. These solutions, together with the Friedmaniyt £ (3) in which the classical part of the scalar field varies

equation with time and thus behaves as a source for the production of
1 872G gravitons and scalar particles. As it originates in a derivative

H?=(3| a’e— —<P'2), = ——, (6)  coupling[see Fig. 1a)], the characteristic time scale of this
2 3 instability is that of the classical scalar part, in our case the

typical cosmological time scale.
The second instability that must be discussed is much
7 more serious, even though at first sight it looks innocuous
, (7) because of a higher order in perturbation: it is the same term
as before, but with the classical part replaced by a first order
perturbation, namely<h*"d,8¢d,0¢ [see Fig. 1)]. The
presence of such a process means that the vacuum can spon-
{aneously decay into a pair of negative energy scalar par-
icles and a graviton, and, due to this fact, the energy levels
! . are not bounded from below. This sounds like a catastrophe,
follows, these two parameters will be considered as the rel3 4 aven more so because the only available time scale
evant ones. . L . comes from the coupling constant, i.e., the Planck time.
Itis interesting to note here that this solution is essentially e yer, it is clear from the figure that the process probabil-
the iny possibility if one demands a late time radlatlon-i,[y amplitude A is AocpZ/ME,, with MP~€;|121019 GeV
dominated phasa- 7 for (#/7o)>1 together with abounce o pjanck mass amiithe momentum at the vertex. Such an

Kvﬂ'th quadr;tm b_ehavllore( aO)oc,? fotr ﬂ(]."/ ’70? <t'l [17]. yamplitude therefore becomes important when the character-
oreover, there IS only one way o get this solution, namely; - scalep ™! is comparable tdp. At this point, it should

by means of a negative energy stiff matter fluid or, equiva—be argued that the model of E¢L) is understood as an

Le(;]ttrl]y’cssgsgatlve energy free scalar field, with radiation Neffective low energy theory which must be implemented with
' a cutoff scale much larger than the Planck one: as one

Befgre Lqrrrl]mg :ﬁ flrstbprdter fp(tar:turfbinons of th;‘.s back- reaches the Planck energy scale, the theory is expected to
ground, which Is the subject of ne Tollowing Section, We, .o\ qown into a completely different one such as, e.g.,

want to emphasize a point of stability of this model related to - : )
the “wrong” sign chosen in Eq(1). Indeed, an expansion of quantum gravity or superstring theory. As a result, for cos

. mological purposes, one can safely ignore this instability and
Eq. (1) with respect to concentrate on the production of cosmological perturbations.
9u=90+hu,  ¢=e+ 50, ®)

with [g(®),¢] the classical part anch(8¢) interpreted, re-
spectively, as gravitons and scalar particles in a semiclassical In what follows, we shall consider perturbations stem-
approach, will inevitably lead to two different kinds of insta- ming from the mode(1), making use of the gauge invariant
bilities, each arising at a different order in perturbation. Theformalism[18,20. In order to perform explicit calculations,

lead to the bouncing solution

7

a =a 1+
(n)=ag 7o

where the minimum scale fact@, and the characteristic
bouncing conformal timey, solely depend on the relative
guantities of energy density in radiation and scalar field a
some given tim@3=c?/(2d) and »5=c?/(2d?¢3). In what

Ill. LINEAR PERTURBATION SPECTRUM
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we shall consider this model to be valid all through the his-the radiation fluid perturbations and are then expressible
tory of the Universe, including at the times at which thesolely in terms of themselves d@making use of the back-
perturbations leave the horizon. It is a simple matter toground Einstein equatiohs

modify this assumption afterwards, as we do in the conclud-

ing section, to discuss the spectrum that a more realistic " R S
theory with many different phases would have. kT AHO T FKEDy =~ (e 0y (15
As there are no anisotropic stress perturbations in this
model, the most general form of metric perturbations on thexnd
background given by Ed2) reads, in the longitudinal gauge,
S+ 2HEpp+ K28 =4¢' Dy (16)

ds?=a? 1+2d)dn?—(1—2d)§;dx'dx], (9
(ml 7= )i 1O We shall now investigate the solution of these equations in

where® is the gauge invariant Bardeen potenfiz8]. Set-  order to get the perturbation spectrum such a bouncing
ting also model predicts.
d=o(n)+6p(X,m) and e=e(n)+ de(X,n), A. The relevant phases in the perturbations evolution

(10 In order to investigate Eqg15) and (16), let us write
one obtains the radiation fluid current conservation andhem in terms of the variables,=a’®,, andw,=adgpy.

Klein-Gordon equation, respectively, in the form Using Eq.(4), they read
4 ~ up+|=k?>=2(H'+2H?)|u ——€ZE(W’—HW)
de' +4Hde= Ze(30" +a 'V2a), kT3 k=~ Epig (Wi k)
(17
8¢"+2HEP —V?5p=4D" ¢, (1) and

wherea is the gauge invariant fluid velocity potential, and

use has been made of the relatiéa=3dp between the

energy densityde and pressuredp fluctuation. Einstein

equations yield, after a bit of algebfaq], Each of these equations can be seen as an inhomogeneous
equation, i.e., one with a source term not depending on the
function itself. Asymptotically, since the scale factor grows

’ like | 7| it can be checked explicitly, by means of an expan-
sion in powers ofy ! for u, andw,, that the source terms

c
W{é+(kz—HZ—H’)Wk:4g§(ull<_Huk)' (18

’ 3 2 ’ 4
o +H®:§€PI - 5¢+§aa

) .. 3, , ) in both Egs.(17) and (18) are small fot %> 7,. Therefore,
VD —-3HP'—3H D= §€p|(—90'5¢'+¢' d+a“de), in this limit, Egs.(15) and (16) can be reduced to the usual
parametric oscillator equations for the variablgsandw,
"+ 3HD' +(2H' +H?)D namely
3 1 , 1 (aZ)H
:§€|23|(—(p’5(f)’+(p’2(1)+ §a256 . (12 U+ §k2— 22 u,=0, (19
Simple manipulations of Eq911) and (12) permit us to and
eliminate the radiation fluctuation in favor of the Bardeen
potential through the relation , , @
wy +| k —a w,=0. (20

O +6HD +[2(H' +2H?) + K] = — £3@ ey,
(13)  The potentials 42)"/a?=2(H' +2H?) = 2/(5?+ 52) for uy

. L nd a"/a="H'+H?= 53l (n*+ n5)? for w, are shown in
where, from now on, we assume a Fourier decomposition oﬁ. 7o/ (7 + 7o) K

each variableA into its component#, defined through ig. 2 on which we also define the variaie 7/ 7, as well
as the various corresponding matching valyesandx,.

¢ We shall be interested in the cosmologically relevant limit
Ad 7 Ef X ek xA(|x], 7), (149  k<1. However, ag7|—=, the k-dependent terms in Egs.
(2)%7? (190 and (20) become important. More precisely, when

whereA, only depends on the amplitudeof the wave vec-

tor k. . _ _ 1This is valid not only whenp— but also whenk?<6(H’
The dynamical equations for the Bardeen potential and-2#2) as long asy> 5, We shall return to this point in more
the fluctuations of the scalar field therefore decouple frondetail below.
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2.0 .
[ __2ni(x+238)
()

Bounce functions

Potentials

FIG. 3. The bounce functionfy as functions ok= 5/ 7.

FIG. 2. Potentials for the parametric oscillator equations givingtic@lly independent Gaussian random fields, with fixed vari-

the dynamics of the Bardeen potential and the scalar field perturb&@nce. In what follows, we shall not be concerned by the
tions. The full line shows the potential for the variable associatedSPectrum ofé¢ in the late epoch at which it decouples again
with u, [see Eq(19)], the dashed line the potential for the scalar from @: its distribution should not be observable during the
field w, [Eq. (20)], and the dotted line, showing the value of expanding era with which we shall ultimately be concerned.
(m0k)?, indicates visually the different regions where the different  Near the bounce, when the potentials aha are of order
approximations hold. The pointg andx, are the matching points 1/77(2) andag/(7fp), the source terms become importént,
for these two fields. but the terms proportional tk? are still negligible. In this
situation, one can neglect altogether #feterm in Eqs.(15)
klz|>6, i.e., when|x|>x,;=6/(kng)>1, the solutions and(16), yielding the solutions
of the above equations in terms @f, and ¢, can be writ-

ten in terms of Hankel functions, namdig3], @Bounce= A + Bf () + Cfy(x), (24)
= 7 HE 07+ R HER (w0 )], and
8= YIXYHA k) + X HP(kp)], (D) Cp0BBOUe= D + B 4(x) + CF 4(%), (25)

wherew=k/+/3.
When the potential terms dominate over thdependent
terms, which foruy is the case so long ag7|<6, or 1

with A, B, C andD arbitrary constants. The bounce func-
tions f;(x) are found to be

<|x|<xy, and for v, when k|7|<kng, or 1<|x|<Xy, X 1—x2
wherex,=1/\k7,, the zeroth order solutions for Eq49) fl(X)Em. fZ(X)Ez(1—+x2?’ (26)
and (20) read, whernx; <x<<Xy,
7 B J2 X 34X
q)k<=A1+A2f afzdn+0(kn)%A1—Azmy f3(X)z_(1+x2)2' f“(x)zﬁ (1+x%)%
0
(22) (27)
772 and are displayed on Fig. 3. These solutions will be used to
5¢k<: B,+ Bzf a tdp+ O(kn)%Bl_BzaTo- match the asymptotic solutions through the bounce.
07
(23

B. Matching the solutions and the power spectrum

In fact, solution(23) needs amelioration because aroyrd In the limit »— *o0, which is equivalent ta— + =, i.e.,

=X, the source term of Eq16) becomes important. This is very far from the bounce, the Universe is radiation domi-
not the case of solutiori22) because for %&|x|<x,, the  nated, so that the coupling term in the left-hand side of Egs.

source terms of E(15) are still negligible, even taking into  (17) and (18) can be neglected, as it was explained in Sec.
account the corrections of E@23). Fortunately, for what
follows in the next section, only the solutidi22) will be
needed. _ The constraints on the values af, and 7, in order for the

Up to this point, one can assume that the two relevanpounce to happen at a scale much larger than the Planck scale and
perturbations, namelye andd¢, are decoupled. As we have a long time before nucleosynthesis takes place Gsg<ayn,
imposed vacuum normalizations for the underlying quantum<10® cm. Hence, if one chooses, of order one, the potentials are
variables, this leads t®, andd¢, behaving as two statis- of order one, and/a>1 near the bounce.
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[l A. From Eg. (21), and forp— —«, the Bardeen potential Pi=k3|®|?=A K" L, (32

and the scalar field perturbation respectively scale a$ 1/ °

gzd 1(?6'5':;?('2 Eg‘.('lr?e?gfo?snfr%erﬁ gitltgengj;?nzir;g{t:ﬁtelon evaluated at the time whed, returns to its oscillatory re-
k9 : ' 9 gime, i.e., ax=x,. As we shall see later, the values &b,

scalar field and its perturbation are irrelevant in this regime . . :

. . ) in the different phases of perturbation evolution are not nec-
for the evolution of the Bardeen potential with respect to theessar to calculat®, atx=x,. Moreover, the field¢ itself
radiation fluid. For this reason, one can conclude that the Y K L '

: . : . ahould not be observable during the expanding era. Hence,
appropriate quantum gauge invariant variable to be used ."\vill foraet aboutsd. from Now on
must be the same as the one defined in RG] for the Lookin gat E (17)¢kone can see 'Ehat the first matchin
guantum treatment of hydrodynamical fluids perturbation g q.t+ 0, 9

O o must be imposed whek?/3=2(H'+2H?2)=(a?"/a?, for
theory, which, in the case of pure radiation, is relatedtby U=a2D,. As k is very small, this happens whem|> 1

30pB vy (where we can ignore the source tejmgatching the solu-
b, = \/;P—lz(—k) , (28 tion (30) with solution (22) at the pointk n~ — J6 (or x~
Hk=\ 2 —x,) yields

where B=H?—H' and z=a./3B/H. Similarly, the gauge

invariant quantum variable connected to the scalar field per- 1:€P'770 ‘/Eei(\m km)/\3. (33)

turbation given in Ref[20] is given by 354 \[2
wk=a[5d>+((p/7'l)'<b]%wk. (29) and
It is interesting to note that the quantum fieldeaves the 3
illatory regime at the same conformal time &g does €pag3™ A 3
oscl y . g h 8 > — (1_3\/§|)e|(\«2+k77]-)/\s3 (34)
and that neither of them do so at horizon crossing. This is a 2 2 73K52 :

peculiarity of our model due to the fact that at the time at
which the quantum fields leave the oscillatory regime, the The solution(22) is valid up to the point whers is of

space is almost radiation dominated, but not quite. : S
: L . order one, when we approach the bounce. Differentiating Eq.
Imposing the initial vacuum state for these quantum vari- . .
o (15) twice and making use of Eq16) as well as the back-
ables implies that we can set

ground equations, we obtain the following fourth order equa-

QU ik(n—m)I\3 tion:
Tk 4
| M + 10HD) + §k2+20(7-[’+27-(2) Y
an
e k(=) 20 s Lo o / 2
Wk:? +BHK? Dyt Sk KP4+ A(H +2H7)]y=0, (35
2k

at p— — oo, with 7 and 7, two a priori arbitrary conformal whose analysis indicates that the soluti@®) is valid for
times, having no influence on the subsequent evolutionX| <Xz, up to[x|~1, where the source term in Eq&l5)
From the solutiong21) and these initial conditions, one can Pecome relevant bitis still completely negligible. We have

write the Bardeen potentiab, and the scalar field perturba- to match this solution with the other relevant solution in this
tion 8¢, atkn<-— \/g (or [X|>x,>1) as region, namely the bounce solutid@4), which have three
K ! arbitrary constants. As confirmed by the numerical analysis

N o33 V3 B below, we have to s& =0 because the function it multiplies
<DL“':—P'—023/2 Pead e k(r=m)/\3 (300  goes like 1¥?, which should appear, and dominate, in Eq.
2a9m°k K (22) in a region where both solutions are valid. In this region,

the perturbations in the scalar field and in the fluid are de-
and coupled, and therefore both of them should depend only in

two unrelated constants. For the contracting phAsand B
70 o ik(n—1) (31) are well defined as they represent, respectively, th_e a_mpli-
aw\/ﬂ ' tudes of the decaying and growing modes the opposite if
one considers the expanding phaséthe dominant contri-
bution to the gravitational perturbation, so the third arbitrary

ohy'=

In order to be in a position to compare the model with the
cosmological data, in particular of the CMB, we are inter-constantC must vanish. o
ested in calculating the primordial power spectrum of the Hence, we only need to determiBeand A. That is why
gravitational potentiafb we do not need to calculate the evolution&b, in order to
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determine such constants; this also explains why the initial 10
conditions we assume for the scalar field perturbation are
irrelevant for the final power spectrum. It suffices that we
assumed¢, not to dominate initially overd,; this is in
particular the case for the vacuum initial state we consider.
As shown later, to assume a vanishing initial distribution
Sdilini=0 works equally well.

The solution(24) will propagate the Bardeen potential to
the other side of the bounce, to the region wheigof order
one. As we are in a region whekas negligible, the point of

10%

Transfer Function
-
[=]

10

matching will be chosen to be= —N<—1, whereN does L= e
not depend ork but is large® 10°F == ¥rg el n
The result of the matchingreads ~ po—=—=mmmmmmmmmmmm e \\,/
20 | T | i1 IR PR [
8 10 10® 10° o 10* 10?
~ 7o o
~A ggadNe e (30
0 FIG. 4. Transfer function for the bounce model. Full line: ratio

of the squared gravitational potential amplitude between horizon

and exit and re-entry. The dashed line shows the same multipliekf by
to emphasize the power law behavior obtained in @4).

~ o
B= FAZ. (37)
%o K| Dy (xy) [
_ ki1 -6
T(k)= ——————(nok) °. (41
At x=N>1, on the other side of the bounce, these solu- k3| Dy(—xq)|
tions must be matched with a solution similar to E22),
namely, This transfer function essentially depends on the behavior of
the scale factor at both times, as well as on the nature of the
773 bounce itself. It is represented in Fig. 4. Let us now check all
@szl—sz, (38)  these approximations through a numerical examination of
a7 Egs.(15) and (16).
yielding
C. Numerical calculations
B 167, The system(15),(16) can be solved numerically for any
Ci=A1- 45aéN5A2’ (39 value ofk. For that purpose, we also include the character-

istic conformal timescalep, in the wavenumbek=kz,

andC,=A,. For the power spectrum, the important term in (and correspondingly= w7,), and write the system as
Eq. (38) is the constan€;: as we are now back to a regular

expanding universe, the other term is a decaying mode which D, 4x dd, -~ 24, — \/5 dX
rapidly becomes negligible. 1€, the dominant term when dx? v d_x+w K™ %251 dx ’

k<1 is the one proportional t4, which goes a&~>? while

the other is proportional tek. Hence, we get

X 2x dX o, 442 ddy
) ) —t 5 —— tkX = ——, (42
7’ 02 dx? x°+1 dx x“+1 dx

N0 i

K3 (1) ]2 k3|Ay|2 k2, (40)

relations in whichX,={€p 8¢, (recall thatx= 7/ 7,), subject
to initial conditions, far in the limitx— —oo, given by Egs.

yielding a spectral indems= —-1. .
30) and(31) with ;= »%;=0, namel
One can then define a transfer function between “Horizon( ) @D KO y

exit” and “Horizon re-entry” as the ratio of the power spec- i
tra at the corresponding two different times. It is given in the Ppini— _ 37 EH o ikx/ 3
case of our bounce by the relation k 2%Zk32\ kx

(43

3 . and
We considerN large but not large enough to neglect terms of
order N® in the expansion of; in Eq. (24). If we neglect such
terms, we lose the effect of the bounce in the evolution of the -, o~
perturbations. Also, considerinl=1, without approximations, X:?':—Ne_lkx’ (44)
would not change our qualitative results and the power spectrum. X\/i
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L L i) T T T T T

—— Vacuum initial conditions
===- Decoupled case

I L L1iil I L 1Ml I

N e P Ty
v N A

-
-, “

FIG. 5. Top panel: spectrum of scalar perturbations, k¥®,|? as function of the wave numbky normalized withz, as indicated. The
long wavelength part of the spectrum, as expected, is well fitted by a power-law with spectrahisﬁde)d. The full line is for a vacuum
initial condition for 8¢, the dotted line is withSp= 8¢’ =0 at the initial time ¢;,=k#;,= —100 in the numerical calculatipnand the
dashed curve represents the fully decoupled situation for whicks assumed negligible all along. Bottom panel: Time evolution of the
gravitational potential®,|? for different wavelengths.

where we have defined the only free dimensionless parante vanish, i.e. for which the left-hand side of Ed42) is
etera =€ pn/70/a0. In all the figures, this parameter has beenarbitrarily set to zero. The curves corresponding to either
arbitrarily fixed to the valuex=10"3; the conclusions do Vvacuum or gravitational vacuum initial conditions are seen to
not, however, depend on this value, which acts as a simplee almost undistinguishable, showing that, as expected and
normalization constant. discussed in the preceding section, the final spectrum for the

The solution of Eqs(42) for the square of the Bardeen gravitational potential does not depend on the initial condi-
potential |®,|? is shown on the bottom panel of Fig. 5 for tions for the scalar field perturbations. The decoupled curve
various values of the wavenumber, renormalized with theshows that, fok<1, if one were to neglect the bounce du-
bounce characteristic conformal time scadleranging from  ration and apply some matching conditions by brute force,
10" to ~1 on the figure as a function of the renormalized one gets the same spectral index= —1, but with a normal-
conformal timey=kx= k. All calculations are started far in ization that is wrong by many orders of magnitude. The situ-
the radiation-dominated epoch, fgr=—100, where the ation is even worse for intermediate scales for which even
boundary conditions hold. This is verified as, indeed, forthe index is wrong.
small enough values d€7,, |®,|? behaves ag; 4, as ex- In Fig. 6 is shown an enhancement of the region sur-
pected. It can be checked that, as discussed above, in tfieunding the bounce itself. This figure shows that the real
long wavelength limit, the Bardeen potential starts with aand imaginary parts of both the Bardeen potential and the
negligible constant part and a growing,» 3, mode, for ~scalar field perturbation connect, respectively, with the
—x;<x<1, which then connects to tHg part while cross- bounce functiond; and f3, thereby confirming the predic-
ing the bounce, and then connects back to the usual growingon C=0.
and decaying modes, although the new constant part has now
acquired a piece from both modes of the previous epoch.

Once the systen4?) is solved, one can easily compute )
the value of the Bardeen potential at horizon crossing, The fact that the Bardeen potential only connects to the
namely forx~ 1K, i.e., p~1/k, or y~1. This provides the odd bounce functiofi;(x) suggests that in the limit in which

spectrum shown on the top panel of Fig. 5. It is clear on thafhe bqunqe du.rat|or;y0 can be neglected, one may apply the
i ~ _ ollowing junction conditions across the surface at which the
figure that for small values df, the behavior of the power

spectrum is indeed a power law, which we checked indeegOunce s located(=0):

corresponds tn =-1. Also shown is a comparison be- [HP]. =[P+ HD].=0, (45)
tween various cases of interest, namely the vacuum case for

which the initial conditions given by Eq§43) and(44) hold,  where[ A].=A(— ng) —A(+ 7g) is the jump in the geomet-
the gravitational vacuum case for which E43) still holds,  ric quantityA. In Fig. 7 are shown the time evolution across
but with Eq.(44) replaced byX;"'=0, and finally the decou- the bounce of the quantities involved in E45). For a fixed
pled case for which the coupling betwe®n andX, is made  surface thicknessg, and in a way independent of this thick-

D. Junction conditions
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FIG. 6. Real(left) and imaginary(right) parts of the Bardeen potentiéibp) and the scalar field perturbatighottom) as a function of
x= 7l 5o for k=108,

ness, the relevant quantities are indeed conserved and canfdic model [6] with our matching conditiong45), one
safely used. This is of course true only in the particular ex-would obtain a scale invariant spectrum; the relevance of this
ample presented here, but it can also be conjectured to appfgct to observational physics is, however, not clear as the
for a symmetric bounce in general. In fact, taking the ekpy-ekpyrotic bounce, even regularized, is not symmetric.

0 [ ) I ) I T T I ) I ) ] 0 ) I ) I ) ) I ) I T
-5x10"° = - i 7
110" [ —{ -1x10" = .
-2><1016 — =] i ]
2x10° - | -2a0® ImHD,) |
- Re(HD,) - I N
16 | —
2x10
- - 10 L —
3)(1016 L I 1 I 1 I 1 I L I L I 1 I 1 I 1 I L -3X10 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1
054 3 2 10 1 2 3 4 s 5 4 3 2 -1 0 1 2 3 4 5

X
T

SXIOZA_'l'l'l' T

0

-5x10% i ImH® +®,’) 7
19

-1x10° |~ —
-1x10% —
2x10%

2x10° - —
_2x1025I|IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIII

S5 4 -3 2 -1 0 1 2 3 4 5 5 4 -3 2 -1 0 1 2 3 4 5
X X

FIG. 7. Real(left) and imaginary(right) parts of the geometrical junction variabl&sb, (top) andHd+ ®,, (bottom) as a function of
x= nl nq for k=108
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2.5[ There is, however, no reason to believe, even in the case of a
' bounce, that the evolution of the Universe should have been
symmetric in time. One can instead set up a contracting
phase with a different scale factor, assuming at some stage
some form of entropy production, to end up with enough
radiation before the bounce, yielding a scale factor of the
form (7) that ultimately connects back to standard cosmol-
ogy. Such a model should originate in a realistic underlying
particle physics theory.

Let us briefly discuss an example, which is reminiscent of
the ekpyrotic proposdl6], with a few differences. First, the
model we have in mind would be purely four-dimensional
and does not intend to address the flatness problem. Second,
such a model would be effectively singularity free. Finally,

FIG. 8. Scale factor for connecting a slowly contracting phase tave would not need to impose arbitrdry2] matching condi-
our model. If such a four-dimensional model was effectively con-tions across the bounce to obtain the required mixing in the
structed, it would produce a scale invariant spectrum of perturbagrowing and decaying modes before and after the bounce,
tions and would thus become a promising competitor to more usuaince its specific form would be known.
inflationary models. More precisely, a model satisfying the above-mentioned
requirements could consist of a bouncing model having a
slowly contracting phaseax(— 7)P, with 0<p<1, con-
nected to the phase examined in the previous sections, as the

We have presented a cosmological model in which @ne shown in Fig. 8. When the perturbation in the Bardeen
bounce takes place in the framework of pure general relativpotential crosses the horizon for the first time, the depen-
ity. This is achieved by assuming that, at some stage after dencen 2 in Eq. (30), stemming from the fact that the uni-
contracting phase, a negative energy free scalar field becanverse is supposed to be radiation dominated at that time,
important. Performing a bounce with such a scalar field, inwould be substituted by a dependenge?”, i.e., almost in-
stead of an ordinary hydrodynamical fluid, permits us todependent ok whenkzn~1. Doing calculations along the
regularize the perturbation, which otherwise grows un-lines of those presented in Sec. lll, the scale invariant spec-
bounded near the boun¢&7]. We derived the last horizon trum follows.
crossing spectrum and obtained, both analytically and nu-
merically, a spectral inder_=—1 in the long wavelength ACKNOWLEDGMENTS
limit, therefore ruling out such a model as a competitor to the
inflationary paradigm. However, our study of a concrete This work was done partly at CBPF and IAP. We would
bouncing model allowed us to obtain some intuition on whatike to acknowledge both for hospitality. We acknowledge
happens with perturbations when they pass thr()ugh QNRS and CNPq for financial support. We also would like to
bounce. First of all, the bounce acts indeed as a “pump field'thank Ruth Durrer, Gilles Esposito-Faes Marco Peloso,
for perturbations. Secondly, the field which produces théXaymond Schutz, Shinji Tsujikawa, Jean-Philippe Uzan, and
bounce in the background solution, and its perturbations, i§1e group of “Pequeno Semiria” for various enlightening
not relevant for the evolution of the Bardeen potential indiscussions. We are also especially indebted to David Lyth
almost the whole history of the model, except near theand Jedome Martin for numerous important comments and
bounce itself, where it becomes very important for the powefliscussions.
spectrum amplitude, although not for the spectral index. Fi-
nally, usual matching conditions are not valid for transition_s APPENDIX: ADIABATIC AND ISOCURVATURE MODES
through a bounce. In fact, even for the background metric,
such conditions are not valid since the Hubble paramidter ~ In Ref.[17] we claimed that a hydrodynamical perturba-
="H/a changes sign through the bounce, by definition.tion should lead to a divergence in the second time derivative
Through our bounce, the Bardeen potential also change®f the Bardeen potential, and hence of the Einstein tensor, for
sign, and what happens to be continuous is the combinatiothe adiabatic mode at the time at which the null energy con-
Hd . Inspired by our concrete model, we suggested matchingition ceases to be violatéceferred to as the NEC transition
conditions to be applied to general models where the bouncé Ref.[17]), which in the situation at hand readd= 73/2:
is not specified, which are spelled out in the Sec. Ill C. Ofthis would mean the breakdown of perturbation theory at this
course, these suggestions must be checked within other copeint. As no such divergence is observed during the bounce
crete examples, or through a more general formal analysisin the model discussed in the present paper, and as a free

The model we have discussed is admittedly over simplismassless scalar field is equivalent to a stiff matter f{Gi,
tic. We may be confident in its latest part describing theone would then be led to conclude that the entropy modes
radiation-dominated epoch, which we know has taken placéiverge as well in such a way as to cancel exactly the adia-
in our Universe, and accept that it may provide a reasonablbatic divergence. In this appendix we take the hydrodynamic
description of an immediately preceding bouncing phasetepresentation of the present model, a two-fluid model with-

2.0}
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a(mn)
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05}

0.0C 1 1 1 1 1 1

IV. CONCLUSIONS: GENERATING A SCALE-INVARIANT
SPECTRUM THROUGH A BOUNCE
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out interaction between them, with equations of stpte DI+ 6HD,—V2DA+2(H' +2H?*) D=0, (A6)
=1¢ andps= e, With €<0, and we show that, indeed, if
we take into account the perturbations on their full generality

(adiabatic plus entropy termso such divergence appears. so that, plugglng_the_s_cale factor given by E7) leads to
In the two-fluid model, energy conservation is valid sepa-(for the sake of simplicity, and to avoid an unnecessary pro-

rately for both fluids, yieldinge,=c,/a* and e.= —c,/a®, Ilferat_lon of |nd|ce_s, we note simplp, andd the k modes
) " . of ® in the following equations
with ¢, and cg two positive constants. The perturbed Ein-

stein’s equations in terms of the gauge invariant Bardeen D, 4x db, |K? 2

potential readwe use the notations of Rdf20] for a spa- > T ?—ﬂL —+ﬁ ®,=0, (A7)
tially flat, =0, FRW background e 1HXT a3 (14X
- and
V2P —3HD' - 3H2D=4wGa’se9), (A1)
, Pb,  6x db, [

O"+3HP' +(2H' + HE)D=47Ga?sp9), (A2) " T ax a0 ®=0. (A8)
where 56(gi)?_5€§gi)+ 569) and 6p(®) = op{®+5p® . All As the coefficient entering Eq$A7) and (A8) are com-
these quantities are defined in such a way as to be gaugfetely regular everywhere, and thus in particular around the
invariant, as emphasized by the superscrifi). point of NEC transition x?=1/2), then, by Fuchs property

Using the linearity of the above equations, we can decomg34], ®,, & and all their derivatives are also regular there
pose the total gravitational perturbatioh as the sum®  and can be expanded in the Taylor series. Of course, the
=®d,+ dsand construct the two sets of decoupled equationsame is true for the full Bardeen potenti|=d + d . As

) we derived this result without performing any separation into
V2D, —3H®D/ - 3H*D,=47Ga’de? adiabatic and entropy perturbations, we arrive at the conclu-
. (A3)  sion that, in such a case, the divergences obtained in Ref.
O/ +3H®D, +(2H' +H?)D,=47Ga’sp'?, [17] for the adiabatic perturbations must be exactly compen-
sated by divergences in pure entropy perturbations yielding a
and finite total result. This is in agreement with the results ob-
5 ) 5 2 o (a) tained in the present paper concerning the scalar field model.
VO~ 3HP—3H P=4mGadeg Note that, as in the scalar field case, Ed&7) and(A8) have
, (A4)  regular linear independent solutions near the NEC transition,
DL+IHO +(2H +HP)P=4nGatopl®. which means that expansion into adiabatic and entropy
) ) . ) modes is meaningless since they both diverge in such a case.

Substituting p{® = 5 5€(® and 5p{’= 59 into Egs.  In a forthcoming publicatiofi3s], we will examine in more
(A3) and(A4), we obtain the following equations fdr, and  detail the situations where such cancellations of divergences
Oy may occur for hydrodynamical perturbations near general

bounces, and when expansions into adiabatic and entropy
O+ AHD! — 1V2<D,+2(H’ +HY)D,=0, (A5) modes are meaningful in order to complement the results of

3 Ref.[17].
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