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Cosmic density perturbations from late-decaying scalar condensations

Takeo Moroi and Tomo Takahashi
Department of Physics, Tohoku University, Sendai 980-8578, Japan
(Received 9 June 2002; published 13 September)2002

We study the cosmic density perturbations induced from the fluctuation of the amplitude of late-decaying
scalar condensatior{salled ¢) in the scenario where the scalar fieldonce dominates the universe. In such
a scenario, the cosmic microwave backgroy@d/B) radiation originates to decay products of the scalar
condensation and hence its anisotropy is affected by the fluctuatign tfis shown that the present cosmic
density perturbations can be dominantly induced from the primordial fluctuatign obt from the fluctuation
of the inflaton field. This scenario may change constraints on the source of the density perturbations, like
inflation. In addition, a correlated mixture of adiabatic and isocurvature perturbations may arise in such a
scenario; possible signals in the CMB power spectrum are discussed. We also show that the simplest scenario
of generating the cosmic density perturbations only from the primordial fluctuatiah @#., the so-called
“curvaton” scenarig is severely constrained by the current measurements of the CMB angular power spectrum
if the correlated mixture of the adiabatic and isocurvature perturbations are generated.
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[. INTRODUCTION the one predicted from the scale-invariant spectrum which
can arise from some class of inflation modgds

In recent years, the observation of the cosmic microwave From the particle-physics point of view, however, the sim-
background(CMB) anisotropy has been greatly improved. plest scenario may not be the case and there exist possible
After the discovery of the CMB anisotropy by the Cosmic sources of the cosmic density perturbations other than the
Background ExplorefCOBE) [1] at the angular scal@ inflaton field. In particular, in various scenarios, light scalar
=7°, there have been many efforts to improve the measurefields are introduced which dominate the universe at early
ments. In particular, recent balloon and ground-based experepochs(We denote such a scalar field és) For example, in
ments observed the CMB anisotropy at a smaller angulathe scenario of Affleck-Dine baryogene$8, condensation
scale of 6~0(0.1°) [2—4]. Then, the observation of the of the squark and slepton fields is converted to the baryon-
CMB anisotropy is expected to be greatly improved by thenumber asymmetry of the universe. If this is the case, there
on-going and future satellite experiments, the Microwavemay exist an epoch when the universe is dominated by the
Anisotropy Probg MAP) [5] and PlancK6]; after these ex- Affleck-Dine field. Then, at the time of the decay of the
periments, the CMB angular power spectr@nwill be de-  Affleck-Dine field, the late-time entropy production occurs.
termined at O(1%) level up to the multipole | The other candidate is flat directions in the theory space. In
=<1000-2000. particular, in the superstring theofy0], there are various

With these measurements, our understanding of the evdlat directions parametrized by scalar fields called moduli
lution of the universe is also being improved. Importantly,fields. Such moduli fields are expected to acquire masses
since the CMB power spectrum is sensitive to the origin androm the effect of the supersymmetry breaking and hence
evolution of the cosmic density perturbatiofes well as to  their masses can be much lighter than the Planck scale. If the
the cosmological parametgrsve are now able to constrain initial amplitudes of the moduli fields are large, the universe
scenarios of generating the cosmic density perturbations. is once dominated by the moduli fields and is reheated at the

Among various scenarios, inflatiofY] is probably the time of the decay of the moduli fieldéSee Refs|11,12 for
most popular and well-motivated one to provide the sourcehe scenario with cosmological moduli fielfgn addition, in
of the cosmic density perturbations. In the simplest case, alRef.[13] it is pointed out that the baryon-number asymmetry
the components in the univergether than the cosmological of the universe can be explained if the universe was once
constank, such as the photon, baryon, cold dark matterdominated by the condensation of the right-handed scalar
(CDM), and so on, originate to decay products of the inflatomeutrino. In this case, the universe also experiences the late-
field y which is the scalar field responsible for the inflation. time entropy production. In addition, an axion-like scalar
The inflaton field fluctuates during the inflation and it be-field is proposed as a seed of the cosmic density perturba-
comes the source of the cosmic density perturbations. One dibns [14] in the pre-big-band15] and the ekpyrotid 16|
the most important consequences of such a scenario is thagenarios.
since all the components in the universe are produced from Such scalar fields may acquire fluctuations of the ampli-
the inflaton field, there is no entropy perturbation betweertude in the early universgn particular, during the inflation
any of two components and hence the density fluctuation¥hen, the scalar field eventually decays and reheats the uni-
become adiabatic. Importantly, assuming the standard evolwerse. Importantly, in this class of scenario, the CMB radia-
tion of the universe after the inflation and using a reasonabléon we observe today originates b rather than to the in-
set of the cosmological parameters, it is now widely believedlaton. As a result, one can expect that the fluctuation of the
that the observed CMB power spectrum is consistent withscalar-field amplitude affects the cosmic density perturba-
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tions[17-20. In particular, in such a scenario, adiabatic andwhereV(¢) is the potential of the scalar field. In our discus-
isocurvature perturbations may be generated withsion, we adopt the parabolic potential for the scalar field:
cross-correlation. Indeed, in Ref.[20], the CMB angular
power spectrum is calculated in such a framework, and it
was shown that effects of the correlated isocurvature pertur-
bation may be large enough to be seen in the on-going and
future experiments. In addition, it is possible that the domi-From this Lagrangian, we can derive the energy densjy
nant part of the cosmic density perturbations observed todagnd the pressurp, of the scalar field condensation; for the
may originate from the primordial perturbation in the ampli- zero-mode we obtain
tude of ¢ rather than the fluctuation of the inflaton ampli-
tude. (This kind of mechanism is sometimes called “curva-
ton mechanism.f

In this paper we consider effects of such scalar-field con-
densations to the cosmic density perturbations without relyWhere the “dot” denotes the derivative with respect to time
ing on any particular scenarios. Assuming that the universe [n addition, in the expanding universe, the equation of
was once dominated by the scalar-field condensation and thBtotion of the scalar field is given by
the reheating occurred at a later stage generating a large . : )
amount of entropy, we study the evolutions of the cosmic ¢+3HH+myéd=0, (2.4
density perturbations and consider the CMB angular power ,
spectrum. As we will see, the CMB power spectrum can bevhereH=a/a is the expansion rate wita being the scale
affected in various ways depending on scenarios. Interesfactor. The behavior o depends on the relative size of the
ingly, if the decay product of the field does not generate €xpansion ratéi and the scalar mass,,. When the expan-
the baryon asymmetry or the CDM component, then thesion rate is much larger tham,, the second term., which
adiabatic and isocurvature perturbations can be both gengplays the role of the friction term, is significant agd (al-
ated with cross-correlation. In this case, the CMB powermos) vanishes. In this case, change of the scalar amplitude
spectrum may significantly change its behavior from thecan be neglected and takes a constant value. We call this
adlgbqtlc re_sult. In partlpular, the simple “qurvaton” SCe- epoch a “slow-roll” epoch sincep is negligibly small. On
nario, in which the cosmic density perturbations are generye contrary, wheti=m,,, the scalar field oscillates around
ated only from the primordial fluctuation of the amplitude of {1& minimum of the potential. In particular, whéf<m,,

ngé severlely constraine? bﬁyﬁttue Clér_rebnttpbseév.ations of thehe oscillation of the scalar field becomes fast enough so that
angular power spectruifthe adiabatic and isocurva- relations (%) ose= 2( 62)osc OIS, WHET- - -Jous -

ture perturbations are generated with cross-correlation s th the ti I h —
The organization of the rest of this paper is as follows. [n"'OeS the average over the time scale much longert Pn
). With this relation, the energy density

Sec. Il we introduce the scenario we consider and follow théPut shorter thaid _ _
thermal history of the universe. Evolution of the cosmic den-2nd the pressure of the scalar field are given as
sity perturbations in such a scenario is discussed in Sec. Ill. 1 1
In parUpuI_ar, itis discussed how t_he de_n3|ty pertL_eratlon in (P g)os= <§¢2+ Emfb¢2> _ m(215<¢2>osc’

the radiation is affected by the primordial fluctuation of the

amplitude ofé. Then, in Sec. IV, we overview the behavior

of the CMB anisotropy in our scenario. Detailed discussions 1., 1, ,

on the CMB power spectrum for the cases with and without <p¢>°S°:<§¢ N Emfbd’ > =0. (2.5
the isocurvature perturbations are given in Secs. V and VI, os¢

respectively. Section VIl is devoted to the conclusion. As we can see, the pressure of the scalar field effectively
vanishes at this epoch and the equation-of-state parameter for
Il. SCENARIO the scalar field becomes,=0. In this case, the energy den-
o ) o . sity of the scalar field behaves as that of the nonrelativistic
Let us first mtroduce the scenario we have in r_nmd. In th'scomponent. Consequently, whéy<H<m,, (with T, be-
paper we consider the thermal history with late-time entropxng the decay rate o), p,, decreases a3,
production which is due to the decay of the scalar figld Now we discuss the thermal history of the universe with
For our study, it is important to understand the behavior Ofe scalar fieldp. In particular, we consider the case where
the scalar field in the expanding universe. For this purposne injtial amplitude of the scalar field; is nonvanishing
we start with the Lagrangian of the form so that¢ may become cosmologically significant. With such
1 an initial condition, let us follow the evolution of the uni-
_ T ouv _ verse starting with the inflationary period.
£ 29 Iuddvp=V($), @1 As in the conventional cases, we adopt the epoch of
(slow-roll) inflation in the early stage. As well as solving the
horizon and flathess problems, inflation provides the source
For other mechanisms generating correlated mixture of the adia®f the cosmic density perturbations. We assume that the mass
batic and isocurvature perturbations, $2&]. of the scalar fieldp is much smaller than the expansion rate

1
V()= 5myd”. (22

1. 1 1. 1
P¢:§¢2+§mi¢>2, p¢=§¢2—§mi¢2, 2.9

osc
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of the universe during the inflatioH . If this is the case, After this epoch, the energy density of the scalar figgl
the energy density of the scalar field is much smaller than théecreases aa~ 3 while that of radiation is proportional to
total energy density of the universe as far as the amplitude ¢~ %, and hence the energy density of the scalar field de-
the scalar field is smaller than the Planck scale. Then, thereases slower than that of the radiation. Thus when the am-
potential of the scalar field is effectively flat during infla-  plitude of the scalar field is as large dgq~ b M2, the
tion and there is no strong reason to have vanishing initiaenergy density of the scalar field becomes comparable to that
amplitude of¢.2 In addition, ifm,<Hj, ¢ is slow-rolling  of radiation if the scalar field does not decay before this
during inflation and it keeps its initial amplitude. Thus we epoch. Expansion rate at this epocH—I§f(¢f}m/Mi)m¢,
assume a nonvanishing value of the initial amplitutig; . andH,, becomes larger than the decay rategoff

In the slow-roll inflation models, the inflaton field os-
cillates after the inflation and decays. Then, the universe is 14 182 Vann
reheated(We call this epoch the “first reheating” since, in Gini= (I ¢ /M) My ~ g (TR MM, ) "M
the scenarios we consider, the universe is reheated again due
to the decay ofp.) The energy density of the inflaton field
also decreases as ® in this oscillating period, and hence the
expansion rate of the universe is being decreased. Then, at
the time when the expansion rate of the universe becomeghereTg, is the reheating temperature after the decaypof
comparable to the decay rate of the inflalop, the inflaton  and is estimated as
decays and reheats the universe. Equating the expansion rate
and the decay rate of the inflaton field, the reheating tem-

m,<I,, (2.8

perature is estimated to be TR2~g;1’4\/F¢M*. (2.9
Tri~ 0, T My, (2.0 If the condition(2.8) is satisfied, the scalar field dominates

the universe before it decays.

whereg, ~O(100) is the effective number of the massless If the reheating temperature after the inflatidg, be-
degrees* of freedoh.M. ~=2.4X 10" GeV is the reduced COMes low, the scalar field may start to oscillate before the
il * .

Planck scale, and we adopt the approximation of the instarlflaton f'el_d decays; this is the casd”l;‘(sm(,). In this case,

taneous reheating at the time Bf=I", . In addition, here vyheq the inflaton field decays, the amplltud.e. of the scalar

(and in the following order-of-estimations in this sectiore ~ 1€1d 1S (I'y/Mg) i . Then, the energy densmei o asnd

neglect numerical constants 6(1). _radlatlon become comparabl_e Wheﬁrav_(FX/m¢) binil My
Evolution of the scalar fieldp depends on the relative 1 ¢ does not decay before its amplitude becomes smaller

size ofm, andT .. If the massm,, is smaller tharl",, ¢ than th_ls value. Then, the condition to havepadominated

starts its oscillation after the decay of the inflaton; otherwise®POCh is

¢ starts to move while the inflaton field is still oscillating. In

;tudying the thermal hist.ory with the scalar fiepd it is also b= (T 4T YA, ~(Tro/ Try) Y2M,

important to specify the initial value of the scalar fietg, . X

When ¢ starts to moveH~O(my) and hence the total en-

ergy density of the universe ®(m’M3). Thus, if ¢y is o _

smaller thanM, , the scalar field is a subdominant compo-  If the initial amplitude of¢) becomes larger thar M, ,

nent when it starts to move, and hence the evolution of th&n the other hand, the field slow-rolls even after the ex-

universe at this epoch is controlled by other componentspansion rate of the universe becomes comparable jo

oscillating inflaton field, or radiation. It;,,~M, , on the Then, the universe enters into the de Sitter phase again. In

contrary, the energy density ¢gf becomes comparable to the this case,¢p plays the role of the inflaton and the resultant

total energy density. In this case, the scalar figichever cosmic density perturbation becomes the same as the stan-

becomes a minor component until it decays. dard adiabatic resulif the scale of the secondary inflation is
Let us first consider the case whéfg, is high enough so properly chosen® Thus we assume that the initial amplitude

that ¢ starts to oscillate after the decay of the inflaton. ThisOf ¢ is smaller tharM, . In particular, we assume thatiy

happens whem,=<T . In this case, the scalar field starts to IS small enough so that the universe has a radiation-
oscillate at the temperature dominated epOCh befOI’é dominates the Un|VerSéTh|S IS

the case ifg;,; is substantially smaller thaMl .)
In Fig. 1 we summarize the above results; on Thg vs
—-1/4 ..
Tosc™ s~ VMyM,. (2.7) m, plane we plot the contours of the minimum valuedgf;;

m¢>FX.

(2.10

2lf the minimum of the potential ofp is a symmetry-enhanced  “If the e-folding number due to the secondary inflation is small,
point, however, the initial value op may vanish22]. however, this is not the case and the cosmic density fluctuation for

3In this section we neglect the temperature dependence,of large scale is generated by the first inflation. We do not consider
since it does not significantly change the following discussion.  such a case in this paper.
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s 10° | e e e = i FIG. 2. Schematic picture of the thermal history of the universe;
S evolution of the energy density of various components. Here, we
Téé 4 assumed that the field starts to oscillate in the RD1 epoch, but it
100 r | may happen in thgD epoch. The solid lines are for scalar conden-
) sations and the dotted ones are for radiation.
10° S /;‘
/ (1) In the early stage, inflation occuturing inflation,
(B) / /
101° I R the scalar fieldp has a substantial initial amplitude so that it
, dominates the universe at the later stage.
108 | D A (2) After the inflation, the universe is dominated by the
%(?/ oscillating inflaton field.(We call this epoch the ¥D” ep-
S 108 N~ %oé, ) och) At some point, the inflaton decays and reheats the uni-
@ S N verse.
%e 4 \ S \ (3) When the expansion rate of the universe becomes
0 r P & ] comparable tan,, the ¢ field starts to oscillate. This may
, ,\B/’ happen during thgD or the radiation-dominated epoch. We
10° r i assume that the initial amplitude @f is smaller than~M,
ol © so that there is no inflation induced by tiefield. In addi-
107 o tion, if ¢, is substantially smaller thal, , the universe
107107 10" 10" 10" 10 10" 10" 10 experiences a radiation-dominated epoch befot®minates
To (GeV) the universe(We call this epoch the “RD1” epoci.
2

(4) As the universe expandg, eventually dominates the
universe sincep a2 while pagca* (where p,q is the
FIG. 1. Contours of minimum values of the initial amplitude of energy density of radiationWe call this epoch the ¢$D”
the ¢ field with which the universe is once dominated by the energyepoch.

density of ¢. The vertical axis is the mass @f and the horizontal (5 WhenH~T,, the ¢ field decays and reheats the
axis is Tgez- Try is taken to be(A) 4TR1:1>< 10° GeV, (B) Try  universe. Then the radiation-dominated universe is realized
=1X10" GeV, and(C) Tg;=1x10" GeV. again.(We call this epoch the “RD2” epochAfter this ep-

och, the evolution of the universe is the same as the standard

with which the universe experiences tihedominated epoch. big-bang case as far as the cosmic density perturbations are
In the following discussion, we assume that the initial am-not concerned. , o
plitude of the scalar field is large enough so that there exists 1N€ scenario is schematically shown in Fig. (th the
the ¢-dominated epoch. fo_llowmg, the subsc_npts XD "“RD1,”* ¢D,”and “RD2"

Since the universe has to follow the standard big-bandVill be used for variables in each epoch.
scenario in particular for the big-bang nucleosynthesis, how-
ever, the universe has to become radiation-dominated after
the ¢-dominated epoch. This is realized by the reheating due In the previous section we summarized the scenario and
to the decay ofp. WhenH~T", the ¢ field decays and its discussed the evolutions of the background varialies,
energy density is converted to that of radiation. The reheatthe zero modes Our purpose is, however, to understand the
ing temperature at the time of thg decay depends on the effects of the fluctuation of the amplitude of the scalar field
decay ratd", . Importantly, the reheating temperature has to¢ on the cosmic density perturbations. Thus, in this section,
be higher than~1 MeV so that the success of the standard
big-bang nucleosynthesis is not altered; we assumd that
large enough in order not to affect the standard nucleosyn-3ror the pre-big-banfj15] and the ekpyroti¢16] scenarios, this
thesis scenario. may not be the case. In these cases, we assume that some other

In summary, the thermal history is as follows. mechanism generates the primordial fluctuatiorpof

Ill. EVOLUTIONS OF THE PERTURBATIONS
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we discuss the evolutions of the perturbations in detail. Im-
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When the mean free path of the radiation is very short,

portantly, properties of the density perturbations are deterperturbation of the radiation becomes locally isotropic and
mined at the epoch much earlier than the electron decouplinthe anisotropic stress perturbation vanishes:

(i.e., T~mg, with m, being the electron masand the neu-

trino freeze-out. Thus, in this section, we study the behaviors
of the perturbations in such an epoch. In this paper we giv

the formalism in the conformal Newtonian gaugeé/e fol-
low the notation and convention §23].)

In discussing the evolutions of the perturbations, it is con-

venient to define the variabléy as

5)(5 5px/Px, (31)

where the subscripK denotes the individual components

(such as radiation, CDM, baryon, and so amd Spy is the
density perturbation of the componexit In addition, in the

I1,=0. (3.6)

q’hen, the equations for the density and velocity perturbations

of the radiation are given by

4

5y == 5kV,— 4’ (3.7)
1

Vi=gko +kv, (3.9

where the “prime” denotes the derivative with respect to the

conformal Newtonian gauge, the perturbed line element igonformal timer. In addition, if a very weakly interacting

given by

2
ds?=—(1+2V)dt?+ —) (1+2®)5;;dx dx
0

a
a

a\? o
=(a—) [—(1+2¥)d7*+(1+2®)5;dx dx],
0
(3.2
where 7 is the conformal timea, is the scale factor at the
present time, an& and® are the metric perturbations.

Substituting Eq«(3.2) into the Einstein equation, we ob-
tain the generalized Poisson equation dor

2
Ptot

a

=N

1
KD = ——
2M2

, 3.3

3H
Srot T s (1+ o) Vior

and another equation relatingy, ¥, and the anisotropic
stress perturbation of the total matidy,,:

2
Protl Lot -

M2

KW +®)=— (3.4

Ao

Here, “tot” denotes the total matter and the variablg de-
notes the velocity perturbation of the compongnin addi-
tion, k is the comoving momentumgw,= piot/Pror the
equation-of-state parameter for the total matter, and

_1da

Tadr’

(3.9

nonrelativistic component exists, its perturbations obey the
following equations:

8l =—KVpy—3d', (3.9

V= —HV,+k¥, (3.10
where the subscripth” is for nonrelativistic matters. Notice
that, when a scalar field is oscillating, the equation-of-state
parameter of the scalar condensation vanishes and hence the
density and velocity perturbations of the scalar field also
obey Egs(3.9) and(3.10.

In our scenario, there are several possible sources of the
density perturbations. The first one is, as in the conventional
case, fluctuation of the inflaton amplitude. In our case, how-
ever, the amplitude oy may also fluctuate and such a fluc-
tuation becomes a second source of the density fluctuations.
In addition, if there exists independent scalar figdlled )
from which the baryon or the CDM is generated, we also
have to take account of its effectdn the following, we
consider the cases with and without this scalar figlgl In
the following, primordial fluctuations of these scalar fields
are assumed to be uncorrelated. In the framework of the
linear perturbation theory, evolutions of the perturbations
from the primordial fluctuations of these scalar fields are
independent and hence we can study their evolutions sepa-
rately. Evolutions of the perturbations from the inflaton fluc-
tuation are intensively studied; such a fluctuation provides
adiabatic density fluctuations. In addition, density perturba-
tion induced from the fluctuation af is also well known as
far asy is a minor component in the RD2 epoch; primordial
fluctuation of s induces(purely) isocurvature fluctuation to

As indicated in the above equations, evolutions of thepe baryonic or the CDM component.

metric perturbations are related to those of the density, ve- Thus. in the following, we study the evolutions of the
locity, and other perturbations of various components. Heregensity perturbations induced by the fluctuation of the am-

we consider the universe with a temperature higher than p)ivyde of . For this purpose, we decompose the scalar field
=me. In such a situation, various charged particles becomgg

relativistic and are thermally produced. Then, all the relativ-
istic componentglike photon, electron, quarks, neutrinos, d(t,K)= (1) + Sp(t,k), (3.1
and so ohcan be regarded as a single fluid with a very short

mean free path, much shorter than the horizon scale. We callhere §¢ denotes the fluctuation ap. (We use the same

such a component “radiation” and use the subscript for
it.

notation for the total amplitude and for the zero-mode be-
cause we believe there is no confusjom particular we
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study evolutions in the very early universe in order to under+or superhorizon modes, this entropy perturbation is a con-
stand how the fluctuations behave when the universe entessant of time[23]. In addition, for example, for the case
into the RD2 epoch. In realistic scenarios, the scale we areshere theg field starts to oscillate during theD epoch,
interested irfi.e., the scale corresponding to the multipble

=0(1000)] is far outside of the horizon at this epoch and (56)
hence we can expand the solutions to the equations as func- Sex =
tions of k7. In addition, combining the relatiol, =0 with

Eq. (3.4), we obtaind=—V. In the following, we use this =[84=6,1yp (3.1
relation to eliminated.

In order to discuss the evolutions of the fluctuations, it iSWhere the last equa”ty holds for the epoch whirand the
important to clarify the equation-of-state parameters of thenflaton field are both oscillating.

individual components in the universe. If all the components Density (and othey fluctuations in the RD2 epoch are
behave as the relativistic or the nonrelativistic matter, evoluyenerally parametrized by usirﬁjb‘if’). If a componentX is
tions of the perturbations are described by B§s)—~(3.10.  generated from the decay product éf then there is no
In this case, it is convenient to distinguish the phatonany entropy between the photdie., y;) andX. On the contrary,
other componenjsfrom the decay product op from that it some other scalar fielgr generate, the entropy between
from the inflaton field, which we cally, and y,,  the photon an is the same asy? . Thus, if all the com-
respectively’. In order to consided,  in the RD2 epoch, we  ,nents in the universe are ger)l(erated frémthe density

can neglecty, since the CMB radiation at this epoch is fluctuations become purely adiabatic and
dominantly from the¢ field. Then, we find that, in the RD2

35 35
Z 7¢_Z Tx

3

Tx

RD2 ¢D,RD1

epoch,¥ andé, become constant whi, =O(kr) up to 4 4

. ¢ . 9 . [5(5¢)] :_[5(505)] :_[5(505)] = — 2y 9¢)
higher order corrections. Indeed, combining E8.3) with y JrRp2=31% “lrRD2T 31 9% lrD2 RD2
Egs.(3.7) and(3.8), and usings,,;= 5y¢ andvtot=vy¢, we (3.16

obtainV, =—3kr¥ ) and
where the subscriptg, b, andc are for the photon, baryon,
5%: —zquﬁ[‘)f’z), (3.12 and CDM, respectively. In this case, the isocurvature pertur-
bation in the ¢ field is converted to the purely adiabatic
where W $%) is the metric perturbation induced by the pri- density perturbation after the decay ¢f[17-20. On the
mordial fluctuation of the amplitude af. [In the following, ~ contrary, if the baryon asymmetry is generated by the scalar
the superscript “G¢)” is for perturbations generated from field i, the entropy between the radiation and the baryon
the primordial fluctuation ofs.] As we mentioned? &%) is  becomessy)” and hencg20]
constant up to a correction @(k?7?).
Behavior of 67X is also easily understood. In discussing
the effects of the primordial fluctuation @f, we neglect the
initial fluctuation of the inflaton field and hena®, —0 in

4
[6()/§¢)]RD2=§[ 5((:5¢)]RD2= - 2‘1’%@ ,

X
the deep RD1 epoch. In addition, from E§3.7) and(3.9), (56) 3 (56) 9 (56)
v, becomes higher order ik thans, and¥. Thus we (6™ Jroa= 7165 Irp2t 5 Vkoz » (3.17
obtain

and in the case wherg is responsible for the CDM while
the baryon number is somehow generated from the decay

. . product of ¢,
The above relation holds in the RD@D, and RD2 epochs

8, =4w?), (3.13
X

up to corrections oD (k?72). 4
For the following discussion, it is convenient to define the [5(75¢)]RD2:§[5§)5¢)]RD2: —2wi?)
entropy perturbation betweeyy, andy, :
3 3 9 3 9
S 297" 2%, E‘I’gD(bz) - (3.19 [5(c5¢)]R02:Z[5(y5¢)]R02+ E\I,(R%/)Z) : (3.18

In addition, if the baryon and the CDM are both generated
8In fact, these photons are mixed and they cannot be defined sepfrom sources other thag, we obtain
rately. In other words, their velocity perturbations should be the
same since they form a single fluid. Even so, the fqllowmg argu- [5(y5¢)]RD2: — 2\1,%152) )
ments are unchanged as far as we consider the leading terms in the
density perturbations since the velocity perturbation is at most

; . : 3 9
O(k7). In the following discussiony, and y, should be under- 5(99) =[ 560 =21 5(00) + —po9)
stood as representatives of the components which are and are not (05" Irp2=[ 0™ Iro2 4[ Y Jroz 2 RDz:
generated from the decay productf respectively. (3.19
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2

It is important to notice that, for the cases given in Egs. K 2m3/3HE H.
(3.17—(3.19, the isocurvature perturbation is correlated 5¢(t,|2)= ﬂ} (3.23
with the adiabatic perturbation. 2aHnf 2m k=aH;

In the case with the) field which is responsible for the
baryon or the CDM, more careful considerations are neededThe subscript “inf” means that the correlation function is
Adopting the parabolic potential faf, the fluctuation of the evaluated during the inflation.Once the wavelength be-
¢ field obeys comes longer than the horizon scale, the scalar-field fluctua-
tion obeys the following equation:
2

. . a
S+ 3H S+ kz(— +m2|s : : 2
Yt 3H oY+ K| 2] Fmy| oy Sp+3HEG+| K3 —| +m2|s¢
=—2mZ YV + (¥ —3D). 3.2 i ad
AN ) (320 — —2mZ W+ (¥ —3D). (3.24
Solving this equation, we see that the fluctuation/cdt the First, let us consider the case whepg;;<M, . In this

time of H~m,, is of the order of yW ]y . If the ¢ field  case, when theb field starts to move, the energy density of
starts to oscillate in the RD1 epoch, the energy density of ¢ is much smaller than the total energy density of the uni-
behaves as that of nonrelativistic components even when theerse. In studying the density perturbations generated by the
metric perturbation¥ is negligibly small. In this case, primordial fluctuations ofé, the metric perturbations are
[w‘If]Hwa is small enough to be neglected and the formemegligibly small until the energy density ¢f becomes com-

discussion applies. I starts to oscillate in theD epoch, parable to the total energy density of the universe. In this
on the contrary, the situation changes. In this caseytfield ~ case, we can neglect the terms containing the metric pertur-
is slowly rolling when the#D epoch starts andy at the  bations in Eq(3.24. Fu_rthermore, thds_(2 term is also irrel-

time of the ¢ domination is negligibly small. Then, solving €vant for the superhorizon perturbations. Then, we can see

Eq. (3.20 for the superhorizon mode, we obtain that, with the above approximationsg obeys the same
equation as the zero mode. Neglecting the decaying mode,
s s we obtain the relation
SYi =y, (3.20
Oinit(K)

. . Sp(t,k)=——— (1), 3.2
where we used the fact thd#t and® are small enough to be Lk Pinit ) 329
neglected in thebD epoch. With Eq(3.21), we can calculate

the density fluctuation ofs as[p,6,]4p=—3H ';lfz‘l’ffg'/’)t- whered o, is the initial value of the fluctuation ap, which

Importantly, the relatior(3.21) holds even after thes field IS Hin/27. In addition, 5,—0 (and hences, —0) in the

starts to oscillate, as far & is substantially larger than the early universe, and hence the initial value $ff” is esti-

decay rate ofs. So, we can calculate the entropy betwegen mated as

and ¢ in the ¢D epoch after they field starts to oscillate;

using the relatiofi 5¢]45= — 2 and(y?)=p,,, we see S8 () = Spy(tK) 5.(1)= 26¢init(K) (3.26

that the entropy betweest and ¢ vanishes. Thus, if they ox py(t) X bint '

field is slow-rolling when thepD epoch starts, density per-

turbation of the component generated frgnbecomes adia- Thus the entrop.,”) increases as the initial amplitude ¢f

batic. If they field starts to oscillate just at the time when the decreases. If the initial amplitude @6 becomes close to

¢éD epoch starts, the correlated mixture of the adiabatic an®l,. , the energy density ofh becomes comparable to the

isocurvature perturbations is generated but the ratio of théotal energy density of the universe. Then, the metric pertur-

metric perturbation to the entropy perturbation may deviatdation ¥ becomes comparable to the density perturbation of

from that given in Eqs(3.17—(3.19. the ¢ field 5,,. In this case, sizabl# generates the density
Before closing this section, let us estimate the size oferturbations of other components and hence reld8daz6

Si?#). As we mentioned before, primordial fluctuation of the may not hold. Even in this case, however, E8.26 pro-

¢ field is probably generated during the inflation. In this vides a good order-of-estimation of the primordial entropy

case, calculating the two-point function ¢fin the de Sitter ~ perturbation betwee and x at the time when the field

background, we obtain starts to oscillate; as far as there is no inflation causeg by

S~ O(8inn /M) when gy~ M, .

. . dk R
(0]8(t,x) 5p(t,y)|0)ing= J ?|5¢(t,k)|ze'k(x ", IV. CMB ANGULAR POWER SPECTRUM: OVERVIEW

(3.29 In this section we study the CMB anisotropy generated
from fluctuations of various scalar fields. The CMB anisot-
where the Fourier amplitude for the case mfy<H;y; is ropy is characterized by the angular power spect@m
given by which is defined as
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- > > >, 1 - -, 100 F T T T
(AT VAT Y))i=3 - 2 (I DCPI(yy), :
4.1 [
@9 10 |
with AT(X,y) being the temperature fluctuation of the CMB [
radiation pointing to the direction at the positiorx and P, &8 ] i
is the Legendre polynomial. The angular power spect@jm ~, [
depends on the properties of the primordial density fluctua- L
tions and hence it provides probes for studying how the den- 7} 1L
sity perturbations are generated in the early universe. = 0.
In the scenario we consider, there are three possible
sources of the density perturbations; the primordial fluctua-
tions of the scalar fieldy, ¢, and . Since there is no 001 \V,\ ]
correlation among these fields, the CMB anisotropies from I
these fluctuations are uncorrelated and the resultant CMB I L}l
power spectrum is given in the form 0.001 . . :
1 10 100 1000
—cx) (0¢) (o¢) .
C,=C¥ +Cf??)+C{o", (4.2 multipole /
where C{*¥, C(*®) and C{*”) are contributions from the FIG. 3. The angular power spectrum with correlated mixture of
primordial fluctuations of the inflaton fielg, the ¢ field,  the adiabatic and isocurvature perturbations in the baryonic sector
and they field, respectivelﬁ. (solid line), in the CDM sectoKlong-dashed ling and in the bary-

The inflaton contributiorC{°¥) is the same as the adia- ©nic and CDM sectorsdot-dashed line [See Eqs(3.17), (3.18),
batic result whileC{*") becomes the purely isocurvature one. 3 (3-19, respectively We also show the CMB angular power

. . . 56) spectrum in the purely adiabatishort-dashed lifeand isocurva-
Thlé?_r’ in thi fﬁllow_lng, \(/jv_elsf;[udy the pr(;pertlﬁsl(gﬁ‘d eng  ure density perturbation@otted ling, i.e., C{°Y and C{*”). We
ects of the primordial fluctuation of the field depen consider the flat universe witf},h?=0.019, Q,,=0.3, andh

On,the scen.ar.|o as we discussed. If aII' the components In th5—30.65, and the initial power spectral indices for primordial density
universe originate tap, then the density perturbations be- peryrhations are all assumed to bé.2., we adopt scale-invariant
come adiabatic. In this case, it is difficult to experimentallyjnitial power spectra The overall normalizations are taken [4¢!
distinguishC{®?) from the adiabatic CMB power spectrum +1)C,/2m]_1o=1.

generated from the inflaton fluctuations. Even in this case,

however, there are important implications in studying sce{and henceél,,=Qy+ ), the parametek, determines the
narios of generating the cosmic density fluctuations, like in-shape ofC{°?). With the relationg3.17, (3.18, and(3.19,
flation, as will be discussed in Sec. V. km becomes?(Q,/Q.), 2(Q./Q), and 2, respectively.

On the contrary, if the scalar fielgd exists which is re- On the contrary, if the) field is slow-rolling when thepD
sponsible for the baryon or the CDMG(*? may become epoch startsg,, vanishes. In addition, if accidentally starts
different from the angular power spectrum from the purelyto oscillate just at the beginning of thgD epoch,«x,, may
adiabatic density perturbation since the adiabatic and isocutake any value between 0 add This may happen, however,
vature perturbations can be generated with cross-correlatiowhen the expansion rate at the beginning of #ie epoch
Although we have considered the entropy perturbations iraccidentally becomes comparablenty,.
the baryonic and the CDM sectors separately in Egd.7)— In Fig. 3 we plot the angular power spectrum with the
(3.19, we found that the resultai@(°? is primarily deter- ~ correlated mixture of the adiabatic and isocurvature pertur-
mined by the entropy between the nonrelativistic matter andpations in the baryonic and/or CDM sector, i.e., the cases
radiation; if we parametrize the density perturbation of thewith the relations given in Eq¢3.17—(3.19. Here, we con-

nonrelativistic component as sider the flat universe witlf,h?=0.019, Q,,=0.3, andh
=0.65[24], whereh is the Hubble constant in units of 100
[ rp2=[(Qp/ Q) 8P +(Q Q1) 8P Trpo km/s/Mpc. For comparison, we also plot the angular power

spectrum for the purely adiabatic and isocurvature cases
C{®) andC(°”)). As one can see, the CMB angular power
spectrum strongly depends on properties of the primordial
density perturbations. If there exists correlated entropy be-
whereQy, Q., and(},, are the(presenk density parameters tween the baryon and other components with the relation
for the baryon, the CDM, and the nonrelativistic component(3.17), negative interference between the adiabatic and
isocurvature; perturbations suppreSs at lower multipole
while the effect of the isocurvature perturbation becomes too
"If all the components in the universe are generated from thesmall to affect the structure at high multipole. As a result, the
decay product ofp, the y field is irrelevant andC{®”) does not  angular power spectrum is enhanced at the high multipole
exist. rather than at the low multipole. If the effect of the entropy

3
= 1[5(y5¢)]R02+ k553, 4.3
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300

from the adiabatic density perturbations which well agrees
with the observations. Of course, if the effects @) or
C{® become important, the above constraintgndoes not

250 E app|y
200 )l V. CASE WITHOUT ENTROPY PERTURBATIONS
o, If all the components of the univerdge., the photon,
baryon, CDM, neutrino, and so pare generated from the
150 ] decay product ofp, there is no entropy between any two
components. In this case, the resultant angular power spec-
trum is given in the form
100 1
C,=C{+clo9) (5.2)
0.01 0.1 1 10 |mportantly, the two contribution€{*¥ and C{°#) are both
¥ from adiabatic perturbations. Thus, for the case where scale
S S H
FIG. 4. x? as a function ofx,,. We take Q,h?=0.019, h  dependence of the sources of*Y and C{*”, i.e., W

=0.65, and the values df,, are shown in the figure. The flat and Sy”), are the sameC{°”=C{*¥ . In this case, it is

universe is assumed. Notice that thg parameter is smaller thgh ~ impossible to test the scenario with using experimental
in our scenario. data.
In general, however, the scale dependence¥ @) and

tipole is suppressed relative to that at low multipole like iniS generated from the fluctuation of the inflaton amplitude
the purely isocurvature case. This happens when the entrogyd is given by[26]
perturbation is in the CDM component with the condition

given in EqQ.(3.18. In addition, with the relation given in Eq. 4[H. . 3H2
(3.19, the correlated entropy becomes more effective than \Ir(Rf?g%:— —_nf = inf , (5.2
the case where only the CDM sector has the correlated en- ° inf

k=aH;
tropy. Then, the acoustic peaks are more suppressed relative '”f

to the Sachs-WolféSW) tail.

As discussed in the previous section, in the general cas#/hereVi=dVi/dx with Vi being the inflaton potential.
the k,,, parameter may vary between 0 ahidand hence the On the contrary,Sfb‘SX"’) is related to the fluctuation of the
CMB anisotropy generated from the primordial fluctuation ofamplitude of¢, as seen in Eq.3.26), and hence
¢ changes its behavior ag, varies. In particular, i8¢, is

the only source of the cosmic density perturbations, too large 2 H.
Ky results in angular power spectrum which is inconsistent sfb‘i(‘f’):—{if} (5.3
with observations. In this case, we can derive a constraint on Pinic| 27 k=aH

the «,, parameter.

In order to derive the constraint, we calculate the
goodness-of-fit parametg’= —2 InL, wherelL is the like-
lihood function, as a function ot,,. In our calculation, the . _ e S
offset log-normal approximation is us¢®5]. We use a data  SIOP€ Of th(e&:s?flanon potentialiy; may significantly vary. As
set consisting of 65 data points; 24 from COBE Differential@ "eSult, S;” becomes(almos) scale independent while
Microwave RadiometefDMR) [1] in the range |<25, (%) may have sizable scale dependence. Since the cur-
19 from BOOMERanG[2] in the range 7&1<1025, 13 'ently measured CMB power spectrum suggestnosi
from MAXIMA [3] in the range 3&1<1235, and 9 from scale invariant pnmor_dlal density perturbation m_the conven-
DASI [4] in the range 1041<864. From Fig. 4, we can tional scenario, inflation models are excluded¥f’®) has
read off the constraint or,,. Requiringy<84, which cor- 00 strong a scale dependerjed]. o
responds to a 95% C.L. allowed region for the statistics ~__!f the ¢ field exists, however, the situation may change.
with 64 degrees of freedom, we obtain the constraigt ~ Since the variabl&{? is expected to bealmos) scale in-
<0.3 forQ,,=0.3, and 1.% k,,<2.0 forQ,,=0.2. Interest- variant, we can relax the constraint on the inflation models if
ingly, the x° variable is relatively suppressed whep~2.  C{°” becomes significantly large, which happens when
This is because the heights of the acoustic peaks relative &) =W (®X). As shown in Eq(3.26), Sy is inversely pro-
the SW tail once increase then decrease as we increase tpertional to¢;,; . Thus, if the initial amplitude ot is sup-

Kk parameter. In particular, whety,~2, the heights of the pressed, this may happen. In particulaiC{f)>C(°Y | the
acoustic peaks relative to the SW tail become similar to thoseresent cosmic density fluctuations are totally from the pri-

In many models of slow-roll inflation, the expansion raig;
is almost constant during the inflation. On the contrary, the
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mordial fluctuation of¢p [18—2(]. (Such a scenario is some-  The expressions fol? {3} and S are given in Egs.
times called the “curvaton scenarid)” (5.2 and(5.3), respectively, and hence,f starts to oscillate

In addition, this mechanism of converting the isocurvaturebefore the¢D epoch starts, thR parameters are given as
density perturbation in the scalar field to the adiabatic den-

sity perturbation may have some significance in the pre-big- 3 -
bang[15] and ekpyrotid 16] scenario. In Refd18,19 it was Roe=5| 2 (6.4
discussed that the present cosmological density perturbations PinicH ing k=aHj

may be generated from the primordial fluctuation of some
axion-like fields in the pre-big-bang and ekpyrotic scenariosHenceR,, . is model- and scenario-dependent; it depends on
the scale of inflation, shape of the inflaton potential, and
initial amplitude of ¢. For example, in the chaotic inflation
model with the parabolic potentialmf=%m)2()(2, the above

In this section we discuss the CMB angular power specexpression becomes
trum in cases with entropy perturbations. In particular, we
study the effects of the correlated entropy perturbation gen- omZ
erated in the cases where the baryonic or the CDM compo- [Ro,clchaotic= ¢mnX 6.5
nent is generated fron#, not from ¢. As we mentioned, if k=aH
the ¢ field starts to oscillate before thgD epoch starts, the
relation(3.17), (3.18), or (3.19 holds. On the contrary, if
is slow-rolling at the time of theb-domination, density per-
turbations become adiabatic. Thus, in this section, we con
sider the most typical relation8.17—(3.19 when the adia-
batic and isocurvature perturbations exist with cross-
correlation. In the general case, as we mentioned, the relation .
between the adiabatic and isocurvature perturbations may de
viate from Egs.(3.17—(3.19. This may happen, however,
only if the expansion rate at the beginning of #h® epoch
becomes accidentally close o, , and we will not consider

VI. CASES WITH ENTROPY PERTURBATIONS

inf

Using the fact that the inflaton amplitude at the time of the
horizon crossing of the COBE scalejs=15M, in the cha-
otlc inflation model,[ Ry c]chaotic=0.6M 4 / dini . Of course,
the values ofR, and R, depend on the model of inflation,
and they vary if we conS|der a different class of inflation
models.

The « parameters are also estimated in the similar way,
&nhd the result is given from the expression for Bhparam-
eters by replacingb— i.

such a case in this papéBee[29] for such a case. A. Uncorrelated entropy perturbation
As discussed in the previous section, the CMB power Although our main subject is to investigate effects of the
spectrum is given in the form fluctuation of the¢ field, it is instructive to study effects of
the uncorrelated isocurvature perturbations. Thus let us first
C=C(+ () + (o) (6.1)  consider the case with uncorrelated isocurvature perturba-

tions (i.e., the case witlR,=R.=0).
In this case, the resultant CMB power spectrum is given

Here,C{%¥ is from the inflaton fluctuation which is usually
Hn the form

parametrlzed by the metric perturbation generated by the i
flaton fluctuation(in the RD2 epoch ¥X). In addition, Ci=C 4+ o C(®N], _ (6.6)
C(?®) and C(*” are parametrized by the entropy perturba- o Lot '
tions in the baryon or the CDM. To parametrize these conyherea here isay, or a, depending on the scenario.

tributions, we define the ratios In Fig. 5 we plot the total angular power spectrum for
several values ofy, (with a.=0). As can be seen, as the
Re=S071WRd, R=sUP1wiy, (6.2)  effects of the isocurvature mode become more significant,
the power spectrum at the high multipole is more suppressed
and relative toC, at smalll. In addition, since the effects @
at high multipole are very small, the structure of the acoustic
o ES@‘;"’)/‘P%Q, acES(ci”b)/‘I’(R%‘%, 6.3 peaks are almost unchanged from the adiabatic result unless

the a, parameter becomes extremely large.

Since the isocurvature mode changes the shape of the
whereS{>” (%) is the entropy between the baryon and cMB power spectrum, upper bounds on theparameters
the photon(between the CDM and the phofogenerated can be obtained; if the parameters are too large, the acous-
from the primordial fluctuation of, andS{’?” andS{>” are  tic peaks are so suppressed that the CMB power spectrum
those froméy. [We adopt Eqs(3 17) and(3.18, and hence  becomes inconsistent with the observations.
SPY and s{?”) are equal to3Wigs3 if they are nonvanish-  As in the previous case, we calculate fffevariable as a
mg] The shape of the CMB angular power spectrum de{function of o, and the results are shown in Fig. 6. From the
pends on the values of these parameters.

For other discussions on the constraints on the uncorrelated
8For recent discussions on the curvaton scenario[ 28le isocurvature perturbations, sgg0.
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FIG. 7. The CMB angular power spectrum for the casexpf
=0. Here we takdR,=0 (solid line), 5 (long-dashed ling and 10
(short-dashed line The cosmological parameters are the same as
ghose in Fig. 3. The overall normalizations are arbitrary.

FIG. 5. The CMB angular power spectrum with the mixed bary-
onic isocurvature and adiabatic density perturbations itk O
(solid line), 3 (long-dashed ling and 5 (short-dashed line The
cosmological parameters are the same as those in Fig. 3. The over

normalizations are arbitrary. ) . .
y the heights of the acoustic peaks decrease relative to the SW

. - tail as the(uncorrelatedl isocurvature fluctuation contami-
figure, we see that too large an is disfavored by the cur- ( 4

: : . ) n .
rent observations; taking),,=0.3, which gives the most ates
conservative upper bound ag,, the constrainty,<4.5 at
95% C.L. is obtained. B. Correlated entropy perturbation in the baryonic sector
The CMB angular power spectrum witl.#0 can be Now, we study effects of the correlated entropy fluctua-

also studied. In fact, the above results with#0 can be ton in the baryonic sectdii.e., the case wittR,+0). Here,
translated to the CDM isocurvature cases; the CMB angulaye assume other entropy perturbations to vartish, R,
power spectrum for the baryonic and the CDM isocurvature— ap=a.=0). The general case will be discussed 1a%n

cases are the same(ifpap=(cac; using this relation we thjs case, the total angular power spectrum is given in the
can also derive the upper bound ag. Thus, in any case, form

200 Ci=C{M+RIC*g 1. 6.7
180 Thus, we expect that, as tlg parameter increases, the an-
gular power spectrum at the high multipole is more enhanced
160 + relative toC, at the low multipole.
In Fig. 7 we plot the resultant angular power spectrum
140 | with several values oR,, . As expected(, at the high mul-
g tipole is more enhanced relative to that at low ones afthe
0 | parameter increases, and hence it can be a signal of the late-
decaying scalar condensation.
In fact, if theR, parameter is too large, the angular power
100 F spectrum at high multipole is too enhanced, which becomes
inconsistent with the currently available data. For the quan-
80 | titative discussion, we calculate the goodness-of-fit param-
g eter as the previous case as a functiofRgf The results are
60 - . shown in Fig. 8 for several sets of the cosmological param-
0.01 0.1 1 10 eters. The figure shows that too larBg becomes inconsis-
O,
FIG. 6. x? as a function of, . Here we take),h?=0.019, h 10\otice that thea parameters vanish, for example, for the case
=0.65, and the values df),, are shown in the figure. The flat where the effective mass of thefield becomes comparable tor
universe is assumed. larger tham the expansion rate during the inflation.
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FIG. 8. x? as a function ofR,. We takeQ),h?=0.019 andh
=0.65. The values df,, are shown in the figures. The flat universe
is assumed.

FIG. 9. The CMB angular power spectrum for the case with
correlated entropy perturbation in the CDM sector with=0
(solid ling), 1 (long-dashed ling and 2 (short-dashed line The
cosmological parameters are the same as Fig. 3. The overall nor-

tent with the observations the total angular power spec- malizations are arbitrary.

trum is given by the sum of (& and . Numerically,

even adopting the most conservative constréfyt=4.5 IS tions become less significant while the effect of the isocur-
excluded at 95% C.L. _ vature perturbation itself becomes more important. As a re-

Before closing this section, we would like to comment ongit, a5 discussed in the previous section, if there exists the
the case where the cosmic density perturbations are totallyorrelated entropy perturbation in the CDM sector with the
from the primordial fluctuation of, i.e., the case of the rejation (3.18, the acoustic peaks become lower relative to
curvaton scenario. In this class of scenario, if the curvatoRne Sw tail. In Fig. 9 we show the resultant CMB angular
field ¢ does not generate the bary@r the CDM), the adia-  power spectrum for several values Rf (with Ry= ap,= a
batic and isocurvature perturbations may be generated with gy - As R. increases, the acoustic peaks are more sup-
cross-correlation with the relation given in E§.17) [or Eq. pressed relative to the, at lower multipole.
(3.18]. The curvaton scenario requir€’”'>C{* and As in the previous cases, if the effect of the isocurvature
henceR;, (or R;) becomes much larger than 1, which is perturbation becomes too effective, the resultant power spec-
already excluded by the current observatiof&>1 is also  trum becomes inconsistent with the observations. Thus, us-
excluded as will be shown in the next sectio@ne caveatto ing the current experimental data, we can put an upper bound
this argument is that, if th¢ field is so ||ght that it starts to on the Rc parameter_ In F|g 10, we p|0t the goodness-of-ﬁt
oscillate after the curvaton field dominates the univeR‘te, parametewz as a function ORC for several sets of the cos-
(or R;) vanishes and such a scenario is consistent with thenological parameters. As one can see, even adopting the
current data. most conservative cas®, larger than 2.0 is excluded at

95% C.L.
C. Correlated entropy perturbation in the CDM sector

In this section we consider the case with the correlated D. General case

entropy perturbation in the CDM sector. Effects of the cor- Now, we are ready to Study the most genera| case, the

related entropy perturbation in the CDM sector are differencase withR+#0 and a#0. In this case, the total angular
from those in the baryonic sector. Since the density parampower spectrum is written in the form

eter for the CDM().. is significantly larger thafl),,, entropy
between the nonrelativistic matter and the radiation becomes C=C+RYCPD_ 1+ CM],_,. (6.9
larger compared to the baryonic case. Then, the effects of the

correlation between the adiabatic and isocurvature perturb&ffects of the nonvanishing and« parameters can be read
off from Fig. 3; normalizing the SW tail, nonvanishirig,

increases the heights of the acoustic peaks while nonvanish-

n more complicated cases, this may not be the case. If som#d R, @y, andac suppress the acoustic peaks. First, let us
fraction of the baryon is from the decay productdfvhile the rest ~ consider the baryonic isocurvature perturbations. In Figs. 11
is from 4, for example, the relation given in E¢3.17 does not and 12 we show the contours of the const@nt,/C,, and
hold. In this paper, however, we do not consider such a complicate€ 1/ C2ng 0N theRy, Vs a, plane, whereC; andC, 4 are the
scenario. heights of the first and second acoustic peaks, respectively.
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100 f 1 R,
80 T FIG. 12. The same as Fig. 11, except that the contours are those
of constantC,¢/Cy -
60 : : > . . . . .
0.01 0.1 1 10 100 obey a specific relation, the adiabatic result may be mim-
R, icked even when the effects of the entropy perturbation are
quite large.
FIG. 10. x? as a function ofR.. We take ,h?=0.019, h To study this issue, we calculate the goodness-of-fit pa-
—0.65, and the values o, are shown in the figure. The flat fametery” as a function ofR, and ap, (with Re=a=0).
universe is assumed. Here, the overall normalization &, is chosen such that the

x? variable is minimized. The results are shown in Fig. 13
for several sets of the cosmological parameters. Here, all the

g? Z?(G}s,;i\rlllesbe;tii Ioallcrger /\gluelﬁf g??;ngoriisepgggzlgt)ez primordial density perturbations are assumed to be scale-
ang uncorrelated entro1St el?t.urbaaions a)flf’ect the heights oipvariant. For the cases wil,,=0.2 and 0.3, it is interest-
. \ropy p ) 9 Ing that large values dR, and «y, are allowed. In particular,
the acoustic peaks in the opposite way. Thus, even with exs . ~ . e
. "for the case witH),,=0.2, only the case with nonvanishing
tremely large values of thR, and ay, parameters, the ratio

- ; . R, and «,, is allowed. Importantly, in this parameter region
C14/C1o may take a similar value as that from the adiabatic,, ° b > 5 ' : : . L
case ifR, anday, are properly related. The rattd, o/ Copgis the CMB anisotropy originates to nonadiabatic density per

o turbations while the contribution from the inflaton fluctuation
less sensitive to the parametdts and «,, and for a larger

(smallep value ofRy, (ay), the ratioC4/C,,qis suppressed. C'. becom:as n<_a_gI|g|ny smal,l,. In the following, we gall
. . . this case a “modified-curvaton” case. It should be noticed
We also calculated the ratlsry/Cong (With Carq being the -\ % B o o dified-curvaton case, the parameRysand
height of the third acoustic pepknd found that this ratio is ' tisfy th lati —(1.0-17 ' f pQ _0&;; -
almost independent d?, and «,. This is because the struc- ap, salisfy the relationa,~(1.0-1.7R, for ,=0.3. For

ture of the angular power spectrum at high multipole isfr)ar\n;%tt:lagrgﬁavsae}ges ORp anday, are not allowed in con-
dominantly determined by the adiabatic part of the perturba- It is interesting to study whether the angular power spec-

tions. We would like to emphasize that the effects of thetrum in the modified-curvaton case can be distinguished
primordial fluctuations of theb and ¢ field are quite differ- . . . 9 .
ent: C{°¥ is enhanced at a high multipole whi(éq(‘”) be- from the aQ|abat|c one by the on-going and future experi-
' | | Thus. if th d ments. In Fig. 14 we plot the CMB angular power spectrum
comes larger at a low one. Thus, if the parameRyanda;, in the adiabatic and modified-curvaton casBg= «,=0,
and R,=50 anda,=63 (which minimizes they? variable
100 ' R for R,=50), respectively. In the modified-curvaton case, the
: shape of the power spectrum at high multipole is determined
by C{°?) which is similar to that of the adiabatic case. Thus
it is difficult to distinguish two cases just by looking at the
power spectrum at high multipole. However, as one can see,
the structure of the angular power spectrum at relatively low
multipole is significantly affected. In particular, the ratio
ol C1st/Cong Will provide us an interesting probe for studying
o 104822 the modified-curvaton scenario. Since the MAP is expected
0.1 1 " 10 100 to measure the angular power spectrum at@{& %) level
up to the multipold ~1000-2000,C, at the high multipole
R, may be used to calibrate the power spectrum to see the dis-
tortion of the CMB angular power spectrum from the adia-
FIG. 11. Contours of consta@;/C4, on theR,, vs ay, plane. batic result.
(The ratios are shown in the figuredere,R.= a.=0 and we take We can also consider the case where the CDM sector has
the cosmological parameters the same as in Fig. 3. correlated and uncorrelated entropy perturbati@res, the
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. . Q=03 FIG. 14. The angular power spectrum wity=«,=0 (solid
100 ' ' line), andR,=50 anda,=63 (dashed ling We takeR;= a.=0.
The cosmological parameters are the same as those in Fig. 3. The
overall normalizations are arbitrary.
10 e If all the components in the universe originate to the de-
& cay product of¢, density perturbations generated from the
i primordial fluctuation of¢p become adiabatic. In this case,
1¢ the CMB angular power spectrum from the fluctuationgof
becomes the usual adiabatic ones wiillmos) scale-
Q =04 invariant spectrum. If this becomes the dominant part of the
0.1 L " cosmic density perturbations, then we have seen that the con-
01 1 10 straints on inflation models from observations of the CMB
angular power spectrum are drastically relaxed.
Ry If the baryon or the CDM is not generated frogh but

from a new scalar fields, on the contrary, a correlated mix-

FIG. 13. Contours of constant? on theR, vs o, plane. We ture of the adiabatic and isocurvature perturbations may
show contours ofy®=84 (solid line) and 93(dashed ling which  arise. In particular, if theys field starts to oscillate much
correspond to a 95% and 99% C.L. allowed region with yfe  before the¢ field dominates the universe, the metric and
statistics with 64 degrees of freedom, respectively. Here we takentropy perturbations obey the model-independent relation.
Q,h?=0.019, h=0.65, and the values d?,, are shown in the In this case, the CMB angular power spectrum may be sig-
figures. nificantly affected and the shape of the resultant power spec-

trum depends on which component has the correlated isocur-
case withR;#0 and «.#0). Importantly, correlated and vature perturbation. If the baryonic component has the
uncorrelated entropy perturbations both suppress the anguleorrelated isocurvature perturbation, the density perturba-
power spectrum at high multipole relative to the low one.tions after the decay ap become those given in EG3.17).
Thus, in this case, too large, is always excluded irrespec- In this caseC, at high multipole is more enhanced relative to
tive of the value ofa. if the baryon is from the decay prod- that at low multipole. On the contrary, if the CDM is not
uct of ¢. generated fromp, correlated isocurvature perturbation can
be induced in the CDM component as given in E2118). In
this case, heights of the acoustic peaks become lower relative
to the SW tail. If there exists a contamination of these com-

In this paper we discussed the effects of the late-timgonents into the total angular power spectrudy, differs
entropy production due to the decay of the scalar-field confrom the adiabatic one. The important point is that, in both
densations on the cosmic density perturbations. If the unieases, too much correlated isocurvature perturbations be-
verse is reheated by the decay of the scalar fggladnany of  come inconsistent with the present observation of the CMB
the components in the present universe are generated froppwer spectrum.
the decay products of the field. In such a case, cosmic Even with the correlated isocurvature perturbation in the
density perturbations are affected by the fluctuation of thebaryonic sector, heights of the acoustic peaks can be reduced
amplitude of¢ which may be generated during the inflation. by introducing uncorrelated isocurvature perturbation. This

VII. CONCLUSION
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may happen, for example, if we take account of the primor-of the late-time entropy production due to the decay of the

dial fluctuation of the scalar fielgt. (For example, this scalar scalar field condensation. The on-going and future experi-

field may be the Affleck-Dine fielglIn particular, if the sizes ments may observe such a signal.

of the correlated and uncorrelated entropy perturbations are

properly chosen, the resultant CMB power spectrum be-

comes consistent with the present observations without the ACKNOWLEDGMENTS
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