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Efficient cosmological parameter estimation from microwave background anisotropies

Arthur Kosowsky,* Milos Milosavljevic,† and Raul Jimenez‡

Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-801
~Received 2 June 2002; published 26 September 2002!

We reexamine the issue of cosmological parameter estimation in light of current and upcoming high-
precision measurements of the cosmic microwave background power spectrum. Physical quantities which
determine the power spectrum are reviewed, and their connection to familiar cosmological parameters is
explicated. We present a set of physical parameters, analytic functions of the usual cosmological parameters,
upon which the microwave background power spectrum depends linearly~or with some other simple depen-
dence! over a wide range of parameter values. With such a set of parameters, microwave background power
spectra can be estimated with a high accuracy and negligible computational effort, vastly increasing the
efficiency of the cosmological parameter error determination. The techniques presented here allow calculation
of microwave background power spectra 105 times faster than comparably accurate direct codes~after pre-
computing a handful of power spectra!. We discuss various issues of parameter estimation, including parameter
degeneracies, numerical precision, mapping between physical and cosmological parameters, systematic errors,
and illustrate these considerations with an idealized model of the Microwave Anisotropy Probe experiment.
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I. INTRODUCTION

By January 2003, microwave maps of the full sky at 0
resolution will be available to the world, the harvest of t
remarkable Microwave Anisotropy Probe~MAP! satellite
currently taking data@1#. The angular power spectrum of th
temperature fluctuations in these maps will be determine
a high precision on angular scales from the resolution li
up to a dipole variation; this corresponds to about 800 sta
tically independent power spectrum measurements. Re
measurements have given a taste of the data to come
though covering much smaller patches of the sky and w
potentially more serious systematic errors@2–4#.

The main science driving these spectacular technical f
is the determination of basic cosmological parameters
scribing our Universe, and resulting insights into fundam
tal physics; see@5,6# for recent reviews and@7# for a peda-
gogical introduction. The expected series of acoustic pe
in the microwave background power spectrum enco
enough information to make possible the determination
numerous cosmological parameterssimultaneously @8#.
These parameters include the long-sought Hubble param
H0, the large-scale geometry of the UniverseV, the mean
density of baryons in the UniverseVb , and the value of the
mysterious but now widely accepted cosmological cons
L, along with parameters describing the tiny primordial p
turbations which grew into present structures, and the r
shift at which the Universe reionized due to the formation
the first stars or other compact objects. While most of th
parameters and other information will be determined to

*Also at School of Natural Sciences, Institute for Advanc
Study, Einstein Drive, Princeton, NJ 08540; electronic addre
kosowsky@physics.rutgers.edu

†Electronic address: milos@physics.rutgers.edu
‡Electronic address: raulj@physics.rutgers.edu
0556-2821/2002/66~6!/063007~16!/$20.00 66 0630
°

to
it
s-
nt
al-
h

ts
e-
-

ks
e
f

ter

nt
-
d-
f
e
a

high precision, one near-exact degeneracy and other app
mate degeneracies exist between these parameters@9,10#.

The exciting prospects of providing definitive answers
some of cosmology’s oldest questions raise a potentially
ficult technical issue, namely finding constraints on a lar
dimensional parameter space. Given a set of data, what r
of points in parameter space gives models with an accept
good fit to the data? The answer requires evaluating a lik
hood function at many points in parameter space; in part
lar, finding confidence regions in multidimensional para
eter space requires looking around in the space. This
straightforward process, in principle. But a parameter sp
with as many as ten dimensions requires evaluating a lo
models: a grid with a crude 10 values per parameter cont
ten billion models. A direct calculation of this many mode
is prohibitive, even with very fast computers. While some
the parameters are independent of the others~i.e., tensor
modes!, reducing the effective dimensionality, many of th
parameters will be constrained quite tightly, requiring a fin
sampling in that direction of parameter space. An additio
problem with brute-force grid-based methods is a lack
flexibility: if additional parameters are required to correc
describe the Universe, vast amounts of recalculation mus
done. Grid-based techniques have been used for analys
cosmological parameters from microwave background~e.g.,
@11,12#! but clearly this method is not fast or flexible enoug
to deal with upcoming data sets adequately.

A more sophisticated approach is to perform a search
parameter space in the region of interest. Relevant te
niques are well known and have been applied to the mic
wave background@13–15#. Reliable estimates of the erro
region in cosmological parameter space can be obtained
random sets of around 105 models, reducing the computa
tional burden by a factor of 1000 or more compared to
cruder grid search methods. On fast parallel computers
possible to compute the power spectrum for a given mode
a computation time on the order of a second@16#, making
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Monte Carlo error determinations feasible. For improved
ficiency, useful implementations do not recalculate the en
spectrum at each point in parameter space, but rather
approximate power spectra based on smaller numbers of
culated models@17#.

Here we expand and refine this idea by presenting a se
parameters, functions of the usual cosmological parame
which reflect the underlying physical effects determining
microwave background power spectrum and thus resul
particularly simple and intuitive parameter dependences.
vious crude implementations of this idea applied to lo
resolution measurements of the power spectrum@18#; the
current and upcoming power spectrum measurements req
a far more refined implementation. Our set of parameters
be used to construct computationally trivial but highly acc
rate approximate power spectra, and large Monte Carlo c
putations can then be performed with great efficiency. Ad
tional advantages of a physically based parameter set are
the degeneracy structure of the parameter space can be
much more clearly, and the Monte Carlo computation its
takes significantly fewer models to converge.

Earlier Fisher-matrix approximations of parameter err
are a rough implementation of this general idea: if the pow
spectrum varies exactly linearly with each parameter in so
parameter set, and the measurement errors are Gaussia
dom distributed and uncorrelated, then the likelihood fu
tion as a function of the parameters can be computedexactly
from the partial derivatives of the model with respect to t
parameters@8,19,20#. Even if the linear parameter depe
dence does not hold throughout the parameter space, it
almost always be valid in some small enough region, be
the lowest-order term in a Taylor expansion. If this region
at least as large as the resulting error region, then the Fi
matrix provides a self-consistent approximation for error
termination. The difficulty is in finding a suitable paramet
set. Our aim is not necessarily to find a set of parame
which all have a perfectly linear effect on the power sp
trum. Rather, more generally, we desire a set of parame
for which the power spectrum can be approximated very
curately with a minimum of computational effort. Then w
can dispense with approximations of the likelihood functio
as in the Fisher matrix approach, and directly implemen
Monte Carlo parameter space search with a minimum
computational effort. This technique allows simple incorp
ration of prior probabilities determined from other sources
data, and if fast enough allows detailed exploration of pot
tial systematic biases in parameter values arising from
merous experimental and analysis issues such as treatme
foregrounds, noise correlations, mapmaking techniques,
model accuracy.

We emphasize that with the accuracy of upcoming mic
wave background power spectrum measurements, the
mological parameters will be determined precisely enou
that their values will be significantly affected by systema
errors from assumptions made in the analysis pipeline a
potentially, numerical errors in evaluating theoretical pow
spectra. The measurements themselves may also be d
nated by systematic errors. Extensive modelling of the
pact of various systematic errors on cosmological param
06300
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determination will beessentialbefore any parameter dete
mination can be considered reliable. This is the primary m
tivation for increasing the efficiency of parameter err
analysis. We discuss this point in more detail in the last s
tion of the paper.

The following section reviews physical processes affe
ing the cosmic microwave background and defines
physical parameter set. The key parameter, which sets
angular scale of the acoustic oscillations, has been discu
previously in similar contexts@10,21,22# but has not been
explicitly used as a parameter. The other parameters des
ing the background cosmology can then be chosen to m
other specific physical effects. Section III displays how t
power spectrum varies as each parameter changes with
others held fixed. The mapping between our physical par
eters and the conventional cosmological parameters imm
ately reveals the structure of degeneracies in the cosmo
cal parameter space. Simple approximations for the effec
each physical parameter are shown to be highly accurate
all but the largest scales in the power spectrum. We t
determine the error region in parameter space for an id
ized model of the MAP experiment in Sec. IV, comparin
with previous calculations, and test the accuracy of our
proximate power spectrum calculation. Finally, Sec. V d
cusses the potential speed of our method, likelihood esti
tion, mapping between the sets of parameters, accuracy,
systematic errors. Appendix A summarizes an analysis p
line going from a measured power spectrum to cosmolog
parameter error estimates; Appendix B details several
merical difficulties with using theCMBFAST code for the cal-
culations in this paper, along with suggested fixes.

Other recent attempts to speed up power spectrum c
putation through approximations include theDASH numerical
package@23# and interpolation schemes@12#. Our method
has the advantage of conceptual simplicity and ease of
combined with great speed and high accuracy.

II. COSMOLOGICAL PARAMETERS
AND PHYSICAL QUANTITIES

We consider the standard class of inflation-like cosm
logical models, specified by five parameters determining
background homogeneous spacetime~matter densityVmat,
radiation densityV rad, vacuum energy densityVL , baryon
densityVb , and Hubble parameterh), four parameters de
termining the spectrum of primordial perturbations~scalar
and tensor amplitudesAS and AT and power law indicesn
andnT), and a single parametert describing the total optica
depth since reionization. We neglect additional complicatio
such as massive neutrinos or a varying vacuum equatio
state. This generic class of simple cosmological models
pears to be a very good description of the Universe on la
scales, and has the virtue of arising naturally in inflationa
cosmology. Of course, any analysis of new data should
test whether this class of models actually provides an acc
ably good fit to the data, and only then commence with
terminations of cosmological parameters.

What constraints do a measurement of the microw
background power spectrum place on this parameter sp
7-2
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A rough estimate assumes the likelihood of a particular se
parameters is a quadratic function of the parameters~the
usual Fisher matrix technique!; better is a Monte Carlo ex
ploration of parameter space in the region of a best-fit mo
For either technique to give reliable results, it is imperat
to isolate the physical quantities which affect the microwa
background spectrum and understand their relation to
cosmological parameters. If a set of physical quantit
which have essentially orthogonal effects on the power sp
trum can be isolated, then extracting parameter space
straints becomes much more reliable and efficient.

The five parameters describing the background cosm
ogy induce complex dependences in the microwave ba
ground power spectrum through multiple physical effec
Using the physical energy densitiesVmath

2, Vbh2, and
VLh2, as has been done in numerous prior analyses,
proves the situation but is still not ideal. The characteris
physical scale in the power spectrum is the angular scal
the first acoustic peak, so it is advantageous to use this s
as a parameter which can be varied independently of
other parameters. This angular scale is in turn determine
the ratio of the comoving sound horizon at last scatter
~which determines the physical wavelength of the acou
waves! to the angular diameter distance to the surface of
scattering~which determines the apparent angular size of t
yardstick!. We first determine this quantity in terms of th
cosmological parameters, and then choose three o
complementary quantities. The analytic theory underly
any such choice of physical parameters has been worked
in detail ~see@24–27#, and also@28,29#!.

The angular diameter distance to an object at a redshz
is defined to beDA(z)5R0Sk(r )/(11z) where, following
the notation of Peacock@30#, R0 is the ~dimensionful! scale
factor today and

Sk~r !5H sinr , V.1;

r , V51;

sinhr , V,1;

~1!
k

fi
ee
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the Friedmann equation provides the connection betw
redshift z and coordinate distancer. With a dimensionless
scale factora and a Hubble parameterH5ȧ/a, the differen-
tial relation is

H0R0dr5
2da

@~12V!a21VLa41Vmata1V rad#
1/2

. ~2!

Thus the relation between scale factor and coordinate
tance becomes

r 5uV21u1/2E
a

1 dx

@~12V!x21VLx41Vmatx1V rad#
1/2

~3!

and the angular diameter distance is just

DA~a!5aH0
21uV21u21/2Sk~r !, ~4!

using the above expression forr. Here we have used th
relationH0R05uV21u21/2 which follows directly from the
Friedmann equation.

The sound horizon is defined asr s5r p a* , and the par-
ticle horizon (r p) is

r p~ t !5E
0

tcs~ t8!

a~ t8!
dt8 ~5!

wherecs(t) is the sound speed of the baryon-photon fluid
time t; to a very good approximation, before decoupling t
sound speed is given by@24#

cs
25

1

3
~113rb/4rg!21. ~6!

Using this expression plus the equivalent expression
Eq. ~2! connectingdt andda gives
r p~a!5
1

H0A3
E

0

a dx

F S 11
3Vb

4Vg
xD @~12V!x21VLx41Vmatx1V rad#G1/2. ~7!
for
The physical quantity relevant to the microwave bac
ground power spectrum is

A[
r s~a* !

DA~a* !
~8!

where the two functions are given by Eqs.~7! and ~4!, and
a* is the scale factor at decoupling. An accurate analytic
for a* in terms of the cosmological parameters has b
given by Hu and Sugiyama@26#:
-

t
n

z* 5
1

a*
2151048@110.00124~Vbh2!20.738#

3@11g1~Vmath
2!g2#,

g1[0.0783~Vbh2!20.238@1139.5~Vbh2!0.763#21,

g2[0.560@1121.1~Vbh2!1.81#21. ~9!

This fit applies to standard thermodynamic recombination
a wide range of cosmological models.~Note that while the
7-3
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formula was constructed only for models with the stand
value for V rad, the effect of a change of radiation densi
will come only through the redshift of matter-radiatio
equality, and thusVmath

2 can be replaced by a factor propo
tional toVmat/V rad to account for a variation in the radiatio
density. The changes inz* are small anyway and have littl
impact on our analysis.! Sincea* !1, the term proportiona
to VL in Eq. ~7! may be dropped and the integral performe
giving @25#

r p~a!5
2A3

3
~V0H0

2!21/2S aeq

Req
D 1/2

ln
A11R1AR1Req

11AReq

,

~10!

whereR53rb/4rg is proportional to the scale factor.
If two cosmological models are considered which bo

have adiabatic perturbations and the same value forA, to
high accuracy their acoustic peaks will differ only in heigh
not position. This is an obvious advantage for constrain
models. The peak positions, and thusA, will be extremely
well constrained by power spectrum measurements. O
combinations which vary the peak heights only will be le
well determined.

Choosing four other parameters describing the ba
ground cosmology must balance several considerations~i!
the new set of parameters must cover a sufficiently la
region of parameter space;~ii ! the power spectrum shoul
vary linearly or in some other simple way with the new p
rameters;~iii ! the new parameters should be nearly ortho
nal in the cosmological parameter space;~iv! the new param-
eters should correspond to the most important indepen
physical effects determining the power spectrum;~v! com-
mon theoretical prior constraints, like flatness or stand
radiation, should be simple to implement by fixing a sing
parameter. No parameter set can satisfy all of these c
straints perfectly. We use the following parameters, wh
provide a good balance between these criteria:

B[Vbh2,

V[VLh2,

R[
a* Vmat

V rad
,

M[~Vmat
2 1a

*
22V rad

2 !1/2h2. ~11!

B is proportional to the baryon-photon density and thus
termines the baryon driving effect on the acoustic osci
tions @24,27#. R is the matter-radiation density ratio at r
combination, which determines the amount of ea
integrated Sachs-Wolfe effect.V determines the late-time in
tegrated Sachs-Wolfe effect arising from a late vacuu
dominated phase, but otherwise represents a nearly exac
generacy~sometimes called the ‘‘geometrical degeneracy!.
M couples only to other small physical effects and is
approximate degeneracy direction. This choice of parame
is not unique, but this set largely satisfies the above crite
06300
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Given values forA, B, V, R, andM, they can be in-
verted to the corresponding cosmological parameters by
writing the definition ofA in terms ofB, V, R, M, andh,
then searching inh until the desired value forA is obtained.
Vb and VL then follow immediately, whileVmat and V rad
can be obtained with a few iterations to determine a prec
value for a* . A less efficient but more straightforwar
method we have implemented is simply to search
5-dimensional cosmological parameter space for the cor
values.

The other cosmological parameters which affect the
crowave background power spectrum, aside from tensor
turbations, are the reionization redshift and the amplitu
and power law index of the scalar perturbation power sp
trum. For reionization, we use the physical parameter

Z[e22t, ~12!

the factor by which the microwave background anisotrop
at small scales are damped due to Compton scattering by
electrons after the Universe is reionized. At large scales,
temperature fluctuations are suppressed by a smaller am

The primordial perturbation amplitude cannot be me
sured directly, but only the amplitude of the microwa
background fluctuations. Some care must be taken in
definition of the amplitude of the microwave fluctuations
that the other physical parameters are not significantly
generate with a simple change in normalization. For
ample, one common normalization is some weighted aver
of theCl ’s over the smallestl values, say 2, l ,20 @31#. This
is known as ‘‘COBE-normalization’’ because this is th
range of scales probed by the Cosmic Background Explo
~COBE!, which tightly constrains the normalization of th
temperature fluctuations at these scales@11#. But although
such a normalization is useful for interpreting the COB
results, it is a bad normalization to adopt when probing
much larger range inl-space. The reason is that the lowe
multipoles have a significant contribution from the integrat
Sachs-Wolfe effect: if the total matter density changes s
nificantly between two models, the resulting lowl multipole
moments will also change. If the normalization is fixed
low l, then the result is that the two models will be offset
high l values. As a concrete example, consider two mod
which differ only inV, with A, B, M andR held fixed. The
only physical difference between these two models is a
ference in the structure growth rate at low redshifts, and
particular the fluctuations at the last scattering surface
identical. But if these two models are COBE normalize
then everyCl for l 520 is offset between the two model
Defining the normalization as an average band power ov
wider range ofl values@10# is better but not ideal. We advo
cate defining a normalization parameterS by the amplitude
of the perturbations on the scale of the horizon at last s
tering, corrected by the amount of small-scale suppressio
the Cl ’s due to reionization. In practice, for models with th
same values ofn, this normalization essentially correspon
to the amplitude of the acoustic oscillations atl values higher
than the first several peaks. Note that increasingZ while
holding S and the other physical parameters fixed keeps
7-4
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EFFICIENT COSMOLOGICAL PARAMETER ESTIMATION . . . PHYSICAL REVIEW D66, 063007 ~2002!
microwave background power spectrum the same at hil
while enhancing the signal at lowl. The first few peaks can
not be used for normalization because they have been
jected to driving by the gravitational potential as they cro
the horizon@27#, so their amplitudes vary significantly wit
B andR, as shown in the following section.

The primordial power spectrum of density perturbations
generally taken to be a power law,P(k)}kn, with n51 cor-
responding to the scale-invariant Harrison-Zeldovich sp
trum. Making the approximation thatk and l have a direct
correspondence, the effect ofn on the microwave back
ground power spectrum can be modelled as

Cl~n!5Cl~n0!S l

l 0
D n2n0

, ~13!

which is a good approximation for power law power spect
A departure from a power law, characterized bya @32#, can
be represented in a similar way. Note that since the dep
dence is exponential, a linear extrapolation is never a g
approximation over the entire interesting range 2, l
,3000. The choice ofl 0 is arbitrary: changingl 0 simply
gives a different overall normalization.

Finally, note that the amplitude of the tensor mode pow
spectrum should be used as a separate parameter, no
common choice of the tensor-scalar ratio. The tensor mo
contribute at comparatively large angular scales; they are
nificant only for l ,100 given current rough limits on th
tensor amplitude. Varying the tensor amplitude indep
dently automatically leaves the normalization parameteS
fixed.

In the rest of the paper, we refer to the parametersA, B,
V, R, M, S, andZ as ‘‘physical parameters,’’ as opposed
the usual ‘‘cosmological parameters’’Vb , Vmat, V rad, Vvac,
h, Q2 ~a quadrupole-based normalization!, andzr .

III. POWER SPECTRA

We now present the dependence of the temperature
tuation power spectrum on these physical parameters. A
fiducial model, we choose a standard cosmology withV
50.99, L50.7, Vmat50.29, Vb50.04, h50.7, n51, and
full reionization at redshiftzr57, with standard neutrinos
We compute power spectra for the fiducial model and
evaluating the various numerical derivatives using Seljak
Zaldarriaga’sCMBFAST code@33–35#. Note that the model is
slightly open rather than flat to compensate for numer
instabilities in theCMBFAST code; see the discussion in th
Appendix. The corresponding physical parameters areA0
50.0106, B050.0196, V050.338, M050.154, andR0
53.252. Since the dependence of the spectrum onS is
trivial, its definition is arbitrary; it can be taken, for exampl
as the amplitude of a particular high peak, or as the equ
lent scalar perturbation amplitudeAS at the scale which the
power lawn is defined for a model with no reionization. W
do not consider tensor perturbations in this paper, which
be analyzed separately by the same techniques; the te
perturbations are simpler because they depend on fewe
06300
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rameters than the scalar perturbations. None of the follow
results depend qualitatively on the fiducial model chosen

The top panel of Fig. 1 displays power spectra as
parameterA varies while the other physical parameters a
held fixed. It is clear that the effect ofA is only to determine
the overall angular scale, except for the small integra
Sachs-Wolfe~ISW! effect for l ,200. For the bottom panel
the l-axis of each power spectrum is rescaled to giveCl as a
function of lA/A0, and then the percent difference betwe
the rescaled model and the fiducial model is plotted. T
small variation of the scaled power spectrum between aro
l 550 andl 5200 is due to the early ISW effect and can
accurately modelled as a linear variation, while betweel
52 andl 550 the variation withA is more complicated due
to the late-time ISW contribution. Forl .200, the scaled
power spectra match to within 1%; the residual discrepa
is likely due to numerical inaccuracy. SinceA will be tightly
constrained by the peak positions, this numerical error w
not affect the determination ofA, but may contribute a sys
tematic error to the determination of other parameters at
1% level.

Figure 2 displays the power spectrum variation withB,
keeping the other parameters fixed. This plot clearly sho
the well-known baryon signature of alternating peak e
hancement and suppression. The variation of a partic
multipole Cl with B is highly linear forl .50 for variations
of up to 20%; for all multipoles, the dependence is linear
variations of up to 10%. A figure of merit for a linear ap
proximation to the power spectrum is whether the errors
the approximation are negligible compared to the cosmic
tistical error at a given multipole. The bottom panel of Fig
shows just how good the linear approximation is for seve
selectedl values. The horizontal axis plots the fraction

FIG. 1. Temperature power spectra for the fiducial cosmolog
model~top panel, heavy line!, plus models varying the parameterA
upwards by 10%~curve shifts to lowerl values! and downwards by
10% ~curve shifts to higherl values! while keepingB, M, V, R, S
andn fixed. The bottom panel displays the fractional error betwe
the fiducial model and the other two models withl-axes rescaled by
the factorA /A

8
.
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KOSOWSKY, MILOSAVLJEVIC, AND JIMENEZ PHYSICAL REVIEW D66, 063007 ~2002!
change in the parameterB. The vertical axis plots the ratio o
the change inCl , Cl(B)2Cl(B0), to the statistical error
from the cosmic variance at that multipole,s l

5Cl(B0)A@2/(2l 11)#. ~Any measurement of the multipol
Cl is subject to a statistical error at least as large as
cosmic variance error, due to the finite number of mod
sampled on the sky.! The linear dependence remains va
even near the ‘‘pivot’’ points between a peak and a trou
Thus a linear extrapolation using computed numerical
rivatives is highly accurate at reproducing theB dependence
the error in such an approximation appears to be domin
by systematic numerical errors in computing the power sp
trum, and funny behavior of some of the multipoles for sm
variations inB is surely due to systematic errors.

Figure 3 shows the variation of the power spectrum w
respect to the parameterR, keeping the others fixed, with th
corresponding dependence of specific multipoles.
smaller values ofR, matter-radiation equality occurs late
so the Universe is less accurately described as ma
dominated at the time of last scattering, leading to an
creased amplitude of the first few peaks from the integra
Sachs-Wolfe effect at early times. The dependence onR is
not quite as linear as forB, but still the spectrum varies
highly linearly with R for parameter variations of 10% fo
l .30. Figure 4 shows the same for the parameterM, which
is an approximate degeneracy direction: the power spect
changes noticeably only in the neighborhood of the fi
peak. If the standard three massless neutrino species is
posed as a prior,M is fixed.

FIG. 2. Temperature power spectra for the fiducial cosmolog
model~top panel, heavy line!, plus models varying the parameterB
upwards by 25%~higher first peak! and downwards by 25%~lower
first peak! while keepingA, M, V, R, S, andn fixed. The bottom
panel displaysCl as a function ofB, for l 550, 100, 200, 500, and
1000. The horizontal axis shows the fractional change inB, while
the vertical axis gives the change inCl as a fraction of the cosmic
variance at that multipole.
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Variation of V holding the others fixed is nearly an exa
physical degeneracy@9,10#, broken only by the late-time
ISW effect at low multipole moments displayed in Fig.
This variation at smalll values is not well approximated b
simple linear extrapolation; accurate approximation m
rely on more sophisticated schemes, but the total contr
tion to constraining cosmological models will have compa
tively little weight due to the large cosmic variance. A

FIG. 4. Same as Fig. 2, except varying the parameterM while
keeping the others fixed. LargerM increases the first peak heigh
Again, the glitch in the bottom panel is due to systematic errors
CMBFAST.

l FIG. 3. Same as Fig. 2, except varying the parameterR while
keeping the others fixed. LargerR increases the peak heights. Th
substantial glitch in the bottom panel is due to systematic error
CMBFAST.
7-6
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EFFICIENT COSMOLOGICAL PARAMETER ESTIMATION . . . PHYSICAL REVIEW D66, 063007 ~2002!
higherl values, the power spectra should be precisely deg
erate, and the extent to which they are not is a measur
numerical inaccuracies. Note that the inaccuracies are in
form of systematic offsets at levels smaller than a perc
When analyzing data, the variation inV can simply be set to
zero for all l values higher than the first acoustic peak. I
flat universe is imposed as a prior condition, the parameteV
is then fixed.

Aside from initial conditions, reionization is the othe
physical effect which can have a significant impact on
power spectrum. Note that the effective normalization
use depends onZ, so that asZ varies, the power spectrum
retains the same amplitude at highl. As discussed in the
previous section, for largel the effect of changing the tota
optical depth is effectively just a change in the overall a
plitude. Thus for our set of parameters, variations inZ while
holding the other parameters fixed change the power s
trum only at the largest scales. For this reason, we do
consider reionization further here. Note that for polarizati
reionization will generate a new peak in the polarizati
power spectrum at lowl, and this effect may require mor
complicated analytic modelling than a simple linear extra
lation @36#.

Finally, we show the effect of changing the spectral ind
n of the primordial power spectrum in Fig. 6. Equation~13!

FIG. 5. Varying the parameterV, keeping the others fixed, fo
low l ~top! and higherl ~center! values; note the scales of the ve
tical axes. Only the lowest multipoles have any significant va
tion, arising from the integrated Sachs-Wolfe effect at late tim
the bottom panel shows the dependence of thel 55, 10, and 20
multipoles onV. A linear approximation is rough but reasonab
higher-order approximations will model this dependence better
higher l, the variation between the curves is a measure of the
merical accuracy of the code generating theCl curves.
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gives a very good approximation to the effect of changingn;
the largest errors are at smalll and in the immediate region
of the first few peaks and troughs, amounting to less th
10% of the cosmic variance for any individual multipole.

We have now displayed simple numerical or analytic a
proximations for the effect of all parameters with a sizea
impact on the cosmic microwave background power sp
trum, for l .50 and for parameter variations which are in t
range to which the parameters will be restricted by upcom
microwave background maps. For a model which diffe
from a fiducial model in several different parameters, it is
principle ambiguous in what order to do the various extra
lations and approximations. For example, should a reion
tion correction be applied before or after theA parameter
extrapolation? In practice, however, most of the parame
ranges involved will be quite small, particularly for theA
parameter, and the order in which all of the approximatio
are applied to the fiducial spectrum is essentially irreleva
We test the validity of the various approximations for arb
trary models below.

We also note that while we have demonstrated explic
the validity of linear extrapolations and other simple a
proximations in computing deviations from a particular fid
cial power spectrum, we have not shown explicitly that th
is true for any fiducial cosmological model. But current me
surements point towards a Universe well-described b
model close to the fiducial one considered here, and in
unlikely event that the actual cosmology is significantly d
ferent, the various approximations are simple to check
plicitly for any underlying model.

Some of the linear extrapolations lose accuracy for
smallestl values. It is not clear whether any simple appro
mation is sufficient for reproducing the power spectrum
small l values, because a variety of different effects contr
ute in varying proportions. While these large scales ha
significant cosmic variance and do not have very much
tistical weight compared to the rest of the spectrum, sev

FIG. 6. A comparison of computed~solid! and approximated
~dashed! power spectra for different values of the scalar indexn, for
n50.8 andn51.2 ~dashed!, where the approximated values hav
been calculated by applying Eq.~13! to the n51 model ~dotted!.
Note the displayed variation inn is roughly three times larger tha
the constraint MAP will impose~see Fig. 7!.
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FIG. 7. Parameter error con
tours anticipated for the MAP sat
ellite in the physical paramete
space. In each panel, the enti
likelihood region has been pro
jected onto a particular plane. Th
axes refer to the fractional varia
tion for each parameter with re
spect to the fiducial one, e.g.,dA
5(A2Afid)/Afid . The contours
show 68%, 95%, and 99% confi
dence levels.
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parameters (V, Z, T, nT) have significant effectsonly at
small l, and accurate limits on these parameters will requ
approximating these moments. One possible approach
use quadratic or higher-order extrapolations. We have
explored the efficacy of such approximations, and they m
require a more accurate numerical code, but promise to
good solution. A more complicated approach would be
develop analytic fitting formulas. Steps in this direction ha
been taken by Durrer and collaborators@37#, but their solu-
tions rapidly lose accuracy forl .10, and a variety of physi-
cal effects are neglected which contribute at the few perc
level or more. Another possibility is an expanded numeri
approximation, where the effects of our parameters are fi
linear or quadratic, but instead of fitting the totalCl depen-
dence, the various separate terms~i.e., quadratic combina
tions of Sachs-Wolfe, integrated Sachs-Wolfe, Doppler, a
acoustic effects! contributing to eachCl are modelled inde-
pendently. In the estimates below, we will not consider t
sor perturbations and fix the parameterZ, while V is a de-
generate direction; we thus sidestep the issue
approximating the power spectrum for lowl, and do not
discuss the issue further here.

IV. ERROR REGIONS FOR COSMOLOGICAL
PARAMETERS

Given some data, we want to determine the error regio
parameter space corresponding to some certain confid
06300
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level in fitting the data. This must be done by looking arou
in parameter space in the vicinity of the best-fitting mod
With a fast computation of the theoretical power spectr
for different points in parameter space in hand, a straight
ward Metropolis algorithm can be used to construct a Mo
Carlo exploration of the parameter space. Refined techniq
with the label of Markov chains have recently been appl
to the microwave background@15,38#. Our approximate
power spectrum evaluation renders these techniques hi
efficient.

As a demonstration, we consider estimated power sp
trum measurement errors drawn from thex2l 11

2 probability
distribution derived in Ref.@39#. We assume that the Uni
verse is actually described by a particular fiducial cosmolo
cal model. With the simple assumption that the measurem
errors for eachCl are uncorrelated, the likelihood of a co
mological model being consistent with a measurement of
fiducial model becomes trivial to compute. Then we map
likelihood around the fiducial model via a Markov chain
points in parameter space, starting with the fiducial mo
and moving to a succession of random points in the sp
using a simple Metropolis-Hastings algorithm. Sophistica
convergence tests can be applied to the chain to determ
when the distribution of models in the Monte Carlo sampli
has converged to a representation of the underlying lik
hood function. The chain of models should be constructed
the physical parameter space: the roughly orthogonal eff
7-8
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FIG. 8. The same as Fig. 7, ex
cept using the Fisher matrix ap
proximation to the actual likeli-
hood. The contours in the two
cases are very similar.
o
d
a
.

th
ith
a

pe
e
a

om
e

on
um
l-
us
e-
e

nd
sk
n
on

We
du-
cal

ith
le

al-

the
n of
is

ales
a-

the
Ap-

,
ell-
ns

o
in

trix
od
of the physical parameters on the power spectrum lead t
efficient Monte Carlo sampling of the space. For each mo
in the chain, the cosmological parameters of the model
computed and stored along with the physical parameters

The commonly used Fisher matrix approximation@8# ex-
pands the likelihood function in a Taylor series around
most likely model and retains only the quadratic term. W
Gaussian uncorrelated statistical errors, the Fisher matrix
proximation becomes exact whenever the parameter de
dence of theCl ’s is exactly linear in all parameters. Since th
power spectrum is nearly linear in most of our physical p
rameter set, we can check our Monte Carlo results by c
paring with the Fisher matrix likelihood computed with th
physical variables.

As a simple illustration, we determine the error regi
corresponding to a simplified model of the power spectr
which will be obtained by the MAP satellite, currently co
lecting data. MAP’s highest frequency channel has a Ga
ian beam with a full-width-half-max size of about 0.21 d
grees. MAP will produce a full-sky map of the microwav
background at this resolution with a sensitivity of arou
35 mK per 0.3 square-degree pixel. We neglect eventual
cuts and assume allCl estimates are uncorrelated. We co
sider models with only scalar perturbations and fixed rei
ization. The physical parameter space is thusA, B, M, R, V
andn. The other parameters we have fixed~tensor perturba-
tions,Z) affect the power spectrum only at smalll, and will
06300
an
el
re

e

p-
n-

-
-

s-

y
-
-

have little effect on the physical parameters considered.
assume the underlying cosmology is described by the fi
cial model of the previous section. Fundamental physi
constraints have been enforced:Vb,Vmat and all densities
must be positive. Additionally, we only consider models w
Vvac,2 and discard any models which are not invertib
from the physical to the cosmological parameters~these
amount to a handful of models with extreme parameter v
ues!.

Figure 7 shows the anticipated MAP error contours in
physical parameter space, extracted from a Markov chai
33104 models. The full 7-dimensional likelihood region
projected onto all pairs of parameters. The parameterV is
essentially unconstrained by MAP, whileM has a 1-s error
of around 30%. Measurements extended to smaller sc
will not significantly improve constraints on these two p
rameters: they represent true physical degeneracies in
model space. The other parameters are well constrained.
proximate 1-s errors are 0.5% forA, 5% for R, 3% for B,
2% for S, and 3% forn. The error regions are elliptical
because the likelihood region in these parameters is w
approximated by a quadratic form. The residual correlatio
involving S and n will be lifted by measurements out t
higher l values; the parameters are largely uncorrelated
their power spectrum effects. Figure 8 shows a Fisher ma
estimate of the same likelihood. The two sets of likeliho
7-9
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FIG. 9. The likelihood distri-
bution in Fig. 7 mapped into the
cosmological parameter space.
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contours are very close, as expected since we have sh
explicitly that the power spectrum varies nearly linearly
the physical variables over a parameter region consis
with MAP-quality data. The most notable exception is t
variableA, which does not give a linear variation, but it is s
well constrained that it is effectively fixed when consideri
its impact on determining the other parameters. The conto
will also differ slightly due to the nonlinear behavior ofn,
but the general excellent agreement demonstrates that
Monte Carlo technique works as expected.

In Fig. 9, we replot Fig. 7 in the cosmological parame
space. This procedure is trivial, since we calculate the c
mological parameter set for each model. The resulting c
tours are deformed, reflecting the nonlinear relation betw
the physical and cosmological parameter sets. Clearl
Fisher matrix approximation in the cosmological variabl
as has been done in numerous analyses, will give sig
cantly incorrect error regions@10#. Note, however, that for
MAP-quality data, the Fisher matrix errors in the physic
variables projected into the cosmological variables give
highly accurate result, Fig. 10, in contrast to the claims
Ref. @10#. The Fisher matrix approximation in the physic
parameter space can be used to further increase the effic
of error region evaluation, which may be useful in the ca
where the computation of the error regions is dominated
evaluation of the likelihood for a given model from actu
data. If the likelihood evaluation is at least as efficient as
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power spectrum evaluation, then the increased efficie
from a Fisher matrix approximation may not result in dr
matic increases in computational speed, since in both c
the physical parameter space must be sampled and param
conversion performed at each point to construct the lik
hood contours in the space of the cosmological paramet

It is useful to plot error regions in both sets of paramete
Physical parameters represent the actual physical quan
which are being directly constrained by the measureme
and the error regions are nearly elliptical. The cosmologi
parameters are useful theoretically and for comparisons w
other data sources, i.e., large-scale structure or super
standard candles. One advantage of determining the e
region via a Monte Carlo technique is that prior constrai
on cosmological parameters can be implemented simply

When the Fisher matrix approximation is computed in t
physical parameter space, it is highly accurate. This does
actually help much, however: if information about cosm
logical parameters is desired, transforming from the phys
to the cosmological parameter space requires some kin
sampling of the likelihood region. The most efficient way
do this is via a Monte Carlo technique, so the addition
computational overhead in performing a Monte Carlo like
hood evaluation of the physical variable likelihood instead
a Fisher matrix approximation is negligible.

To test the validity of our numerical power spectrum a
proximations, we choose 1000 models at random from
7-10
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FIG. 10. The likelihood distri-
bution in Fig. 8 mapped into the
cosmological parameter spac
These contours, derived from
Fisher matrix approximation, are
very close to those in Fig. 9.
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above Monte Carlo set of cosmological models. We comp
each numerically usingCMBFAST, and then compare the com
puted and approximated models. The two are compared
ing the statistic

x25(
l

~Cl
approx2Cl

num!2~s l
MAP!22 ~14!

where (s l
MAP)2 is the variance ofCl in our model MAP data.

For MAP, the measured power spectrum will consist of a
proximately 800 independent multipole moments, so an
proximate power spectrum which differs from the actu
model power spectrum by the MAP error at each multip
will have a value for the statisticx2 of around 800. Figure 11
shows the error distribution for our subset of models. T
statisticx2 for each model is plotted against the ‘‘distanc
in physical parameter space of the model from the fidu
model, where the distance measure is the Fisher matrix:

d5@~P2P0!F~P2P0!#1/2, ~15!

whereP is a vector of physical parameters corresponding
the model considered,P0 is the vector of fiducial-model pa
rameters, and
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1

~s l
MAP!2

]Cl

]Pi

]Cl

]Pj
~16!

is the Fisher matrix. This is roughly equivalent to measur
the distance along each axis in the physical parameter s
in units of the 1-s error interval in that parameter direction
The solid-circle points are models with 2,Nn,4, for which
the worst-approximated models disappear. The difference
two possible origins: either linear extrapolation is not va
over a large enough range in the variablesR and M to
handle these models, orCMBFAST does not provide accurat
computations in this range. The second possibility see
more likely, since the code contains an explicit trap preve
ing computations for these unusual numbers of neutrino s
cies.

For essentially all other models, the error averaged o
all multipoles is small compared to the MAP statistical e
rors, and the error distribution is roughly independent of
distance in parameter space, showing that our numerica
proximations are valid. Furthermore, most of the total er
tends to come from a small number of multipoles, indicati
that systematic errors inCMBFAST dominate the total differ-
ence between our approximations and the direct numer
calculations. Given this fact, we forego a more thorou
characterization of the errors in our approximate spectr
computations until a more accurate code is available, but
7-11
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approximations are likely accurate enough for reliable
rameter analysis. It is unclear at this point whether the er
in our approximations or the systematic errors inCMBFAST

will have a greater impact on the inferred error region.~Sev-
eral other public CMB Boltzmann codes are in fact availab
but none are as general asCMBFAST, allowing for arbitrary
curvature, vacuum energy, and neutrino species, all of wh
are required for the analysis presented here.!

V. DISCUSSION AND CONCLUSIONS

Error regions similar to Fig. 9 have been previously co
structed for model microwave background experime

@10,38#. The remarkable point about our calculation is th
the entire error region, constructed from power spectra
33104 points in parameter space, has been computed
few seconds of time on a desktop computer. In fact, since
power spectra can be computed with a few arithmetic op
tions per multipole moment, the calculation time might n
even be dominated by computing model power spectra,
rather by computing the likelihood function or by convertin
between the cosmological and physical parameters.

For actual nondiagonal covariance matrices describ
real experiments, the computation of the likelihood w
dominate the total computation time. Gupta and Heav
have recently formulated a method for computing an
proximate likelihood with great efficiency@40#, based on
finding uncorrelated linear combinations of the power sp
trum estimates@41#. Each parameter corresponds to a uniq
combination, so the likelihood is calculated with a handful
operations. Moreover, the method is optimized so the par
eter estimation can be done with virtually no loss of ac
racy. Using this technique, likelihood estimates for realis
covariance matrices will be roughly as efficient as our pow
spectrum estimates.

The conversion from the physical parameters to cosm

FIG. 11. A plot of the difference between approximate and
merical power spectra versus distance from the fiducial mode
parameter space, for 1000 cosmological models drawn rando
from the distribution in Fig. 7. The solid circles are for models w
2,Nn,4.
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logical ones requires evaluation of several numerical in
grals. The integrands will be smooth functions, and this s
can likely be made nearly as efficient as the power spect
evaluation, although we have not implemented an optimi
routine for parameter conversion. We make the followi
rough timing estimate: each multipole of the power spectr
can be approximated by a handful of floating point ope
tions, and an approximate likelihood and the parameter c
version both will plausibly require similar computation
work. So we anticipate on the order of 10 floating po
operations per multipole for each of 1000 multipoles. On
gigaflop machine, this results in evaluation of around 15

models per second, so a Markov Chain with tens of th
sands of models can be computed in under a second
course, such a computation is trivially parallelizable, and c
easily be sped up by a factor of tens on a medium-size
allel machine. In contrast, other state-of-the-art parameter
timation techniques@16,17,23#, dominated by the powe
spectrum calculation, compute roughly one model per s
ond, requiring several hours for a 104 point computation.

This great increase in computational speed is highly u
ful. All upcoming microwave background measurements a
resulting parameter estimates will be dominated by syst
atic errors, both from measurement errors when observ
the sky and processing errors in the data analysis pipe
The only way to discern the effect of these errors is throu
modelling them, requiring a determination of parameters
merous times. The microwave background has the poten
to constrain parameters at the few percent level. But a va
tion of this size in any given parameter will result in chang
in Cl ’s of a few percent, which is significantly smaller tha
the errors with which eachCl will be measured. This mean
that small systematic effects distributed over manyCl ’s can
bias derived parameter values by amounts larger than
formal statistical errors on the parameter. Exhaustive sim
lation of a wide range of potential systematics will be r
quired before the accuracy of highly precise parameter de
minations can be believed, and our techniques make s
investigations far faster and easier.

Along with increased speed, our approximation metho
also promise high accuracy. A careful error evaluation is h
dered by systematic errors inCMBFAST; our numerical ap-
proximations give better accuracy than the predominant
merical code for parameter ranges generally larger than
region which will be allowed by the MAP data. The physic
set of variables presented here clarify the degeneracy s
ture of the power spectrum, clearly displaying degener
and near-degenerate directions in the parameter space
example, with the physical parameters presented here,
clear that any tensor mode contribution, which affects o
low-l multipoles, will have a negligible impact on the erro
contours in Fig. 7.

Bond and Efstathiou used a principle component analy
to claim that uncertainties in the tensor mode contributio
would be the dominant source of error for all of the cosm
logical parameters, and further claimed that as a result,
Fisher matrix approximation will overestimate the errors
other apparently well-determined parameters such as ouB
@10#. These results are clearly valid only for data which a
significantly less constraining than the MAP data will b

-
in
ly
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Essentially, their approximate degeneracy trades off va
tions in R andB, which change the heights of the first fe
peaks, with variations inns , which also impact the first few
peaks, while holdingA fixed. From our analysis, it is clea
that this degeneracy only holds approximately, sinceR and
B have a significant impact only on the first three pea
while ns affects all of the peak heights. Indeed, a care
examination of Fig. 3 in@42# shows that the power spectr
are only approximately degenerate, with peak height dif
ences which are significant for MAP. The addition of tens
modes allows a rough match between the two power spe
at low l values, but for highl values the discrepancy in pea
heights is already evident at the third peak and will beco
larger for higher peaks, since the values ofns in the two
models are so different.

Gravitational lensing makes a negligible difference in t
linearity of the parameter dependences. We have not
cluded polarization in this analysis, but the three other po
ized CMB power spectra can be handled in the same wa
the temperature case using standard techniques@43,44#.

We have shown that a proper choice of physical para
eters enables the microwave background power spectru
be simply approximated with high accuracy over a sign
cant region of parameter space. This region will be la
enough for analyses of data from the MAP satellite, althou
larger regions could be stitched together using multiple
erence models. Our approximation scheme requires
computing numerical derivatives of the power spectrum m
tipoles with respect to the various parameters, but this m
be done only once and then computing further spectra
extremely fast~in the neighborhood of 105 models per sec-
ond or more on common computers!. The error determina-
tion techniques in this paper require the numerical evalua
of only tens of power spectra rather than thousands or
lions, so speed of the power spectrum code will not be
paramount concern. On the other hand, we emphasize
for any high-precision parameter estimate, even small s
tematic errors in computingCl ’s can lead to biased param
eter estimates comparable to the size of the statistical er
These two considerations argue for a significant revision
CMBFAST ~CMBSLOW, perhaps?! or construction of other in-
dependent codes which focus on overall accuracy and st
ity of derivatives with respect to parameters rather than
computational speed. Such a code, combined with the
mation techniques in this paper and efficient likeliho
evaluation methods@40# will provide a highly efficient and
reliable way to constrain the space of fundamental cos
logical parameters.
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APPENDIX A: A MODEL PIPELINE FOR
PARAMETERS ANALYSIS

In the interests of completeness, in this appendix we o
line an analysis pipeline for cosmological parameters a
their errors. Our basic data set will be a high-resolution m
crowave background map, from which has been extracted
angular power spectrum~i.e., theCl ’s! and a covariance ma
trix for the Cl ’s. Given this data set, plus potentially releva
data from other sources, we need to find the best-fit cos
logical model and the error contours in the parameter sp

In the case of an ideal, full-sky map with only statistic
errors and uniform sky coverage, the covariance matrix
duces to a multiple of the identity matrix, but in general, f
most experiments the covariance matrix may contain sign
cant off-diagonal terms. Even for the MAP satellite, whi
will come close to a diagonal covariance matrix, the need
mask out the galactic plane induces some correlations
tween nearby multipoles. The first step in the analysis is
construct a likelihood calculator: what is the likelihood th
the measured data represent some particular theore
power spectrum? This is in general a computationally h
problem, since it involves inverting anN3N matrix, where
N is the number of multipoles in the power spectrum. Ho
ever, the problem becomes easier if the covariance matr
close to diagonal. Heavens and Gupta have recently for
lated a method for computing an approximate likeliho
with great efficiency@40#, based on an eigenvector decom
position of the covariance matrix@41#. They have demon-
strated a likelihood calculator which takes an input theor
cal power spectrum and outputs a likelihood based
simulated measurements and covariances in much less th
second of computation time. Further efficiency improv
ments are desirable, as this is likely to be the piece of
analysis pipeline which dominates the total time.

The likelihood calculator can also incorporate prior pro
abilities obtained from other data sources, or from physi
considerations likeL.0. Since none of the following step
depend on the form of the likelihood function, the inclusio
of other kinds of data can be handled in a completely mo
lar way.

The second element needed is a pair of routines to con
between the physical parameter space (A,B,M,V) and the
cosmological parameter space (Vmat,Vb ,VL ,h). To go
from the cosmological parameters to the physical parame
simply involves evaluating the integral needed in Eq.~8!.
The reverse direction can be done straightforwardly by
writing A in terms ofB, M, V, R, andh and then numeri-
cally finding the value ofh which gives the needed value o
A. The total variation ofA with h is a smooth function, and
the root-finding step can be done with a minimal number
integral evaluations. This procedure does not guarantee a
lution, however, in extreme regions of parameter space
more general~but slower! method is to search the cosmolog
cal parameter space for the model which best fits the gi
7-13
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set of physical parameters, and then project this model b
into the physical parameter space to check the quality of
fit.

Once a likelihood calculator and parameter convers
routines are in hand, we advocate the following proced
for parameter determination. First, choose a fiducial mo
which gives a good fit to the measured power spectrum. T
can largely be done by eye, using the parameter depende
displayed in the figures in Sec. III. Note that the fiduc
model does not need to be the formal best-fit model, but o
needs to be close enough to the best-fit model so that mo
throughout the error region will be accurately approxima
by the extrapolations and approximations in Sec. III.

Next, check the validity of the fiducial model. Is the fit o
the model with the data adequate? It is certainly possible
the simple space of cosmological models considered h
may not contain the actual universe. For example, some
mixture of isocurvature initial conditions might be importan
or the initial power spectrum might not be well described
a power law. If the best-fit model is not a good fit to the da
it makes no sense to proceed with any further param
analysis. The model space must be enlarged or modifie
include models which provide a good fit to the data.

If the fiducial model is adequate, then compute numer
partial derivatives of eachCl with respect toB, M, andR.
Also, write numerical routines to compute the power sp
trum approximately forl ,50. Even thoughCMBFAST or
similar codes run very efficiently when computing only
, l ,50, this time will still greatly dominate the total com
putation time for parameter error determination, so an e
cient analytic estimate is essential. Note that an altern
possibility is to simply ignore the lowest multipoles, whic
will be a small portion of the data for a high-resolution ma
at the expense of losing any leverage on the parameterV,
Z, and the tensor power spectrum. Still, the other parame
will be determined much more precisely, so it may be p
sible to fit the rest of the parameters usingl .50 data only,
and then constrain just theV-Z-tensor parameter space fro
the l ,50 data independently. Now it is possible to estim
the Cl ’s highly efficiently for any model within a sizeabl
parameter space region around the fiducial model.

Now perform a Markov-chain Monte Carlo approxim
tion @15# in the physical parameter space. Each point in
rameter space requires evaluation of one approximate po
spectrum, one likelihood, and one conversion to cosmolo
cal parameters. The Monte Carlo approximation will co
verge efficiently since the physical parameters are nearly
thogonal in their effects on the power spectru
Sophisticated convergence diagnostics are available for
termining when the Markov chain of models has sufficien
sampled the error region@45#.

Finally, once the chain of models in parameter space
been computed, extract the best-fit model and error cont
from the distribution of models. By displaying two
dimensional likelihood plots for all parameter combination
a reliable picture of the shape of the likelihood region in t
whole multidimensional parameter space can be visualiz

Upcoming data will be good enough that the statisti
errors, given by these likelihood contours, will be smal
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than the systematic errors, at least in some parameter s
directions. Sources of systematic error include instrume
effects, modelling of foreground emission, approximation
the covariance matrix, inaccuracies in the theoretical mod
and inaccuracies in the approximations in this paper. Bef
we can confidently claim to have determined the cosmolo
cal parameters and their errors, these systematics mus
modelled and investigated. Using the techniques outlin
here, where a complete Monte Carlo approximation can
accomplished in seconds, investigation of systematics is
ily practical, instead of a computational challenge.

APPENDIX B: SOME NUMERICAL CONSIDERATIONS
WITH THE CMBFAST CODE

Seljak and Zaldarriaga’sCMBFAST code @33,35# has be-
come the standard tool for computing the microwave ba
ground temperature and polarization power spectra for
inflation-type cosmological models discussed in this pap
Hundreds of researchers have employed it for tasks ran
from predictions of highly speculative cosmological mode
to analysis of every microwave background measuremen
the past few years. Its comprehensive treatment of a var
of physical effects and its public availability have made it t
gold standard for microwave background analysis.

The original aim of theCMBFAST code was fast evaluation
of the power spectra. Previous codes had simply evolved
complete Boltzmann hierarchy of equations up to the ma
mum desired value ofl. This resulted in a coupled set o
around 3l linear differential equations, and thel-values of
interest might be 1000 or greater. The task of evolving th
sands of coupled equations with oscillatory solutions led
codes which required many hours to run on fast comput
TheCMBFAST algorithm evolves the source terms first, whic
involve angular moments only up tol 54; the same Boltz-
mann hierarchy can be used, but with a cutoff ofl .10. The
rest of theCl ’s can then be obtained by integrating th
source term against various Bessel functions. The Be
functions can be precomputed or approximated@46# indepen-
dently for eachl. Great time savings result since~i! it is not
necessary to compute the power spectrum for everyl, but
rather only, e.g., every 50thl with the rest obtained from
interpolation;~ii ! the time steps for the Boltzmann integr
tion are not controlled by the need to resolve all of the
cillations in the Bessel functions, and thus the Boltzma
integrator can be significantly more efficient. It also may
possible to employ approximations to the integrals of
source times the Bessel functions with an additional gain
speed, althoughCMBFAST does not implement this. The cod
offers a speed improvement of a factor of 50 over Boltzma
hierarchy codes for flat universes, although the advantag
smaller for models which are not flat or have a cosmologi
constant.

CMBFAST is nominally accurate at around the one perc
level, although no systematic error analysis has ever b
published. While the numerical error in any given multipo
Cl is relatively small, the derivatives ofCl with respect to
the various cosmological parameters are significantly l
7-14
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accurate. At the time the code was written, no microwa
background experiments were of sufficient precision to w
rant worrying about inaccuracies at this level, and the gr
utility of the code has been its combination of speed a
accuracy. But we have now entered the era of high-precis
measurements which will place significant constraints
many parameters simultaneously, and as this paper has
onstrated, efficiently prosecuting this analysis requires
code of high precision and stable behavior with respec
parameter variations. We have found that the unmodified
sion ofCMBFAST ‘‘out of the box’’ is not sufficiently accurate
for the calculations presented here, but these shortcom
are partially compensated by the following procedures.

First, CMBFAST uses slightly different algorithms for fla
and nonflat background spacetime geometries. In the
case, the necessary spherical Bessel functions are pre
puted and called from a file; in the nonflat case, the hyp
spherical Bessel functions are computed via an integral
resentation as they are needed. As a result, the line-of-s
integrals over the product of source term and Bessel func
have different partitions in the two cases, and the numer
values differ at the percent level. Also, the code has a
which forces evaluation of the flat case wheneveruV21u
,0.001. If the fiducial model is flat, then as parameters
varied which change the geometry, many individual mu
poles Cl exhibit discontinuities at the point in paramet
space where the code switches from the flat to the non
evaluation scheme. These discontinuities can result in
nificant errors when evaluatingCl derivatives with respect to
parameters. Also, even if the derivative is correctly eva
ated, the offset between the two cases can result in a slig
biased error estimate.

A careful fix of this problem would involve insuring tha
the integral partitions used in the two cases are determ
consistently. Alternately, the flat-space code could be rew
ten to numerically integrate the necessary Bessel function
in the nonflat case, since the two methods do not hav
significant difference in computational speed. A simp
practical solution which we have employed in this paper is
force the code always to use the nonflat integration rout
This can be accomplished by narrowing the tolerance
which the code uses the nonflat integration~say to uV21u
,1025), combined with always using a nonflat fiduci
model ~shifting Vmat by 1025 will never result in a statisti-
cally significant difference when fitting a given data set, d
to cosmic variance!.

Second, in varying theB parameter, adjacent acoust
peaks move in the opposite direction. Between the pe
therefore, is a pivot pointl for which Cl remains fixed asB
is varied, and the nearbyCl ’s will vary only slightly. As
CMBFAST is written, it computesCl at l values separated b
50; the complete spectrum is then obtained by splining
tween the calculated values. Splines are rather stiff,
small changes in regions where the power spectrum has
nificant curvature ~i.e. around the acoustic peaks a
troughs! can noticeably change the overall fit to the pow
spectrum in the regions between. In particular, the position
the ‘‘pivot’’ l-value in the spectrum sometimes shifts a b
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which gives a spurious irregular dependence onB of the few
Cl ’s in this region.

This can be addressed by a simple modification
CMBFAST forcing the explicit evaluation ofCl for more l
values. We have used ad l of 10, which has eliminated the
spurious behavior. Of course, this results in a significant
crease in the computational time needed for an individ
model. A more sophisticated approach would be to us
comparable number ofl values as the original code, but dis
tribute them preferentially in thel-ranges corresponding t
the peaks and troughs where the curvature of the power s
trum is largest. This is easily implemented using the va
ables defined in this paper, since the peak positions are c
pletely determined byA alone. Using a finer grid inl also
reproduces the peak positions with higher accuracy.

Third, as discussed in the body of the paper, the po
spectra must be normalized according to a physical crite
which does not depend on nonlinear behavior at smalll val-
ues. This is accomplished by simply compilingCMBFAST

with the UNNORM option. In this case, no normalization
COBE is done; instead, the amplitude of the potentialC is
taken to be unity at the scale of the horizon at the time of
scattering. This normalization is fixed by the primordial am
plitude of scalar perturbations, often denoted asAS . We de-
fine a physical variableS corresponding to the microwav
background amplitude by also including the effect of diffe
ing amounts of reionization so that the power spectrum
large l remains fixed.

Some residual numerical problems remain withCMBFAST.
We have found, for example, that in the region aroundl
5350 ~between the first and second acoustic peaks for
fiducial model!, the power spectrum exhibits spurious osc
latory behavior with an amplitude of a few percent, if com
puted directly for everyl instead of every 10th or 50thl ~see
Fig. 12!. This likely arises from either thek or h integral
over an oscillatory integrand not being evaluated on a fi
enough grid. As a result, directly calculatedCl values in this
region of the parameter space effectively have non-neglig

FIG. 12. Derivatives ofCl with respect toB, calculated by
CMBFAST with D l 510, from 2%, 5%, and 10% finite differences i
B. The smoothest curve is for the 10% variation.
7-15
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random errors. This problem is normally hidden by the spl
smoothing with every 50thl computed. When the number o
Cl evaluations is increased to every 10thl, the power spec-
trum shows a distinct glitch in this region, and the parame
rt
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dependence is completely unreliable here. The spline fits
forced into more oscillations to include the computed poin
More accurate numerical integrations will probably sol
this problem, at the expense of a significant speed reduc
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