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Unequal arm space-borne gravitational wave detectors
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Unlike ground-based interferometric gravitational wave detectors, large space-based systems will not be
rigid structures. When the end stations of the laser interferometer are freely flying spacecraft, the armlengths
will change due to variations in the spacecraft positions along their orbital trajectories, so the precise equality
of the arms that is required in a laboratory interferometer to cancel laser phase noise is not possible. However,
using a method discovered by Tinto and Armstrong, a signal can be constructed in which laser phase noise
exactly cancels out, even in an unequal arm interferometer. We examine the case where the ratio of the
armlengths is a variable parameter, and compute the averaged gravitational wave transfer function as a function
of that parameter. Example sensitivity curve calculations are presented for the expected design parameters of
the proposed LISA interferometer, comparing it to a similar instrument with one arm shortened by a factor of
100, showing how the ratio of the armlengths will affect the overall sensitivity of the instrument.
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[. INTRODUCTION nificantly different from each other. For example, a proposal
by Bernard Schutz at the 2000 LISA Symposium in Golm,

One of the differences between laboratory and space laséermany[9], suggested a modification to the current LISA
interferometer gravitational wave detectors is that, in thedesign in which a fourth spacecratft is inserted in the middle
laboratory, the two arms of the interferometer that is used t@f one of the legs of the interferometer to produce two inde-
detect changes in the spacetime geometry are maintained pgndent interferometers, each with one leg half the length of
nearly equal lengths. Therefore, when the signals from théhe other(see Fig. 1 The goal of such a design was to be
two perpendicu'ar arms are Combined’ the laser phase noi%)le to cross-correlate the Independent interferometers to
in the differenced signals cancels almost exactly. In space, $€arch for the stochastic cosmic gravitational wave back-
laser interferometer gravitational wave detector such as th@round. Using the analysis presented here, one will be able
Laser Interferometer Space AntenfldSA) [1] will have 1O determine the sensitivity of such an interferometer and
free-flying spacecraft as the end masses, and precise equalijflge the scientific value of the proposed modification.
of the arms is not possible. Other methods must then be used AS in paper |, the analysis begins with the response of a
to eliminate laser phase noise from the sysfémd4]. These found-trip electromagnetic tracking signal to the passage of a
methods involve a heterodyne measurement for each sepa-
rate arm of the interferometer and data processing that com-
bines data from both arms to generate a signal that is free of
laser phase noise. In a previous pafiéi, hereafter called
paper ), the sensitivity curves for space detectors using these
techniques were generated by explicitly calculating transfer
functions for signal and noise, as modified by the data pro-
cessing algorithms. While the algorithms have been shown
[4], in principle, to eliminate the laser phase noise in the
detectors regardless of the lengths of the two arms, the trans-
fer functions have previously only been calculated for the
case of equal arm$—8]. In this paper we extend the calcu-
lation of the noise and signal transfer functions to the case of
arbitrarily chosen armlengths.

One of the goals of paper | was to provide a uniform
system for evaluating the sensitivity of various configura-
tions of space gravitational detectors. This paper extends that
capability to configurations in which the armlengths are sig- . 1. An unequal arm geometry used here assumes two arms

of length 7 and B, with an enclosed angle (the interferometer
opening angle Depicted here is the nominal LISA constellation of

*Electronic address: shane@stl.caltech.edu three spacecraft in an equilateral triangf@=(1), and a proposed
"Electronic address: hellings@physics.montana.edu extension which places a fourth spacecraft midway down one of the
*Electronic address: hiscock@montana.edu arms (3=1/2).
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gravitational wave, as derived by Estabrook and Wahlquisthe frequency in the second arm, withas the ratio of the

[10]. A gravitational wave of amplitudb(t) will produce a two frequencies. Then a phase noise excursign in the

Doppler shiftAv in the received frequency, relative to the first arm will produce a phase noise excursjpfi¢; in the

outgoing signal with fundamental frequengy(t). The shift second arm. Thus it will be linear combinations nf

is given by = ¢; / v; that will allow the two noise terms to cancel. There-
fore, in this paper, the gravitational wave observable in the

Av(t,60,¢) 1 ith arm is defined to be
—_—= Ecos{zw)[(l—cosa)h(t)Jr20030

Vo
Ad)l(tlevl//)

Xh(t—7—7c0sf)—(1+cosh)h(t—27)], z(t,6,4)
(N

wherer is the one-way light travel time between spacecratft, \/—J'decos{Zz// YR(w)[(1— )
0 is the angle between the line connecting the spacecraft and

the line of sight to the source, anflis a principal polariza-

tion angle of the quadrupole gravitational wave. It is desir- +2Me—iwr(1+,u)_(1+M)e—i2wr]ieiwt, (5)
able to work in frequency space, B6t) is written in terms ®

of its Fourier transformh(w). If the Doppler record is
sampled for a tim@ thenh(t) is related to its Fourier trans- Where Eq(3) has been used to expand(t, ¢,¢) and where

form by arbitrary constant phases have been set to zero in the inte-
gration. It should be noted that is a different observable
JT [+ _ than the strain variable that was labeledin paper I. It
h(t)= 2_f h(w)e'“dw, 2 should also be noted that, as it is now defined, has units of

time, so Eq.(5) gives thetime delayin seconds produced by

o . the passage of a gravitational wave through the detector.
where theyT normalization factor is used to keep the power

spectrum roughly independent of time. Using this definition

of the Fourier transform, the frequency shift of Et). can be ll. SENSITIVITY CURVES

written as A. Instrument signal
\/— roq Tinto and Armstrond 2] originally showed that the pre-
Aw(t, 0, lﬁ)_ Yo —COE{Zz/f)h(a) 0,6, 0)[(1—p) ferred signal for purposes of data analysis is not the tradi-

tional Michelson combinatioidifference of both arms but

- : . rather a new combinatioX(t), given in the time domain b
+2,u,e_"‘”(1+“)—(1+,u,)e_'2‘”]e""tdw, ( ) g y

[11]
()

, , i X(t)=s1(1) —sy(t) =s1(t—27,) +5p(t—27,)
where u=cos6. The quantity that is actually read out in a
laser interferometer tracking system is phase, so(Bgis =72,() = 2y(t) — 24 (t— 27) + Zp(t— 2177)
integrated to find the phase in cycles

+N1(t) =Ny (t=275) —ny(t) +Nny(t—271), (6)
Ag(t,0, ‘/’):f Av(t,0,4)dt. (4 wheres(t) is the data stream from thié" interferometer

arm, composed of the signal(t) of interest[given by Eq.

In paper |, a strain-like variablewas formed by dividing (5)] and the combined noise spectra in each of the interfer-
the A¢ in Eq. (4) by vg7 and the analysis was done using ometer armsn;(t). The armlengths are taken to be unequal,
this variable. Since both arms had roughly the same length iwith armlengthr; in thei" arm. This combination is devoid
paper | and carried nearly the same frequency, there was onbyf laser phase noise for all values of the two armlengths
a scale difference between usidgs and usingz as the ob- and ,.
servable, and linear combinations ofvere the same as lin- In order to construct this combination, the armlengths
ear combinations oi ¢. However, when the two armlengths must be known to sufficient accuracy and the data samples
are different, this is no longer the case, and one must bwith the correct offsets must be available. Details of this
careful as to what is taken to be the observable for use inequirement are worked out by Helling3].
noise-cancelling data analysis. To determine the sensitivity using th&t) variable, it is

In the laser phase-noise-cancellation algorithms that wilhecessary to establish a relationship between the amplitude
be presented in Sec. Il it ielative phaseindnot strainthat  of a gravitational wave incident on the detector and the size
can be combined to create laser-noise-free signals. To undesf the X(t) signal put out by the instrument. The noise in the
stand how this arises, consider a case where laser signals dietector will limit this sensitivity, and must also be included
two arms are phase-locked to each other, withas the in the analysis. The part 0f(t) containing the gravitational
frequency of the master laser in the first arm anek yv, as  wave signal i§12]
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A(t)=2z1(t) = 25(t) — 21 (t—275) + Z5(t—279).  (7)

The transfer functionR(w), which connects the spectral
density of the instrument outpu,(w) with the spectral

density of the gravitational wave$,(w) in frequency space,
is defined via

Si(w)=S(0)R(w), 8

where the bar over th& in Eq. (8) indicates an average over
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o L[ 1 _
(A%)= 5| da2(0) S Tyw)+ To(w)2Tx(w)),
(13

where

T1(u)=coS(24,) - 4sirt( Bu)[ w2(1+ cof(u)

—2cogu) cogumuy))—2pSin(u)sin(umuy)

source polarization and direction. The gravitational wave

amplitude spectral density,(w) is defined by

Sh(w)=|h(w)|?,

whereh(w) is the Fourier amplitude defined in E€®), so
that the mean-square gravitational wave strain is given by

9

1 T 1 0
(h?)= lim ?fo h(t)2dt= EL S(w)dw, (10

T—oo

whereT is the record length. Similarly, the instrumental re-

sponseS,(w) is defined such that

1 )
o= swido,

(A?)= (11)

+sirf(u)], (14)
T,(u)=coS(2¢r,) - 4sirf(u)[ w5(1+ cog( Bu)

—2cog Bu)coq fupuy))

— 2upsin( BU)sin( Buu,) +Sinf(Bu) ], (15)

T3(u)=cog2¢1)cod 2¢rp) - 4sin(u)sin(Bu) 7(u),

with u= w7, uj=cosé;, and where

7(U,6,,0,)=[cogu)—coguu,)][cog Bu)
—cog Buuy) Jpuapmat[SIN(U) = pisin(Uuy)]

where the brackets indicate a time average. In the next sec-

tion, the transfer function from the gravitational wave ampli-

tudeh to the instrument signaT is worked out.

B. Gravitational wave transfer function

X[sin(Bu) — uoSin( Buu,) ] 7

has been defined for convenience. The propagation adgles
and principal polarization angleg are defined with respect
to thei'" arm using the geometric conventions of paper |.

Let us take the ratio of the two armlengths in the interfer-The expression for the power in the detector, as given by Eq.

ometer to be an adjustable parameijgr,taking on values
between 0 and 1, such that=7 and r,= B7. The average
power in the part ofX(t) which contains the gravitational
wave signal is given by

(A?)= lim

T—oo

1 (T )
TL A2, (12

whereA is defined by Eq(7). Using the definition ok from
Eq. (5) this can be expanded to yield

R(u)

2
(S) {ZsirF(,Bu)

+sir?(Bu) +

(Bu)®

1 2\ 4
1+ cos’-(u))(§— E) +sirf(u) + Esm(u)cos{u)

) 1 ) ) 2w +1 )
sin( Bu)cog Bu) —;s;lrl(u)sln(,Bu)f0 deﬁldM1(1—23|r\2a)77(u,01,02) .

(13), is a complicated function of frequency and of the ori-
entation between the propagation vector of the gravitational
wave and the interferometer, and represents the antenna pat-
tern for the detector.

It is customary to describe the average sensitivity of the
instrument by considering the isotropic power, obtained by
averaging the antenna pattern over all propagation vectors
and all polarization§13]. Using the definition ofR (w) from
Eq. (8), with the average isotropic power computed using the
geometric averaging procedure of paper | with E@st)—

(17), the gravitational wave transfer function is found to be

+2sirf(u)

1 2
1+ COSZ(,BU))( 3= —(BU)Z)

(18)
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As may be seen in the figure, the low-frequertemallu)
response of the detector to a gravitational wave signal is four
orders of magnitude lower for theé=0.01 detector than for
the equal arm detector, implying that tkemplitude signal
will be two orders of magnitude lower—the detected signal
level is proportional to the length of the shortest arm. How-
ever, once the period of the gravitational wave falls inside
the light-time of the longest arno,~ 1, the equal-arm detec-
tor (B=1) response begins to fall off while the unequal-arm
detector 3=0.01) response is roughly flat up to a period
corresponding to the light-time in the shortest arm.

The dropoff at low frequencies is a result of the fact that
3 3 1 0 1 2 3 the variableX(t) is formed by subtracting eaah from itself,

logu offset by the light time in the opposite arm. Thus, in the

low-frequency limit, the two copies of the signal strongly
‘overlap and the signal is almost entirely subtracted away. For
=wrT, for a value of 3=1.0. The uneven minima shown in the equal arms, the response of the detector is likewise .Su.b'
figure are artifacts of the stepsize of the plot. As can be seen in E racted to zero when an Ir_Iteger n_umber of Wavelengths fits in
(18), the gravitational wave transfer function goes to zeranini- he arm length, as seen in the hlgh-freque_ncy portion of the
mum in the figurg wheneveru= = for the 8= 1.0 case. B=1 curve. For the _unequal-arm case, this dogs not oceur,
because the subtraction of two versions of the signal in each

The remaining integral can be evaluated using simple nudrm is done at different light times in the two arms, so what-

merical techniques, after relating the angular variables as d&Ver Period signal cancels in one arm will typically not can-
scribed in paper I, where cel in the other. However, as may be seen in gw0.01

case, the response drops sharply to zero ati4e®.5 where
exactly one wavelength fits into the short arm and exactly

log (R/t%)

-12 1 ! 1 ! ) !

FIG. 2. The dimensionless gravitational wave transfer function
RI72, plotted against the dimensionless frequency parameter

sinysine

Sin@= ——— (199 ©one hundred fit into the long arm. The point izg2.5 is
Vi—u2’ equivalent tof~10°°Hz for LISA armlength ofcr=5
X 10° m).
and However, the response of the detectof{d) signal is not

the whole story. The ability of a detector to detect a signal
depends on both the signal in the detector and on the com-
peting noise. As we shall see in the next section, when the
) ] . . X(t) variable is formed, the noise in each arm is likewise
Here y is the opening angle of the interferometer, ant6  sybtracted away in most of the places where the signal is lost

the inclination of the gravitational wave propagation vector(e g. at low frequendy so the ratio of signal to noise re-
to the plane of the interferometer. The complete gravitationafains high.

wave transfer function is plotted in Fig. 2 f@r=1 (“equal
arm”) and Fig. 3 for3=0.01 (“unequal arm”) examples.

,LL2=MlCOSy-ﬁ-SinyCOSe\/l—,ulz. (20

C. Noise transfer function using theX(t) variable

The noise sources for LISA may be divided into catego-
ries in two different ways. First, a noise source may be either
one-way(affecting only the incoming or the outgoing signal
at a spacecraft, but not bogtlor two-way (affecting both
incoming and outgoing signals at the same jindeone-way
noise source will have a transfer function of 2, since there
are 2 spacecraft in each leg contributing equal amounts of
such noise[14]. The transfer function for two-way noise
sources, however, will be more complicated due to the inter-
nal correlation. A single two-way noise fluctuation in the
central spacecraft of the interferometer will affect the incom-
ing signal immediately, and then, a round-trip light-time
-10 : : . . ' . later, will affect the measured signal again in the same way.
In the time domain, the effect in th&" arm of a fluctuation
n(t) will be n;(t)=n(t)+n(t—27). The transfer function

FIG. 3. The dimensionless gravitational wave transfer functionfor this time-delayed sum is Acg@nfr). If an end space-
RI7 plotted against the dimensionless parameterwr, for a  craft has noise that affects both incoming and outgoing
value of 3=0.01. beams, it will affect them at almost the same time, coherently

log (R/t2)

logu

062001-4



UNEQUAL ARM SPACE-BORNE GRAVITATIONAL WAVE . .. PHYSICAL REVIEW D 66, 062001 (2002

and with no delay, giving a transfer function contribution of
4. The noise transfer function for a single arm for a two-way
noise source is therefore

4+4 cod(2mfT). (21

Examples of one-way noise are thermal noise in the IaseF:0
receiver electronics or a mechanical change in the opticae
pathlength in the outgoing laser signal before it gets to the
main telescope optics. Examples of two-way noise are para
sitic forces on the accelerometer proof mass or thermal
changes in the optical pathlength in the main telescope.

A second way in which noise sources may be classified is
by how they scale when there is a change in armlength in the = - ” o . 5 )
interferometer. The first type of noise in this classification logu
scheme is what we call “position noise,” in which the size of
the noise in radians of phase is independent of the length of FIG. 4. The noise transfer functions f@r=1 as functions of the
the arm. Accelerometer noise and thermal noise in the lasalimensionless frequency parametier 7. Notice that the transfer
electronics are examples of position noise. The second typignction for position noise’®R,) is identical to the transfer function
of noise is what we call “strain noise,” in which the size of for shot noise ) in the B=1 limit.
the noise scales with armlength. Examples of strain noise
include shot noise and pointing jittéif it is dominated by  Strain noise scales with armlength, and is hence smaller in
low power in the incoming beac®nPosition noises may be the shorter arm, so thaf=n3=n2/32. Its transfer function
either one-way or two-way, but we can think of no two-way is therefore
strain noise sources.

The transfer functions that connect the noise in the instru- Rs=8(Sir?(Bu) + B2sirf(u)), (26)
ment to theX variable depend on the type of noise. We begin
by considering the noise terms in E&): where the factor of 2 for the two spacecraft has again been
included.
o(t)=ny(t) —na(t) —[Ny(t—2B7) —ny(t—27)]. (22) When B=1, the transfer functions for strain noise and

We then go to the frequency domain, squaring and time?"e-Way position n0|sBEqs.(24) and(26)] are |d¢nt|gal and
ave zeros ati,=ns, wheren is zero or a positive integer.

averaging to relate the mean square noise to its power spec:
trum: ging g P P hese are exactly the places where pwe 1 transfer func-

tion for gravitational wave signdFig. 2) has its zeros. When
1 _ _ B<1, the situation is more complicated. Bo®y, and R

(%)= Zf dw 4[nisir(Bu)+n3sirf(u)], (23)  share the si{Bu) term which will go to zero au=0 and at

multiples ofu= 7/B. The sirf(u) terms inR; and R have
their zeros at multiples of the lower frequenays 7. In R4,
Ehis term will be larger than the SigBu) term at low frequen-
cies, since nean=0, sirf(u)=u’, while sirf(Bu)=g2. In
R, these terms will be equal in the low-frequency limit,

where cross term&.g.,n;n,) have been neglected under the
assumption that noise in the two arms will be independen

and uncorrelated. Note thEﬁ is the power spectrum in the

long arm(lengthr) andﬁg is the power spectrum in the short

arm (length B7). 2
Since the noise in the detectors includes different types,

with different transfer functions, it is not possible to write a

single transfer function giving the response of ¥gariable

to noise, so let us consider the various noise categories one i

a time. We first consider position noise, for whioR=n3 -2

~ &
=n2. Then, using Eq(23), we find the transfer function for g o
one-way position noise to be - _

Rq,=8(sir?(Bu) +sir(u)), (24)
_6 .
where, as we noted above, there is a factor of 2 representin
the noise from the two spacecraft in each arm. Two-way
position noise must include the transfer function from Eq. '8_3

(21), giving logu

R,=16sir’(Bu) (1+ cog(u))+sirf(u)(1+cog(Bu))]. FIG. 5. The noise transfer functions f8=0.01 as functions of
(25) the dimensionless frequency parameterwr.
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Setting SNR=1 and solving forh;= /S, yields the instru-
ment sensitivity curve as defined in paper I:

R+ SR+ SR
hf:\/§: \/SS J:lzl SZ 2.

(28)

Figures 6 and 7 show the sensitivity curves, computed
using Eq.(28), for =1 andB=0.01 respectively. The noise
values used are taken to be the LISA target design values
(computed as described in papér The shot noise and ac-
celeration noise levels are set at the standard LISA values. In
addition, a flat one-way position noise spectrum is assumed

at 1/10" the LISA shot-noise value. Also plotted in Figs. 6
and 7 are sensitivity curves representing each of the three
components of the total noise, taken one at a time.

|
=
1
w
[
M)
1
i
(=]
=

log f (Hz)

FIG. 6. The sensitivity curveSNR=1) for g=1. Overlayed
are the sensitivity curves for each of the individual noise spectra
(acceleration noise, shot noise, position npiSéhe noise spectra
are taken to be at the LISA target design values, except position AS may be seen in Fig. 7, the low-frequency sensitivity
noise, which is taken to be 1/10th the LISA value. for unequal arms, being set by the two-way position noise in

the accelerometer, is degraded over the equal-arm case by
because of the factog? that multiplies the sif(u) term.  the ratio of the two arms. In other worq.s,l the sensitivity at
Thus, in the low frequency limit, the strain noise transfer/oWest frequencies is set by the sensitivity of the shortest
function will be 282 times the one-way position noise trans- arm. A,‘t middle and h'gh frequenues, the'snua.tlon IS more
fer function. Wheng<1, the transfer function for one-way complllc_ate.d._ If the domlnanft noise is strain noise, then the
position noise will have sharp drops at multiplesio# sensitivity is independent @ in this frequency range. How-

down to the level of its sf{Au) term. These behaviors are ever, if the dominant noise is position noise, then the sensi-

Ill. DISCUSSION

shown in Fig. 4 and Fig. 5.

The signal to noise ratio is the ratio of the signal power in

D. Sensitivity curve

the detector to the noise power in the detector:

SR
SNR= .
SRstSR1+SR,

(27)

tivity curve at high frequencies will rise in proportion &
though its flat floor will extend to higher frequency, from the
1/(2w7) of the equal-arm case to 1/4237) when the arm-
length ratio isg.

The implications of these results for mission design are
obvious. If the armlengths are not equal, the low-frequency
sensitivity is degraded by a factorgl/the ratio of the arm-
lengths. If the high-frequency noise can be guaranteed to be
strain noise, even in the shorter arm, then the high-frequency
sensitivity is unaffected by the unequal arms. If the noise at

where Sg, S;, and S, are the spectra of strain noise and high frequency is dominated by position noise, then the high

one-way and two-way position noise, respectively, &ds
the gravitational wave transfer function given by E{8).

-15

-16

log he (Hz"172)

1 1 1
[\S] N [i%]
w N =

|
[\
s

Total Sensitivity

Position

log f (Hz)

frequency sensitivity is degraded by the factoB,1but the
sensitivity remains flat up to a frequency 1#87), where it
turns over and joins the strain noise curve. Thus, as long as
the position-noise sources can be kept well below the shot
noise and other strain-noise contributions, a change in arm-
length ratio from strict equality will not degrade the high-
frequency portion of the sensitivity curves. However, as the
length of one of the arms is shortened, small position noise
sources will become important and eventually dominate.

Let us consider the example of Schutz’s 4-spacecraft con-
figuration (Fig. 1). Since this configuration will haves
=0.5, the low-frequency sensitivity curve will be a factor of
2 higher(hence less sensitiyeThe current error budget for
LISA assumes that the high-frequency portion of the window
is dominated by position noise approximately three times the
shot noise. If this remains the case, then the high-frequency
section of the curve will likewise be a factor of 2 higher up
to a frequency twice as high as the LISA sensitivity “knee”

FIG. 7. The sensitivity curve§NR=1) for 3=0.01. Overlayed ~at f=1/(277), at which point it would turn up and join the
are the sensitivity curves for each of the individual noise spectra, agurrent LISA high-frequency ramp. The shot noise is deter-
in the previous figure. mined by the power of the laser and by the size and effi-
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ciency of the optics, and there is nothing beyond brute-forceourse, would replace it with thermal fluctuation in the opti-
improvements in these parameters that will lower the shotal path length in the fiber. However, a concatenation of
noise. The contributions to position noise, on the other handibers with well-chosen thermal pathlength coefficients could
are due to optics quality, the attitude control system, Brownproduce a fiber tuned to have a coefficient very near zero.
ian noise in the electronics, thermal noise in the optical patiThis, combined with multilevel thermal isolation, could keep
length, etc. These are more complex and are amenable {fjs noise source very small. The key to the sensitivity of this
reduction by careful or innovative engineering design. Ifconfiguration is the position noise. If a way could be found
these noise sources can be reduced to a fraction of the sh@f reduce position noise to less than $mf the LISA shot
noise, not only will the LISA noise floor be reduced by a ngjse, then this two-spacecraft interferometer would have the

factor of 4, but the Schutz modification will have high- same sensitivity as a conventional three-spacecraft interfer-
frequency performance that is undiminished by the reductiogymeter.

of the length of one arm.

Finally, we describe a totally unfeasible mission design
that is nevertheless interesting for instructive purposes. Let
us consider a two-spacecraft “interferometer,” where one of
the spacecraft contains a fiber optic delay line, of length 5 S.L.L. acknowledges support for this work under LISA
km, that acts as the second arm of the interferometer. If theontract number PO 1217163, and the NASA EPSCoR Pro-
distance between the two spacecraft is B° km, we will  gram through Cooperative Agreement NCC5-410. The work
have 8=10"°. The use of theX(t) variable will eliminate of W.A.H. was supported in part by NSF Grant No. PHY-
laser phase noise, exactly as it does in arms that are mof®98787 and the NASA EPSCoR Program through Coopera-
nearly equal. A rigidly attached reflector at the far end of thetive Agreement NCC5-579. R.W.H. was supported by NASA
fiber-optic line would eliminate accelerometer noise, but, ofgrant NAGS5-11469 and NCC5-579.
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