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Dissipation at the two-loop level: Undressing the chiral condensate
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A simple and consistent real time analysis of the long-wavelength chiral condensate fields in the background
of hard thermal modes is presented in the framework of the linear sigma model. Effective evolution equations
are derived for the inhomogeneous condensate fields coupled to a heat bath. The multiple effects of the thermal
background on the disoriented chiral condensate are studied using linear response theory. | determine the
temperature dependence of the equilibrium condensate, and examine the modification of the sigma and pion
dispersion relations as these mesons traverse a hot medium. | calculate the widths by determining the dissipa-
tive coefficients at nonzero temperature at one- and two-loop order with resummed meson masses. My results
show that not only decay processes, but elastic scattering processes are significant at high temperatures,
yielding to short relaxation times in the phase transition region. The relaxation times obtained are shorter than
in previous estimates, making the observation of disoriented chiral condensate signals questionable. Through-
out this work Goldstone’s theorem is satisfied when chiral symmetry is spontaneously broken.
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[. INTRODUCTION nately do not prove to be the way to go: a lattice can describe
static situations in thermal equilibrium. Therefore, for learn-
Nonequilibrium phenomena in many-body systems hasng about the dynamics of nonequilibrium systems, one has
received a great deal of attention during the last two decadeso reside to different theoretical approaches. Attempts are
The theoretical interest keeps growing as new experimentsiade using field theory7—11], covariant kinetic theorj12],
are readily emerging in different research areas of physicsand recently also nonequilibrium fluid dynamids3].
such as the chiral phase transition and quark-gluon plasma in Until now no unambiguous observable that could serve as
ultrarelativistic heavy ion collisions, ultrafast spectroscopy inevidence for the phase transition has been identified. Based
semiconductors, Bose-Einstein condensates, strongly corren the knowledge that a transition from ordered to disordered
lated Fermi systems in condensed matter physics, and eleghase is accompanied by the formation of condensates, dis-
troweak baryogenesis and inflation in early Universe cosmoloriented chiral condensaté®CC) have been suggestéti4]
ogy. In the following | present a quantum field theoretical as the signature of the chiral phase transition. This means
description of the dynamics of nuclear matter formed as ahat the matter formed in a heavy ion collision can relax into
consequence of nuclear collisions at ultrarelativistic energiess vacuum state that is oriented differently than the normal
The existence of a deconfined, chirally symmetric phasgyround state. Relaxing of DCCs to the correct ground state
of QCD was predicted long agid]. The interplay of the then happens through the emission of low momentum pions
results obtained from the three major research approachegith an anomalous distribution in isospin space. Detecting
lattice simulations, theoretical models and experiments at thgquctuations in the ratio of produced neutral pions compared
BNL Relativistic Heavy lon CollideRHIC), lead us to ex- to the charged ones can serve as a signal for the chiral sym-
pect that “finding” the quark-gluon plasma is within reach. metry restoring phase transition. Such DCC signals have not
PHENIX resultd2] from the year-1 run of the RHIC suggest been observed at CERN-SPS enerdies]. The STAR de-
that the energy density achieved in Alu collisions al-  tector at the RHIC searches for dynamical fluctuations on an
ready aty/s=130 GeV is high enough to be favorable for the event-by-event basis and may be therefore better suited for
existence of free quarks and gluons. Early thermalization oDCC searches. Other signals were proposed in context of
the partonic mediuni3] has been indicated by the elliptic DCCs: dileptons[16], and recently the anomaly in the
flow analyses at STAR4]. However, most probably thermal Omega and anti-Omega abundances observed at the CERN
equilibrium is not maintained as matter rapidly expands andsuper Proton Synchrotrai8PS [17].
the temperature quickly drops through the QCD phase tran- The ability to detect DCCs depends on their lifetime. In
sition. Arguments that hint at nonequilibrium, even explosivethe original workl 14] DCC formation was proposed with the
[5] dynamics in heavy ion collisions, such as large fluctua-assumption of a perfect quench. This means that after the
tions of the average transverse momentum, and almost equatditical temperature is reached the long-wavelength modes of
sideward and outward Hanbury Brown—Twig4BT) radii,  the chiral condensate decouple from the thermal modes and
were reported irf6]. The dynamical evolution of such an evolve according to zero temperature equations of motion. A
out-of-equilibrium system is not yet understood. When itmore realistic discussion, accounting for the presence of a
comes to possible approaches, lattice simulations unfortuthermalized background was first presentefilid]. Because
of the possible energy exchange between different degrees of
freedom dissipation occurs, which in turn reduces the life-
*Electronic address: mocsy@alf.nbi.dk time of the condensate. This problem has been addressed
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previously in[7-11,19,20. Most of the previous calculations phase diagrami25]. Year-1 RHIC result$2] suggest that at
though focus on the evolution of the order parameter only,/s=130 GeV the baryon density is approaching the low
[7,11]. Based on the observation that true pions have a finitelensity limit. Expecting an even smaller baryon density at
width [21] the damping of pion condensates was considerethe maximum collision energy justifies us to work at finite
[9,10], but only at one-loop level. The usual argument fortemperature and zero baryon chemical potential.
neglecting two-loop contributions is that these are higher or- The paper is structured as follows: In Sec. Il | derive
der in the coupling. However, there is an important reasorfoarse-grained equations of motions for the long wavelength
for why two-loop contributions are not negligible: whereas chiral condensate fields which are in in contact with a heat
decay processes can happen only under some kinematic cdpath. In Sec. Il the response of the t.hermal bath to the pres-
ditions, scattering can always happen. Dissipation due t§Nce of the nonthermal condensate is evaluated'._ln_Sec. V1
scattering has been evaluated for the scalar condensate Rfesent the temperature-dependence of the equilibrium value
[11]. A first attempt to look at the lifetime of DCCs based on Of the condensate and that of the self-consistently calculated
scattering processes was presenteflLBj. meson masses. It is important to emphasize that my analysis
In this paper | present a quantum field theoretical analysiés performed with the satlsfacthr_l of Goldstone’s theorem for
of homogeneous and inhomogeneous chiral condensate fiefl temperatures below the critical one. Also, the tachyon
configurations out of thermal equilibrium that are coupled toProblem appearing in the mean field treatments is eliminated.
a thermal bath. The framework is the linear sigma model!n Sec. V | analyze the dissipation of long-wavelength sigma
which has proved to describe fairly well the hadronic phasetnd pion fields due to decay and scattering processes. In Sec.
of two-flavor QCD. | treat the long wavelength chiral fields V! the relaxation time of DCCs is determined. | summarize
classically and account for the short wavelength fields perMy results and give an outlook into further developments in
turbatively, but resumming certain diagrams. Such semiclaghe concluding Sec. VIL.
sical description is acceptable since the occupation number

of the low momentum mgdes is I'arge. Thg effect of.thg heat II. DERIVING EQUATIONS OF MOTION
bath on the condensate is contained within the deviations of
the thermal field fluctuations from their equilibrium values. I ~ Within the linear sigma model framework the study of

identify these deviations as time-delayed responses of theCC formation and evolution is convenient, since the physi-
hard thermal modes to the presence of the condensate, andl picture is rather transparent. The theory is formulated in

evaluate them using linear response theory, which providegrms of the chiral fieldb= (o, 7). The scalar sigma field

the evolution_ of observabl_es in real ph_ysical time_. The ré-describes the scalar quark condenia_mqa), which serves as
sponse functions renormalize the equations of motion, mOdIE)rder arameter. The pseudoscalar pion  field
fying the particle properties, and give rise to dissipation. Due” '~} E NPT P P
to possible interaction and thus energy exchange between the(™ 7% ..., ) is directly r.elated to th? pseudoscalar
soft and the hard modes decay channels open up and p&ondensateqrysd). The dynamics of the chiral condensate
ticles can scatter. These processes are responsible for tifeCOmpletely determined by the evolution equations in space
dissipation of the condensate. To the best of my knowledgeand time for the long-wavelength chiral fields. In the follow-
a consistent incorporation of relaxation processes at the onéld | derive effective equations for these low-momentum
and two-loop level has not been done before in this contexfields in a hard-momentum background.
There is another important effect, that of the change in the The Lagrangian of the linead(N) sigma model is
velocity. | discuss this ih22].

It is important to determine the order of the chiral transi- 1
tion, as this influences the dynamical evolution of the sys- L(®)=5d,Pd*P—U(P), (1)
tem. Experimentally, large-acceptance detectors are now able
to measure average as well as event-by-event observables, ) o
which in principle can distinguish between scenarios with avhere the usual choice for the potential is
first order, a second order, or merely a crossover type of
phase transition. QCD with two massless quarks possesses N, o
chiral symmetry, described by theSU(2)zxSU(2), U(®)=7(®~vg)"+Ho. )
=0(4) group. This continuous symmetry is spontaneously
broken at low temperatures, resulting in the emergence of . ) ) o
Goldstone boson@3]. Based on universality argumenig] | e explicit breaking of chiral symmetry is implemented
the transition between the chiral symmetric and symmetryrough theHZterm th?t tl|£S thez potential in the sigma direc-
broken phases is of second order. Nature, however, supplid@n- H=f.mz andvo=f7—m2/\, wheref =93 MeV is
a different situation, with nonzero quark masses. Small quark€ pion decay constant, is a positive dimensionless cou-
masses explicitly break chiral symmetry, which then alters?ling constant, andn, =138 MeV is the zero temperature
the nature of the phase transition. The second order transitigRass of the pion. The parameters of the Lagrangian are cho-
becomes a smooth crossover, provided that the baryon defien such that foH=0 chiral symmetry is spontaneously
sity is zero. In case of a sufficiently large baryon chemicaloroken in the vacuum. The potential then resembles the bot-
potential the transition is of first order, suggesting the existom of a wine bottle with the zero temperature minimum at
tence of a tricritical point in thegg,T) plane of the QCD & =(f,,0). The excitations in radial direction, the sigma me-
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sons, have a mass>=2\f2, and excitations along the azi- the scales of the quantum fluctuations. This is known as
muthal direction, the pions, are Goldstone bosons, with ~ coarse-graining. The average of high frequency fluctuations
=0. is thus (o¢(x))=0 and (m¢(x))=0, while ((x))=o(x)

The evoIL_ltion of the fields in therma! equiljbrium has and<%i(x)>:;}i(x). It should be noted at this point that,
been extensively studig@®6,27| after the pioneering works compared to earlier work@or example[11]), | allow for a
by Linde [28] and Dolan and Jackiy29]. The usual proce- nsnzero ensemble average not only along the sigma direc-

dure is to express the fields as tion, but also in the pion directions. In other words, | allow
R . the formation of disoriented chiral condensates. Also, cross
o(t,x)=v+o(t,x), correlations between fluctuations of different fields are non-
o o zero, (¢j¢;)#0, and moreover, | consider nonzero cubic
' (t,x) = (t,x), i=1,...N-L1 (3)  fluctuations of the forn¢; ¢;¢y) # 0 which arise at the two-

- loop level. Furthermore, | separate the nonequilibrium con-
The thermal average of the chiral field,=(v,0), is the densate fields:
order parameter chosen to lie along the sigma direction,

(0)eq=v and (m)eq=0. The fluctuations about the order o(X)=v+0ay(x),
parameter average to zer(orf)eq=(7?f>eq=0. Throughout ~. i )
this work we use the following notatiog©) is the nonequi- m(X)=7mgx), i=1,...N-L ®)

librium ensemble average of an operaf@y (O), denotes . _ .
the equilibrium, but interacting ensemble average; @A, Y IS the eqt_uhbnum va_lue of the chiral condensate chosen
is the free ensemble average. along the sigma direction ands and =, are slow fluctua-
instead of writing the fields as in E¢B), we separate them ©f the hard fluctuations is affected by the presence of the
into their low and high frequency modes. This can be donecondensate. The full, nonequilibrium ensemble averages are
for example, by introducing a momentum cutdff., as in basically two- and three-point functions of thermalized fields
[30]. Then, by integrating out the high frequency modes weevaluated at the same space-time point. These can be written
obtain an effective theory for the low frequency, long wave-2s the sum of the equilibrium ensemble average and a fluc-

length modes. The fields can be separated as follows; ~ tuation about this:
o(X)=o(X) + o¢(X), (0F)=(0F)eqt &(a?),
TO=T00+m00, i=1,...N-1 (4 (T = (T et i),

~ i~ . . . W= 8o,
o and 7' are slowly varying condensate fields, representing (om)= o)

low frequency mo_des with momentufk| <A.. T_hese soft <7Tif77jf>: 5<7Tifﬂ_jf>,
modes are occupied by a large number of particles and may
h lassical fields. ' high fre-
then be treated as c:.:13§|ca ields. and 7; are high fre (0?>=<0f3>eq+ 6(0?),
guency, fast modes witlk| > A.. These hard modes, repre-
senting quantum and thermal fluctuations, constitute a heat <Uf77ifz>:<0fwifz> n 5<Uf77if2>’
bath. A choice ofA =0 would mean that only homogeneous ed
condensates, witk=0 momentum are studied. Here | dis- (mhmi?y = 8(atar?),
cuss condensates that can also be inhomogeneous.
The problem to be solved, then, is to describe the evolu- <Uf2ﬂ_if>: 5(0?772). (6)

tion of long wavelength classical fields that are embedded
into a thermal bath. In my approach, these soft modes followrne deviations in the fluctuationéof the general form
classical equations of motion, whereas the effect of the harg,

: . , ) (¢'¢") are the responses of the fast modes to the pres-
thermal modes is taken into account in a perturbative man- Jf | 47 back d fields. Th
ner. | am well aware of the problems of a perturbative treat>C€ Of SIoWos and s background TI€1ds. 1Nese responses
re proportional to the slow fields raised to some positive

ment, since the sigma model is a strongly coupled effectivé . :
theory: With the choice of, for exampley, =600 MeV for power, and so they vanlsh, as they should, in tihe absence of
the vacuum mass of the sigma meson the coupling constam? background. Notice the absence (f)eq and
is A=20. However, | improve the model by resumming a(lﬂ-fﬂ-'f}eq. Th_e reason for this is that the correlation func-
certain class of diagrams in the perturbation series. | believons in equilibrium, in the absence of a background, are
that even if the self-consistent solutions are approximatéiagonal. On account of the cubic couplings, however, one
only, they still yield to qualitatively reliable results. finds nonzerc(af%q and(om(%)eq- R

| average the Euler-Lagrange field equations over time In equilibrium, at fixed temperaturers=0 and 7,=0
and length scales that are short compared to the scales chand the equilibrium condensate satisfies the following equa-
acterizing the change in the slow fields, but long relative tation:
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N-1
Ao+ 3)\U<0'f2>eq+ Av ;1 <7T|f2>eq+ )\<‘T?>eq

N—1
+N 2 (72 eq— Nvgu —H=0. @)
=1
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I1Il. NONEQUILIBRIUM FLUCTUATIONS

Linear response theory is a very convenient tool when one
is interested in monitoring the effect of an external field ap-
plied to a system initially in thermal equilibrium. When this
effect is small a linear approximation is feasible. A response
function expresses the difference between the expectation

Since all components of the pion field are equivalent, one&/alue of an operator before and after an external perturbation

can write the sum a& | 1 7(%)eq= (N—1)(7f)eq, Where
now ¢ is one of the components. This is a convention that®

we adopt throughout the rest of the paper.

has been turned on. The effects of the soft condensate fields
n the thermal medium are thus described by expressions of
the form

The resulting final equations describing the evolution of \ "
the condensate fields are a set of coupled nonlinear integro- &t (X) (X))

differential equations. Let us assume only a small deviation
from equilibrium,|o|,| 75| <v, and thus neglect terms that
are higher order imrg and 5. The linearized field equations

read
PostM20 s+ \v[38(a?)+(N—1)8(m?)]
+)\[5<0'?>+(N— 1)5<0'f77$>]20,

3 2
log o H
Mz 202 {7028 (g LT fvf>e“ = ®

and
P gt M2+ 2\v 8oy re)

+ )\[5(77?) + 5<(Tf277f>] =0,

<O'?>eq
M2 2 2o 0

<0'f7T?>eq)+ﬂ (9)

—(N—-1) 5 o

| denote the effective masses of the sigma meson and tHe!
pion by M, andM .., and their corresponding vacuum value

by m, andm_., respectively.

At one-loop order the effective equations become simpler’

Pos+M2a,+ v[38(0?)+(N-1)8(72)]=0, (10)

H
M2=2\v2+ = (12)
and
P+ M2ag+ 2 v (o) =0, (12
M2=ﬂ+ﬁ12=f—wm2+ﬁ2 M2 =2\[(7%)eq— (0?) o
T K v T o f/eq f/eqds
(13

and the equilibrium condensate satisfies

Ao+ 7\[3<U$>eq+(N— 1)(77%>eq]v —)\vgv —H=0.
(14

t
:ifodt/J d3X/<[Hperturbeo(xl)’U?(X)W‘rp(x)peq'
(15

Accordingly, | evaluate the commutators of different powers
of the field operators at two separate space-time points in the
fully interacting, but unperturbed ensemble. Initial condi-
tions are set by the assumption that in heavy-ion collisions
the system reaches a state of approximate local thermal equi-
librium [4], then it cools while expanding out of equilibrium
and reaches the critical temperature. | define the initial time
t=0 by when the critical temperature is reached. This im-
plies 4(0X)=0 and m{(0x)=0. The respective powers
andm are identified from the expressions in E¢®). and(9).
Let me emphasize that these responses should be evaluated
in the unperturbed, equilibrium ensemble, which does in-
clude all the interactions between the different modes.

The possible couplings between low and high frequency
modes are determined by evaluating the potehtjakith the
fields separated into their slow and fast components as
above. The resulting Hamiltonian contains positive powers
of the slow fields. For small departures from equilibrium it is
H ough to keep the dominant linear terms only. Relaxing the
assumption of only slightly out of equilibrium requires the
inclusion of higher powers of the nonthermal fields. This
should provide no difficulties, but is beyond the aim of the
present paper. The relevant couplings are

H(,s(,fZ)\(sz—fqu)o'SO'f+3)\va'SO'f2+ )\0'30'?,

2 3
Hﬂ.sﬂ.f:)\(vz_fﬂ.)ﬁsﬂf‘l‘)\’ﬂsﬂ'f ,

_ 2
Hom =AvosTt,
_ 2
st(,fwf—)\ﬂ'sa'f mit 2\Nv o Ty,
— 2
Ha'sofwf_)\a-sa-fwf . (16)

As before,ms ¢ refer to one of theN—1 components of the
pion field.

The response functions obtained by inserting @) in
Eqg. (15) are
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. t Herek=(k° k) is the four-momentumf (k%) = (ek#—1)*
2 _ ’ 3y’ '
5<Uf(x)>_3')‘vJ’odt f d*x"og(x") is the Bose-Einstein distribution, agg=T"*. The response
functions are then
X([aF(X'),0F(¥)])eq

t o =—Ii6\ d4 J
5<7Tf2(X)>=i)\vf dt’fd3x’as(x’) (o)) = ”f XD |
0
2,1\ 2 d*q . )
([ 72X, 70 e, x [ e 90 (g, (a)
(2)
t
5<af(x)wf(x)>=2i>\vf dt’f d3x’ my(x") X[1+f(p%)+f(q%)],
0
X<|:0'f(X’)Wf(X'),O'f(X)Wf(X)Deq. 5< ( )) o\ fd‘l o )f
(X)) =—Ii X" og(X
(17) f ° : (2m)*
The cubic functions are determined analogously, therefore d4 _ ,
we skip presenting their evaluation. It is clear that expres- f 2 )Aefl(mq)(xfx )
a

sions (17) vanish in the absence of the nonthermal back-

ground, as they should. Xpa(P)pRADLL+F(P)+(a)],
The expectation values of the commutators are

([o?(x"),07()])eq=2(D5 (X,X")*= D7 (x,X")?),

5<a'f(x)77f(x)>——l2)\vfd4X'7TS(X )J 2
([72(X"), m2(X) )eq=2(D 5 (x,x")>=D7(x,x')?),

4
Xj 99 o)
(2m)*

Xpa(P)pD[1+F(p%)+f(@")]. (2D

(Lo (X )mi(X"),a(X) me(X) ])eq

=D (x,x)DZ(x,x") =D (x,x")DZ(x,x),

wherex=(t,x) andx’=(t’,x’) are four-vectors in coordi-
nate space. Keeping in mind thdt<t, wheret is the time IV. THE ORDER PARAMETER AND MESON MASSES
elapsed after switching on the perturbation, dhds the
time-variable that has its values in th6] interval, the
following notation has been introduced:

To analyze the phase transition | look at the temperature
dependence of the equilibrium condensate which is the order
parameter of my model. The behaviorwis determined by

D;(X,xf)E<gf(x)gf(x/)>eq, solving Eq.(7). It is educational to look at the theory in the
exact chiral limit,H=0, first. In this case Eq(7) for the
DZ (%X ) =(m(X) 7((X'))eq order parameter has two solutions:
and v=0, T>Tg,
D, (%X )=(o¢(X")T¢(X))eq. and
D:(X,X')E<’7Tf(X’)7Tf(X)>eq. (18) < ?>eq
vl= 3<0'f>eq (N— 1)<7Tf>eq

The functionsD~ andD = define the spectral function

2
p(k)=D~(k)=D~(k), (19 _(N_l)%, T<T.. (22
v

which determines the real time propagator
The first solution shows, as is expected, that the chiral con-

, d*k —ik(x—x") densate does not exist above a critical temperature. The sec-
D(x.x ):f 277)4e D(k) ond solution represents the low temperature, symmetry bro-
ken phase. The two solutions are separated by a second order
d*K phase transition.
- f — e kX (@ (t—t") + f (k%)) p(K). The order parameter depends on the equilibrium field
(2m)* fluctuations, which to first approximation in either perturba-

(200  tive expansion i\ [31] or 1/N-expansion27], are
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¢ L m7=2\ 772e_0'2e ) 24
<‘P2>eq:j(sz)3E[l+2f(E)], 23) M =2 [(7F)eq— (F)eq] (24)

where =0, m, and f is the Bose-Einstein distribution which is zero only afi) zero temperature, where the thermal
function of the mesons with ener@=\fpz+_mz. Cubic fluctuations themselves vanish, (@) when the masses of the
fluctuation terms that enter in the expression for the equilibp'on and the sigma are equal,'whlch IS expecte.d ‘_"‘t the criti-
fium condensate(,a?)eq/v and(affrf)eq/v, are nonzero on cal temperature, ofiii) in the high temperature limit, when

account of the possible cubic couplings. However, alread he MEeson masses can be neglected. In th? f‘?"OW.'”g’ !
the leading order term of the expansion is higher order in th resent a simple and F:Iear way to prave thai this violation of
coupling than Eq(23), so we can drop these to first order. o_Irdhséonitzﬁ ng;ezrz)'isngmzeipgﬁﬁgb tadpole contribu-

Let me discuss some important observations regarding tht‘?ons Tﬁere is another one-loop dial rat)m thgt contributes to
fluctuations(23). First, keeping only the leading order term ' b diag

means that the masses are the bare zero temperature mas$ g?”" bu!lt out of tvyo.3—vert|ces, k_nown as thg sunset
However, as indicated by Eqg¢ll) and (13), the masses Iragram. This diagram is mcorpor_ated in the equation of mo-
themselves are given in terms of the equilibrium condensatéo, t_lf_lrzoufgh tthe fesgﬁﬂse fgncgfoﬁj{‘f,fg g'\éet?] by Eq.
and as such, they are temperature dependent. Therefore t )- I ? utnc |0fn; oN)\szo_r e];r ;’ fit ! a?h ef;e '? an
temperature dependence of the order parameter should pyerall factor ol Av In-front of 1t In the eltective

determined by performing a self-consistent evaluation. Hergquation_. Therefor.e to get the contribution of orderthe
| resum tadpole diagrams. expectation value in Eq21) can be evaluated at the lowest

Second. the first term is the vacuum contribution Wh“eorder. This means that | can replace the interacting ensemble

the second term is due to finite temperature effects. The Ze@veragg(- ) '>'?q by the free e_nsemble average '>°'.Th's
temperature part is divergent in the ultraviolet limit. This in turn is equivalent to inserting free spectral functions,
divergence can and should be removed using vacuum renor-
malization techniques. The finite temperature does not intro-

duce any extra divergence since it is regularized by the dis-

tribution function. One can say that the very short distance

behavior of the theory is not affected by finite temperaturgniy the expressions of Eq21). After evaluating the fre-
[31]. ThereforeT=0 renormalization is enough to obtain quency integrals I find

finite results. The usual approach then is to neglect the zero

temperature contributions when focusing on the physics at

Pired P) = 27e(p®) 8(p?—m?), (25

finite temperatures. At this point, it is worth mentioning that d3p
using a self-consistent approximation makes the usual renor- 5(afwf)=i2AM§f d4X/WS(X/)f 3
malization procedure difficult, as discussed82]. The ar- (2m)

gument, according to which the renormalized divergent term 3
can be neglected, is really correct only when the mass is the f d°q ei(ﬁ+ci)(>27>z’)|:(5 a t'), (26
bare mass. A self-consistent calculation involves the (21)3 B
temperature-dependent mass, leading to the temperature-
dependence of the divergent term. Renormalization thus re-
sults in temperature-dependent renormalization constantsith
and these should not be ignored. However, such a treatment
is beyond the scope of this paper, and in what follows, | am
going to ignore the divergent term, while still being aware of

Nt — i(Eg+E ) (t—t")
this approximation. F(p.q,t") 4EUEW[(1+fU+fw)(e
Third, the momentum integration has a lower limi,, _ ,
due to the restriction of the thermal population to hard mo- —e EAEDON 1 (f_—f))

menta,| 5|>Ac. WhenA =0, the condensate contains only
zero momentum modes, meaning that the classical field con-
figurations are homogeneous. In reality nonzero but small
momenta can be part of the condensate. Then one talks ab
inhomogeneous condensate.

X (el (EsmEn(t=t') _ g i(E,~E)(t-1))].

Oé'ﬁﬂce, the deviation from equilibrium is assumed to be small,
| Taylor expandmrg(x') about its equilibrium value. The first
term of the expansion, linear img(x), gives the contribution
to the mass. The total pion mass is then

In the theory with spontaneously broken chiral symmetry

the tree level mass of the pion is zero in the broken phase,
m_=0. Goldstone’s theorerf23] requires that this remains M2=m2+ay, (27)

zero at every order in perturbation theory. The first glimpse

at Eq.(9) [or Eq.(13)] for the pion condensate shows a mass

term. At one-loop order where

A. Goldstone modes
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a1:|2)\M5_
d3 1 =
:izxME,f P> >
(2’77)3 4EU'E7T E
| 2E (121, 2B (12t )l s 39
I(E2 ) 200 |-
[ A=120MeV
dsp [ 1 } 10F - A=0
=2>\f 1+ 2f ;
(2m)%| 2E, ( ) [
(28) 0Lt

0 20 40 60 80 100 120 140 160 180

andE,=+/p?+M?2 andE_,=|p|. Summing up Eqs28) and T [MeV]

(24) in expression27), the true pion mass yields ) _
FIG. 1. Temperature dependence of the sigma mass for different

=0, (29 momentum separation scales in the chiral limit.

M

thus proving that with proper inclusion of diagrams the pions=165 MeV, which is in good agreement with lattice data
stay Goldstone bosons at one-loop level at all temperaturef33]. Figure 1 shows that the meson mass is positive-definite
Another simple and straightforward proof in frequency-at all temperatures, eliminating the tachyon problem present

momentum space is presented 22]. in the mean field approximatiori81].
The theory with exact chiral symmetry is known to have a
B. Numerical results second order phase transition based on universality argu-

ments[24]. This has been confirmed within the mean field
approximation27]. Figure 1, however, shows a discontinu-
ous behavior of the order parameterTat Such a jump is

In the exact chiral limit the self-consistent solution of the
gap equation

v2=f2—3<02> —(N—1)<772> (30) characteristic to first-order phase transitions. Incorporating
m fred freqr the effect of thermal fluctuations in a self-consistent way
with the sigma and pion field fluctuations renders the transition first order. Such a behavior has been

discussed many years ago also by Baym and Gring&h
In Fig. 2 | present how the discontinuity decreases with de-
(Uf>— —| AP == (31)  creasing coupling constant. For a weak enough coupling the
E e a'/T 1 . oy . .

7 continuous second-order transition is recovered. This can be
understood in the following way: in order to assure the fi-
niteness of th®(N)-theory in the largeN limit the coupling
constant should be written agN [26] in the self-consistent

and

2
(Wf>_—f - S Y 1 1—2 gap equatior(33)—(30):
100
for M_—0, A.—0, (32 .
evaluated withE = \/p?+M?Z, where
M2=2\02, (33 >
=
is presented in Fig. 1 for different values of the momentum  —
separation scald .. In the numerical analysid=4 and the >
coupling constant was chosen to e 18, corresponding to i
a vacuum sigma mass of abomi=2\f2=(558 MeV). 0F i
The phase transition temperature, defined by the vanishing of 20F - Q:gg
the condensate, is abodi.=130 MeV for homogeneous 10k T a=001
classical field configurations).=0. With the increase of : . . . . . .
the scaleA. the phase-space available for hard modes is °o 20 40 60 80 100 120 140
decreased, requiring higher temperatures for the fluctuations T [MeV]

to completely dissolve the condensate. FPor=120 MeV
the temperature above which fluctuations are much too large FIG. 2. Temperature dependence of the equilibrium condensate
to allow the formation of any condensate is aboli  for different coupling constants in the chiral limit.
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FIG. 4. One-loop self-energy contribution to the soff with
coupling to the hardr; through\v oswf.

cesses. However, as | show in the following, two-loop pro-
. cesses can dominate due to the available large phase space.
00 5'0 166 1'50 260 250 300 350 The e_szective equations of motion for long-wavelength
meson fieldg10) and(12) have the general form
T [MeV]

32 Ppo(X) +M2pg(x)+F(x)=0, 36
FIG. 3. Temperature dependence of the resummed meson (X) (%) (%) (36)

masses and of the equilibrium condensate in@{é) model with  \where = o5 or 75 and
explicitly broken symmetry.

N F(x)=f d*x’ pe(x" )T (x—X"). (37
MZ=m;—25[3(0D)eqt (N=1)(megl. (34

In frequency-momentum space this reads as
For N—oo the contribution from the sigma field fluctuation

_ L2 2 _
disappears. The condensate is then k“+M*+11(k)=0. (38)

_ 2 The functionII(k) is given by
2—f2 N—-1 2 ~f2 T 35
v =1= N <7Tf>eq_ 77_1_2 ( )
gl (k=p=a)(x—x")

. . (k)= —ig fd“ J
clearly showing a continuous decrease of the order parameter (2m)% (277)
with increasing temperature. In ti@4) model decreasing 0 0
by hand is equivalent to going to the largelimit in the X p1(P)p2A[1+f(p”)+f(a")] (39)
O(N) model. For our model parameters | have determined
large N iica= 1800 at which the transition is second order

For thisA=18 was held fixed. This result is equivalent to -
! W x I Hit 1S equiv hard modesg; and 7, respectively, and= (k% k) is the

having \ gitica=0.01 andN=4. ¢ fh ft si ion. The f
Numerically determined self-consistent solutions for the'0Ul-momentum of the soft sigma meson or pion. The fre-

condensaté14) and the meson massékl) and (13) in the ~ duéncy has a real and an imaginary pift=w—il’, pro-
more realistic theory with explicitly broken symmetry are VidedK is real. The real part of the self-energy participates in
displayed in Fig. 3 and show a qualitatively different behav-the dispersion relation

ior. There is no phase transition in the textbook sense. The o o ) .

equilibrium condensate monotonically decreases with in- 0=k +M+Rell(w,k), (40
creasing temperature. A crossover region can be defined
where the sigma and pion masses start to approach degen-
eracy. The minimum of the sigma mass isTat 235 MeV.
Different values forA . do not introduce a significant effect

in evaluating the meson masses.

And is identified as the self-energy. Heres the correspond-
"ing coupling, and the indices 1 and 2 refer to either of the

g

V. DISSIPATION OF THE CHIRAL CONDENSATE

T, [MeV]
8 8 8 8 8

Dissipation of the condensate occurs because energy can
be transferred between the condensate and the heat bath

8

through the interactions of soft and hard degrees of freedom. o b
Formally, in our model, the damping of different modes is 0 20 40 60 80 100 120 140 160 180 200
determined from the response functions. Most of the previ- T [MeV]

ous studies on this topic have been done at the one-loop

level. The two-loop level scattering processes h_ave been ig_— FIG. 5. Temperature dependence of the sigma damping rate at
nored, based on the argument that these are higher order dne-loop order in the sigma rest frame. Calculations were done with
the coupling constant than are the decay and absorbtion preesummed meson masses.
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and with the usual assumption of weak dampifgg w, the  be aware that Eq41) describes the rate of decay of the
imaginary part of the self-energy completely determines themplitude of the wave, exp('t). The loss rate for the num-

damping of excitations: ber density is expf2l't).
Im H(w,IZ) A. Dissipation at one-loop order
T 20 ' (42) There are several diagrams contributing to the self-energy

at one-loop order. Tadpoles are real and they only modify the
I is the rate at which out-of-equilibrium meson modes withmass, as | discussed before. Dissipative effects come from
energyo and momentunk approach equilibrium. This rate nonlocal diagrams. At ordex these are determined from the
is determined by physical processes which can be identifiecesponse functions through E®9) with the insertion of the
from the imaginary part of the self-ener§4]. One should free spectral functions,

1 1
ﬂ)_El_E2+i€ (1)+E1+E2+|E

(1+f+15,)

d3p
— 2

1
(1)_E1+E2+i€_(1)+El_E2+i€

+(f2_f1)(

with E;=+/m2+ (p+k)? andE;=\/m2+p?. The indices 1 o k
and 2 refer again to either of the fast sigma and pion. It is w¢=§i§ 1-
important to observe that the above expression coincides

with the self-energy calculated directly from the nonlocal
one-loop diagrani34]. For positive energies of the mesons

w?—k?

The decay and formation processes are obtained by setting

. . . . wz— k2: m2 N
=0 the contributions to the imaginary part of the self- o
energy are
. ,f &p 1 - A2 . 4m’, nl
Im (e k)=-mg J (27)3 4E1E; (Me) ="~ 76, m2 K
+(fo=f)d(w—E;+Ep)]. (42) L o k L 4m?
_ e TV
Because the heat bath singles out a preferred reference frame Xlog "2
we keepw andk independent. The dynamics of the decay is 1 e k 1 am7
determined by the on-shell processes that are allowed. ex 2T ' 2T m2
1. Sigma meson decay (44)

Contributions to the imaginary part of the sigma mesonThe rate at which sofl<T, sigmas of energw disappear

self-energy come from the diagram presented in Fig. 4. Kifrom the condensate due to their decay into thermal pions is
nematically, the decay of a soft sigma meson into hard ther-

mal pions,os— 7, and the inverse, recombination pro- (N—1) m2 — m2 Am2 ®
cess is allowed, provided thaf —k?=4m?: Ponn(@)= =\ Uw /[ 1- zwcotl-<ﬁ
mU’

(45

. g? 4m?
ImIl(w,k)= - E{ B 02— K2 The temperature dependence of the sigma damping rate
(45) in the rest frame of the sigmay,=m,,, is shown in Fig.
T 1—e (04 /T) 5. The calculations were done with the resummed meson
+2EIog ﬁ) , (43 massesM , andM .. Figure 5 shows that even at zero tem-
1-e ™ perature there is a finite damping, so the sigma meson can
decay into two pions in the vacuum. At=0, for our model
where parameters the damping rate is abduj, =510 MeV,
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FIG. 6. One-loop self-energy contribution tey with coupling
to o and 7 through 2v o7 .
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which is of the order of the mass of the sigma. The width of T [MeV]
the sigma resonance is very broad, in other words the sigma
meson is overdamped. Figure 5 shows that the damping ign
increasing withT, and is followed by a quite drastic decrease
starting from aboufl =150 MeV. This temperature corre-
sponds to the temperature where the sigma mass begins to N m2(m2—m2) am?
drop significantly(see Fig. 3. It is then natural to expecta T (m )= —— " \[1— —"
decrease of the sigma decay rate into pions that have masses 16m mi m(zr
approaching that of the sigma. AbovE=200 MeV the
threshold condition for the decay of an on-shell sigma me- x
son,M,=2M ., is not fulfilled anymore. Therefore there (M =2m2)/2m,T_ 11— g~ (mg/2m,T)y "
will be no contribution from decay to the sigma width in the

kinematically suppressed region. (47)

FIG. 7. Temperature dependence of the pion damping rate at
e-loop order in the pion rest frame. Calculations were done with
resummed meson masses.

1—e (MM

_ _ Figure 7 shows the temperature dependence of the damping
2. Pion damping rate of massive pions at one-loop ordév) calculated in the

At one-loop order there is only one diagram contributingPion's rest frame using the resummed meson madégs,
to the pion self-energy. This diagram is shown in Fig. 6. Atand M. Note that at zero temperature the dissipation is
this order, dissipation of the pion condensate can occur prozero- This makes sense because the transformation of pions
vided the energy and momentum of the soft pion satisfies th#t0 sigmas is due to their annihilation with a hard thermal
kinematic conditionw?—k2<(m,—m,_)2. Then the trans- PION In the medium, and so this is exclusively a finite tem- _
formation of a pion into a sigma when propagating through gP€érature process. At low temperatures th_e phase space avail-
thermal medium can happen. Basically, a soft pion from theble fOl‘.thIS pion transformation process is _suppressed by the
condensate annihilates with a hard thermal pion producing ir9¢ sigma mass. As the temperature increases and the
hard thermal sigma mesom,m;— o. The inverse process SIgma mass is dropping the W|_dth of the pions is increasing.
is the decay of a hard thermal sigma meson into a soft and &igure 7 shows that the damping can get quite strongl At

hard pion,o;— 77 . The net rate of dissipation is =170 MeV, for example, when the pion mass is about

=158 MeV the damping i¢",,.,=87.0 MeV. Thus at this
temperature the width of the pion is about 55% of its energy.
—m?) ( e+ /T— 1) This result makes us question whether the pion is a quasipar-

2
g
ko

T(m

ticle in this temperature region and needs further investiga-
tions. At temperatures around 200 MeV the kinematic con-
e(w++w)/T_1H dition for an on-shell pionM,=2M ., is not satisfied,

. 1
Fﬂ'wo(wrk):g)\ ew_/-l—_l

+log (46) prohibiting the transformation of a pion into a sigma while
passing through a hot medium.
The damping in terms of the pion momenta is presented in
where Fig. 8 for different temperatures. Results using the dispersion
relation w?=k?+ M? are displayed. Noticeable damping oc-
curs abovel =100 MeV and increases with. At aboutT
0= \/p2++mi, =160 MeV all modes are equally damped. In other words,
the width of the pion is independent of its momentum. This
width is increasing withl and it can be as great as 30% of

e(w,er)/T_ 1

kmi-2m? o m? 4m? the energy. At even higher temperatures the damping of the
pr=Fs——F+5—5\/1— . zero momentum modes is the strongest.
2 mz  2m m,

B. Dissipation at two-loop order

In the rest frame of the massive pion the expression for the Instead of the tedious evaluation of two-loop linear re-
damping is simplified to sponse functions, | present a direct determination of damping
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rates from the physical processes responsible. Two-loop con-

tributions correspond to two-particle scatterings with ampli-

tudes evaluated at tree level. Similar to the one-loop calcu-
lations | evaluate the imaginary parts of the two-loop self-Here | consider scatterings involving massive particles only.

energies and inserting these into E@l) results in the

damping rate due to scattering.

The general form of the self-energy of a particle of mass
m,, propagating with four-momenturtn:(w,IZ) through a

medium in thermal equilibrium, is given GB5]

d3p

Hab(k):f (2m)32E

f(E)M(s).

Then

(49 8 fAi

Imfen(s)=

FIG. 8. Momentum depen-
dence of the pion energy and
width at different temperatures
calculated with resummed meson
masses and with the dispersion re-
lation w?=k?+M?2. All quanti-
ties are normalized to the vacuum
pion mass.

cm

o il ) (50

1 1
ImHab(w):——zf d cosé
8me) -1

2

dp o f(E)oras(E)

X \[(s—mZ+m2)2—4sne,

Here M is the transition amplitude for the scattering process

ab—ab. The thermodynamical weighi{ E) is the Bose dis-

with s=m2+m2+ 2Ew— 2pkcosé, whered is the angle be-

tribution of thermal mesons of mass, and four-momentum  tweenk and p. The dispersion relation of the hard thermal
p=(E,p). In terms of the forward scattering amplitude modes isE = \/p?+ mg and of the mesons inside the conden-

M(s)=—8m\/sf.(S), wheres=(p+k)?, and the imagi-

nary part follows:

To obtain this equality | applied the standard form of the

3

d°p
(2m)®

ImHab<k>=—f

(NS el ). (49

of mesona, where

my

272

optical theorem that relates the imaginary part of the forward

scattering amplitude and the total cross secf@fi:

056010-11

IMm I yp(w=m, ,k=0)

satew= \/k?+mZ. It is convenient to work in the rest frame

dE(E*~m)f(E)oap(E). (51)

The cross section for a scatteriap—ab is given by
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! f (doab) dQ (52) o
Oab= a1 e
ab gl aq /. 250 |
where % 20 F __.onx
E 150 | G-¢
d()'ab 1 5 -]
— ) [ — total
0 )cm oar?s ! 59 100 |
The symmetry factor B! is due to the numbe® of identical S0 F
particles in the final state. It is clear that knowing the ampli- 0 [ ! ] Lo
tude M of a process readily results in the dissipation rate 0 50 100 150 200 250 300
due to that process. T [MeV]

FIG. 9. Scattering contribution to the width of the sigma meson
as a function of temperature. Calculations were done with re-
There are two mechanisms that contribute to the removadlummed meson masses.

or addition of a sigma meson to the condensate: elastic scat-
tering of a hard thermal sigma or of a hard thermal pion off|, the high energy limit only the four-point vertex contrib-
a sigma from the condensate. To first order in the coupling |jtes to the amplitude, resulting in

there are four diagrams contributing to the process in which
a thermal sigma meson knocks out a low momentum sigma

1. Sigma scattering

from the condensate. The transition amplitude, the sum of o :9)\2 (58)
contributions from different diagrams is 77 8ws’
M=—6\| 1+3(m2—m2) This gives rise to
3
1 1 1 ___° o2
X( _+ _+ 2)1 (54) ImIT,, 6477)\T' (59
s—m;, t—-m, u—-m;

This reflects the symmetry in the t, andu channels, and With these two limits | construct an interpolating formula
s+t+u:4m§. The total cross section is that describes the whole energy range. The contribution to
the rate of decay of the amplitude is then

S
- 8ms

040(S)

s+2m2—3m2\%  18m2—m?)?
s—m? " 9\°

m3(s—3m?) r 2N
79 64qr

12(m2—m?)(s?—3smi—m? +3m2m?)

(s—4m?)(s—2m?)(s—m?)

s—3m?
XIn

T4(m,+T)(4m%—5m2)?
X .
6m, (M, +T)(4m;—5m2)2+ w?mo(e™ /T —1)

(55) (60)

m2

o

A hard pion in the heat bath can be energetic enough to

i ; 2
In the low energy limit expand this abogt=4m, . To lead- knock out a sigma meson from the condensate. The possible

ing order tree-level processes may happen according to four different
diagrams. The transition amplitude obtained from these is
9 (4m2-5m2)2 J g
Ogo= 35— 2—6’ (56)
32 mo_
: _ o M=—=2\| 1+ (mZ—m?)
and in the rest-frame of the sigma this gives rise to
272 T X ! + 3 + ! (62
= — Mg ’
ImHW— 27737\ T“e s—mf, t_mi u—mf,
(m,+T)(4m;—5m?)? 2, 2 -
X : . (57  wheres+t+u=2(m_+m:). The total scattering cross sec-

m, tion is

056010-12
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2

s) A2 | [s—2m2+m? 9s(m2—m?)? s(m2—m?2)?2
T,nS)= +
4ms s—m? m2[s?—snf—2sné+(m2—m?)?]  (2mi+mZ—s)[(mi—m?2)2—snt]
6s(m2—m2)(snf.+ 2snf.—s?+mi—m? —2mZm?2) snt

n
(s—m?)(m2+m2—s)[s?—2s(mZ+m2)+(mi—m?)?] s?—snf—2sni+(m>—m?)2
2s(m?—m?2)(3snf—s?+m? + mt—4amZm?) s(2m2+m?2—s)

- n .
(s—m?)(m2+m2—s)[s?—2s(mZ+m2)+(m>—m?)?] (m2—m?)?—snt.

(62)

The low energy limit is obtained by expanding this absut energy. Dissipation of sigmas from the condensate due to

=(m,+m_)? and is their scattering is much smaller than due to their decay,
meaning that the scalar order parameter relaxes to its equi-
= 9 , m?(3m2—4m?2)?2 63 librium value via the production of lighter pion fields. It also
Oyn(S)=—— . .
4o sm(z,( mi_4mi)2 means that sigma mesons are so unstable that they are more

likely to decay before they could ever scatter with other par-

At high temperatures, where only the four-vertex diagramiicleS from the medium.

contributes, the cross section is reduced to ) )
2. Pion scattering

\? Dissipation of DCCs can arise from scattering of the soft
Ton(S)= s’ (64) pions with hard pions or hard sigma mesons. The damping of
massive pions and that of the Goldstone pions | expect to be
The contribution to the imaginary part of the self-energy atdifferent, requiring a somewhat different analysis. In the fol-
low energies is lowing | present the discussion on massive pions. There are
four possible tree-level diagrams representing the reaction in
which a hard thermal sigma knocks out a low momentum
pion from the condensate. The total cross section is the same
as for sigma-pion scattering and is given by expres&iah
where | defined The imaginary part of the self-energy in the low energy limit
in the rest frame of the pion is

9
ImIL,,=——\°T% ™/TF (m,,m,), (65
41

mi(m,+T)(3m2—4m?)?

F(J”?T m,.m;)= y 66 9
( ) mi—( m0'+ m'rr)z( m§_4m37)2 ( ) Im Hwa': - F)\sze_ mo/TFﬂ'o’! (69)
a
and at high energies
where
)\2T2
ImIl,.=— 55— (67) ~ m2(m,+T)(3m>—4m?)? 0

. o . mig(myt mp)X(m2—4m2)?’
The two limits can be combined into one approximate ex-
pression which then determines the rate of dissipation. Facand for high energies is
toring in all theN—1 pions
)\ZTZ

9(N_1) 2T2 F(T’TT ImH,ﬂ,:—W. (71)

or=——a——AN"— . (68
8w m, 216F ., + w2(eM/'T—1)

r

The total scattering rate due to this process can be param-
A distinction should be made between scatterings with mas<£trized by an interpolating formula between the two known

less and massive pions. The low energy expres@@nvan-  IMits:

ishes for zero pion mass. The first nonzero term in the series _—

expansion of the cross section is the fourth order term. | _ T Fro (72)
discuss the massless case in my forthcoming pgg&r T 8mm, 2168+ wi(eMe/T—1)

The temperature dependence of the total scattering rate of
the sigma mesonl',,+1 .., evaluated with the self- =& scattering has been extensively studied during the last
consistently determined meson masses is shown in Fig. @ouple of decades in a variety of different models and ap-
Scattering is more accentuated at higher temperatures and fisoaches. An incomplete but significant list of references is
contribution to the sigma damping rates is well below the[37]. Here | study the elastic scattering of a hard pion off a
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soft pion. For one pion speciebl=2, there are four dia- where M? is the matrix element associated with the total
grams contributing to this process at tree-level: one 4-poinisospin| of the two-pion system:

vertex diagram and three 3-point vertex contributions involv-
ing a sigma exchange in tlgt, andu channels. The transi-

0_ 2 2
tion amplitude is MPO=—=2)\|5+(m>—m?2)
M=—=2\| 3+(m2—m?) ot 1
s—=m2 t-m2 u-m?/|
X ! + ! + ! (73 1 1
s—m2 t-m> u-m?/| M1=—2)\(m(2,—m127)( 5 — 2),
t—-m? u-m?

wheres+t+u= 4me . Accounting for all pion species opens
up additional channels. Fdd=4 the transition amplitude

1 1
2_ 2_ 2
averaged over initial and summed over final isospins is M= =2\ 2+ (m;— mﬁ)( t—m2 + u—m2) :
2 1 2 112 (75)
M| =5 21+1)| M|, 74 ) .
M 3 |:o,1,z( ) | (74 The resulting cross section is
|
o= M| 15p 1o M) 5 Mo © o s(mi-mi)?
O,x(S)= 5= + + +
8ms s—m?2 s—m? m2(s+m2—4m?)
4(mZ2—m?)(5s%+ 5snf.— 7m* + 13m2m2 — 20s .+ 4m?) I s+mi—4m2 78
- n
(s—4m2)(s—m2)(s+2m?—4m?2) m?2
|
The low-energy limit of the cross section, quite acceptable 23\ 272
for m,>T, is given by the expansion of this abost FMZGT
=4m? i
) ) . (M +T)
2 X .
o :)\_L 23— 16%+128% . (77 1 mf‘T(mw+T)+wz(m§—4mi)2(emw”—1)
T 3D (m2 — 4m2)2 m2 m*
g T ag g (81)
At high temperatures, in th€— T limit the major contribu- . The. scatterlngdcpntn.butlon fo the dan;pwg r?f massive
tion to the amplitude is from the four-point vertices, resultingplons IS presented in Fig. 10. Becaqse of the heavy sigma
in exchange there is a strong suppression at low temperatures.
When reachingT=130 MeV the scattering rate becomes
_15\? 28 -
Tnn=grs" (78) 1000 |
In the rest frame of the pion the above two limits give % 800 ]
2 600 [ — -G
3 = [
m>(m_,+T) e %
—_ 212-m_JT__ ™ 7 [
M= N T T a7 = a0 | — o
zw -
and [
51272 00~""50 100 150 200 250 300
ImIl,, . =— (80) T [MeV]

647 ’
FIG. 10. Scattering contribution to the width of the pion as a

respectively. The rate of dissipation due to massive pion-pioffunction of temperature. Calculations were done with resummed
scattering is then given by the interpolating expression meson masses.
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14 perature increases more thermal modes get excited and as a
! consequence the relaxation time is quickly decreasing. In the
phase transition region the decay time is the shortest. At the
peak of the dampin@ =200 MeV | foundt=0.17 fm/c, and
atT=235 MeV, where the mass of the sigma is the smallest,
t=1.36 fm/c. When assuming no multiple interactions with
the heat bath thenis the lifetime of the DCC. The times |
obtained are shorter than previous estimgf48,19, and

are short enough to make a possible DCC signal question-
able. One can expect that any multiple scatterings or decays
L would only increase the damping, decreasing the relaxation
280 300 time.
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FIG. 11. Relaxation time of a homogeneous disoriented chiral VIl. CONCLUSIONS

condensate versus temperature. This work was motivated by my interest to determine the

ossibility of survival of DCCs in the background of a mul-
itude of thermal particles, mostly pions, that are formed af-
ter two heavy ions are collided at ultrarelativistic energies.
Also, having a consistent description of quantum fields near
thermal equilibrium allows for a better understanding of their
dynamics in a region where nonperturbative analysis is re-
ired.

We have developed a consistent semiclassical study of the
out-of-equilibrium chiral condensate fields in the framework
VI. RELAXATION TIME of the linear sigma model. Clear distinction between the soft
f nonthermal chiral fields and hard thermal modes has been
heavy ions depends on the lifetime of the condensate. DC ade, accoun'_ung also for interactions between these. Moti-

vated by the high occupancy of the low momentum modes |

formation can happen out of thermal equilibrium only. In ; .
order to talk aboufl?lonequilibrium physicg the rate of eip(,jm_allowed for their classical treatment. The effect of the other

sionteyp, has to be much smaller than the relaxation time Oergrees of freedom has been taken into account .by introduc-
long-wavelength modes, ing a heat bath of mesons. These thermalized high momen-

tum modes have been accounted for in a perturbative man-
toxp<t. (82)  ner, improved by the resummation of certain diagrams. |
derived classical equations of motion for the long-
Otherwise, for a slow expansion, the soft modes have enoughiavelength condensate fields coupled to the thermal bath.
time to equilibrate. Equilibration of the out-of-equilibrium After integrating out the hard modes effective field equations
chiral condensate is the result of the presence of a heat batfgsulted, which completely determine the evolution of the
Above, | analyzed the physical processes responsible arghiral condensate in space and time.
calculated the damping of different meson modes. The total The presence of the slowly varying condensate fields
width is the sum of one- and two-loop order dissipative con-cause deviations in the equilibrium fluctuations of the ther-
tributions, mal fields. | identified these as linear response functions,
since | am dealing with not too far from equilibrium sce-
(83 narios. | have discussed in detail the richness of information
contained within these response functions: They renormalize
which exhibits a sharp peak in the critical region, due to thehe equations of motion, modifying the particle properties,
peak in the damping rate from pion-pion scattering. In theand give rise to dissipation.
nonequilibrium, but close to equilibrium physics that we The temperature dependence of the meson masses and
consider, the damping directly controls the rate at whichthat of the equilibrium condensate have been determined nu-

significant and it is comparable in magnitude to the dampin
at one-loop order. In the critical region the contribution to the
pion width from pion-pion scattering grows rapidly reaching
a maximum aboufl =200 MeV. It is interesting to note
from Figs. 9 and 10 that in the high temperature regions
where the mesons become almost degenerate, their widt
approach the same value, as expected.

The ability to detect DCCs in relativistic collisions o

Fﬁ:FWﬂU+F7TO'+F7TﬂT’

equilibrium is approached through the relati@] merically in a self-consistent manner, both in the chiral limit
and for explicitly broken chiral symmetry. In the chiral limit

= 1 84) a first-order phase transition was found, which is an artifact

r, of the model. | show that for a small coupling constant, or

large N limit, the expected second-order transition is recov-
Obviously, the larger the damping due to the interaction ofered. | have considered in some detail the Goldstone boson
the condensate with the heat bath, the shorter the relaxatiarature of the pion, proving that when properly accounting for
time is. Figure 11 shows the change in the relaxation timehe tadpole and sunset diagrams the pion remains massless at
with temperature. At low temperaturéss large due to the one-loop level in the symmetry broken phase. Also, the
suppression of the thermal occupation numbers. As the temachyon problem of mean-field approximations is eliminated
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by naturally assuring the positivity of the masses at all tempressed. Soft pions from the condensate can be knocked out
peratures. In the more realistic case, in which chiral symmethrough elastic scatterings with a hard thermal pion or sigma.
try is explicitly broken by the nonzero quark mass, a crossThe damping due to these is most accentuated in the phase
over region was identified. The minimum of the sigma masgransition region. The pion width shows a peak at about 200
is at the transition temperature of about 235 MeV. Above thidMeV.
the masses of the pion and the sigma become degenerate andThe damping directly controls the rate at which equilib-
the equilibrium condensate vanishes asymptotically, signalfium is achieved by the nonequilibrium condensate. | have
ing an approximate restoration of chiral symmetry. determined the relaxation time of a homogeneous condensate
Because of possible interactions between different dedue to both one- and two-loop order dissipative processes.
grees of freedom, those of the condensate and those of tiWge have obtained relaxation times between 0.17 and 1.36
heat bath, energy exchange is possible and particles can fa/c in the phase transition region. Assuming no multiple
knocked out or put in the condensate. Direct evaluation ofnteractions these times become the lifetime of the conden-
the response functions results in the rates for the differengate. | have found that the lifetime of disoriented chiral con-
processes. | have identified these physical processes that atensates is short enough to make a possible DCC signal
responsible for the dissipation of long-wavelength modes ofjuestionable. Further investigations of this model in a far
the chiral condensate, and have confirmed that at high tenfrom equilibrium scenario are needed.
peratures not only the damping of the sigmas is significant, The natural next step of my investigation is to solve the
but also that of the pions. At one-loop level, provided a ki-field equations for some initial conditions for an expanding
nematic condition is satisfied, a pion from the condensatesystem. Such analysis is on the way.
can annihilate with a pion from the heat bath forming a The methods used in this paper are general, and may be
sigma. The damping due to this process becomes strongesed in other contexts, where nonequilibrium physics of
with increasing temperature. The width of the pion can be aguantum fields is of interest.
big as 55% of its energy. This result makes me question
whether one can taII_< about the pion as a quasiparticle in the ACKNOWLEDGMENTS
phase transition region.
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