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Dissipation at the two-loop level: Undressing the chiral condensate
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A simple and consistent real time analysis of the long-wavelength chiral condensate fields in the background
of hard thermal modes is presented in the framework of the linear sigma model. Effective evolution equations
are derived for the inhomogeneous condensate fields coupled to a heat bath. The multiple effects of the thermal
background on the disoriented chiral condensate are studied using linear response theory. I determine the
temperature dependence of the equilibrium condensate, and examine the modification of the sigma and pion
dispersion relations as these mesons traverse a hot medium. I calculate the widths by determining the dissipa-
tive coefficients at nonzero temperature at one- and two-loop order with resummed meson masses. My results
show that not only decay processes, but elastic scattering processes are significant at high temperatures,
yielding to short relaxation times in the phase transition region. The relaxation times obtained are shorter than
in previous estimates, making the observation of disoriented chiral condensate signals questionable. Through-
out this work Goldstone’s theorem is satisfied when chiral symmetry is spontaneously broken.
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I. INTRODUCTION

Nonequilibrium phenomena in many-body systems
received a great deal of attention during the last two deca
The theoretical interest keeps growing as new experim
are readily emerging in different research areas of phys
such as the chiral phase transition and quark-gluon plasm
ultrarelativistic heavy ion collisions, ultrafast spectroscopy
semiconductors, Bose-Einstein condensates, strongly c
lated Fermi systems in condensed matter physics, and e
troweak baryogenesis and inflation in early Universe cosm
ogy. In the following I present a quantum field theoretic
description of the dynamics of nuclear matter formed a
consequence of nuclear collisions at ultrarelativistic energ

The existence of a deconfined, chirally symmetric ph
of QCD was predicted long ago@1#. The interplay of the
results obtained from the three major research approac
lattice simulations, theoretical models and experiments at
BNL Relativistic Heavy Ion Collider~RHIC!, lead us to ex-
pect that ‘‘finding’’ the quark-gluon plasma is within reac
PHENIX results@2# from the year-1 run of the RHIC sugge
that the energy density achieved in Au1Au collisions al-
ready atAs5130 GeV is high enough to be favorable for th
existence of free quarks and gluons. Early thermalization
the partonic medium@3# has been indicated by the ellipti
flow analyses at STAR@4#. However, most probably therma
equilibrium is not maintained as matter rapidly expands a
the temperature quickly drops through the QCD phase t
sition. Arguments that hint at nonequilibrium, even explos
@5# dynamics in heavy ion collisions, such as large fluctu
tions of the average transverse momentum, and almost e
sideward and outward Hanbury Brown–Twiss~HBT! radii,
were reported in@6#. The dynamical evolution of such a
out-of-equilibrium system is not yet understood. When
comes to possible approaches, lattice simulations unfo
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nately do not prove to be the way to go: a lattice can desc
static situations in thermal equilibrium. Therefore, for lear
ing about the dynamics of nonequilibrium systems, one
to reside to different theoretical approaches. Attempts
made using field theory@7–11#, covariant kinetic theory@12#,
and recently also nonequilibrium fluid dynamics@13#.

Until now no unambiguous observable that could serve
evidence for the phase transition has been identified. Ba
on the knowledge that a transition from ordered to disorde
phase is accompanied by the formation of condensates,
oriented chiral condensates~DCC! have been suggested@14#
as the signature of the chiral phase transition. This me
that the matter formed in a heavy ion collision can relax in
a vacuum state that is oriented differently than the norm
ground state. Relaxing of DCCs to the correct ground s
then happens through the emission of low momentum pi
with an anomalous distribution in isospin space. Detect
fluctuations in the ratio of produced neutral pions compa
to the charged ones can serve as a signal for the chiral s
metry restoring phase transition. Such DCC signals have
been observed at CERN-SPS energies@15#. The STAR de-
tector at the RHIC searches for dynamical fluctuations on
event-by-event basis and may be therefore better suited
DCC searches. Other signals were proposed in contex
DCCs: dileptons@16#, and recently the anomaly in th
Omega and anti-Omega abundances observed at the C
Super Proton Synchrotron~SPS! @17#.

The ability to detect DCCs depends on their lifetime.
the original work@14# DCC formation was proposed with th
assumption of a perfect quench. This means that after
critical temperature is reached the long-wavelength mode
the chiral condensate decouple from the thermal modes
evolve according to zero temperature equations of motion
more realistic discussion, accounting for the presence o
thermalized background was first presented in@18#. Because
of the possible energy exchange between different degree
freedom dissipation occurs, which in turn reduces the li
time of the condensate. This problem has been addre
©2002 The American Physical Society10-1
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previously in@7–11,19,20#. Most of the previous calculation
though focus on the evolution of the order parameter o
@7,11#. Based on the observation that true pions have a fi
width @21# the damping of pion condensates was conside
@9,10#, but only at one-loop level. The usual argument
neglecting two-loop contributions is that these are higher
der in the coupling. However, there is an important rea
for why two-loop contributions are not negligible: where
decay processes can happen only under some kinematic
ditions, scattering can always happen. Dissipation due
scattering has been evaluated for the scalar condensa
@11#. A first attempt to look at the lifetime of DCCs based o
scattering processes was presented in@19#.

In this paper I present a quantum field theoretical analy
of homogeneous and inhomogeneous chiral condensate
configurations out of thermal equilibrium that are coupled
a thermal bath. The framework is the linear sigma mod
which has proved to describe fairly well the hadronic pha
of two-flavor QCD. I treat the long wavelength chiral field
classically and account for the short wavelength fields p
turbatively, but resumming certain diagrams. Such semic
sical description is acceptable since the occupation num
of the low momentum modes is large. The effect of the h
bath on the condensate is contained within the deviation
the thermal field fluctuations from their equilibrium values
identify these deviations as time-delayed responses of
hard thermal modes to the presence of the condensate
evaluate them using linear response theory, which prov
the evolution of observables in real physical time. The
sponse functions renormalize the equations of motion, m
fying the particle properties, and give rise to dissipation. D
to possible interaction and thus energy exchange betwee
soft and the hard modes decay channels open up and
ticles can scatter. These processes are responsible fo
dissipation of the condensate. To the best of my knowled
a consistent incorporation of relaxation processes at the
and two-loop level has not been done before in this cont
There is another important effect, that of the change in
velocity. I discuss this in@22#.

It is important to determine the order of the chiral tran
tion, as this influences the dynamical evolution of the s
tem. Experimentally, large-acceptance detectors are now
to measure average as well as event-by-event observa
which in principle can distinguish between scenarios wit
first order, a second order, or merely a crossover type
phase transition. QCD with two massless quarks posse
chiral symmetry, described by theSU(2)R3SU(2)L
.O(4) group. This continuous symmetry is spontaneou
broken at low temperatures, resulting in the emergence
Goldstone bosons@23#. Based on universality arguments@24#
the transition between the chiral symmetric and symme
broken phases is of second order. Nature, however, sup
a different situation, with nonzero quark masses. Small qu
masses explicitly break chiral symmetry, which then alt
the nature of the phase transition. The second order trans
becomes a smooth crossover, provided that the baryon
sity is zero. In case of a sufficiently large baryon chemi
potential the transition is of first order, suggesting the ex
tence of a tricritical point in the (mB ,T) plane of the QCD
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phase diagram@25#. Year-1 RHIC results@2# suggest that at
As5130 GeV the baryon density is approaching the lo
density limit. Expecting an even smaller baryon density
the maximum collision energy justifies us to work at fini
temperature and zero baryon chemical potential.

The paper is structured as follows: In Sec. II I deri
coarse-grained equations of motions for the long wavelen
chiral condensate fields which are in in contact with a h
bath. In Sec. III the response of the thermal bath to the p
ence of the nonthermal condensate is evaluated. In Sec.
present the temperature-dependence of the equilibrium v
of the condensate and that of the self-consistently calcula
meson masses. It is important to emphasize that my ana
is performed with the satisfaction of Goldstone’s theorem
all temperatures below the critical one. Also, the tachy
problem appearing in the mean field treatments is elimina
In Sec. V I analyze the dissipation of long-wavelength sig
and pion fields due to decay and scattering processes. In
VI the relaxation time of DCCs is determined. I summari
my results and give an outlook into further developments
the concluding Sec. VII.

II. DERIVING EQUATIONS OF MOTION

Within the linear sigma model framework the study
DCC formation and evolution is convenient, since the phy
cal picture is rather transparent. The theory is formulated
terms of the chiral fieldF5(s,pW ). The scalar sigma fields
describes the scalar quark condensate^q̄q&, which serves as
order parameter. The pseudoscalar pion fieldpW
5(p1,p2, . . . ,pN21) is directly related to the pseudoscal
condensate,̂q̄tWg5q&. The dynamics of the chiral condensa
is completely determined by the evolution equations in sp
and time for the long-wavelength chiral fields. In the follow
ing I derive effective equations for these low-momentu
fields in a hard-momentum background.

The Lagrangian of the linearO(N) sigma model is

L~F!5
1

2
]mF]mF2U~F!, ~1!

where the usual choice for the potential is

U~F!5
l

4
~F22v0

2!21Hs. ~2!

The explicit breaking of chiral symmetry is implemente
through theH term that tilts the potential in the sigma dire
tion. H5 f pmp

2 and v0
25 f p

2 2mp
2 /l, where f p593 MeV is

the pion decay constant,l is a positive dimensionless cou
pling constant, andmp5138 MeV is the zero temperatur
mass of the pion. The parameters of the Lagrangian are
sen such that forH50 chiral symmetry is spontaneous
broken in the vacuum. The potential then resembles the
tom of a wine bottle with the zero temperature minimum
F̄5( f p,0). The excitations in radial direction, the sigma m
0-2
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sons, have a massms
252l f p

2 , and excitations along the az
muthal direction, the pions, are Goldstone bosons, withmp

50.
The evolution of the fields in thermal equilibrium ha

been extensively studied@26,27# after the pioneering works
by Linde @28# and Dolan and Jackiw@29#. The usual proce-
dure is to express the fields as

s~ t,xW !5v1s f~ t,xW !,

p i~ t,xW !5p f
i ~ t,xW !, i 51, . . . ,N21. ~3!

The thermal average of the chiral field,F̄5(v,0), is the
order parameter chosen to lie along the sigma direct

^s&eq5v and ^pW &eq50. The fluctuations about the orde
parameter average to zero,^s f&eq5^pW f&eq50. Throughout
this work we use the following notation:^O& is the nonequi-
librium ensemble average of an operatorO; ^O&eq denotes
the equilibrium, but interacting ensemble average; and^O&0
is the free ensemble average.

For nonequilibrium thermal conditions, the idea is th
instead of writing the fields as in Eq.~3!, we separate them
into their low and high frequency modes. This can be do
for example, by introducing a momentum cutoffLc , as in
@30#. Then, by integrating out the high frequency modes
obtain an effective theory for the low frequency, long wav
length modes. The fields can be separated as follows:

s~x!5s̃~x!1s f~x!,

p i~x!5p̃ i~x!1p f
i ~x!, i 51, . . . ,N21. ~4!

s̃ and p̃ i are slowly varying condensate fields, represent
low frequency modes with momentumukW u,Lc . These soft
modes are occupied by a large number of particles and
then be treated as classical fields.s f and p f

i are high fre-

quency, fast modes withukW u.Lc . These hard modes, repre
senting quantum and thermal fluctuations, constitute a h
bath. A choice ofLc50 would mean that only homogeneou
condensates, withkW50 momentum are studied. Here I di
cuss condensates that can also be inhomogeneous.

The problem to be solved, then, is to describe the evo
tion of long wavelength classical fields that are embed
into a thermal bath. In my approach, these soft modes fol
classical equations of motion, whereas the effect of the h
thermal modes is taken into account in a perturbative m
ner. I am well aware of the problems of a perturbative tre
ment, since the sigma model is a strongly coupled effec
theory: With the choice of, for example,ms.600 MeV for
the vacuum mass of the sigma meson the coupling cons
is l.20. However, I improve the model by resumming
certain class of diagrams in the perturbation series. I beli
that even if the self-consistent solutions are approxim
only, they still yield to qualitatively reliable results.

I average the Euler-Lagrange field equations over ti
and length scales that are short compared to the scales
acterizing the change in the slow fields, but long relative
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the scales of the quantum fluctuations. This is known
coarse-graining. The average of high frequency fluctuati
is thus ^s f(x)&50 and ^pW f(x)&50, while ^s̃(x)&5s̃(x)
and ^p̃ i(x)&5p̃ i(x). It should be noted at this point tha
compared to earlier works~for example@11#!, I allow for a
nonzero ensemble average not only along the sigma di
tion, but also in the pion directions. In other words, I allo
the formation of disoriented chiral condensates. Also, cr
correlations between fluctuations of different fields are n
zero, ^w iw j&Þ0, and moreover, I consider nonzero cub
fluctuations of the form̂w iw jwk&Þ0 which arise at the two-
loop level. Furthermore, I separate the nonequilibrium c
densate fields:

s̃~x!5v1ss~x!,

p̃ i~x!5ps
i ~x!, i 51, . . . ,N21. ~5!

v is the equilibrium value of the chiral condensate chos
along the sigma direction andss and ps

i are slow fluctua-
tions about equilibrium. The thermal equilibrium ensemb
of the hard fluctuations is affected by the presence of
condensate. The full, nonequilibrium ensemble averages
basically two- and three-point functions of thermalized fie
evaluated at the same space-time point. These can be wr
as the sum of the equilibrium ensemble average and a fl
tuation about this:

^s f
2&5^s f

2&eq1d^s f
2&,

^p f
i 2&5^p f

i 2&eq1d^p f
i 2&,

^s fp f
i &5d^s fp f

i &,

^p f
i p f

j &5d^p f
i p f

j &,

^s f
3&5^s f

3&eq1d^s f
3&,

^s fp f
i 2&5^s fp f

i 2&eq1d^s fp f
i 2&,

^p f
i p f

j 2&5d^p f
i p f

j 2&,

^s f
2p f

i &5d^s f
2p f

i &. ~6!

The deviations in the fluctuations~of the general form
d^w i

nw j
m&) are the responses of the fast modes to the p

ence of slowss andpW s background fields. These respons
are proportional to the slow fields raised to some posit
power, and so they vanish, as they should, in the absenc
the background. Notice the absence of^s fp f

i &eq and
^p f

i p f
j &eq . The reason for this is that the correlation fun

tions in equilibrium, in the absence of a background,
diagonal. On account of the cubic couplings, however, o
finds nonzerô s f

3&eq and ^s fp f
i 2&eq .

In equilibrium, at fixed temperature,ss50 and pW s50
and the equilibrium condensate satisfies the following eq
tion:
0-3
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lv313lv^s f
2&eq1lv (

i 51

N21

^p f
i 2&eq1l^s f

3&eq

1l (
i 51

N21

^s fp f
i 2&eq2lv0

2v2H50. ~7!

Since all components of the pion field are equivalent, o
can write the sum as( i 51

N21^p f
i 2&eq5(N21)^p f

2&eq , where
now p f is one of the components. This is a convention t
we adopt throughout the rest of the paper.

The resulting final equations describing the evolution
the condensate fields are a set of coupled nonlinear inte
differential equations. Let us assume only a small deviat
from equilibrium, ussu,upsu!v, and thus neglect terms tha
are higher order inss andps . The linearized field equation
read

]2ss1Ms
2ss1lv@3d^s f

2&1~N21!d^p f
2&#

1l@d^s f
3&1~N21!d^s fp f

2&#50,

Ms
25lS 2v22

^s f
3&eq

v
2~N21!

^s fp f
2&eq

v D 1
H

v
, ~8!

and

]2ps1Mp
2 ps12lvd^s fp f&

1l@d^p f
3&1d^s f

2p f&#50,

Mp
2 5lS 2^p f

2&eq22^s f
2&eq2

^s f
3&eq

v

2~N21!
^s fp f

2&eq

v D 1
H

v
. ~9!

I denote the effective masses of the sigma meson and
pion byMs andMp , and their corresponding vacuum valu
by ms andmp , respectively.

At one-loop order the effective equations become simp

]2ss1Ms
2ss1lv@3d^s f

2&1~N21!d^p f
2&#50, ~10!

Ms
252lv21

H

v
, ~11!

and

]2ps1Mp
2 ps12lvd^s fp f&50, ~12!

Mp
2 5

H

v
1m̃p

2 5
f p

v
mp

2 1m̃p
2 ,m̃p

2 52l@^p f
2&eq2^s f

2&eq#,

~13!

and the equilibrium condensate satisfies

lv31l@3^s f
2&eq1~N21!^p f

2&eq#v2lv0
2v2H50.

~14!
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III. NONEQUILIBRIUM FLUCTUATIONS

Linear response theory is a very convenient tool when
is interested in monitoring the effect of an external field a
plied to a system initially in thermal equilibrium. When th
effect is small a linear approximation is feasible. A respon
function expresses the difference between the expecta
value of an operator before and after an external perturba
has been turned on. The effects of the soft condensate fi
on the thermal medium are thus described by expression
the form

d^s f
n~x!p f

m~x!&

5 i E
0

t

dt8E d3x8^@Hperturbed~x8!,s f
n~x!p f

m~x!#&eq .

~15!

Accordingly, I evaluate the commutators of different powe
of the field operators at two separate space-time points in
fully interacting, but unperturbed ensemble. Initial cond
tions are set by the assumption that in heavy-ion collisio
the system reaches a state of approximate local thermal e
librium @4#, then it cools while expanding out of equilibrium
and reaches the critical temperature. I define the initial ti
t50 by when the critical temperature is reached. This i
plies ss(0,xW )50 andpW s(0,xW )50. The respective powersn
andm are identified from the expressions in Eqs.~8! and~9!.
Let me emphasize that these responses should be eval
in the unperturbed, equilibrium ensemble, which does
clude all the interactions between the different modes.

The possible couplings between low and high frequen
modes are determined by evaluating the potentialU, with the
fields separated into their slow and fast components
above. The resulting Hamiltonian contains positive pow
of the slow fields. For small departures from equilibrium it
enough to keep the dominant linear terms only. Relaxing
assumption of only slightly out of equilibrium requires th
inclusion of higher powers of the nonthermal fields. Th
should provide no difficulties, but is beyond the aim of t
present paper. The relevant couplings are

Hsss f
5l~3v22 f p

2 !sss f13lvsss f
21lsss f

3 ,

Hpsp f
5l~v22 f p

2 !psp f1lpsp f
3 ,

Hssp f
5lvssp f

2 ,

Hpss fp f
5lpss f

2p f12lvpss fp f ,

Hsss fp f
5lsss fp f

2 . ~16!

As before,ps, f refer to one of theN21 components of the
pion field.

The response functions obtained by inserting Eq.~16! in
Eq. ~15! are
0-4



fo
es
ck

ure
rder

e

on-
sec-
ro-

order

eld
a-

DISSIPATION AT THE TWO-LOOP LEVEL: . . . PHYSICAL REVIEW D 66, 056010 ~2002!
d^s f
2~x!&53ilvE

0

t

dt8E d3x8ss~x8!

3^@s f
2~x8!,s f

2~x!#&eq ,

d^p f
2~x!&5 ilvE

0

t

dt8E d3x8ss~x8!

3^@p f
2~x8!,p f

2~x!#&eq ,

d^s f~x!p f~x!&52ilvE
0

t

dt8E d3x8ps~x8!

3^@s f~x8!p f~x8!,s f~x!p f~x!#&eq .

~17!

The cubic functions are determined analogously, there
we skip presenting their evaluation. It is clear that expr
sions ~17! vanish in the absence of the nonthermal ba
ground, as they should.

The expectation values of the commutators are

^@s f
2~x8!,s f

2~x!#&eq52~Ds
,~x,x8!22Ds

.~x,x8!2!,

^@p f
2~x8!,p f

2~x!#&eq52~Dp
,~x,x8!22Dp

.~x,x8!2!,

^@s f~x8!p f~x8!,s f~x!p f~x!#&eq

5Ds
,~x,x8!Dp

,~x,x8!2Ds
.~x,x8!Dp

.~x,x8!,

wherex5(t,xW ) and x85(t8,xW8) are four-vectors in coordi-
nate space. Keeping in mind thatt8,t, wheret is the time
elapsed after switching on the perturbation, andt8 is the
time-variable that has its values in the@0,t# interval, the
following notation has been introduced:

Ds
.~x,x8![^s f~x!s f~x8!&eq ,

Dp
.~x,x8![^p f~x!p f~x8!&eq

and

Ds
,~x,x8![^s f~x8!s f~x!&eq ,

Dp
,~x,x8![^p f~x8!p f~x!&eq . ~18!

The functionsD. andD, define the spectral function

r~k!5D.~k!2D,~k!, ~19!

which determines the real time propagator

D~x,x8!5E d4k

~2p!4
e2 ik(x2x8)D~k!

5E d4k

~2p!4
e2 ik(x2x8)~Q~ t2t8!1 f ~k0!!r~k!.

~20!
05601
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Herek5(k0,kW ) is the four-momentum,f (k0)5(ek0b21)21

is the Bose-Einstein distribution, andb5T21. The response
functions are then

d^s f
2~x!&52 i6lvE d4x8ss~x8!E d4p

~2p!4

3E d4q

~2p!4
e2 i (p1q)(x2x8)rs~p!rs~q!

3@11 f ~p0!1 f ~q0!#,

d^p f
2~x!&52 i2lvE d4x8ss~x8!E d4p

~2p!4

3E d4q

~2p!4
e2 i (p1q)(x2x8)

3rp~p!rp~q!@11 f ~p0!1 f ~q0!#,

d^s f~x!p f~x!&52 i2lvE d4x8ps~x8!E d4p

~2p!4

3E d4q

~2p!4
e2 i (p1q)(x2x8)

3rs~p!rp~q!@11 f ~p0!1 f ~q0!#. ~21!

IV. THE ORDER PARAMETER AND MESON MASSES

To analyze the phase transition I look at the temperat
dependence of the equilibrium condensate which is the o
parameter of my model. The behavior ofv is determined by
solving Eq.~7!. It is educational to look at the theory in th
exact chiral limit,H50, first. In this case Eq.~7! for the
order parameter has two solutions:

v50, T.Tc ,

and

v25 f p
2 23^s f

2&eq2~N21!^p f
2&eq2

^s f
3&eq

v

2~N21!
^s fp f

2&eq

v
, T,Tc . ~22!

The first solution shows, as is expected, that the chiral c
densate does not exist above a critical temperature. The
ond solution represents the low temperature, symmetry b
ken phase. The two solutions are separated by a second
phase transition.

The order parameter depends on the equilibrium fi
fluctuations, which to first approximation in either perturb
tive expansion inl @31# or 1/N-expansion@27#, are
0-5
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^w2&eq5E d3p

~2p!3

1

2E
@112 f ~E!#, ~23!

where w5s f ,p f , and f is the Bose-Einstein distribution
function of the mesons with energyE5Ap21m2. Cubic
fluctuation terms that enter in the expression for the equi
rium condensate,̂s f

3&eq /v and^s fp f
2&eq /v, are nonzero on

account of the possible cubic couplings. However, alre
the leading order term of the expansion is higher order in
coupling than Eq.~23!, so we can drop these to first order

Let me discuss some important observations regarding
fluctuations~23!. First, keeping only the leading order ter
means that the masses are the bare zero temperature m
However, as indicated by Eqs.~11! and ~13!, the masses
themselves are given in terms of the equilibrium condens
and as such, they are temperature dependent. Therefor
temperature dependence of the order parameter shoul
determined by performing a self-consistent evaluation. H
I resum tadpole diagrams.

Second, the first term is the vacuum contribution, wh
the second term is due to finite temperature effects. The
temperature part is divergent in the ultraviolet limit. Th
divergence can and should be removed using vacuum re
malization techniques. The finite temperature does not in
duce any extra divergence since it is regularized by the
tribution function. One can say that the very short distan
behavior of the theory is not affected by finite temperat
@31#. ThereforeT50 renormalization is enough to obta
finite results. The usual approach then is to neglect the z
temperature contributions when focusing on the physics
finite temperatures. At this point, it is worth mentioning th
using a self-consistent approximation makes the usual re
malization procedure difficult, as discussed in@32#. The ar-
gument, according to which the renormalized divergent te
can be neglected, is really correct only when the mass is
bare mass. A self-consistent calculation involves
temperature-dependent mass, leading to the tempera
dependence of the divergent term. Renormalization thus
sults in temperature-dependent renormalization consta
and these should not be ignored. However, such a treatm
is beyond the scope of this paper, and in what follows, I
going to ignore the divergent term, while still being aware
this approximation.

Third, the momentum integration has a lower limit,Lc ,
due to the restriction of the thermal population to hard m
menta,upW u.Lc . WhenLc50, the condensate contains on
zero momentum modes, meaning that the classical field c
figurations are homogeneous. In reality nonzero but sm
momenta can be part of the condensate. Then one talks a
inhomogeneous condensate.

A. Goldstone modes

In the theory with spontaneously broken chiral symme
the tree level mass of the pion is zero in the broken pha
mp50. Goldstone’s theorem@23# requires that this remain
zero at every order in perturbation theory. The first glimp
at Eq.~9! @or Eq.~13!# for the pion condensate shows a ma
term. At one-loop order
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m̃p
2 52l@^p f

2&eq2^s f
2&eq#, ~24!

which is zero only at~i! zero temperature, where the therm
fluctuations themselves vanish, or~ii ! when the masses of th
pion and the sigma are equal, which is expected at the c
cal temperature, or~iii ! in the high temperature limit, when
the meson masses can be neglected. In the followin
present a simple and clear way to prove that this violation
Goldstone’s theorem is only apparent.

The pion mass~24! includes one-loop tadpole contribu
tions. There is another one-loop diagram that contribute
orderl, ‘‘built’’ out of two 3-vertices, known as the sunse
diagram. This diagram is incorporated in the equation of m
tion through the response functiond^p fs f& given by Eq.
~21!. The function is of the order oflv;l1/2, and there is an
overall factor of 2lv;l1/2 in front of it in the effective
equation. Therefore to get the contribution of orderl, the
expectation value in Eq.~21! can be evaluated at the lowe
order. This means that I can replace the interacting ensem
averagê •••&eq by the free ensemble average^•••&0. This
in turn is equivalent to inserting free spectral functions,

r free~p!52pe~p0!d~p22m2!, ~25!

into the expressions of Eq.~21!. After evaluating the fre-
quency integrals I find

d^s fp f&5 i2lMs
2E d4x8ps~x8!E d3p

~2p!3

3E d3q

~2p!3
ei (pW 1qW )(xW2xW8)F~pW ,qW ,t8!, ~26!

with

F~pW ,qW ,t8!5
1

4EsEp
@~11 f s1 f p!~ei (Es1Ep)(t2t8)

2e2 i (Es1Ep)(t2t8)!1~ f p2 f s!

3~ei (Es2Ep)(t2t8)2e2 i (Es2Ep)(t2t8)!#.

Since, the deviation from equilibrium is assumed to be sm
I Taylor expandps(x8) about its equilibrium value. The firs
term of the expansion, linear inps(x), gives the contribution
to the mass. The total pion mass is then

Mp
2 5m̃p

2 1a1 , ~27!

where
0-6
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a15 i2lMs
2E d3p

~2p!3E0

t

dt8F~pW ,t8!

5 i2lMs
2E d3p

~2p!3

1

4EsEp

3F2Es~112 f p!22Ep~112 f s!

i ~Ep
2 2Es

2 !
G

52lE d3p

~2p!3 F 1

2Es
~112 f s!2

1

2Ep
~112 f p!G ,

~28!

andEs5ApW 21Ms
2 andEp5upW u. Summing up Eqs.~28! and

~24! in expression~27!, the true pion mass yields

Mp50, ~29!

thus proving that with proper inclusion of diagrams the pio
stay Goldstone bosons at one-loop level at all temperatu
Another simple and straightforward proof in frequenc
momentum space is presented in@22#.

B. Numerical results

In the exact chiral limit the self-consistent solution of t
gap equation

v25 f p
2 23^s f

2&eq2~N21!^p f
2&eq , ~30!

with the sigma and pion field fluctuations

^s f
2&5

1

2p2ELc

`

dp
p2

Es

1

eEs /T21
, ~31!

and

^p f
2&5

1

2p2ELc

`

dp
p2

Ep

1

eEp /T21
→ T2

12
,

for Mp→0, Lc→0, ~32!

evaluated withEs5Ap21Ms
2, where

Ms
252lv2, ~33!

is presented in Fig. 1 for different values of the moment
separation scaleLc . In the numerical analysisN54 and the
coupling constant was chosen to bel518, corresponding to
a vacuum sigma mass of aboutms

252l f p
2 5(558 MeV)2.

The phase transition temperature, defined by the vanishin
the condensate, is aboutTc.130 MeV for homogeneous
classical field configurations,Lc50. With the increase of
the scaleLc the phase-space available for hard modes
decreased, requiring higher temperatures for the fluctuat
to completely dissolve the condensate. ForLc5120 MeV
the temperature above which fluctuations are much too la
to allow the formation of any condensate is aboutTc
05601
s
s.

of

is
ns

e

.165 MeV, which is in good agreement with lattice da
@33#. Figure 1 shows that the meson mass is positive-defi
at all temperatures, eliminating the tachyon problem pres
in the mean field approximations@31#.

The theory with exact chiral symmetry is known to have
second order phase transition based on universality a
ments@24#. This has been confirmed within the mean fie
approximation@27#. Figure 1, however, shows a discontin
ous behavior of the order parameter atTc . Such a jump is
characteristic to first-order phase transitions. Incorporat
the effect of thermal fluctuations in a self-consistent w
renders the transition first order. Such a behavior has b
discussed many years ago also by Baym and Grinstein@26#.
In Fig. 2 I present how the discontinuity decreases with
creasing coupling constant. For a weak enough coupling
continuous second-order transition is recovered. This can
understood in the following way: in order to assure the
niteness of theO(N)-theory in the large-N limit the coupling
constant should be written asl/N @26# in the self-consistent
gap equation~33!–~30!:

FIG. 1. Temperature dependence of the sigma mass for diffe
momentum separation scales in the chiral limit.

FIG. 2. Temperature dependence of the equilibrium conden
for different coupling constants in the chiral limit.
0-7
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Ms
25ms

222
l

N
@3^s f

2&eq1~N21!^p f
2&eq#. ~34!

For N→` the contribution from the sigma field fluctuatio
disappears. The condensate is then

v25 f p
2 2

N21

N
^p f

2&eq. f p
2 2

T2

12
~35!

clearly showing a continuous decrease of the order param
with increasing temperature. In theO(4) model decreasingl
by hand is equivalent to going to the largeN limit in the
O(N) model. For our model parameters I have determine
large Ncritical.1800 at which the transition is second ord
For this l518 was held fixed. This result is equivalent
havinglcritical.0.01 andN54.

Numerically determined self-consistent solutions for t
condensate~14! and the meson masses~11! and ~13! in the
more realistic theory with explicitly broken symmetry a
displayed in Fig. 3 and show a qualitatively different beha
ior. There is no phase transition in the textbook sense.
equilibrium condensate monotonically decreases with
creasing temperature. A crossover region can be defi
where the sigma and pion masses start to approach de
eracy. The minimum of the sigma mass is atT.235 MeV.
Different values forLc do not introduce a significant effec
in evaluating the meson masses.

V. DISSIPATION OF THE CHIRAL CONDENSATE

Dissipation of the condensate occurs because energy
be transferred between the condensate and the heat
through the interactions of soft and hard degrees of freed
Formally, in our model, the damping of different modes
determined from the response functions. Most of the pre
ous studies on this topic have been done at the one-
level. The two-loop level scattering processes have been
nored, based on the argument that these are higher ord
the coupling constant than are the decay and absorbtion

FIG. 3. Temperature dependence of the resummed me
masses and of the equilibrium condensate in theO(4) model with
explicitly broken symmetry.
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cesses. However, as I show in the following, two-loop p
cesses can dominate due to the available large phase sp

The effective equations of motion for long-waveleng
meson fields~10! and ~12! have the general form

]2fs~x!1M2fs~x!1F~x!50, ~36!

wherefs5ss or ps and

F~x!5E d4x8fs~x8!P~x2x8!. ~37!

In frequency-momentum space this reads as

2k21M21P~k!50. ~38!

The functionP(k) is given by

P~k!52 ig2E d4x8E d4p

~2p!4E d4q

~2p!4
ei (k2p2q)(x2x8)

3r1~p!r2~q!@11 f ~p0!1 f ~q0!# ~39!

and is identified as the self-energy. Hereg is the correspond-
ing coupling, and the indices 1 and 2 refer to either of t
hard modes,s f and p f , respectively, andk5(k0,kW ) is the
four-momentum of the soft sigma meson or pion. The f
quency has a real and an imaginary part,k05v2 iG, pro-
videdkW is real. The real part of the self-energy participates
the dispersion relation

v25kW21M21ReP~v,kW !, ~40!

FIG. 4. One-loop self-energy contribution to the softss with
coupling to the hardp f throughlvssp f

2 .

FIG. 5. Temperature dependence of the sigma damping ra
one-loop order in the sigma rest frame. Calculations were done
resummed meson masses.

on
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and with the usual assumption of weak damping,G!v, the
imaginary part of the self-energy completely determines
damping of excitations:

G52
Im P~v,kW !

2v
. ~41!

G is the rate at which out-of-equilibrium meson modes w
energyv and momentumkW approach equilibrium. This rate
is determined by physical processes which can be ident
from the imaginary part of the self-energy@34#. One should
t i
id
a
s

lf-

ra
is

o
K
e

o-
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be aware that Eq.~41! describes the rate of decay of th
amplitude of the wave, exp(2Gt). The loss rate for the num
ber density is exp(22Gt).

A. Dissipation at one-loop order

There are several diagrams contributing to the self-ene
at one-loop order. Tadpoles are real and they only modify
mass, as I discussed before. Dissipative effects come f
nonlocal diagrams. At orderl these are determined from th
response functions through Eq.~39! with the insertion of the
free spectral functions,
P~k!5g2E d3p

~2p!3

1

4E1E2
F ~11 f 11 f 2!S 1

v2E12E21 i e
2

1

v1E11E21 i e D
1~ f 22 f 1!S 1

v2E11E21 i e
2

1

v1E12E21 i e D G ,
tting

s is

rate

son
-

can
with E15Am1
21(pW 1kW )2 andE15Am2

21pW 2. The indices 1
and 2 refer again to either of the fast sigma and pion. I
important to observe that the above expression coinc
with the self-energy calculated directly from the nonloc
one-loop diagram@34#. For positive energies of the meson
v>0 the contributions to the imaginary part of the se
energy are

Im P~v,kW !52pg2E d3p

~2p!3

1

4E1E2

3@~11 f 11 f 2!d~v2E12E2!

1~ f 22 f 1!d~v2E11E2!#. ~42!

Because the heat bath singles out a preferred reference f
we keepv andkW independent. The dynamics of the decay
determined by the on-shell processes that are allowed.

1. Sigma meson decay

Contributions to the imaginary part of the sigma mes
self-energy come from the diagram presented in Fig. 4.
nematically, the decay of a soft sigma meson into hard th
mal pions,ss→p fp f , and the inverse, recombination pr
cess is allowed, provided thatv22k2>4mp

2 :

Im P~v,kW !52
g2

16p FA12
4mp

2

v22k2

12
T

k
logS 12e2(v1 /T)

12e2(v2T) D G , ~43!

where
s
es
l

me

n
i-
r-

v65
v

2
6

k

2
A12

4mp
2

v22k2
.

The decay and formation processes are obtained by se
v22k25ms

2 :

Im P~ms!52
l2v2

16p FA12
4mp

2

ms
2

12
T

k

3 logS 12expS 2
v

2T
2

k

2T
A12

4mp
2

ms
2 D

12expS 2
v

2T
1

k

2T
A12

4mp
2

ms
2 D D G .

~44!

The rate at which soft,k!T, sigmas of energyv disappear
from the condensate due to their decay into thermal pion

Gspp~v!5
~N21!

16p
l

ms
22mp

2

v
A12

4mp
2

ms
2

cothS v

4TD .

~45!

The temperature dependence of the sigma damping
~45! in the rest frame of the sigma,v5ms , is shown in Fig.
5. The calculations were done with the resummed me
masses,Ms andMp . Figure 5 shows that even at zero tem
perature there is a finite damping, so the sigma meson
decay into two pions in the vacuum. AtT50, for our model
parameters the damping rate is aboutGspp5510 MeV,
0-9
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which is of the order of the mass of the sigma. The width
the sigma resonance is very broad, in other words the si
meson is overdamped. Figure 5 shows that the dampin
increasing withT, and is followed by a quite drastic decrea
starting from aboutT5150 MeV. This temperature corre
sponds to the temperature where the sigma mass begi
drop significantly~see Fig. 3!. It is then natural to expect a
decrease of the sigma decay rate into pions that have ma
approaching that of the sigma. AboveT.200 MeV the
threshold condition for the decay of an on-shell sigma m
son, Ms>2Mp , is not fulfilled anymore. Therefore ther
will be no contribution from decay to the sigma width in th
kinematically suppressed region.

2. Pion damping

At one-loop order there is only one diagram contributi
to the pion self-energy. This diagram is shown in Fig. 6.
this order, dissipation of the pion condensate can occur
vided the energy and momentum of the soft pion satisfies
kinematic conditionv22k2<(ms2mp)2. Then the trans-
formation of a pion into a sigma when propagating throug
thermal medium can happen. Basically, a soft pion from
condensate annihilates with a hard thermal pion producin
hard thermal sigma meson,psp f→s f . The inverse proces
is the decay of a hard thermal sigma meson into a soft an
hard pion,s f→psp f . The net rate of dissipation is

Gpps~v,kW !5
1

8p
l

T~ms
22mp

2 !

kv F logS ev1 /T21

ev2 /T21
D

1 logS e(v11v)/T21

e(v21v)/T21
D G , ~46!

where

v65Ap6
2 1mp

2 ,

p656
k

2

ms
222mp

2

mp
2

1
v

2

ms
2

mp
2A12

4mp
2

ms
2

.

In the rest frame of the massive pion the expression for
damping is simplified to

FIG. 6. One-loop self-energy contribution tops with coupling
to ss andps through 2lvpss fp f .
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Gpps~mp!5
l

16p

ms
2~ms

22mp
2 !

mp
3 A12

4mp
2

ms
2

3
12e2(mp /T)

~e(ms
2

22mp
2 )/2mpT21!~12e2(ms

2 /2mpT)!
.

~47!

Figure 7 shows the temperature dependence of the dam
rate of massive pions at one-loop order~47! calculated in the
pion’s rest frame using the resummed meson masses,Ms

and Mp . Note that at zero temperature the dissipation
zero. This makes sense because the transformation of p
into sigmas is due to their annihilation with a hard therm
pion in the medium, and so this is exclusively a finite te
perature process. At low temperatures the phase space a
able for this pion transformation process is suppressed by
large sigma mass. As the temperature increases and
sigma mass is dropping the width of the pions is increasi
Figure 7 shows that the damping can get quite strong. AT
.170 MeV, for example, when the pion mass is aboutmp

5158 MeV the damping isGpps.87.0 MeV. Thus at this
temperature the width of the pion is about 55% of its ener
This result makes us question whether the pion is a quasi
ticle in this temperature region and needs further investi
tions. At temperatures around 200 MeV the kinematic co
dition for an on-shell pion,Ms>2Mp , is not satisfied,
prohibiting the transformation of a pion into a sigma wh
passing through a hot medium.

The damping in terms of the pion momenta is presente
Fig. 8 for different temperatures. Results using the dispers
relationv25k21Mp

2 are displayed. Noticeable damping o
curs aboveT5100 MeV and increases withT. At about T
5160 MeV all modes are equally damped. In other wor
the width of the pion is independent of its momentum. Th
width is increasing withT and it can be as great as 30%
the energy. At even higher temperatures the damping of
zero momentum modes is the strongest.

B. Dissipation at two-loop order

Instead of the tedious evaluation of two-loop linear r
sponse functions, I present a direct determination of damp

FIG. 7. Temperature dependence of the pion damping rat
one-loop order in the pion rest frame. Calculations were done w
resummed meson masses.
0-10
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FIG. 8. Momentum depen-
dence of the pion energy an
width at different temperatures
calculated with resummed meso
masses and with the dispersion r
lation v25k21Mp

2 . All quanti-
ties are normalized to the vacuum
pion mass.
co
li

lc
lf

s

s

e

he
ar

ly.

al
n-
e

rates from the physical processes responsible. Two-loop
tributions correspond to two-particle scatterings with amp
tudes evaluated at tree level. Similar to the one-loop ca
lations I evaluate the imaginary parts of the two-loop se
energies and inserting these into Eq.~41! results in the
damping rate due to scattering.

The general form of the self-energy of a particle of ma
ma , propagating with four-momentumk5(v,kW ) through a
medium in thermal equilibrium, is given by@35#

Pab~k!5E d3p

~2p!32E
f ~E!M~s!. ~48!

HereM is the transition amplitude for the scattering proce
ab→ab. The thermodynamical weightf (E) is the Bose dis-
tribution of thermal mesons of massmb and four-momentum
p5(E,pW ). In terms of the forward scattering amplitud
M(s)528pAs fcm(s), wheres5(p1k)2, and the imagi-
nary part follows:

Im Pab~k!52E d3p

~2p!3
f ~E!As

qcm

E
s total~s!. ~49!

To obtain this equality I applied the standard form of t
optical theorem that relates the imaginary part of the forw
scattering amplitude and the total cross section@36#:
05601
n-
-
u-
-

s

s

d

Im f cm~s!5
qcm

4p
s total~s!. ~50!

Here I consider scatterings involving massive particles on
Then

Im Pab~v!52
1

8p2E21

1

d cosu

3E
Lc

`

dp
p2

E
f ~E!sab~E!

3A~s2mb
21ma

2!224sma
2,

with s5ma
21mb

212Ev22pk cosu, whereu is the angle be-

tweenkW and pW . The dispersion relation of the hard therm
modes isE5Ap21mb

2 and of the mesons inside the conde
satev5Ak21ma

2. It is convenient to work in the rest fram
of mesona, where

Im Pab~v5ma ,kW50!

52
ma

2p2Emb

`

dE~E22mb
2! f ~E!sab~E!. ~51!

The cross section for a scatteringab→ab is given by
0-11
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sab5
1

S! E S dsab

dV D
cm

dV ~52!

where

S dsab

dV D
cm

5
1

64p2s
uMu2. ~53!

The symmetry factor 1/S! is due to the numberSof identical
particles in the final state. It is clear that knowing the amp
tude M of a process readily results in the dissipation r
due to that process.

1. Sigma scattering

There are two mechanisms that contribute to the remo
or addition of a sigma meson to the condensate: elastic s
tering of a hard thermal sigma or of a hard thermal pion
a sigma from the condensate. To first order in the couplinl
there are four diagrams contributing to the process in wh
a thermal sigma meson knocks out a low momentum sig
from the condensate. The transition amplitude, the sum
contributions from different diagrams is

M526lF113~ms
22mp

2 !

3S 1

s2ms
2

1
1

t2ms
2

1
1

u2ms
2 D G . ~54!

This reflects the symmetry in thes, t, and u channels, and
s1t1u54ms

2 . The total cross section is

sss~s!5
9l2

8psF S s12ms
223mp

2

s2ms
2 D 2

1
18~ms

22mp
2 !2

ms
2~s23ms

2 !

2
12~ms

22mp
2 !~s223sms

22ms
413ms

2mp
2 !

~s24ms
2 !~s22ms

2 !~s2ms
2 !

3 lnS s23ms
2

ms
2 D G . ~55!

In the low energy limit expand this abouts54ms
2 . To lead-

ing order

sss5
9

32p
l2

~4ms
225mp

2 !2

ms
6

, ~56!

and in the rest-frame of the sigma this gives rise to

Im Pss52
9

32p3
l2T2e2ms /T

3
~ms1T!~4ms

225mp
2 !2

ms
5

. ~57!
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In the high energy limit only the four-point vertex contrib
utes to the amplitude, resulting in

sss5
9l2

8ps
. ~58!

This gives rise to

Im Pss52
3

64p
l2T2. ~59!

With these two limits I construct an interpolating formu
that describes the whole energy range. The contribution
the rate of decay of the amplitude is then

Gss.
9l2

64p

3
T2~ms1T!~4ms

225mp
2 !2

6ms~ms1T!~4ms
225mp

2 !21p2ms
6~ems /T21!

.

~60!

A hard pion in the heat bath can be energetic enough
knock out a sigma meson from the condensate. The poss
tree-level processes may happen according to four diffe
diagrams. The transition amplitude obtained from these i

M522lF11~ms
22mp

2 !

3S 1

s2mp
2

1
3

t2ms
2

1
1

u2mp
2 D G , ~61!

wheres1t1u52(ms
21mp

2 ). The total scattering cross sec
tion is

FIG. 9. Scattering contribution to the width of the sigma mes
as a function of temperature. Calculations were done with
summed meson masses.
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ssp~s!5
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4psF S s22mp
2 1ms

2

s2mp
2 D 2

1
9s~ms

22mp
2 !2

ms
2@s22sms

222smp
2 1~ms

22mp
2 !2#

1
s~ms

22mp
2 !2

~2ms
21mp

2 2s!@~ms
22mp

2 !22smp
2 #

1
6s~ms

22mp
2 !~sms

212smp
2 2s21ms

42mp
4 22ms

2mp
2 !

~s2mp
2 !~ms

21mp
2 2s!@s222s~ms

21mp
2 !1~ms

22mp
2 !2#

ln
sms

2

s22sms
222smp

2 1~ms
22mp

2 !2

2
2s~ms

22mp
2 !~3sms

22s21mp
4 1ms

424ms
2mp

2 !

~s2mp
2 !~ms

21mp
2 2s!@s222s~ms

21mp
2 !1~ms

22mp
2 !2#

ln
s~2ms

21mp
2 2s!

~ms
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2 !22smp
2 G . ~62!
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The low energy limit is obtained by expanding this abous
5(ms1mp)2 and is

ssp~s!5
9

4p
l2

mp
4 ~3ms

224mp
2 !2

sms
2~ms

224mp
2 !2

. ~63!

At high temperatures, where only the four-vertex diagr
contributes, the cross section is reduced to

ssp~s!5
l2

4ps
. ~64!

The contribution to the imaginary part of the self-energy
low energies is

Im Psp52
9

4p3
l2T2e2mp /TFsp~ms ,mp!, ~65!

where I defined

Fsp~ms ,mp!5
mp

4 ~mp1T!~3ms
224mp

2 !2

ms
3~ms1mp!2~ms

224mp
2 !2

, ~66!

and at high energies

Im Psp52
l2T2

96p
. ~67!

The two limits can be combined into one approximate
pression which then determines the rate of dissipation. F
toring in all theN21 pions

Gsp.
9~N21!

8p
l2

T2

ms

Fsp

216Fsp1p2~emp /T21!
. ~68!

A distinction should be made between scatterings with ma
less and massive pions. The low energy expression~63! van-
ishes for zero pion mass. The first nonzero term in the se
expansion of the cross section is the fourth order term
discuss the massless case in my forthcoming paper@22#.

The temperature dependence of the total scattering ra
the sigma meson,Gss1Gsp , evaluated with the self-
consistently determined meson masses is shown in Fig
Scattering is more accentuated at higher temperatures an
contribution to the sigma damping rates is well below t
05601
t

-
c-

s-

es
I

of

9.
its

energy. Dissipation of sigmas from the condensate due
their scattering is much smaller than due to their dec
meaning that the scalar order parameter relaxes to its e
librium value via the production of lighter pion fields. It als
means that sigma mesons are so unstable that they are
likely to decay before they could ever scatter with other p
ticles from the medium.

2. Pion scattering

Dissipation of DCCs can arise from scattering of the s
pions with hard pions or hard sigma mesons. The dampin
massive pions and that of the Goldstone pions I expect to
different, requiring a somewhat different analysis. In the f
lowing I present the discussion on massive pions. There
four possible tree-level diagrams representing the reactio
which a hard thermal sigma knocks out a low moment
pion from the condensate. The total cross section is the s
as for sigma-pion scattering and is given by expression~62!.
The imaginary part of the self-energy in the low energy lim
in the rest frame of the pion is

Im Pps52
9

4p3
l2T2e2ms /TFps , ~69!

where

Fps5
mp

5 ~ms1T!~3ms
224mp

2 !2

ms
4~ms1mp!2~ms

224mp
2 !2

, ~70!

and for high energies is

Im Pps52
l2T2

96p
. ~71!

The total scattering rate due to this process can be par
etrized by an interpolating formula between the two kno
limits:

Gps.
9l2T2

8pms

Fps

216Fps1p2~ems /T21!
. ~72!

pp scattering has been extensively studied during the
couple of decades in a variety of different models and
proaches. An incomplete but significant list of references
@37#. Here I study the elastic scattering of a hard pion of
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soft pion. For one pion species,N52, there are four dia-
grams contributing to this process at tree-level: one 4-p
vertex diagram and three 3-point vertex contributions invo
ing a sigma exchange in thes, t, andu channels. The transi
tion amplitude is

M522lF31~ms
22mp

2 !

3S 1

s2ms
2

1
1

t2ms
2

1
1

u2ms
2 D G , ~73!

wheres1t1u54mp
2 . Accounting for all pion species open

up additional channels. ForN54 the transition amplitude
averaged over initial and summed over final isospins is

uMu25
1

3 (
I 50,1,2

~2I 11!uM I u2, ~74!
bl

ng

io

05601
t
-

whereM I is the matrix element associated with the to
isospinI of the two-pion system:

M 0522lF51~ms
22mp

2 !

3S 3

s2ms
2

1
1

t2ms
2

1
1

u2ms
2 D G ,

M 1522l~ms
22mp

2 !S 1

t2ms
2

2
1

u2ms
2 D ,

M 2522lF21~ms
22mp

2 !S 1

t2ms
2

1
1

u2ms
2 D G .

~75!

The resulting cross section is
spp~s!5
l2

8psF15110S ms
22mp

2

s2ms
2 D 13S ms

22mp
2

s2ms
2 D 2

1
6~ms

22mp
2 !2

ms
2~s1ms

224mp
2 !

2
4~ms

22mp
2 !~5s215sms

227ms
4113ms

2mp
2 220smp

2 14mp
4 !

~s24mp
2 !~s2ms

2 !~s12ms
224mp

2 !
lnS s1ms

224mp
2

ms
2 D G . ~76!
ive
ma
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s

a
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The low-energy limit of the cross section, quite accepta
for ms@T, is given by the expansion of this abouts
54mp

2 ,

spp5
l2

32p

mp
2

~ms
224mp

2 !2 S 23216
mp

2

ms
2

1128
mp

4

ms
4 D . ~77!

At high temperatures, in theT→Tc limit the major contribu-
tion to the amplitude is from the four-point vertices, resulti
in

spp5
15l2

8ps
. ~78!

In the rest frame of the pion the above two limits give

Im Ppp.2
23

32p3
l2T2e2mp /T

mp
3 ~mp1T!

~ms
224mp

2 !2
~79!

and

Im Ppp52
5l2T2

64p
, ~80!

respectively. The rate of dissipation due to massive pion-p
scattering is then given by the interpolating expression
e

n

Gpp.
23l2T2

64p

3
mp

2 ~mp1T!

46
5 mp

3 ~mp1T!1p2~ms
224mp

2 !2~emp /T21!
.

~81!
The scattering contribution to the damping of mass

pions is presented in Fig. 10. Because of the heavy sig
exchange there is a strong suppression at low temperat
When reachingT.130 MeV the scattering rate become

FIG. 10. Scattering contribution to the width of the pion as
function of temperature. Calculations were done with resumm
meson masses.
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significant and it is comparable in magnitude to the damp
at one-loop order. In the critical region the contribution to t
pion width from pion-pion scattering grows rapidly reachi
a maximum aboutT5200 MeV. It is interesting to note
from Figs. 9 and 10 that in the high temperature regio
where the mesons become almost degenerate, their w
approach the same value, as expected.

VI. RELAXATION TIME

The ability to detect DCCs in relativistic collisions o
heavy ions depends on the lifetime of the condensate. D
formation can happen out of thermal equilibrium only.
order to talk about nonequilibrium physics the rate of exp
sion texp, has to be much smaller than the relaxation time
long-wavelength modes,t,

texp!t. ~82!

Otherwise, for a slow expansion, the soft modes have eno
time to equilibrate. Equilibration of the out-of-equilibrium
chiral condensate is the result of the presence of a heat b
Above, I analyzed the physical processes responsible
calculated the damping of different meson modes. The t
width is the sum of one- and two-loop order dissipative co
tributions,

Gp5Gpps1Gps1Gpp , ~83!

which exhibits a sharp peak in the critical region, due to
peak in the damping rate from pion-pion scattering. In
nonequilibrium, but close to equilibrium physics that w
consider, the damping directly controls the rate at wh
equilibrium is approached through the relation@34#

t5
1

Gp
. ~84!

Obviously, the larger the damping due to the interaction
the condensate with the heat bath, the shorter the relaxa
time is. Figure 11 shows the change in the relaxation ti
with temperature. At low temperaturest is large due to the
suppression of the thermal occupation numbers. As the t

FIG. 11. Relaxation time of a homogeneous disoriented ch
condensate versus temperature.
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perature increases more thermal modes get excited and
consequence the relaxation time is quickly decreasing. In
phase transition region the decay time is the shortest. At
peak of the dampingT5200 MeV I foundt50.17 fm/c, and
at T5235 MeV, where the mass of the sigma is the smalle
t51.36 fm/c. When assuming no multiple interactions w
the heat bath thent is the lifetime of the DCC. The times
obtained are shorter than previous estimates@9,18,19#, and
are short enough to make a possible DCC signal quest
able. One can expect that any multiple scatterings or dec
would only increase the damping, decreasing the relaxa
time.

VII. CONCLUSIONS

This work was motivated by my interest to determine t
possibility of survival of DCCs in the background of a mu
titude of thermal particles, mostly pions, that are formed
ter two heavy ions are collided at ultrarelativistic energi
Also, having a consistent description of quantum fields n
thermal equilibrium allows for a better understanding of th
dynamics in a region where nonperturbative analysis is
quired.

We have developed a consistent semiclassical study o
out-of-equilibrium chiral condensate fields in the framewo
of the linear sigma model. Clear distinction between the s
nonthermal chiral fields and hard thermal modes has b
made, accounting also for interactions between these. M
vated by the high occupancy of the low momentum mode
allowed for their classical treatment. The effect of the oth
degrees of freedom has been taken into account by intro
ing a heat bath of mesons. These thermalized high mom
tum modes have been accounted for in a perturbative m
ner, improved by the resummation of certain diagrams
derived classical equations of motion for the lon
wavelength condensate fields coupled to the thermal b
After integrating out the hard modes effective field equatio
resulted, which completely determine the evolution of t
chiral condensate in space and time.

The presence of the slowly varying condensate fie
cause deviations in the equilibrium fluctuations of the th
mal fields. I identified these as linear response functio
since I am dealing with not too far from equilibrium sc
narios. I have discussed in detail the richness of informat
contained within these response functions: They renorma
the equations of motion, modifying the particle propertie
and give rise to dissipation.

The temperature dependence of the meson masses
that of the equilibrium condensate have been determined
merically in a self-consistent manner, both in the chiral lim
and for explicitly broken chiral symmetry. In the chiral lim
a first-order phase transition was found, which is an artif
of the model. I show that for a small coupling constant,
largeN limit, the expected second-order transition is reco
ered. I have considered in some detail the Goldstone bo
nature of the pion, proving that when properly accounting
the tadpole and sunset diagrams the pion remains massle
one-loop level in the symmetry broken phase. Also,
tachyon problem of mean-field approximations is elimina

l

0-15



m
e

ss
s

hi
e
na

de
f
n
o

re
t
o

em
n

ki
a
a

ng
a

tio
th

y
th
ro
s

at

th
up

out
a.

hase
00

b-
ve
sate
ses.
.36
le
en-
n-

gnal
far

he
ng

y be
of

rk-
ns.

R.
m-
u-
te
2-
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by naturally assuring the positivity of the masses at all te
peratures. In the more realistic case, in which chiral symm
try is explicitly broken by the nonzero quark mass, a cro
over region was identified. The minimum of the sigma ma
is at the transition temperature of about 235 MeV. Above t
the masses of the pion and the sigma become degenerat
the equilibrium condensate vanishes asymptotically, sig
ing an approximate restoration of chiral symmetry.

Because of possible interactions between different
grees of freedom, those of the condensate and those o
heat bath, energy exchange is possible and particles ca
knocked out or put in the condensate. Direct evaluation
the response functions results in the rates for the diffe
processes. I have identified these physical processes tha
responsible for the dissipation of long-wavelength modes
the chiral condensate, and have confirmed that at high t
peratures not only the damping of the sigmas is significa
but also that of the pions. At one-loop level, provided a
nematic condition is satisfied, a pion from the condens
can annihilate with a pion from the heat bath forming
sigma. The damping due to this process becomes stro
with increasing temperature. The width of the pion can be
big as 55% of its energy. This result makes me ques
whether one can talk about the pion as a quasiparticle in
phase transition region.

I emphasize the importance of two-loop calculations. M
results show that contribution to the damping rate of
condensate provided by two-particle elastic scattering p
cesses can become as important as are decay proce
Moreover, while decays happen only when certain kinem
conditions are satisfied, elastic scatterings have no such
strictions. Therefore two-loop processes contribute to
width even in regions where one-loop contributions are s
s.
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pressed. Soft pions from the condensate can be knocked
through elastic scatterings with a hard thermal pion or sigm
The damping due to these is most accentuated in the p
transition region. The pion width shows a peak at about 2
MeV.

The damping directly controls the rate at which equili
rium is achieved by the nonequilibrium condensate. I ha
determined the relaxation time of a homogeneous conden
due to both one- and two-loop order dissipative proces
We have obtained relaxation times between 0.17 and 1
fm/c in the phase transition region. Assuming no multip
interactions these times become the lifetime of the cond
sate. I have found that the lifetime of disoriented chiral co
densates is short enough to make a possible DCC si
questionable. Further investigations of this model in a
from equilibrium scenario are needed.

The natural next step of my investigation is to solve t
field equations for some initial conditions for an expandi
system. Such analysis is on the way.

The methods used in this paper are general, and ma
used in other contexts, where nonequilibrium physics
quantum fields is of interest.
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