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Chiral anomaly and high-energy scattering in QCD
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Infrared properties of the triangle anomaly and the “anomaly pole” are elaborated and applied to the study
of high-energy scattering in QCD, when the gauge symmetry is partially broken(®.Stis shown that the
chiral flavor anomaly provides a wee-gluon component for Goldstone bosons that combines with interactions
due to the W1) anomaly to produce an infrared transverse momentum scaling divergence in scattering ampli-
tudes. After the divergence is factorized out, as a wee-gluon condensate in the infinite momentum pion, the
remaining physical amplitudes have confinement and chiral symmetry breaking. A lowest-order contribution to
the pion scattering amplitude is calculated in detail. Although originating from very complicated diagrams, the
amplitude has a remarkablsemjperturbative simplicity. The momentum structure is that of single gluon
exchange but zero transverse momentum quarks inject additional spin and color structure via anomaly inter-
actions.
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I. INTRODUCTION Balitskil-Fadin-Kuraev-LipatoBFKL) Pomeron, which is
not a Regge pole and also does not satssfyrannel unitar-
Any solution of the full Regge limit of QCD must, almost ity, is a large transverse momentum phenomenon that ap-
certainly, involve a resolution of the unsolved problem ofpears only when a subclass of diagrams is isolated and
matching perturbation theory with confinement. Since thesummed to all orders—without a transverse momentum cut-
limit involves large energies its description should not be toooff. ]
far from perturbation theory. Conversely, since small mo- The critical Pomeron[10] is an abstract solution of
mentum transfers are involved, both confinement and chiraReggeon unitarity, obtained via Reggeon field the@¥T),
symmetry breaking must be manifest in the contribution ofthat produces asymptotically rising cross sections. A single
physicalt-channel states. In this paper we will show that aRegge pole and the corresponding Regge cuts are the only
transition from perturbation theory to confinement can in-J-plane singularities. Since the critical Pomeron retains the
deed occur in the Regge region. factorization properties of a single Regge pole, if it occurs in
For some time we have pursued what might be called @CD it will be associatefl11] with a “universal wee-parton
“semiperturbative” description of the QCD Pomeron. In do- distribution” in hadrons. This universality property allows
ing so we have made extensive use of the formalism ofvee partons to carry vacuum properties which, in combina-
(multi-)Regge theory, which many authors currently studyingtion with rising cross sections, should lead to the maximal
the Pomeron make little or no reference to. In this paper wesymptotic applicability of the parton model.
endeavor to keep, at least the most unfamiliar parts of, this We expect the occurrence of the critical Pomeron in QCD
formalism to a minimum. Nevertheless, we can summarizeo be of crucial importance, therefore, both for the satisfac-
the reasons why we believe that Regge poles and Reggmn of t-channel unitarity and for the maximal validity of the
theory must play a fundamental role in solving the Reggeparton model. To see that it can indeed occur we have pro-
limit of QCD as follows. posed[9,11,17 starting with the gluon and quark Reggeon
In general, multiparticlet-channel unitarity has been diagrams of spontaneously broken QCD. With a transverse
shown to be satisfied when the oryplane singularities are  momentum cutoff imposed, the gauge symmetry can be re-
Regge poles and the Regge cuts generated by them-stored in stages and RFT can be used to analyze the infrared
provided the Regge cut discontinuities satisfy “Reggeon uni-divergences that occur. We have anticipated that the only
tarity” [1-3]. No other solution is known. It is well estab- additional ingredient beyond the perturbative Regge behav-
lished [4-9] that when the gauge symmetry of QCD is ior of gluons and quarks will be chirality transitions pro-
spontaneously broken, multi-Regge limits of quark andduced by the fermion anomaly. Quarks will, therefore, play
gluon amplitudes are described perturbatively by Reggeoan essential role.
diagrams containing massive gluon and quark Regge poles. We have now shown that chirality transitions oc¢lLB8—
Both t-channel(Reggeoi unitarity ands-channel unitarity = 15] in effective triangle diagram Reggeon interactions ob-
are satisfied. General arguments imply that the small trangained by placing quark lines on-shell in large quark loops.
verse momentum part of the massless theory can be obtaindthese interactions appear in the Reggeon vertices that couple
smoothly from the massive theory. In which case, the unitardifferent Reggeon channels a general multi-Regge linit
ity properties of the massive theory, including Reggeon uniin particular, they occur in the triple-Regge ver{g6] that
tarity, should persist in the massless thegNote that the couples three distinct Reggeon channels—each carrying a
separate transverse momentum. Such vertices include the
couplings of bound-state Reggediesy. pions and nucleons
*Email address: arw@hep.anl.gov together with their couplings to the physical Pomeron. Effec-
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tively, therefore, vertices of this kind determine the boundcouplings for Goldstone bosons at infinite momentyihe
states of the theory and their high-energy scattering amplimassive gluons produced by the color symmetry breaking
tudes. are essential for the existence of these coupl)fgsa result,

Our expectation has long been that when the gauge synthe quark-antiquark “pion” and quark-quarfor antiquark-
metry is restored first to S12), giving “color superconduct- antiquarl “nucleon” Goldstone states that appd&2] have
ing QCD,” SU(2) color confinement will be due to the ap- just the (massless wee gluon content that we envisaged
pearance of a condensate in Reggeon states produced égnerging from our general Reggeon diagram analysis. The
infrared divergent “wee-gluon” configurations coupling presence of the wee gluons then leads directly to the contri-
through anomaly interactions. The resulting Pomeron couldbution of U1) anomaly Reggeon interactions in the high-
then be in a supercritical phafg] of RFT, implying that the  energy scattering of pion@nd nucleons An overall loga-
critical Pomeron would occur as the full ) gauge sym- rithmic divergence is produced that selects anomaly
metry is restoredprovided the transverse cutoff can be re- mediated scattering as the dominant physical process. The
moved first—a strong requirementA priori, however, to  divergence can be factorized off as the expected “conden-
understand in detail how the anomaly interactions producsate” within the scattering pions—with the residue being the
the condensate, and determine both hadron states and thhysical scattering amplitude. The “anomaly pole” is mani-
Pomeron, it is necessary to self-consistently construct the fuflest as a transverse momentuhfunction that factorizes the
multi-ReggeS matrix. This is a very complicated project to momentum dependence of the divergent wee gluon interac-
carry out. We outlined, essentially, how it could be done intions and the “parton interaction” of the massive sector of
[15], although we did not then have the full knowledge of the theory.
anomaly vertices that we now have. The lowest-order contribution to the pion scattering am-

In this paper, as an intermediate step before attempting tplitude has a remarkable simplicity. The momentum structure
construct the full multi-ReggeéS matrix, we approach the is just that of lowest-order gluon exchange. However, zero
problem from a different standpoint. We use a procedure thanomentum quarks inject spin and color structurga
is less rigorously formulateths will become apparenthan  anomaly interactionsthat modifies the signature and color
the multi-Regge approach. However, it leads directly to exsymmetry properties of the amplitude. Because of the com-
plicit results and provides a straightforward understanding oplexity of the initial diagrams and the resulting reduction
the physics that is involved. Also the terminology used is, weprocess we limit the presentation, in this paper, to an “exis-
hope, more widely familiar. The new approach is not onlytence proof” that demonstrates how the kinematical and dy-
sufficient to show how, in infinite momentum scattering, namical properties of the chiral flavor and 1) anomalies
anomalies determine both the physical states and the erctually combine with transverse momentum divergences to
changed Pomeron, but it also allows us to obtain explicifproduce physical amplitudes. To do this we follow the reduc-
high-energy scattering amplitudes. In fact, we directly calcution process through in detail for just one of the diagrams
late the on-shellmasslesspion amplitude rather than the involved.
amplitude for spacelike Reggeized pions to scatter, that In Sec. IV we discuss both the conclusions that can be
multi-Regge theory would lead us to try to calculate. drawn from our results and the further work that needs to be

We start directly from infrared properties of the triangle done to establish the relationship of the critical Pomeron to
diagram. It is well known[17-21 that, when the quarks QCD. We also discuss some more general issues of principle.
involved are massless, the chiral flavor anomaly requires that
an “anomaly pole” appear in the vertices for an axial current
to couple to pairs of vector currents carrying lightlike mo-
menta. If there is confinement and the chiral symmetry is In our previous pap€gr4] we based our infrared anomaly
broken spontaneously this pole becomes a physical Goldanalysis on the rather abstract discussion§18f and[19].
stone pole. In Sec. Il we study in detail how the pole isin this paper we will use explicit evaluations of the triangle
generated in the triangle diagram and show that, in the mograph (in particular kinematic configuratiopghat exist in
mentum configuration involved, one propagator carries zerghe literature[20,21]. In the following we summarize and
momentum(and undergoes a chirality transitowhile the  expand the results and properties we will use. We will par-
other two carry the external light-cone momenta. We alsaicularly emphasize the important role @foth external and

show that while the tensor coupling of the anomaly poleinterna) light-cone momenta in the infrared properties that
necessarily vanishes on-shell at finite momentum, an onye exploit.

shell coupling potentially exists at infinite momentum.

In Sec. Il we show that in color superconducting QCD
the role of light-cone momenta in producing the anomaly
pole implies the existence of crucial wee-gluon effective We consider the elementary triangle diagram amplitude

II. PROPERTIES OF THE TRIANGLE GRAPH

A. Invariant amplitudes and Ward identities

1 fd4p Tr{ysYu (ko= P) v —KitKo—P) y5(—Ki—P)}

= 2.
Prastiule) = s (P+ki—k2)’(ky— )% (p+ky)? 2
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Ve with A(k,,kq)=—A(kq,k,), could be added to Eq2.3).
->kq Such a term separately satisfies the Ward identi{$).
ko However, because of the identity
'YE;Y# l\kl— k2
—> ()p éﬁoaﬁkfkg[ k1+ k2:|,u,: - (650'01,uk1ﬁ_ Eﬁo'ﬁ,u,k2a_ éﬁaBMkla
k.+k

1= q2 kl Sk + 6(50’,8MKZB) kfkg+ Ea’a,B,ukg( kl ! k2
7p 2 —K)— €rapKi(ky ko —k3) (210
FIG. 1. Triangle diagram notation. Eq. (2.9 can be re-expressed in the fori®.3). As we will

o o o see, the identity2.10 can be usefl20] to simplify Eq. (2.3
where the notation is illustrated in Fig. 1. The significance ofj, many special kinematic situations. Note that, wiha
routing the external momenta as we have done will be disggnstant, Eq(2.9) does not satisfy Bose symmetry. Never-
cussed shortly. The amplitude theless, in asymmetric momentum configurations it can, ef-

fectively, appear with a constant coefficient. This will be
important for the discussion later in this section.
Tuap(K1, k) =T op(Ke ko) + 1 galka ky) (2.2 We define the integral2.1) as the limitm—0 of that in
which a fermion mass is added. Equation®.3) and(2.5)
. . . . hold also whenm=0 and ultraviolet regularization can be
is the lowest orde_r interaction of the axial vector Cu”emcarried out with Egs(2.7) and(2.8) maintained. Indeed, it is
A.(q), whereA = ysy,4 and the vector current¥,, (K1) well known that the Ward identitie®.6) can be regarded as
andV(ky), whereV, =4y, andy is a massless fermion a consequence of routing the external momenta as we have
field. T,z can be decomposed into invariant amplitudes bydone in Fig. 1. An “anomaly” then appears in the Ward
writing identity for the axial current. Since only ti#g andA, terms
in Eqg. (2.3 contribute to the axial current divergence, the
anomaly has to appear in these terms. In fact, ultraviolet

Tuap(KiK2) =A1€50p5,K] + A2€papKs + Asf(gga”klﬁkfkg regularization of Eq(2.1) directly produces the contribution

5 P
T A4€ 550, K2pKTKS + As€ 553, K1KTKS

1 1
+ AGE 503, Koo KIKS (2.3 T uap(K1.K2) = 7—2€0ap KT+ T—2€0ap ks + -
(2.11
Bose symmetry implies
leading to the divergence equatibmhenm=0)
Tuap(Ki,Ko) =T, 54(Kz K1) (2.9
and so requires that 1
(ki t+ko)“T aB:_fﬁaaﬁkfkg' (2.12
Aq(Ky ko)== Ag(ks ki) T 2n?

Aslke ko)== Aglkz k) 29 The (coefficient on thg right-hand side of Eq(2.19 is
Ag(ky ko) =—Ag(ky,Ky). commonly referred tq as “the anomaly.” Even t.houg'h the
anomaly occurs only i\; andA, the vector Ward identities
In addition, the vector Ward identities (2.7 and (2.9) require related terms to appear in the other
A; . We will be particularly concerned with the infrared be-
KiT ap=0, kgrwﬁzo (2.6) havior of the massless; that is required18,19.
require o
B. Explicit formulas for the A,
Ar=KiAs+ Ky - koAg 2.7 No (nonintegral analytic expression for the full ampli-
tude (2.1) exists in the literature. However, it is possible to
A= k§A4+ ki -KoAz. (2.9 give explicit expressions in limited kinematic configurations.
o For example, Whekiz k§ the imaginary parts of each of the
A priori, a term of the form invariant amplitudeg\; is given in[20]. For our purposes we
5 will use the following set of formulas, given i21], for the
A(Ky,K2) €55a5KTK3 (K1 ko) , (2.9 full amplitudes.
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Whenk3=0 (k3,0?°<0,m?>>0) ,
11 k3

AT il

1 1
A4 277 k2 q2 Ll

A ! kg L m L,—1
Z_W k%_qZ 1™ kg_qZ 27

1 k2 m?
=— + +
Al 471_2 kg_qul kg_qZLZ 1

where
L, | +1+ﬁ|ﬂ+1
=—plh—— n
P = B—1

B+1
B—1

L=—In +I2
pin== Bln

p?=1-4m?q?, B?=1—4m?/K>.

Note that the simple relationship betwe&g and A, in Eq.
(2.13 is required by the Ward identity2.7) which, when

k#=0, becomes

A=Ky kA=

1=

(2.13

(2.14

(2.195

If the limit m®>—0 is taken in Eq(2.13 the result is

1 2 2
A=—(—2—2 In—5+1
! 472\ K= 2

g~ q
A= 1 k2 |k2 1
2= 42 IC— 2 nqz

1 1 k3
A3:_A k2 q2|n 2

o kB’

While the Ward identity(2.7) does not determinds in this

limit, A, can be obtained from E@2.8).

(2.19
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If instead the limitk— 0 is taken, withm?>0, the result
is

A4:—A5=—ﬁ?<2—p|np_—l).

A;=—A, can be obtained from the vector Ward identities
and using Eq(2.10 gives[21]

T,ua/o’: A6q,u6aﬁoﬁkllrkg+ (Agt+Ag)( Eﬂﬂwakgkgkzﬁ
- E,uﬂo'ﬁkgkngDz) (218)

whereA, andAg are given by Eq(2.17). Note that the first
term has the form of Eq2.9). This is consistent just because
k?=k3=0,g%+#0 is not possible in a symmetric momentum
conﬁguration. Also the anomaly is produced by the first term
alone while, within the momentum configuration that we are
discussing, each term separately satisfies the vector Ward
identities.

Whenk3—0, with g2 fixed, Eq.(2.16 gives

11

A T, Az——— .
127 =2 3_>2772 o2

(2.19

That is, a pole appears ; (= —Ag). If, instead, we inte-
grate over spacelike values qf, we obtain

f da®As(a? ko) f(a? k) — —f(O 0

k2—>0

1
= f dq®—5(9*)f(q%,0)
(2.20

[providedf(g?,k3) is regular atg?,k5=0].

The pole that appears iA; (and Ag) is the “anomaly
pole” discussed by a number of authdds8—21]. The coef-
ficient coincides with that of the anomaly and it is possible to
give general argumen{d 8,19 that this pole is directly re-
quired by Eq.2.12. The simplest way to see that this might
be the case is to note thatidf =k5=0 andA, andAs are not
(sufficiently) singular the identitie$2.7) and (2.8) reduce to
the very simple form

2 2
A3:?A1, AGZ?Az. (22])

Equation(2.1]) then leads directly to Eq2.19. In fact, we
will see below how the momentum routing of Fig. 1 that
produces the ultraviolet anomal.1l) is also responsible
for the numerator that accompanies the anomaly pole.

The amplitudes\, andAs will play very little role in our
discussion. It is well known that these amplitudes do not
contribute akf= k§= 0 whenT , ;4 is contracted with physi-
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cal polarization tensors. Our analysis will also be concerned,;, cancels when the logarithms have their physical sheet
with- momentum configurations and componentsTgf,;  values. On unphysical sheets of the logarithms a pole is
such that these amplitudes do not contribute. Note that Eqpresent and corresponds to the triangle Landau singularity.
(2.17) implies, and it is straightforward to check directly Whenk5—0 followed by g?>—0 the physical sheet thresh-
from Eq. (2.13, that the limitsm—0 andk?,k5—0 do not  olds coincide at the point of interest and the unphysical sheet
commute forA, andAs. A property that we will avoid in our  singularity is able to enhance the thresholds.
analysis. The simplest example of this last discussion is provided
Finally we emphasize that if we keep only the pole termsby Eq. (2.17) which gives
in T,.s, as we will eventually do, then the vector Ward 5
identities will necessarily be violated, for at least some mo- 11 ( m

) SO 2 m? — —|1+—=1In?
menta. As elaborated ifil5] the Reggeon Ward identities As(Q”,m") — 2 g° ! q° In

2

that are necessary to avoid infrared divergences in Regge a0

limit amplitudes depend on Ward identities being satisfied —q?\ 12

for all momenta. We will see below that when the Ward X1+ mZ e )ﬂL>oc (2.2

identities are satisfied only by a limited range of momenta,

infrared divergences occur that, nevertheless, produce gauge- 1 1 2

invariant amplitudes. Al Q% m?) — — —2(2—p Inf14+—+--- )—>oo
qz_)0277 q p

C. Int tati . -
nierpretation and so, form?#0, the pole is absent. The only finitg#

The results of the previous subsection extend straightforsingularity in either amplitude is the thresholdg@t= 4m?. If

wardly to the case when there are gauge and flavor symmeye continue around this threshold ther> —p and so
tries andT , .4 is a three-point amplitude for currents defined

in terms of appropriate combinations of fermion fields. The p+1 ) p+1

anomaly in Eq(2.12 is then a number determined by add- Inmem —Inp_—1 (2.23
ing all contributing triangle diagrams. Most importantly, as is

very well known, the ultraviolet anomaly in alflavored and the pole af?=0 is present. It is present on the physical
axial current Ward identities remains unchanged as gaugg,qet only am?=k2=k2=0.

field interactions are includef®5]. As a result, the general 12
arguments alluded to aboyé8,19 [and more directly the
identities(2.21)] determine that a pole with coefficient given

by the an_omalzy isza'W";‘ys present in the special kinematig., inA; (andAg), and not in the otheA;, because the
configurationki =kz=m“=0. As first argued by 't Hooft .y jcal singularity is a double pole rather than a single
[17], if there is confinement and there are no physical masssje "It would be interesting to determine more explicitly

less fermions, this pole has to be reproduced by a Goldstong,,, ths feature relates to the momentum routing ambiguity
boson pole. As we will discuss in the next section, this will joqciated with the anomaly.

provide the basis for our use of the chiral flavor anomaly to
extract “infinite momentum” pion couplings to physical cur-
rent components that produce scattering amplitudes. For the
U(1) anomaly there will be no Goldstone boson pole but In the next section we will want to derive anomaly pole
instead thes function (2.20, produced by the integration of couplings from the reduction of more complicated diagrams
the anomaly pole oveg?, will contribute in an essential to triangle diagrams and also to separate the anomaly pole
manner to infinite momentum amplitudes. from the ultraviolet anomaly contribution. For these pur-
To interpret the pole in Eg2.1) in terms of Landau sin- poses it is important to determine the internal momenia
gularities we note the following. The expressions for &e Eg. (2.1) that generate the pole. We will see that light-cone
given above demonstrate that, when a fermion ntass = momenta play a crucial role. Note that an external light-cone
present, only two-particle normal thresholds are present imomentum is necessarily involved sincekﬁ= k§=q2=0
each invariant channel. These thresholds are responsible fgifen, necessarilyk,|k,|/|k. wherek, is lightlike. We first
the Ing? and Inkj factors that are present in E@.17. The  consider reaching thg?=0 limit via the momentum con-
pole atgq?=k2, which is superficially present in each of the figuration

We conclude that the Goldstone boson pole appears, in
very special kinematics, because an unphysical singularity
enters the edge of the physical region in the massless limit. It

D. Internal momentum analysis

ki=(ky /V2.k, 1\2,00=ki =k,_=k,, k;=0, k =0
(2.24
ko=(—k_/y2,k_1\2,00=k;=0, k,=k,,=—k_, k =0
in which k=k3=0 andg?=—2k_ k_.
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We will shortly understand the anomaly pole contributionand so there is no divergence g8—0. At best we can
to Eq. (2.1 as produced by external momentum numeratorobtain a finite contribution by taking>~k_—0, with k.
factors together with a pole producédy the denominatols  kept finite. As a consequence, in the momentum configura-
in a part of the integration region that includes zero internation (2.24), the anomaly pole contribution cannot be distin-
momentum. At first sight, Eqi2.24) is not a very sensible guished from other nonsingular contributions. However, for
configuration to discuss. Ifwe_consider the pole contributiongr initial goal of obtaining a simple understanding of the
of Az to Ts,, for example, this has the form origin of the denominator pole the momentum configuration
(2.24 will be very useful.(Indeed, it will play a key role
KKk 2k " throughout the paper.

17— e R (2.29 If we drop the numerator terms in E@.1) and keep only
272q? 2mq* 4w’ thek, andk_ dependence we obtain

Tos = —€4523

I(ky k- ,m2)=l(q2,m2)=f dp,dp_d?p,[2p.(p-—k_)—pf—m?+ie] "

X[2(ps—ky)(p_—k_)—p?>—mP+ie] 2(p,—ky)p_—p?—m?+ie] L. (2.26

We will find that1(g?,m?) is finite ase—0 only whenm? We will first evaluatel (g2,m?) exactly. After we deter-
#0. This is not surprising sincg?,m?) is closely related mine the origin of the pole we will give a more direct argu-
to A, andAg, as given by Eq(2.17). As we already noted ment to locate the contributing momentum region. We begin
above, thek; k53— 0 limit commutes with the massless limit by making the(scaling change of variables

for Ag, but not forA,. As a result, we expect that for part of

1(g%,m?) the limit m*>—0 will not exist. [Of course, the Pr=X.Ky, po=x_k_,
numerator terms in Eq2.1) will play a central role in de- (2.27
termining the nature of the divergence that ocdudawever, P = (kik_)Y%,

the pole term we are looking for appears, with the same

(anomaly coefficient, in both kinematic terms in E(R.18 and also writem?®—ie=2k,k_u=—q%u. If we carry out
as m’>—0. We therefore anticipate that the momentum re-the angulaix, integration(which gives a factor of ) and
gion generating it will be unambiguous in this limit. write y=xf/2 we then have

T T —+ oo + o + oo
I(qz'mz):4_q2|(“):4_qZJw dX+J:w dX*JO dy

1
X . 2.2
[OC Dy w0 Do Dy w06 Dy 2%
The propagators can be separated via partial fractions anglitttegration can then be carried out to give
+ o0 + oo 1 l
= | — — _
= | o | e e DR e
I ! I
X n[X—(X+—1)—M]+m NL(X-—=1)(x4 —1)—pu]. (2.29

We can evaluate E@2.29 by contour integration in the_ plane as follows. The three logarithmic branch points are on the
same side of the_ integration and the contour can be closed to zero unless,>0. [Note that if the numerators of Eq.
(2.1) were present then we could not close the contour without obtaining a contribution from thex larggion] When 1
>x, >0 the logarithmic branch cuts lie as illustrated in Fig. 2.
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x|

integration
X_= 1+}1/(x+_ 1) contour
5 / FIG. 2. The x_ plane (u
— e —[m*—iellg?).
— - ( b —
=P xy- x_=1+pn/x,

In this case, the contour can be closed around the ongiving

branch cut, as illustrated, andw) is then given as an inte- 2
gral over just this discontinuity, i.e. 1(g2,m?) — szt (2.33
u—0 q
NE 1
I(p)=2mi fo dx, medx_(x DX —x,) If an additional functiorR(p ,p- ,p,) (produced by propa-
gator numerators, for exampleere present in the integrand
L of 1(g%,m?) then, if we again use the limk_—0 to obtain
zzwiJ' dx, IN[1+x,(1—x,)/ ] q°—0, the pole residue would simply contain an additional
o 1-Xxy factor of R(0,0,0,0).
(2.30 Note that if we cut off thex_ integration atx_=\_ we
. . . . obtain an extra contribution t(0) of the form
which an integration by parts allows us to rewrite as
1 1 T =Xy
_ — i |
1-2x, 1(0) 27T|f0dx+l_x+n N 1

1
I(w)=2mi Jl) dX+|n[1_X+]m

. l 1
| =2wlf0dx+|n[1_x+] )\——x+_)\_—1}
(2.39

(2.31 in which the integrand has no constant term in its expansion

The first term in Eq(2.3) is finite while the second one aroundx, =0 and so, in this sense, does not modify the
has a logarithmic divergence of the kind we expected to find@nomaly term extracted in E(R.32. Therefore the anomaly
As we discussed, we expect this divergence to be modifielfrm originates close to the lower end point for the inte-
by, and to be dependent on, the numerator terms that we agation(i.e.x_=p_/k_~1) and is, indeed, independent of
presently ignoring. The first term we expect to be closely’OW We treat the large_ region.

related to the anomaly pole term. If we consider the behavior That the integration by parts, to obtain Eq,gn, is nec-
essary to clearly expose the anomaly term is a consequence

of the integrands of both terms near=0 then we note that of the contour integration we used. We can extract the same
the first term has a constant term in its Taylor expansioq X g 55 ' . .

. : .~ lerm more directly from (q°,m?) as follows. First we write
while the second does not. If we extract this term as a piece
that is independent of how we handle the divergence of the f+oo dy

. — |
second term we obtain o [(X-—D(x—D)—y—ul, ,

1
Xy (1=xy)

1
— 27rij dx;In[1—x4]

n—0 0

nx,—1)+---

(2.39

1
[(u)=2 if dx [1+O(xy)]=2mi+--- (2.3
(u)=2m 0 ol (e ))=2m (232 giving, if we undo the scaling of _,

1

I(qz,mz)—>lfldx+ln(x+—l)f+wdp, 5 5 e (2.36
8k Jo — o [(p-—ko)xy =m2k, J[p- (X4 —1)—m2k, ]

We can then close the_ contour around the second pole to which reproduces Eq2.31), and hence Eq2.33), directly.

obtain, in the limitm?—0, Note that the denominatdr_x, in Eq.(2.37) is provided
) w4 (1 In(1—x.) by the propagator that carries only tke external momen-
1(q) = 57— f dxy ——— |+~ tum. The factorsk_! and x_ ! represent the separate “par-
4k+ 0 |(,XJr . . . + .
ticle” and “antiparticle” poles of this propagator and both
al contribute in an essential mann&r.! produces thed?) ~*
- 2_(12“L o (2.3 pole in the final result. The residue of the polexat=0,
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FIG. 3. Vertices and propagator numeratorsifgs_(k, ,k_).

multiplied by In(1—x,) [which is the integrated propagator
contribution obtained from Eq2.35)], is integrated to pro-

PHYSICAL REVIEW D 66, 056007 (2002

In the following, we will use manipulations analagous to
Egs.(2.38 and(2.40, in which the numerators carrying the
limiting momentum configuration are combined, to deter-
mine whether the anomaly is present in diagrams. However,
as we noted above, the anomaly pole terms are not actually
singular in the limiting momentum configuration we have
discussed. To consistently isolate anomaly pole contributions
toI',,p it is necessary to work in a kinematical configura-
tion where singular contributions are obtained. This is the
case if an additional external transverse momentymis
part of the limiting momentum configuration, such thgt
~qf, while the corresponding propagator numerator pro-

duce the final anomaly coefficient. That both particle andvides a factor that i©(q, ) and vanishes more slowly than
antiparticle poles contribute to the anomaly pole is a veryd”- We will, nevertheless, be able to apply the above analysis

important point that we will elaborate on shortly.
To determine that Eq2.33 is indeed the anomaly coef-

by exploiting the Lorentz invariance properties of the inter-
nal momentum integration.

ficient that we want we must reintroduce the propagator nu-

merators, that we have so far neglected, and evaluate them at

zero internal momentum. In the configuratith24) the ex-

E. Frame dependence of the anomaly numerator

ternal momentum numerators contribute the combination of A secor;d momentum configuration that can be used to
lightlike momenta andy matrices shown in Fig. 3. The cor- approachg“=0 is

responding contribution tb'5,_(k, ,k_) is
Tr{ysyslKo v]valKi- y]y-[(ki—ko) - ¥]}
=Tr{vsvslky v-Jvalky v+ —ko v Ty [K{ v+ 1}

=Tr{ysyay-v2v+v- v+ 1KiK-

(2.38

The well-known identity for a product of three orthogonal
matrices

—2 T ys¥ay2y- v+ 1Kok .

Yo Y= 9apVr T 90 Ya— Ian Yt 1 €uapy ¥ Vs
(2.39
then gives
— 4 THiva+ ysv2vahki ko =4i Tr{yaHki k_
=16ik2k_. (2.40

Combined with Eq(2.33), this gives the desired contribution
of the anomaly poléafter taking into account the factor of
1/(27)% in the original integral2.1)].

If we return to the original momenta we see from Egs.
(2.35—(2.37 that the relevant integration region for the

anomaly pole is
(iii) p-.~k_—0
(2.4)

and that any additional factors in the integraihesides the

(i) p?=q® (i) 0<p, <Kk,

ki=(k/\2,k/\2,0,0=k{ =k, k;_=0, k, =0
ko= (—k/\2,—k cos6/\2,0,—ksin6/+/2) (2.42
~ —k;—(0,0k6/+2,0)=—k;—(0,00,0)
6—0
where
q2=(k1+ k2)2 ~ . (243

6—0

In the configuratiorf2.42, we obtain the largest numerator if
we consider the anomaly contribution Af to T__5. This
has the form

2k

q2 6—0 o

kgkoky_  kkO/N2]
@ -

T _3=€,5-3

(2.49

and so a divergence is present.

In the limit g—0, the external momentum flow ang
matrix couplings are now as shown in Fig. 4. Essentially the
same calculation as Eq®.38 and(2.40 gives the numera-
tor in Eq.(2.44) directly from the external momentum propa-
gator numeratorgNote that the propagator that carries zero
momentum in the limiting configuration is now that corre-
sponding to the vertical line in Fig. /lt remains, therefore,
to understand the anomaly pole as arising from an internal

propagator denominatgrare to be evaluated at zero internal zero momentum configuration.
momentum. The surviving external light-cone momentum Since all invariants remain unchanged it must, of course,
then flows directly around two of the three internal propaga-be possible to obtain E42.42 from Eq.(2.24) via a Lorentz

tors. This will be very important in the next section.

transformation. This can be done as follows. We first set
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Now, if we letk_ —0 and take cosli—~ such thak_cosh?
remains finite, the numerator in E¢R.47) —c while q2
—0 and most importantlyas we discuss in the next subsec-
tion) that part of the numerator contained in square brackets
remains finite. This demonstrates that the anomaly pole can
have a finite coupling to infinite momentum statfsis, of
course, crucial for the enhancemdi@t4?) that the tensor
component discussed is defined with respect to the axes of
the new framg.

FIG. 4. Vertices and propagator numeratorsTar_; . It will be important in succeeding sections that both the

_ o _ component ofT , . ; that dominates and the zero momentum

k. =k_=q (which can be done trivially via a Lorentz trans- |ine involved, depend on how the anomaly pole limit is ap-
formation to the “center of mass framg"We then apply @  proachedor, equivalently, the Lorentz frame involed his

boosta,(¢) to obtain is because our analysis of anomaly contributions in high-
energy scattering is not Lorentz invariant, but rather we com-
q cosh{ 9 gsinh{ 0 bine contributions that ar@nitially calculated in different
1= V2o 2 2 finite and infinite momentum frames.

As noted in[18], if we consider the helicities of the inter-

qcosht q gsinh¢ nal massless fermions producing the anomaly pole numerator
2_>( = —, ) (2.45 we find that the fermion that carries zero momentum must
V2 V2' 2 ' effectively flip its helicity. Equivalently, it must reverse its

particle-antiparticle identification. The vertex at one end of

=k;—(0,1/29,0,0) the propagator must be that for production of a particle
o ) o ) while, simultaneously, that at the other end describes the pro-
which, if g cosh{=k is kept finite asg— 0, differs from Eq.  gyction of the antiparticle. This is possible just because, as
(2.42 only by a rotation. _ we discussed above, both particle and antiparticle poles con-
If we consider Eq/(2.1) directly in the momentum con-  yjp e to a divergence that occurs when the propagator car-

fi2gliratio.r|1| é2'42’ 'It'thl('a dnlémergtor cc_)ntrtibuFiotn gi}/itrrllgt Eq' ries zero momentum. This process is an integral part of the
(2.44) will be multiplied by a denominator integral that is a formation of a pion pole.

Lorentz invariant. If the reverse Lorentz transformation to The pion scattering amplitude that we derive in the next

that giving Eq.(2.42 from Eq.(2.29 is applied to the mo- . . .

mentum integration variables théfqg?,0), as given by Eq. septlpn will also con;am a zero .momentgm propaggtor

(2.28), will appear and the above analysis can be used tgw'thm a U(1) anomaly |ntgrgct|ohwh|ch describes a physi-

extract the anomaly pole, with E€2.42 now appearing as cal zero momentum transition. _If this process, and that pro-
¢ ducing the pion pole, are to be interpreted as a physical pro-

the limiting momentum configuration. This implies, o : .
course, that the limig2—0 is provided by an internal mo- cesses the Dirac sea must be shifted at the second vertex

mentum configuration that is reached by an infinite boosfelative to the first. The production of the antiparticle has to

from the original zero momentum region. be reinterpreted as production of a state that fills a hole in the
We can further enhance the anoma|y numerator if we inSéa, i.e. the absorption of an antipartide. That is to say, there

stead applya,(¢) directly to Eq.(2.24, but now letq>—0 must be spectral flow of the Dirac sea during the interaction.

by takingk_—0. This gives In a field-theoretic path integral language, this phenomenon
is what produces a “chirality transition” due to a topological
k. cosh¢ k, k,sinh¢ background gauge field. However, in our discussion there is
1= 2 E N ,0 \rllglvig:jplication that a topological background field is in-
_ (2.46 We also note that the part of our calculation of the
. k_cosh k- k_sinh{ 0 “anomaly pole” in the above that involved only the denomi-
2 2 2 2 nators could equally well be applied to the calculatj@s]

of a gluon triangle(involving an effective vertexthat ap-
and so, for exampleT,;_ (defined with respect to the axes pears in the coupling of a Reggeized gluon to on-shell glu-

of the new framgis given by ons. This coupling need not satisfy a gauge invariance Ward

identity. Of course, the-tensor structure of the anomaly that

k7kdk, is due to the fermionic numerators will not occur. However,

T23_~em;23—2 a particle-antiparticle transition, via a zero momentum
propagator, can be responsible for the helicity transition that

occurs.
~ [_k+k‘COSh§]k+COSh§_ (2.47) The ultraviolet anomaly is well known to originate from
V202 the region
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Pi~pP_~p,—%. (2.48 F. The pole residue as a Goldstone boson coupling

Theref . incipl K th | e i A major question is whether we can use the identification

Eretore, in principie, we can keep the anomaly pole Nyg 0 anomaly pole as a Goldstone boson pole to obtain
Tﬂlaﬁ while (]tlLOppmg thetultrawole_t agcimalyl i :Nte lnte%rate information about the interactions of physical Goldstone
only over the momentum regior(2.41). solating ey ,5hns. If we keep just the anomaly pole contributioné.of
anomaly pole from the ultraviolet anomaly will be an impor-

tant part of our analysis in the following. While we can sup- andAg 10 T),qs We can write
pose th_at, as a matter o_f principl_e, we are restricting the 1 (€svaukisg €sop kza)kfké'
integration region, in practice we will simply use an anomaly Tuap(ki ko) =—— " ® +

pole coupling as discussed in the following subsection. This 2m? (ky+kp)?

violates full gauge invariance but, as we discuss, if we keep (2.49

only the anomaly pole term and restrict our analysikfo

=k§=0,q2~0 , we will keep the partial gauge invariance This expression does not satisfy the vector Ward identities
that is sufficient to produce gauge-invariant amplitudes. Nevand does not have the axial current anomaly. According to
ertheless, the loss of full gauge invariance plays a cruciathe above discussion, it is nevertheless obtained if we keep
role in generating the transverse momentum infrared diveronly the integration regiofi2.41) in Eq. (2.1), together with
gences that are the cornerstone of our confinement dynamidéie momentum dependence of propagator numerators given
By manipulating the relative contributions of the anomalyby the external momenta.

pole and the ultraviolet anomaly we will effectively be regu- Whenki=k3=0, we can use the identi(2.10 to obtain
lating the relative ultraviolet and infrared spectral flow. [what is essentially E¢2.18 with m?—0]

1 [—espaplkit ko]t (€50p.K1a— Eﬁo‘a;LKZ,B)]kfkg
T pap(ky ko) =—— L 2:5
waplkka) = =575 (ky+ky)? (220

where the additional omitted terms are those that are lesand asking for a factorizable pole residue. Therefore, if we
singular agy®= (k; + k,)2—0. [Note that to justify omitting  restrict our discussion to the regid@.52 [and to compo-
these terms it is crucial that we consider a component iments ofT .z to which the second term in E¢2.50 does
which there is a singularity a?=0 and the numerator does not give a leading contributidnall desired, factorization,
not cancel the denominator singularity, as(125.] Each  gauge invariance and anomalous divergence properties are
term in Eq.(2.50 separately satisfies the vector Ward iden-contained in Eq(2.5J).

tities (for momenta which satisfk?=k5=0) but only the While it is well known that Eq(2.51) describes well the
first term has the appropriate factorized form to provide adecay of a physicalmassivg pion into physical photons
pion pole coupled to the axial curreAt,. The second term there is, not surprisingly, an obvious problem with attempt-
corresponds to thé\, and Ag contributions in Eq.(2.3)  ing to use it to discuss the coupling of a pion to dynamical
which we anticipated would not contribute to the tensor com-gluon currents. It is crucial for our infrared anomaly analysis
ponents that would appear in our discussion. Therefore, wthat the “pion” is massless. In this case the “pion pole”

might expect that we can use appears only in thg?— 0 limit in which ky||k,||k_. wherek .
is lightlike. Because of the tensor, the numerator in Eq.
1 [Ky+Kol,€omaskiks (2.5) then vanishes in any finite momentum
Tuap(Ki k)= — 5 +..- configuration—as we have seen explicitly above. In general,
2m (kytka) if the limiting configuration is approached via a vanishing

(2.5 spacelike momenturg andk. is the nonvanishing compo-

: . . : L nent ofk then, at best,
to obtain physical pion pole couplings, anticipating thlat

+Kk,], provides the coupling to the axial curreft, while Gagagkiské'N k.q (2.53
the factore&mﬁkfkg provides the coupling to currenits,

andV,. [In a general current vertex the #2in Eq. (250  which, of course, still vanishes as—0. The fundamental
will be replaced by the appropriate anomaly coefficient. reason for this is that Eq2.51) is antisymmetric irk; and
Equation(2.51 not only satisfies the vector Ward identities k, and, because of Bose symmetry, can only describe the
but also produces the anomaly in the axial current. Remarkcontribution of antisymmetric momentum configurations of
ably, perhaps, we have obtained these properties from Eghe kind we have discussed. For consistency, it must vanish

(2.49 simply by restricting to the momentum region at the symmetric point wherkf=k3=qg?=0. The conclu-
. 5 sion is, clearly, that we cannot obtain a finite coupling as
ki=k;=0, q°—0 (252 ¢2-0 and the limit onto thémasslesspion mass shell is
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taken. Therefore, the anomaly provides no information aboutussed below. Independently of the nature of the symmetry
physical, finite momentum, massless pion-gluon interactionsbreaking, the complete structure of the broken gauge group,

However, we see from Eq2.47) that if we go to an j.e. all the interactions of massless and massive gluons
“infinite momentum frame” we can keep components®f amongst themselves together with their interactions with
finite, even thoughy®— 0 and the ratiay/k,. goes to zero. If massless and massive quarks, will be important.

we use Eq(2.51), instead of Eq(2.47), to evaluateT 3 in The gluon spectrum consists of a massles$25tiiplet,

this frame, we obtain two massive S(P) doublets with mass-M, and a massive

KKk singlet with massM. The quark spectrum consists of a

Tys ~ €, 172012 massless S(2) doublet and a massive singlet for each flavor,

q® with massmc~ M. Because of the equivalence of quark

and antiquark color representations, there is an extended chi-
_ [—kik_(sinh{) ]k, sinh{ ot ral symmetry[22]. In particular, SW2) color singlet axial
\/§q2 (2.54 currents can be formed from pairs of quark fields and pairs of

antiquark fields, in addition to the usual quark-antiquark cur-
which, not surprisingly, gives the same leading result as Ecrents. We will generically refer to the $P) singlet quark-
(2.47. [Note that the second term in E@.50 gives a non-  antiquark Goldstone bosons associated with chiral symmetry
leading contributiorj. The “infinite. momentum” pion cou-  preaking as pions and will refer to the singlet quark-quark
pling is now given as Goldstone bosons as nucleons.
oL . We will be considering infrared divergences due to both
€ooa-Kiko~ [k k-sinh{] (2.59 the massless quarks ar?d the massless gluons. To discuss

which, as we noted above, is finitekf —0 with k_cosh¢ these divergences we should, initially, invoke a second
kept finite. We conclude that, although the anomaly provide$ymmetry-breaking mechanism to give all quarks and gluons
no information about finite momentum gluon couplings, it masses. A second complex triplet scalar could be used for
can potentially provide information about the “wee-gluon,” this purpose or the symmetry breaking could again be dy-
or “wee-parton” couplings of the infinite momentum pion. namical. We simply assume that there is an an initial nv&ss
We will discuss such couplings in the next section. We will for the SU2) gluons that is taken to zero and an@)quark

find that the current component involved cannot be that of anassm that is also taken to zero. When— 0 the anomaly
simple local current but must itself originate from a nonlocalpole discussed in the last section, will be produced by mass-
interaction that produces an effective local interaction at in{ess quark loops. This will be our starting point. When the

finite momentum. gluon massM—0 also, there will be an overall infrared
divergence that will produce confinement and select the color
[1l. BUILDING COLOR SUPERCONDUCTING PION zero amplitudes in which the anomaly pole becomes a pion
AMPLITUDES or nucleon pole. As we will see, our analysis involves only

on mass-shell states and gauge-invariant transverse momen-

_ tum diagrams. The only breaking of gauge invariance in our
When the gauge symmetry of QCD is spontaneously brogiscyssion will be that associated with phase-space cutoffs in

ken from SU3) to SU2) the resulting theory is commonly  gnomaly generating diagrams. As we implied in the previous

called “codlor ;IUE)jerconducti_ng QfChDh Our eventual goal is gection gauge invariance will be preserved for those mo-
to give a detailed construction of high-energy scattering amg o i iy clved in physical amplitudes.

plitudes (for Goldstone bosonsin color superconducting
QCD and then to discuss the restoration of the full gauge
symmetry using Reggeon field theory. In this paper we want B. Transverse momentum infrared divergences
to concentrate on how the kinematical and dynamical prop-
erties of the chiral flavor and () anomalies discussed inthe  Before discussing anomaly couplings we first summarize,
previous section combine with transverse momentum infrabriefly, the established properties of the gauge-invariant
red divergences to produce such amplitudes. For this purposeassless transverse momentum diagrams that will be in-
we will use only general properties of the gluon and quarkvolved. The overall infrared divergence we discuss in the
spectrum, which we now discuss, and will make only quali-following will be produced when these diagrams couple
tative comments about color and color factors. through anomaly generating effective interactions.

Some number of quark flavors will be present, which we It is well known from perturbative calculatiorid —9] that
will not specify since we will not give them distinct masses. in gauge theories the Regge limit is described by transverse
The symmetry breaking could be due to the expectatioomomentum diagrams. When all gluons and quarks have a
value of a complex color triplet scalar field, with Yukawa mass there are no infrared divergences and high-order lead-
couplings generating a mass for @Usinglet quarks. Alter- ing and next to leading log calculations show that these dia-
natively, and perhaps preferably, since the scalar field itseljframs exponentiatén momentum spageo produce Regge
plays no role in our discussion, the symmetry breaking coulgole and Regge cut behavior. Both gluons and quarks lie on
equally well be dynamical and due to a diquark condensat®egge trajectories, i.e. they “Reggeize.” Reggeization of the
associated with the additional chiral symmetry breaking disgluon corresponds to the exponentiation

A. The gluon and quark spectrum

056007-11



ALAN R. WHITE PHYSICAL REVIEW D 66, 056007 (2002

s 1 dJg stam sponding to Reggeization of the gluons is now described by
2 T2 — replacing the fixed pole at=1 by the two-Reggeon propa-
t M t M (J 1) t— MZ ga‘[or
1 dJs L
Et—lvlzf (J—-1+A(t) SE r,= (3.4
J—1+A(KS) +A(KD)
where 1- A(t) is the(massivé gluon Regge trajectory given vin
(in the leading log approximatiorby giving
2+ MZ d2k d2k d2k1 d2k2
A(—-Q%)= (Q ) L 2 AO(J,t)_>A(J,t)=fWW
167° | ki+M2 ks+M? 1 2
% (Q—ky—k
X 8(Q—ky— k). (3.2 (Q—ki—kp) @5

I AR TAKD)

As is illustrated by Eq(3.1), momentum space exponen-
tiation corresponds to power series summation inltpéane  Further momentum space exponentiation is provided by
(J= complex angular momentumWe can further illustrate Reggeon interactions that, in tleplane, simply iterate Eq.
this by considering an amplitude for which the leading high-(3.5), which we identify as a “two-Reggeon state.” The form
energy behavior is given by the Regge-cut corresponding tof the interaction depends on the&hannel color of the iter-
two Reggeized gluons. In this case the lowest-order result isted Reggeon state, i.e. we can wii¢ (imposingk; +k;
(apart from a normalization factpr =k;+k3)

d’k;  d%k, T oKy Ko K, Kb) = a(ky +Ky) 2+ bM?2
A= 37 | ier M2 IE M2
' i —CRA(ky ka2, K1 K3), (3.6

X 6%(Q—ky—kp) 3.3

wherea, b andc are color factorgthat include an overall
wheret=Q2. The momentum space exponentiation corre-normalization factorand

(K3 +M?)(k3'+M?) +(k5+M?) (ki +M?)  (Kf+M?)(K;' +M?)+ (k5 +M?)(K5' +M?)
+ .

R22(kluk21kj,l'ké): (kl_k1)2+M2 (kl—ké)z-l—Mz

(3.7

The (massive BFKL equation[4] is simply the color zero When M—0 infrared divergences appear in both the
Reggeon “Bethe-Salpeter” equation obtained by iterating theReggeon trajectories and thimtegrated Reggeon interac-
Reggeon interactiof',, in Reggeon diagramd’,, is not a  tions. At first sight the divergence

Fredholm kernel and so the solution of the BFKL equation

need not contain only Regge poles. Indeed, the BFKL A(Q?) — InM? (3.9
Pomeron is generated from the large transverse momentum M20

region and is a fixed cut. For our purposes, we will impose

an upper transverse momentum cutoff dottimately) will exponentiates to zero all Reggeon amplitudes via the Regge

utilize only the infrared properties of the BFKL equation.  pole exponentiatiorf3.1). In the J plane this exponentiation
In general, it can be showfiz7] that the contributions of ¢ givergences is reflected in the vanishing of the Reggeon

all logarithms(down to an arbitrary nonleading leyelan be ; ;
A ; propagator(3.4), and all higher multi-Reggeon propagators.
described by transverse momentum diagrams. AbsBe- However, since divergences also appear in the Reggeon in-

trix results[1-3] on unitarity in the complex angular mo- teractions, to discuss thd — 0 limit in detail, it is advanta-

mentum plangReggeon unitarityimply that the transverse cous 1o undo the Reaaeon diaaram oraanization and o
momentum diagrams can be organized into an elaborate ex- 99 ag 9 a9
ponentiation phenomenon in which a complete set o ack to transverse momentum diagrams. The Reggeon inter-

Reggeon diagrams appears, involving all possibjglane a_ction_s and Reggeoln trajectory contributions can be com-
multi-Reggeon states. For our present purposes we requifin€d into “kernels”Ky (... ki, ... kj’, ...), wherel de-
only a few infrared properties that existing calculations,notes SW2) color. If the kernels are defined to include a
combined with general arguments, imply are satisfied by th&ansverse momentum conservifigunction they are dimen-
complete set of Reggeon diagramsr, equivalently, the sionless(in transverse momentunand describe the iteration
complete set of transverse momentum diagpamdsmore  of dimensionless lowest-order “multigluon transverse mo-
extensive discussion can be found &]. mentum statesTy where
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N — e e = ——
1 d?k; 2 -], e =], g - = T s o0
= — e RS poiel oo RS 3 il o RS O ey
Tn J—J .Hl - (3.9 — %o [N Ko [ SN,
For example, FIG. 5. lteration of a massless gluon kernel.
Kbh(kq, Kz, K] ,kb) Confinement could be produced if tl¢=0 singularity can
be absorbed into a “condensate,” as will be the case at the
= 62(ky+ ko —kj—Kb) end of our analysi$.
In leading-log calculations the infrared finiteness property
ST (ke Ko K K2+ K2K2T A (K2) + A (K2 of the_ dlm_enS|onIess kernels Ieads_ directly to_co_nformal
24k ke ko ko) *kikgl Ak +A (k)] scale invariance. In general nonleading log contributions the

1 1 introduction of a scale for the gauge coupling destroys all
= 6% (ky—k.) + = 8 (K, — ké)H' (3.10 spale—inyariance properties. If, hpwevgr, there is an infrared
2 2 fixed point for the gauge couplinas is the case when a
o . . large number of massless quarks are prgstém scale in-
For simplicity we refer toTyy as a “multigluon state in yariance properties will still be present in the infrared region.
the following. In this context a multigluon state will always' In this paper we effectively assume the existence of such a
be the lowest-order transverse momentum diagram contrilgiyeq point. We will also, for the purposes of this paper,

will carry the color and signature properties of the parentiniteness then implies that the kern&l§ scale canonically
multi-Reggeon state. Note that gauge invariatiaehe form asQ?—0 so that

of Reggeon Ward identitigd 5]) implies that the kernelky,
have zerogwhen anyk; or k;" vanishegwhich, at fixedQ?, d2k . d2k!
P : : i

prevent the poles in th&y from producing divergences. At f —2H h—

fixed Q2, therefore, the divergences come only from the tra- JIkil2I2<xi K& 7 k'?

jectory and interaction terms contained in the kernels. r dO?
When thet-channel color is nonzero the divergences pro- ~ Liz

duced byl“'zv2 do not cancel those due to thgk?) terms in Q

Eq. (3.10 and, in general, for a multigluon kernel with non- ] . ]

zero color, the interaction divergences do not cancel the travhere, as in the abov@Q=2Xk;=Xk; . If Eq. (3.19 is ob-

X

KQ(Kq, .. kn Ky, .. k)

(3.12

jectory divergences. As a result tained via the limitM?— 0, this divergence would appear as
a factor of IfMZ/\ ].
1 N d?k; To understand the implications of this last divergence we
TKy= ﬂf Hl e formally rewrite Eq.(3.12), analogously to Eq(3.11), as
i= i
XK. ki K )=, (3= 1> T\ TUKR (3.13
Q2,1#0 (3.11) and note that infrared finiteness implies firstly that (

—1)T{KY is finite when thek; are finite and, also, that

and so the exponentiate of divergences due to Reggeizatiqd— 1) TyKY, is finite when thek/ are finite. Consequently,
dominates and sends the sum of all diagrams in any coloretghere are two contributions to the divergence in E12,
channel to zero, as illustrated in Fig. 5. When0 andQ?  depending on whether th@? integration is performed as
#0, the trajectory and interaction divergences do cancel. Apart of the integration over the or as part of the integration
a result there is no exponentiation of divergendé$, as  over thek; . In the first case the divergence is obtained from
given by Eq.(3.10), is the familiar(masslessBFKL kernel  the region{k;<k/Vi,j} , whereas in the second case it is the
and if there is no ultraviolet cutoff on the transverse mO'region{kj’<ki’Vi,j}. In effect, either thel or the T}, inte-
menta(as we will shortly imposkthe iteration shown in Fig.  gration produces the divergence, but not both.
5 produces the BFKL Pomeron. If a color zero multigluon state is coupled without the
The disappearance of all colored multigluon states is nojyard identity zero(involving the transverse momentum of
confinement since, in the color zero diagrams, the gluoRhe complete stajehat is(normally) a consequence of gauge

poles in the states remain—even though there is a cancelgwariance, Eq.(3.12 is a potential source of an infrared
tion of divergences foQ?#0. If the iterated diagrams are

coupled gauge invariantly to scattering states then such cob——

plings will also have the.necezssary zeros to make the com-1n effect, we will use the scale invariance properties of color
plete amplitude finite at fixe@“. This is the infrared finite-  gyy2) Reggeon diagrams, which generate all of the conformal sym-
ness property which is extensively exploited in BFKL metry properties of the BFKL Pomeron, only to generate a factor-
applications. Nevertheless, &°=0 a singularity remains izing infrared condensate. We then build up the Regge pole nature
that is associated with the multigluon states and whose exagt the Pomeron through the remaining, massive, part of the gauge
nature depends on the behavior of the kernel€és-0. group.
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<§::TN::: Y X SEa MUY g Ty = ::: KE, [y ] KR: CTylls FIG. 6. Is_olat|on _of the diver-
S L - IR S - L - - - gence associated wifhy .

divergence. This will be the case for the anomaly couplingsiext. However, a kernel describing the interaction of mass-
that we discuss below. It is important that as the kekfels  less and massive gluons will not contain any anomaly and so,
iterated a divergence always occurs wi@h—0. The de- as illustrated in Fig. 8, it will vanish for odd-signature com-
gree of divergence does not increase but rather, in an integrhinations of massless gluons. In the following we will also
involving a product of many kernels, there is a distinct con-need to assume that, at least for sufficiently small, when
tribution from eachTy . The divergenfTy can then be iso- 0dd signature gluons do coupleia an anomaly coupling
lated and the remaining integrations organized, in the comand then interact amongst themselvesMh&(J, . . . ) given
plete set of diagrams, as illustrated in Fig. 6. It follows thatby Fig. 7 is not singular fod=1. This will justify our ex-

the residue of the logarithmic divergence can be written intraction of an overall scaling divergence from what, in lowest

-R=1

the factorized form order, is just a simple, odd-signature, multigluon state.
) , We will need only elementary properties of quaidnd
LJ diJ' 11 %52( s k-) antiquark transverse momentum diagrams. Although we will
J-1) Q? i ki2 Q ! not need to discuss Reggeization effects in any detail, it is

important that massless gluons again produce infrared diver-
XIMR(I Ky, - Ky A )2 (3.14  gences in multiquark transverse momentum kernels defined
0. . . L analagously to the multigluon kernels. Again, also, the expo-
whereMy, is given by the sum of diagrams shown in Fig. 7. nentiation of Reggeization implies that only color zero states
In the following we will need to know the interaction gypyive. In fact, because our introduction of Regge kinemat-
between massless multigluon states and the massivgs will be to some extent artificial, even the use of transverse
(Reggeized gluons that are also in the theory. For @J  momentum diagrams for quarks will seem, in part, to be
color zero we can distinguish two classes of multigluonfgrced. If the “full multi-Regge” calculation, to which we
states, as follows. First we introduce the color charge conjurefer at various points in this paper, were to be carried out
gation operator for both gluons and quarks. For a gluon fieldihen quark transverse momentum diagrams would appear di-
with color matrixA,, 5, color charge conjugatio€ gives rectly and naturally. Color zero quatknd antiquark states
i i would be directly selected by infrared divergences.
Aap— ~Apa (3.19 For fermions, in addition to using light-cone momenta

while a quark with a given helicity is transformed to an an-K== (kofkl)/f/i , 1S con_venlen{28] to use complex mo-
tiquark of the opposite helicity. We can also define the sigMeNtax =k, +iks to describe transverse momenta and also
naturer of a multigluon state as— +1 for an even or odd _t© Use & corresponding notation for transveyseatrices, i.e.

numbers of gluons. There are, essentially, two distinct color

zero combinations of gluon fields, i.e. y=(v2tiva)/2,
o o (3.18
Tr{&;AA},  Tr{e;AAIAK (3.16 v* = (y,—iya)/ 2.
which both haveC=+1 but can, respectively, create= We then have
+1 and 7r=—1 states. However, since a multigluon state
inherits the signature of a multi-Reggeon statejust satisfy V=¥ 220, yyF 4 yF y=2. (3.19
7=CP (3.17

In the Regge limit the transverse part of an exchanged
whereP andC are, respectively, the behavior of the coupling fermion propagator dominates, i.e. for a massless fermion
of the multigluon state under the parity and color charge
conjugation operations. In perturbation theory such cou- Kk 1( 1 1)

i = = — s — | Y —t =
plings haveP=+1 for color zero.P 1 corresponds to k2—> 2V ex V%

(3.20
“abnormal” parity (as would be required for the coupling of

a color zero axial vector—such as the winding-number cur- . L
rent. From Eqs.(3.16 and (3.17), it then follows that only where the two terms represent the two different chiralities.

even signature combinations of gluons can couple. Odd sigcC! tWo fermion exchange the combination of opposite sign
nature multigluon states can couple only via the abnorma‘i:h'ra“t'es dominates and so the transverse momentum state

parity properties of the anomaly couplings that we discus€0rresponding to Eq3.9) is

0 o oo ] o [ T ] [ = 0
My = <&z Ty—- k) - Tn0 - Ky [~ woarrd KR lanamn -
~ — AAAAAY PAAAAN

- o T=-1

=0

FIG. 7. Diagrams contributing tM‘,?,. FIG. 8. Interaction of massive and massless gluons.

056007-14



CHIRAL ANOMALY AND HIGH-ENERGY SCATTERING IN QCD PHYSICAL REVIEW D66, 056007 (2002

axial current
~ component
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A /N I & e i SOl
b kg Kl Voo '
v = on-shell gluon == = on-shell quark
(a) (b)
FIG. 10. Reduction to a triangle.
-=-- = massless gluon = = massless gquark

The generation of an effective vertex for the wee gluons is

FIG. 9. (a) Pion componentsb) the anomaly coupling. . R ) :
straightforward and is illustrated in Fig. 11. The wee gluons

1 * * will all carry the sameglongitudina) polarization and so, as
Fzzjf d?k,0%k, l@ L y—*® y—* (3.2  the hatched lines in Fig. 11 are placed on-shell, we will ob-
Ki K2 Kip K tain an effective vertex

where the® sign |nd_|cates that the twe matrices are sepa- dki+ v, ki dk;+ v ki
rately associated with the two fermion lines. y_ y_ y_
Koki ) g
C. Pion couplings to wee gluons
Ping 9 =YY v-v+v-=4vy_. (3.22

We now generalize the light-cone analysis of the triangle
anomaly pole in the previous section to derive furtherwe will give more details on how these integrations arise
anomaly pole couplings involving wee gluons. It will be |ater.
helpful to describe these couplings before we discuss their The generation of an effective vertex involving the exter-
role in producing high-energy scattering amplitudes. nal quark-antiquark pair is a little more complicated. Be-

The massless piofand nucleopGoldstone states we cre- cause the internal quark and antiquark carry distinct quantum
ate will have two distinct components, as illustrated in Fig.numbers they can interact only by gluon exchange. To obtain
9(a). A massless pion, with light-cone momentui, will  a gauge-invariant transverse momentum diagram the gluon
contain an(odd-signature, color zeydwee-gluon” compo-  must be on-shell. In a conventional transverse momentum
nent with light-cone momenturk, (wherek,/k; —0) to-  diagram the produced quark-antiquark pair would have op-
gether with a massless quark-antiquark pair that carries thgosite chiralitie§to couple to the transverse momentum state
flavor quantum numbers and the light-cone momenkjm  (3.21]. This will not be the case in our analysis since the
The pion coupling to both components will be provided byquark-antiquark pair will carry the light-cone momentum
the triangle diagram anomaly as illustrated in Fig))9We ki . However, as we discuss further in the following, we
discuss a diagram containing three massless gluons since tt@gpect our analysis to be the continuation to lightlike pion
is the simplest color zero, odd signature, multigluon state ofnomentum of spacelike Reggeized pion exchange within
the kind discussed in the previous subsection. Our discussiomhich the quark-antiquark pair would appear as a transverse
will easily generalize to any number of massless gluons coumomentum state.
pling at adjacent points. The anomaly couplings we obtain The interaction needed to produce a quark-antiquark pair
will imply that the leading high-energy behavior in pion scat- (with opposite chiralitiesin a transverse momentum state
tering arises when either the quark or the antiquark carries alas they-matrix structure shown in Fig. 18. The quark-
the light-cone momenturk; . For our immediate discussion antiquark interaction that we will need is shown in Fig.
we will take it to be the quark that carries this momentum. 12(b). In both cases we have included thugpe) y matrices

Figure 9b) contains two “effective vertices” that are each that come from the internal numerators of the triangle dia-
obtained by placing propagators on shell in a larger diagramgram as well as thélower) y matrices associated with the
as illustrated in Fig. 10. As in our discussion of the elemen{ropagating quark-antiquark state. The midglmatrices are
tary triangle diagram we justify keeping only the anomalythe couplings to be produced by the exchanged gluon. In the
pole part of the diagram by appropriately restricting the in-“needed interaction,” oney, interaction will be necessary to
ternal momentum region. As we discuss in the followingobtain the anomaly numerator. In our case we will nggd
subsection, the on-shell propagators will then arise consissecause we will specifically choose tf& component of the
tently from longitudinal momentum integratiofthat are ex- axial vector current generating the triangle diagrams we
ternal to the triangle We again allow lightlike momentla;

and k;, to flow through the diagram and generate the nu- a ity 7 ity
merator factors shown. The pion mass shell will be ap- L T NRT Y 7—/ - i “
proached in the limit that we take, —0 with k; kept fixed. Lo AN

In this limit, therefore, the massless gluons become wee ' ' '

gluons. FIG. 11. Generation of an effective vertex.
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FIG. 12. (a) Production of a transverse stat@) the needed
interaction.

utilize (see Fig. 15 beloy The replacement of the second
v, interaction byy_ is necessary to allow the quark to carry
a lightlike momentum implying, of course, that the spin

structure of the quark-antiquark state cannot be symmetric.

The y-matrix structure of the interaction due to the ex-
change of an on-shell massless gluon can be written as

4
i; YRy=y @y, +y @y +yi®@y, +y, @}
(3.23

where the® factor indicates that the twg matrices operate

on distinct fermion lines. The diagonal nature of this inter-
action implies that it cannot produce either the interaction of

Fig. 12 or that of Fig. 12b). The exchange of an on-shell
massive gluon with massl - produces, however, an addi-
tional interaction

(3.29

wherek is the momentum of the gluon. As is shown in Fig.
13, the new interaction contains the needed couplihglso
contains the transverse state coupling of Fig(al? The

y-matrix and momentum structure of the effective vertex

PHYSICAL REVIEW D 66, 056007 (2002

Y- (kG +K7 GV
- ‘ it
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FIG. 14. Generation of a second effective vertex.

yal Ky y-1ysyal Ky v+ 1y-[ki v+ 1y-
=—2y5y2y-v3v+¥-(K{ )%ky

= —4y_yi(k{)%ky + -

—4y (k{)%k; +- - (3.26
which includes the anomaly numerator, together with an ad-
ditional y_ that couples to the produced quark-antiquark
pair. The role of they, coupling in producing Eq(3.26) is
clear.

We will put the exchanged gluon on mass shell viakhe

integration. Including the numerator factor & (+ k,) that
appears in Eq(3.29 this integration has the form

J

The momentum dependence of the quark-antiquark effective

vertex is then simply the remaining factorlofin Eq. (3.25.

The denominator of the reduced diagram coincides with that
of the triangle diagram, and so the anomaly pole is generated
straightforwardly. The full anomaly pole amplitude produced
by Fig. 9a) is therefore

dkt (k™ +ky)y_
= = = X
2(k~+k, )kt —k*—M2

~y_. (3.2

[(ki)2k; ko]

(3.29
MZg?

involving Fig. 13 is then as illustrated in Fig. 14. We have

definedk such thatk; flows directly into the quark line
without flowing along the exchanged gluon linghis will
give the final high-energy behavior most diregtlin this
case thek appearing in Fig. 13 is identified witk+ k, and
so, as illustrated, the component of E8.24) that we need is

Kok, + K7 ) y,@ y_
2(K2 272 Y . (3.29
M
C

In Fig. 15 we combine together the anomaly triangle dia
gram numerators and thg-matrix dependence of the above
effective vertices for the triangle diagram of Fig. 10. As il-
lustrated, the resulting numerator factor is

7 4 7 Y+

ﬁ A

Vk fanan vk D Yk, VK
7, 7y 7 Ty

FIG. 13. The exchange of an on-shell massive vector.

The presence of a massive gluon is clearly crucial for the
generation of this amplitud¢Since we are not going to sum
diagrams nor include color factors in our discussion we will
also (effectively) ignore all numerical factork.

D. The four-current amplitude and the contributing diagrams

A major purpose of the approach developed in this paper
is to avoid, as much as possible, the multi-Regge theory that
_has been a feature of our previous papers. Our intention is to
focus directly on properties of the anomaly and thus to ar-
rive, as directly as is possible, at the dynamical interactions
of pions(and nucleons Having the above pion couplings in

%%

kt7y
+2, -
—> 7_k] k;

%O,

Il\_
N

ktr,

FIG. 15. The full anomaly numerator.
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hand, it might be anticipated that we could obtain a pion g P
scattering amplitude by considering a four axial vector cur- P1— - Hﬁ{_e P3
rent amplitude - ® 3

“Aylﬂzy3u(plvp21p3=p4)

=(AL(PDAL (P)A] (PIA, (Po)) (329 | TR Z227

in which the currents carry flavor quantum numbers such that . o N
pion (or nucleon scattering could appear. If there is confine- », 99L I ry
ment [of SU(2) color] and chiral symmetry breaking, we g2 n
expect to find a contribution to the current amplitude of the ____ _ interacting massless gluons
form (with a momentum conserving function removed = massive gluonk
—_— = massless quar
(@) (b)
plﬂlp2M2p3M3p4M4
MM1M2M3[L i 2—2’ ) p2p2p2p2 FIG. 16. (a) The simplest diagramgp) 7— 7 scattering via
p1.p5.p5.ps—0 1F2k3ka Pomeron exchange.
XA(s )+ - (8330 amplitudes contain diagrams that will generate thel)U

anomaly, as described i3] and[14]. The U amplitudes

wheres=(p;+ps)?, t=(p1+pz)” and, up to a normaliza- il provide the coupling of the pion to the “Pomeron” that
tion factor,A(s,t) is the pion scattering amplitude. The omit- js exchanged in the Regge limit.
ted terms are less singular p§—0ji=1,... 4. Having discussed the diagrams that generate the flavor

We would not expect, of course, to be able to find the pioranomaly in the previous subsection it will be helpful, at this
amplitudeA(s,t) at finite momentum. Instead, we might an- point, to give the structure of the diagrams contributing to
ticipate that combining the Regge limis--, t fixed) with U, . Apart from the substitution of a quark-antiquark pair for
the mass-shell limitg?—0,i=1, ... ,4)would enable us to a gluon, these are essentially the diagrams discussdjn
exploit the infinite momentum properties of the anomaly dis-The simplest diagrams have the form shown in Fig. 17. As
cussed in the previous section. We would look for the apillustrated schematically in Fig. 18, if the hatched lines are
pearance of pion poles via the anomaly pole interactions digslaced on-shell the diagram of Fig. 17 reduces to a triangle
cussed above. Isolating the anomaly pole dynamic@ley  diagram containing the anomaly. A crucial feature of this
within a larger diagramis, however, highly nontrivial. To reduction is that the “anomaly pole” is integrated over and
proceed without multi-Regge theory we will have to follow a so, as illustrated, is manifest asdafunction that factorizes
procedure which may appear contrived, if not artificial. Itthe transverse momentum dependence of the wee gluon in-
will, nevertheless, have the significant advantage of taking ugeraction and the “parton interaction” of the quarks and mas-
directly to the high-energy pion scattering amplitude. Whilesive gluons. To give more details of this reduction we will
we will briefly explain how the procedure would be fully need the kinematics used to discuss the full diagrams of Fig.
justified within a complete multi-Regge analysis, we will be 16(a).
able to stay away from the full calculation. We will indeed  Let us first assume thdschematically the diagrams of
consider a four-current amplitude but the currents will not beFig. 16a) are generated by full Feynman diagrams involving
simple local operators. We will also describe the formationlocal axial vector currents. In the next subsection we will
of amplitudes in terms of diagrams that can be thought ofexpose the subtleties which imply that this cannot be the
initially, as Feynman diagrams. However, many of the inte-case. This will lead directly to an amended procedure, which
gration regions in the diagrams will be cutoff, or even re-we then follow. We would like eack; amplitude to be an
moved altogether. Before amplifying on our procedure, oranomaly pole amplitude derived, in principle, from underly-
discussing the justification, we first describe the kinds ofing diagrams within which, a loop integration is restricted to
diagrams that will be involved. the region(2.41). In this region a light-cone momentum cir-

To have all the necessary anomaly effects present the diaulates which is essentially the corresponding exteipiah)
grams must, unfortunately perhaps, be extremely complimomentum. This momentum is “large” compared to the zero
cated. Even though almost all of this complexity will gradu- mass of the gluons. The central idea would be that, in the
ally drop away as we proceed towards a physical piorcombined Regge and mass-shell limit, the dominant contri-
scattering amplitude. The simplest class of diagrams whiclution to the full amplitude is obtained from this region of
combine all the anomaly interactions are those shown in Figintegration. We would argue that the internal large light-cone
16(a). As indicated, the diagrams contain both massless anchomenta will combine with the external Regge limit to pro-
massive gluons together with massless quarks. From diatuce similar results to a multi-Regge limit in that we will be
grams of the form shown in Fig. 1®, we will obtain pion  allowed to treat all the massless gluons as if they were ex-
scattering via Pomeron exchange as illustrated in Fi¢)16 changed in a Regge kinematic regime. As a result many
The F; amplitudes contain diagrams that will generate thepropagators will be placed on shell, including those that re-
flavor anomaly and a pion pole as described above. Ohe duce theF amplitude to an effective triangle diagram that
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|| i i i FIG. 19. (3 k' =0; (b) the P' 2 coupling.
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above, isolating its occurrence within larger diagrams is very
Cid nontrivial. In particular, if we use the full uncut diagram of
Fig. 10 as an axial current coupling, except that the internal
loop integration is restricted to the regid@.41), then we

contains the flavor anomaly as described in the previous su have the following problem with the above schematic proce-

section. Similarly, within theU-amplitude lines will be ure. When the uncut diagram appears as part of a much

- bigger diagram, as it should do in the diagrams of Figa},6
placed on shell by both the external Regge limit and thethe integration restriction is not actually sufficient to induce

;ﬂfr:n?el d';e?gfné"g't g;:?ﬁﬁfﬂ;ﬁgg%ﬂznsoun?.;th;itsthethe Regge kinematics we want. Even if it were, the light-like
9 Y PP Y- momentum configurations produced by multigluon trans-

gﬁztézetélzvﬁrhifoﬂglﬁ t?sn'gtegﬂ?:];?t;geﬁzt&nm;?nirt])t(z ria(la(;\_/erse momentum divergences, although very close to those
S 9 9 y in which the anomaly pole appears, would not be quite what
tion is separated out. is needed

Provided the massle_ss gluon conf|gurat_|ons redl_Jce to These problems are caused because when the diagram that
transverse momentum diagrams as we have just described we

o > . : Ives the pion coupling of Fig.(8) is a component of a
would expecta priori, that the violation of gauge invariance , i —
associated with isolating the anomaly pole will produce thd@rger diagram, the light-cone momentum denotedkbyin .
logarithmic scaling divergence discussed in Sec. Il B. WeFi9- 19@ should be integrated over. The presence of this
would expect this divergence to occur separately for all oddmomentum has two effects. First it gives a masks k; to
signature massless gluon combinations, since interactioribe quark-antiquark pair that prevents the appearance of the
which iterate this divergence are absent in this case. Therggion anomaly pole. Secondly, if it flows through any of the
fore, in the “dominant” (divergenj contribution from dia- massless gluon propagators, it will combine with the light-
grams of the form of Fig. 1@®), all the massless gluons like momentum flowing in from théJ amplitude to remove
should carry zero transverse momentum. This, in turn, wouldhe transverse momentum divergence of the massless gluon
appear to self-consistently justify keeping only the anomalystate.

FIG. 17. One of the simplest diagrams contributindXo.

pole part of theF andU amplitudes. To remove these problems we make the momentum re-
striction thatk' =0, i.e.k ~is not integrated over. This will
E. Dynamical isolation of the anomaly pole allow us to follow explicitly the schematic procedure out-

lined in the previous subsection. In effect, though, it is this
restriction that generates the logarithmic transverse momen-
m divergences which are the cornerstone of our dynamics.
ithin this presentation, it may therefore appear artificial
and perhaps even unphysical at first sight. However, this re-
e striction would automatically appear if the current was not a
/fy# - simple local operator but was instead a nonlocal current
component that originates from a further external infinite
momentum limit as illustrated in Fig. 19). (As would be
exactly the case if we used multi-Regge theory to first obtain
. the pion as a spacelike Reggeized sjake.this case, the
I o axial vector current component is an effective point coupling
derived by placing an intermediate quark state on shell, via
an integration ovek ~ (Using thek ~integration for this
purpose leaves intact the full loop integration generating the
7 anomaly)
2 2 PalS Probably, the feature that local axial vector currents are
3t 5(0%) _ ~ . o
- o) = not only not needed but are not wanted in our formalism is a
7~ 90— ;yvv deep matter of principle. It seems to be essential that our
pion be extracted as a wee-parton component of additional
infinite momentum external stateg&ffectively exploiting
FIG. 18. Producing the (1) anomaly. the “triviality of the infinite momentum vacuum” to the

As we saw in Sec. Il, the lightlike kinematic configura-
tions in which the anomaly pole appears in the triangle dia
gram are extremely special. Consequently, as we note.

s

NN

4.
trs

N
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wiz0 presented entirely in terms of transverse momentum dia-
g grams or, at a later stage, Reggeon diagrams.

F. Light-cone momenta and Lorentz frames

Light-cone momenta are clearly a central feature of our
discussion. In discussing the various components of dia-
grams of the form of Fig. 1@ we will need to allow for a
20wt 720w variety of light-cone momenta, both externally and as inte-

4 Pole : . . . .
gration variables. In particular, to introduce the triple-Regge
FIG. 20. A multi-Regge amplitude. U(1) anomaly interaction the wee gluons in an outgoing pion

must be associated with a light cone whose space direction is
maximum) The additional external states should be vectororthOgt()marl].to that Ollf the (ljncomlngdwee gluon I|ght|_cohne. To
articles with the appropriate polarizations to induce an axiaﬁescr.I € this we will need to introduce some new light-cone
P otation. In addition we will need to introduce a set of Lor-

vector current vertex. It is interestingind perhaps also a entz frames in which the various external momenta take spe-
deep feature of our procedyréhat the quantum numbers

) . ; cific forms.
mglolved imply these particles could actually s and the We begin in what we will call the “finite momentum
z frame” F, for the left-hand part of Fig. 18). In this frame

Although it would be a more complicated calculation, e \yrite
there would be other advantages in making the further infi-

nite momentum limit part of our discussion. In particular it p= k1*+ql’
would eliminate the need to appeal to the phase-space re-
striction involved in generating the anomaly pole to justify =k, +0q+

placing the hatched lines of the anomaly generating diagrams

on shell. Indeed, it should now be clear that if we want to kK k q q

proceed systematically we cannot really avoid multi-Regge =(—,—,0,0) +(—,— —,0,0). (3.3
theory and we are paying a heavy price by trying to do so. If V2’2 V2" 2

we simply studied the limit producing the multi-Regge AN The notation is straightforward in that " is a vector with

plitude of Fig. 20 no questionable proced_ures WO.UId be N€Caised index component along the light cone defined by the
essary. The appearance of the reduced triangle diagram in the

coupling of the externalV and Z, states would bécompli- positive.{li} axis (qqd all other ‘?”ho‘?’o”a! components are
cated but straightforward in principle. The anomalfor zer@.S|m||I_arIy qt is a vector with raised mdex component
pion) pole would directly appear in conjunction with the @long the light cone defined by the negatijsg axis. The
transverse momentum divergences. The one subtlety th&&Me Vectors can be labeled via lowered index components
would remain would be the interplay between the ultraviole@S usual. We similarly write

and infrared contributions of both the chiral an@illJanoma-

N _

lies. However, we will not elaborate on this here. po=—k* —¢?
It is important to note that, in this paper, we will isolate

the anomaly poléin principle by a phase-space restriction =—Ko-—0p+

in all the anomaly subdiagrams within our amplitudes. In

[15] we proposed starting with initial states that had effec- k k q q

tively the same wee gluon content as the pions we create via - E'O’E*O - E'O’_ E’O (3.32

the anomaly pole. However, we then allowed them to scatter

into arbitrary multi-Reggeon states and argued that thevhere nowk?’ is a vector with raised index component
anomaly interactions generate an overall logarithmic infrarecilong the light cone defined by the positi{2} axis while
divergence that selects the allowed physical states and arg2™ s 5 vector with raised index component along the light

plitudes. In the present discussion, we will require pion poleg.qne defined by the negatiy@} axis. Since
in both the initial and final states. Nevertheless, for subtle

reasons the overall divergence will remain logarithmic. p2=p3=2kq (3.33
As a final point, before we proceed to the construction of

actual amplitudes, we note that that we will impose a cutoffye see that

in all transverse momenta. This has a dual purpose. First, to

obtain contributions from “relatively simple” (gauge- q—0=p3, p5—0. (3.34
dependentFeynman diagrams to gauge-invariant transverse
momentum diagramsthat have contributions, of course, In the “infinite momentum frame";, in which we will

from many Feynman diagramsSecondly we will want to consider the complete scattering process, the momenta
exploit the infrared scaling properties of multigluon trans-andp, are obtained from their finite momentum frame forms
verse momentum diagrams that lead to infrared divergencdsy applying a boosa,(¢) along thez axis. If C=cosh{ and

as discussed in the above subsection. Our final results will b§=sinh{ then
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B Ck+q k—qosk+q) (335
O N I N N '
and
k+g k—-qgq k+q
=—|C 101 1S . 3.3
P2 2 @) (339

Similarly, in the “finite momentum frame”Fg the mo-
menta entering the right-hand part of Fig.(4&6have the
form

ps=k? +q2
—(koko+ qo_qo)
V22 V22 (337
and
ps=—k" —q'

:_(%,%,o,o>—(ﬁ,— ﬁ,0,0> (3.38

and so we also have

p3=p3=2Kq. (3.39
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The mass-shell limit is nowg—0 and the Regge limis/t
— is obtained a€— . In the following we will combine
these limits by taking

g~1/C—0, gqC>Mc. (3.45

G. Constructing amplitudes

To construct amplitudes corresponding to the diagrams of
Fig. 16a) we proceed as outlined in the above subsections.
We first consider Fig. 9 as a one loop Feynman diagram
within F, and ignore the hatches. We consider the analagous
diagram withinF, and connect the two diagrams with the
U, diagram of Fig. 17 to obtain the full diagram shown in
Fig. 21. (The double-dashed line carries zero momentum
within the anomaly configuration that will be discussed
later) If we then treat this diagram as a subdiagram and join
it with its own reflection we obtain a complete diagram of
the form shown in Fig. 1@). The left and right-hand sub-
diagrams will be joined only by the exchanged gludiisee
massless and one massiwehich will carry finite transverse
momentum(in all three Lorentz framgsThe relevant parts
of the left and right-hand subdiagrams will have analagous
forms in theF, and.Fy frames, respectively, and will be in a
relative Regge limit in theF, frame. The combination of the
Regge limit with the phase space retrictions we impose will,
as anticipated, place a large number of lines on-shell such
that the central quark loop withib, reduces to a triangle
diagram as illustrated schematically in Fig. 18. The crucial
element will be, of course, that this diagram also contains the
anomaly pole. To understand this we must determine all the

For the right-hand momenta, however, the infinite mo-effective vertices that are produced by the reduction to trans-
mentum frameZ, is reached from the finite momentum verse momentum integrals.

frame F by applying a boos#,(— ¢) along thez axis. Fy is
therefore reached fromt, by a boosta,(—2¢). In F

Ck+q k—q Sk+q> (3.40
P3 5" 5 5 .
and
k+qg k—q k+q
= — C I} 101_5 3'4
P V22 ﬁ) (349

Evaluating all momenta itF; we have
s=(p1+P3)®=(pa+ps)® — (C*+SHk? ~ 2C?%k?
q—0
(3.42

(3.43

Coo

t=(p1+p2)® — — K
q—0

To discuss the diagram of Fig. 21, we will begin in thg
frame and as we evaluate each part of the diagram we will
discuss the effect of transforming to ttf¢ frame. In theF,
framep,; andp, are given, respectively, by Eq&.31) and
(3.32. We direct the large light-cone momerith andk?"
through the diagram as shown and restrict the integration in
both F; diagrams to the momentum region corresponding to
Eqg. (2.41). Note that

k k

E'E’O'O)_( %0%0)

kl*—k2*=(

—<0£—LO) (3.46
V2 2 '

is a spacelike momentum lying in th&,y} plane. We intro-
duce notation for all the loop momenta of Fig. 21 in Fig. 22.
We show only that part of the diagram involvikg and part

of U, . The part containind-, can obviously be discussed

Therefore, we now have three external momentum scales, inalagously. The hatched lines are those placed on shell by

addition to one mass scale, in our discussion, i.e.

P’<Mg<k®<s.

(3.44

longitudinal momentum integrations and each of the hatches
is labeled by the index for the momentum involved. We dis-
cuss each integration separately as follows.
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FIG. 21. Connecting th&,; andF, amplitudes. i I 41z o2
I
2"pNy k2t |
H. The massless gluons -p M 0V

FIG. 22. Notation for Fig. 21.

Provided the loop momentumin the lower part of Fig. ) ) ) )
22 is much less thak, + (as will be the case in the anomaly Natched fermion lines on shell. We can illustrate thisry
pole contribution we will extragthek! integrations over the Well-known procedure as follows. Using conventional light-
momenta of the vertical massless gluon exchanges can 59N coordinates, which in tlje notatlc_)n of Sec. Il F corre-
reduced to transverse momentum diagrams by placing thgpond to light-cone vectois'* andk’! , we can write

fd4k/d4kr Yy (k=K +g )y y-(kp— kK +qt ) y”
1= "2 (ki—kl++q1_)2(k§—kl++ql_)2

Yoy (P—ki—a' )y, v (p—ky—q' )y, 1
® ’ 1742 ’ 1742 ' _T\2 1! N2/, 1742
(p—kyi—q™ )(p—k,—q" ) (ki—kp“(ka—k)(ka+q~ )

Jdki‘wkﬁ fdkg-hkl* Jdk1+y+p+ fdké+y+p+
— i v T

Y (K _k1++'--)27 (K _kl++~~')2y yﬂ(k/+ +_’__”)2‘y” K+ ++”_)277'
1 2 1 P 1 P

1
(kh _T(il)z(kéL - kh)z( kéL)z

52<"|21L — 2. ku)

(ki —KkD)2(ky, —kg,)2(kg, )?

X f d?k}, d2k),

N’)’+®7+f d?ky, d%ky, d?k3, (3.47)

which is a transverse state of the kind discussed in Sec. Ill Byotentially occurs whetk;, is integrated over and thie/,

This illustrates how the integrak8.22 arise. Also they™  are scaled uniformly to zero. If this divergence is present and

(=1vy_) factor is the effective vertex appearing in Fig. 11. we isolate its contribution, the massless multigluon propaga-
Equation(3.47 is, as anticipated, infrared divergent. As tors will contribute only at zero momentum and there will be

we discussed at length in Sec. Il B, if the three gluon stateno effect in transforming their contribution from thg_

carries color all of the divergences will exponentiate inframe to the 7, frame. (While the contribution of the

higher orders. If it carries color zero the only divergenceanomaly amplitudes to which the multigluon states couple

which will not exponentiate is the overall divergence thatwill depend on the small light-cone momenturh , the con-
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FIG. 23. Massless gluon effective vertices.

tribution of the transverse propagators and interactions will
be independent of this momenturito discuss the exact na-
ture of the divergence we must include the effective vertices
provided by the anomaly amplitudes and the contribution of
the quark-antiquark state.

For the reasons discussed in Sec. Il E, we do not integrate

overk; ~ and so ak;, =0 the effective vertex provided by FIG. 24. They-matrix structure generating thg, vertex.
the F; amplitude will be the anomaly pole amplitude of Eq.

(3.28. In frame 7, we will use Eq.(2.59 which gives the responsible for placing all of the hatched massive vector

pion coupling after the current momentum fgctor has beerE)ropagators on shell. However, the light-cone momenta
removed. In the present notation the full effective vertex pro- ’

. . - 27 .
vided by theF; amplitude is ther{without the current mo- flowing along _these linesq a_m_d q .) IS small (and zero
mentum factor on mass shellin F_, although it is finite inF, . Apparently,

therefore, there is no Regge limit kinematics for us to ex-
ploit. Nevertheless, we need to place the relevant lines on

K yo(gl)o e shell, both to obtain a gauge-invariant result in which we
k, €oas- (K7 ™A ) N"kz[ 2 ] (3.49  understand the exponentiation of infrared divergences, and to
q? Meq? utilize the anomaly couplings.

In the full multi-Regge limit of Fig. 20 they; momenta

would be initially taken spacelike an@ds we remarked ear-
which, whenqC is kept finite, gives a finite pion pole resi- lier) quark transverse integrals would be obtained naturally.
due. Note that, since this vertex is independerkof, it will ~ ASsuming a Reggeized pion appears, the multi-Regge ampli-
tude will contain corresponding asymptotic dependence on
invariant subenergies. This dependence should disappear as
She scalar pions are placed on mass shebiza:t 0,i=1,.4
and the on-shell amplitude should factorize out straightfor-
wardly. Even though the full multi-Regge amplitude is inde-
pendent of the subenergidat pi2=0) it is obtained by
asymptotic expansion around infinite subenergies. Corre-
spondingly, any transverse integrals that are involved should
: au be initially obtained at infinite subenergies. In effect, we are
the 7, , 7, andF frames differ only by boosts acting in the attempting to obtain these integrals directly at zero subener-

{z,t} pIane_, thegj transverse momentum integration_s will be iag by appealing only to properties of the anomaly poles
the same in each of the frames we discuss and will pmd“cgenerating the pions.

the same infrared divergence. If we continue to work in the In fact. even with the kinematic constraints we have im-

7y frame the combination of thk andgj longitudinal in- nosed, we will be able to place all the massive gluon lines on
tegrations generates the effective vertices shown in Fig. 23pg|| (and so, consistently, use the anomaly couplinge

We will combine these vertices to obtain the anomaly amplivasyit will be formally the same as carrying out the large
tude produced by th&); loop shortly. subenergy limit but only a limited range of transverse mo-
menta will be involved. The discontinuity that(sffectively)
taken will be that of an unphysical pseudothresheitizero
subenergy, rather than a physical normal threshold. Presum-
) . ably (although we will not attempt to prove thishe un-

The reduction to transverse integrals of the quark l00fphysical chirality transition involved in the anomaly pole

integrations, ovek; in Fig. 22 and ovek, in the lower part  couplings can be viewed as producing this contributidm.

of Fig. 21, is not straightforward. This reduction should bethe last section we described the relationship between an un-

not affect the divergence &£, =0 . This is a crucial conse-
guence of the absence of a vector Ward identity for th
anomaly pole contribution.

In the Regge limit, they], g5 andqj integrations will, in
analogy with Eq(3.47), be reduced to transverse momentum
integrals in the{x,y} plane by placing on shell the labeled
hatched lines. 3 is the momentum of the horizontal mass-
less gluon line attached to the bottom of the diagie®ince

I. Quark transverse momentum integrals
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physical singularity and the anomaly pole and[i8] we contract, as we have already discussed, the corresponding
emphasized that triple-Regge anomaly interactions are due tmomentum factors remain. We ignore the loop momenpum
unphysical multiple discontinuities containing pseudothreshsince it will be set to zero by the generation of thélJ

olds) anomaly pole. Also, sinck;, =k}, =0 after the transverse

As we have already noted, our discussion of the effectivenomentum divergence is extracted, we first ignore both of
vertex of Fig. 14 applies directly to the placing on-shell of these momenta.

~aq+

the upper(massive gluohline associated with thlej  inte- Thek; integration is given by Eq(3.27 while thek;
gration in Fig 22. Thel?} integration associated with the integration has the form

lower on-shell line is very similar and massive gluon ex- - ~

change must again be involved. To see this we must establish dky (K y++0% - y4)

which y mgtrix couplings appear at the ve'rtices. In fact, f 2~RI~kI+2q27~F1—~k§L—Mé

these couplings are almost entirely determined by the re-
qguirement that the anomaly be present in the reduded Xoowemy, Xoee, (3.49
diagram. The completg-matrix structure of Fig. 21 that is ) ) ) )

not included in Fig. 23 is shown in Fig. 24. The top and The two integrations give, respectively,

bottom trios ofy matrices in the initial figure are those due Sl s ’

to the effective vertices of; andF, that are analagous to 2ky kg +2k;-q° =ki, +Mg (3.50
Fig. 14 together with the resulting propagator components. d
We specifically choose thg8} component for both thé&; an

and F, external currents. This choice, together with the TAT— oL 2 T2 2

choice2 of the space directions for the large light-cone mo- 2kiky +2ky-q7 =kg, +Mc . (3.5
menta ofp, andp,, determines the relative structure of the
trios. The appearance of the+ matrices is a direct conse-
guence of the Regge limit. The upper inset in Fig. 24 show

In the 7, frame,q* andqg? are boosted to become almost
{he same lightlike momentunm3+, ie.

how the identity(2.39 generates &s interaction. The par- I (Cd—-00Sa ~ a¢
ticipating y,+ and y,+ matrices have to be produced by the q (Ca,—q.0, q)qﬁoq ’
longitudinal momentum integralévia massive gluon ex- (3.52
change, as we discuss below. The remainipgand y, ma- 4% ~(Cq,0,~q,Sq) ~ q3+,

trices are needed to allow the reduction of the remaining
product to the unit matriXplus terms that give zero when
contracted with the massless gluon vertjcess the lower and so Eqs(3.50 and(3.51) have a common solution ap
inset illustrates. It is not difficult to see that the requirement— 0 (which is why a pseudothreshold is involyedith

of a y5 interaction, together with a nonzero reduction of the
remaining matrix product, determines the complete structure
of Fig. 24.

In Fig. 25 we have isolated thg-matrix structure and the ) o )
relevant momenta for the quark loops that coupleandF, Incorporating all the remaining momentum factors given by
in Fig. 21. Each of they matrices in Fig. 25 is either a vertex the y matrices of Fig. 2t8) (together with a factor 0'\/162
component of a massive gluon propagator or is a numeratdrom the additional exchanged gluon propaghttre k;
component of a quark propagator. Although thenatrices transverse momentum integral has the form

qHO

2

. - M _
k1+~k1‘~k13~c—;, k2, <M2. (3.53

1
WJ d%k,, {F;numeratofx {antiquark numerat {gluon numeratgr
C

x {quark numeratg/{propagator denominatgr

1 [ d%kq Kyko(kipt Q) kL

(K%)?

q k' . dki,
T2 - 2 dkys 2 - T2
M¢& | Jlkid~Mg/cq M&/Caslkid=Mc Ki,

qu“w_%ﬂﬁ]qu“
M2 [ Ca)[ME] M2

(3.595
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7, ql &« ql” + i A
2 >> +(Ei- az) kS Tl
7 2> | kl't Er _ :: 63J-= -
2 71+ q} Y 1+ - 7573 N ||+(Ei+£é)31_
el Yyt - ol e EEANT
1 " —altk], +(Ky-95) 2
(a) (k) (c)
1 o=,
o~ 7y T +kas FIG. 26. (a) The triangle;(b) momenta inF,_; (c) momenta in
AN B i
7 ¥ ko |y k2t i
1 2+ ‘e [V 2+ integrals since there will then be no overall transverse diver-
¢4 S gence. To see this we must consider the final part of the
d diagram that we have not yet discussed in detail.
(2) (b)
FIG. 25. The quark loopga) y-matrices;(b) momenta. J. The U(1) anomaly amplitude and the infrared divergence

S o _ Lt As illustrated in Fig. 268), combining Fig. 23 and Fig. 24
which gives a finite answer in thé, frame whenk™ ~C  produces a triangle of matrices which has the appropriate
—0, with Cq kept finite. Note that the part of the integrand strycture to give the anomaly. The large light-cone momenta
in Eq. (3.54 that does not vanish wheq=0 is odd with .1 4412+ fiow in and out of theys vertex and do not enter

respect tk;, and hence integrates to zero. If this were notihe triangle diagram. As shown in Fig. @ the external

the case, the combination of light-cone momentum faCtor?nomenta that flow through the diagram # areq and

from each fast quark numerator would give an amplitude ,- . ~ : .
increasing IikeC4q~sz. g P g° together with thek/ and theq! (all of which are zero in

Conversely, if we obtain only finite results of the form of the infrared divergence configuration for the massless glu-
Eq. (3.55 for each transverse momentum integral, we will ®"S; when the mass-shell limit is takerin [14] we dis-
not obtain any increasing behavior ss>=. To obtain the cussed, at length, momentum configurations of this kind

imally i . litud ¢ der K which produce the anomaly pole. For our present purposes it
maximally increasing amplitude, we must consider kje is simplest to go straight to th&, frame. In this frame the

dependence in more detail. If, for example, we difecso  timelike components op, and p, that areO(q) in the F
that in thek,, integral we substituté;, for ki, in the anti- frame are boosted to give the finite lightlike momentum

quark numerator in E¢3.59), this will give g3 ~Cq, as in EqQ.(3.52, which then flows through the
diagram as in Fig. 28). In this last figure we have dropped
qk1+ |~<izk1+ the small(transversemomenta along lines where the finite
IVER VNKC — o, (3.56 lightlike momentum flows. If we defings, to be the(small
C C C—x

momentum transverse tq3+ that is flowing through the
(double dashed vertical line then

Gz, = (kj+ky)s, — 0’ (3.58

Alternatively we can keep thTeiz dependence of one of the
denominators giving

= (357 whereq'=q",+q"5;. Comparison with the momentum con-
K12 figration (2.42 shows that the anomalyd8-function ampli-

. . I tude” has the f
which again leads to Eq3.56). If we keep the contribution ude-has the form

of the form of Eq.(3.55 from thek,, integral we will obtain
a factor ofC from the left subdiagranfof Fig. 21). Treating

the transverse integrals from the right subdiagram in an )
analagous manner will give an amplitude increasing like/Nich sets to zero momentum the double-dashed line.

C?%~s. The 6 function in Eq.(3.59 couples they andT<j’ infra-
Obviously we could also keep the factor @fin the~kn red qh_vergences. As we saw gbove, these divergences are also
integral and keep nonIeading behavior in thék,, integral modified .by the need to ob;am nonzero q_uark transverse mo-

) : 1 2L " . mentum integrals. To consider the remaining divergence we
Either way we 9"’“” one powgr of tbe energy~wh|_|e reducmgkeep only the scaling infrared divergence from each massless
the degree of divergence of either thig or thek;, integra-  multigluon state which, as discussed in Sec. Il B, is the only
tion. We will see that we cannot obtain a further power of thedjvergence that survives high-order exponentiation. The

energy by reducing the degree of divergence of aIIT(Qe overall divergence that remains then has the form

f dkykiz ~ f dkyki,
(}12_~k12)2k12—>0

(4°)%q36(92,) (3.59
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f d?q’, {multigluon scaling amplitude
f d%k’ 1, d%k’,, {multigluon scaling amplitudé{anomaly{quark momenturn

(3.60

J d%k’ 5, d%k’ 4, {multigluon scaling amplitudé{anomaly{quark momenturn

dza,l dzR,lidzT(,,Zi ~ Al A ~ A Al T
Nf f 8((q', =K'y, —k'5)2(q" =K'y, =K 5 )k g5

at ) kLKL
d%', d%&',, - o
f ~/2L~/2 LL()\((q,l_k,SL_k,4L)2)(q,L_k,:ﬂ_k"u)k,gz
k 3J_k 41
o
el

which is a simple logarithmic divergence as we anticipated. We will not attempt to prove that this divergence cannot be
canceled by other diagrams that we have not discussed.

K. The physical scattering amplitude

We keep as the physical scattering amplitude the coefficient of the diver¢@Er—the divergence being factorized off
as a “condensate” that is to be part of the definition of a physical pion sféfe.have discussed how this is consistent for
Reggeon states ifl4].) The physical amplitude is then given by

11 {F; anomaly pole amplitugéquark k’,, integralg || {U; anomaly amplitude
i j=L,R

X{massive gluon propagafor (3.61

and so combining Eq¥3.48, (3.59), (3.57) and (3.59 we  through with the constraint tha?(= —t)>M2 and so Eq.
obtain (3.63 cannot be used dt=0. Because of the tensor that
appears in the current coupling, it is the transveiséh

kCq \*/(kC) (kCq) 2( ) 1 respect to the Regge limitomponent of each of the, that
MZq?) (M2 M2 Y Mz contributes to the factor df It is natural, therefore, that if
4F ~2 2740 2 ) the pions aquire a mass,, we will have, when all pions are
— (i C_q ﬂ L L (3 62) on shell,
a’) | MZ | [ME|[ME]| [t+ME] '
t 2 m2\ 1
We have reorganized the result into the separate square —| — —’27 (3.649
brackets because each represents a different physical effect, Mc Mg

as we now briefly discuss.

The factor of (1¢?)* in Eq. (3.62 is, of course, the con- The massive S(2) singlet gluon Reggeizes in higher or-
tribution of the four pion poles. All but the last two square ders, with an infrared finite trajectorgy(t) that satisfies
brackets are finite constants when the limf4/C—« and ag(M%)zl. Also, since we consider the exchange of four
so the pion scattering amplitude we obtain(ig to a nor-  transverse momentum gluons, when we add all diagrams
malization factor, of courge only the even signature amplitude will surviéndeed, it is
argued in 14] that only even signature exchanges can couple
via the anomaly. Therefore, as we add all diagrams and go
to higher orders we anticipate that we will have

5% + (—g)%®
- 2
t+M2

2

S

A(s,t)= W . (3.63
C

Mg

It might be tempting to interpret the first factor as related to
the Adler zeroes that should occur at zero four momentum
for each pion. However, our analysis has been carried

S
2
t+M2

(3.65
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and so there will be no pole atMZ=0. Nevertheless, |k3+
Reggeized gluon exchange will provide the leading contribu- :\\ V >
tion to the Pomeron. It is interesting, of course, that only the (B
quark (or the antiquark carries the lightlike momentum of Ky : K
the pion that produces the high-energy behavior. This is de- 5 5 ! _3;1-
termined by the generation of the anomaly pole via an inter- H
nal light-cone momentum, and we comment further on this '
below. | +
3
The factor of v Lk
s (@) (b)
M_é (3.66 FIG. 27. (a) The parton amplitudeb) the parton interaction.

is off-shell energy dependence that could be naturally can§.a‘ted for by the(effectively classical background gluon

; field.
fc()arleo?‘ by off-shell propagators. Finally, we note that the fac The full amplitude can be represented. as in FigaRby
simple massive gluon exchange between the fast quarks.
4 This “parton interaction” produces all the transverse mo-
(3.67) mentum that is exchanged. The quark-gluon coupling is not,
however, a normal perturbative interaction. Although, as il-
lustrated in Fig. 2{b), it can be computed‘'semi”) pertur-
is a wee gluon contribution, wit q being the boosted lon- batively. Accompanying the hard quark interaction, there is a
gitudinal momentum of wee gluons that in the finite momen-soft interaction in which the slow antiquark, ultimately, is
tum frame have vanishing momentum, orthogonal to the fasabsorbed into the condensate. It is replaced by another anti-
quark. In higher orders this contribution will include sums of quark produced out of the condensate. The production and
IM3|? integrals as factors, wheitd, appears in Eq(3.14  absorption being mediated by a further zero momentum
and contains diagrams of the form illustrated in Fig. 7. Toquark chirality transitior(shown as the double-dashed Jine
say more about this factor it is probably necessary to deDuring the interactiofwhich we have redrawn compared to

couple the mass-shell and Regge limits by performing theearlier figures to make its structure more transparealor
full multi-Regge calculation discussed above. and spin structure, but not momentum, is fed into the fast

guark-gluon couplindthe massive gluons can carry &
color]. The spin structure input transforms this coupling from
a vector to an axial vector coupling. This being made pos-
We have emphasized that the exponentiation of infraredible by the chirality transition of the zero momentum quark.
divergences already selects color zero transverse momentufime input of color into the fast quark interaction helps con-
states but that this is not confinement because color zengert the odd-signature single gluon exchange to even signa-
massless multigluon states still contribute at z&f How-  ture.
ever, if the complete set of physical amplitudes is defined via An outgoing fast quark carries color, which is neutralized
the presence of the overall infrared divergence we have deésy a (condensate producedoft antiquark. The Dirac sea
scribed then there will be both confinement and chiral symcompletes the confinement by locking the pairs back into a
metry breaking. This is because the massless multigluomassless Goldstone boson pion via a final zero momentum
states will contribute only via the condensate and the initiachirality transition of the soft antiquark that is accompanied
and final states must be Goldstone bosons for the divergendsy the disappearance of the background “classical gluon
to be present. Although we have not kept color factors wefield.” Apparently then, in the infinite momentum frame, a
can make the following comments about how color confinephysical pion contains a hard elementary quark plus a color
ment is realized. compensating “unphysical antiquark” that is described by an
In the original diagrams of the form of Fig. (& the color  antiquark field, but with the Dirac sea shifted. Conversely the
factors have all of the complexity of the-matrix structure quark-antiquark constituents of a pion cannot be liberated
illustrated in Figs. 24 and 26. After removal of the color without an accompanying gluon field that is responsible for
singlet divergent gluons, however, the remaining amplitudenoving the Dirac sea back to its perturbative location. That
necessarily describes &) color zero scattering. In this am- the dynamical participation of the Dirac sea frees and con-
plitude, we can interpret the flavor anomaly as unlocking theines infinite momentum frame quarkand also modifies
qguark content of a pion via a dynamical fluctuation of theinteraction$ in this manner is natural if in a finite momen-
Dirac sea(i.e. the zero momentum chirality transitjorThis ~ tum pion the quarks are confined by a nonperturbative ad-
fluctuation produces a “hard” quark carrying all the light- justment of the Dirac sea, as proposed by Grif28]. Since
cone momentum together with a wee gluon condensate anub strong force between quarks is involved, Dokshi{2&x
an antiquark. The antiquark carries only a soft momentunhas called this “soft and gentle confinement.” He has argued
and is also, essentially, a “wee parton.” It has been producedor some time that significant experimental evidence for this
out of the Dirac sea via a chirality transition that is compen-form of confinement is provided by the momentum proper-

C2q2
Mg

L. The parton amplitude and color confinement
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N for the U1) anomaly interactions to appear. As we noted in

:: [14], because of chirality conservation the anomaly interac-
I tions cancel, even when the kinematics allow their presence,
H -:-:'-.M if the scattering states are elementary quarks or gluons. In

n contrast, since the initial wee gluon coupling of the pion pole
involves a chirality transition, there is no reason for the
chirality transitions to cancel in the subsequent scattering.

) As has become apparent, our “new approach” is not ac-

1
1
|
tually logically separate from the multi-Regge formalism
I:_'M ;‘W‘ used in our previous papers. Rather it is, essentially, a short-
cut that reproduces multi-Regge results without doing the
full calculation. The basic idea we have used is that the in-
ternal light cone momenta of the flavor anomaly couplings
(a) (b) introduce all the large light-cone momenta needed, in addi-
tion to the elastic scattering Regge limit, and so this avoids
the introduction of complicated multi-Regge limits. This has
) ) ) ) enabled us to keep the kinematics “relatively” simple. How-
ties of multihadron production. Since there appears to b@yer, we have had to supplement our analysis with additional
very little momentum reordering in the transition from constraints that appear artificial but really just introduce fea-
quarks to pions, confinement must take place in & soft ang;res that would be provided directly by an underlying multi-
gentle manner. A readjustment of the Dirac sea of the sofkegge Iimit. The “axial vector currents” to which our Gold-
quarks-antiquarks that combine with the hard quarks to formyione hosons have coupled are not local currents but rather
hadrons should have just this property. effective local current components that would be produced
by a nonlocal infinite momentum interaction. Such current
M. The supercritical Pomeron components appear naturally within a multi-Regge ampli-
In higher orders more massive gluons will be exchangedUde. _ _ . _
and more wee quark-antiquark pairs will input additional Ve have described the formation of amplitudes in terms
structure into the interaction. An example of a coupling thatOf transverse momentum diagrams that can be thought of,
will produce two Pomeron exchange is shown in Fig@a@g initially, as originating from particular Feynman diagrams.
We also expect to find vertices, of the form shown in Fig.However, many of the integration regions in the Feynman
28(b), which include a pair of massive gluons produced by gdiagrams are cut-off, or even removed altogether. Again
wee gluon interaction only. To have the axial vector structurénulti-Regge theory provides the underlying justification. To
for the anomaly, the produced gluon represented by the dfave all the necessary anomaly effects present the initial dia-
agonal element cannot have the polarization to be exchang&jams must be extremely complicated. Remarkably, though,
in the scattering process. The wee gluon interaction carffter infrared divergences are extracted and the anomaly con-
however, take place sufficiently far across the rapidity axidributions isolated, almost all of the complexity disappears
that it leads to particle pole interactions within Pomeron ver-2nd the physical pion scattering amplitude has the very
tices, just as is expected in the supercritical Pomeron phasdMple structure we have described. Although we have not
[2]. Since the Pomeron is also exchange degenerate with trscussed combining diagrams to obtain explicit color and
Reggeized gluon, all features of supercritical RFT appear t§ignature factors it is clear that, in first approximation, the
be present. Pomeron is a Regge pole with the same trajectory as a mas-
sive, Reggeized, gluon just as we anticipated in our multi-
Regge work.
V- DISCUSSION It is amusing(and there may also be deeper implications
The analysis of this paper demonstrates clearly tfatv that a complete calculation of the multi-Reg& matrix
least the zero momentum part) dhe spectral flow of the would not be necessary to obtain our results. It would be
Dirac sea, which does not enter in standard perturbatiosufficient to calculate the eight-point amplitude - and
theory, enters thémulti-)Regge region interactions that de- Z° vector mesons in which the scattering of Reggeized pions
scribe the scattering of bound states. The manifestation adccurs. The Reggeized pion scattering amplitude could be
this spectral flow is the chirality transition that a zero mo-factorized out and the on-shell amplitude we discuss would
mentum propagator undergoes in producing the anomalpe obtained by continuing this amplitude from a spacelike to
pole. While we had formulated the basic physics of this phea lightlike pion mass. In the language of the present paper
nomenon in our previous papers, we had been unable to finithis implies that the wee gluon structure of a pion is best
a simple starting point to begin to calculate amplitudes in aunderstood if it is obtained as a wee parton component of an
sufficiently well-defined way. In the new approach presentednfinite momentum, elementary, vector meson.
in this paper the wee gluon content of Goldstone bosons, We believe that in the multi-Regge framework the exis-
produced by the flavor anomaly, provides this starting pointtence of a Reggeon condensate in color superconducting
The rotation of the wee gluons during the scattering procesQCD would clearly be a derived result. In addition,
introduces, essentially, the triple-Regge kinematics needeReggeized Goldstone bosons would be the only composite

NS "7 N

FIG. 28. (a) A two Pomeron vertex(b) a supercritical vertex?
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states obtained. The argumentg D] imply that if the initial ~ operators in the transverse plane—this might give a direct
Reggeon states are color zero Goldstone bosons the overathalogy with the Schwinger modgl.
logarithmic divergence will produce final states only of this We have emphasized that, in order to construct high-
kind. That is, there should be a completeness relation. In thienergy superconducting QCD as we described, it is neces-
case, the condensater rather the infrared divergences and sary to introduce cutoffs both in the transverse momenta and
anomalies that produce) itan be said to be responsible for in the internal momenta of diagrams that generate anomalies.
confinement and chiral symmetry breaking. Conversely, thén effect, these cutoffs regulate the relative infrared-
quark content of a pion or nucleon is “liberated” only if it is ultraviolet spectral flow of the Dirac sea that is due to the
accompanied by ateffectively classicalgluon background chiral and Wl) anomalies. That all cutoffs can be consis-
“condensate” that is associated with a shift of tteero mo-  tently removed, and the necessary critical behavior retained,
mentum part ofthe Dirac sea. The implication being that, at is a highly nontrivial requirement which, as we have dis-
infinite momentum, quarks are locked inside a hadron by a&ussed elsewhel®,3], is likely to significantly restrict the
relatively simple spectral flow of the Dirac sea. This form of quark content of QCD. However, it is possilflenot likely)
confinement would have a natural connection with the finitethat the very existence of a hadr&matrix within QCD
momentum Dirac sea confinement proposed by Gril&9}.  requires that asymptotic freedom, and the consequent pertur-
As we have described in more detail in other placesation theory, have the maximal applicability. Since parton
[15,9], we expect that S(B) color is obtained by critical model cross sections rise asymptotically, this is likely to im-
Pomeron behaviofr10] that randomizes the 3P) direction  ply that all physical cross sections must rise asymptotically.
of the condensate within SB), while also decoupling the The critical Pomeron is well known to be the only descrip-
massive Reggeized gluon, as it becomes massless. Thus ptmn of such cross sections that satisfies allgndt-channel
viding complete SIB) confinement. The shifting of the unitarity properties. Consequently, the occurrence of the
Dirac sea that produces confinement then becomes a comritical Pomeron in QCD may actually be a necessary re-
pletely dynamical part of the Pomeron, and hadrons, that haguirement for the existence of a hadr8matrix.
no simple “classical” component. With the better under- The nonperturbative formulation of a gauge theory is gen-
standing and explicit calculational ability that the results oferally presumed to be via some form of Euclidean functional
this paper demonstrate, we should be able to directly identifyntegral. In this framework color confineme(as it is usually
the higher-order superconducting pion amplitudes with thoséormulated and studigds completely disjoint from pertur-
of supercritical RFT and so establish the connection betweebation theory. In fact, the general expectation is that there
the critical Pomerorf10] and QCD. A further implication will be a “nonperturbative” Pomeron that is crucially depen-
will be that the physical states of QC@r rather those that dent on confinement and, as such, is far removed from per-
scatter via the physical Pomepoare either chiral symmetry turbation theory. However, the Regge region involves a mix-
breaking Goldstone bosoripions or contain, as a compo- ture of large light-cone and small transverse momenta and so
nent, a two quark state that is a Goldstone boson in the colappears only in Minkowski space. As a consequence, if the
superconducting theorjhucleons. Conversely, the very na- Euclidean path integral is the starting point, detailed proper-
ture of the Pomeron will be determined by chiral symmetryties of the Pomeron can only be determined by a complete
breaking. nonperturbative solution of the theory from which
A basic implication of our general program has alwaysMinkowski space hadron scattering amplitudes can be ex-
been that the Regge limit of QCD, including those propertiedracted and the Regge limit taken. Something that seems un-
that are a consequence of confinement and chiral symmettfikely to be possible for a very long time to come. Indeed,
breaking, would be reachable by essentially perturbativegiven that a complete nonperturbative solution of QCD has
calculations—with the dynamical participation of the Dirac been found, the Pomeron would probably be one of the last
sea being the only extra ingredient. The results of this papethings to be studied. Note that, since light-cone momentum
emphasize this implication. According to our results, theregions become all important as the continuation to
only nonperturbative element in color superconducting highMinkowski space is made, the very existence of this continu-
energy amplitudes is the wee-gluon condensate which can lkaion is likely to be contingent on the existence (ahitar-
directly understood as a consequence of the all-orders sunity?) boundedness properties in the Regge region.
mation of transverse momentum infrared divergences that We would like to emphasize that there is no guarantee that
couple via anomaliegogether with the introduction of ultra- a Minkowski region unitarys matrix can be derived from a
violet cutoffg. We should note that the condensate is associnonperturbative Euclidean path integral—particularly given
ated with wee gluon configurations that have the same quarthe complexity{ 23] of the, large field, unphysical degrees of
tum numbers as the winding number current. Although, agreedom that are preseritndeed a commonly agreed proce-
with the currents we use to obtain the flavor anomaly, theydure to definitively eliminate these degrees of freedom has
are really infinite momentum local current components thanot yet been found.The demonstrated perturbative unitarity
result from nonlocal interactions. Nevertheless, there could24] is only a formal property since infrared divergences pre-
be a parallel with the Schwinger model where the existenceent the existence of a finit® matrix. There is certainly no
of a condensate can be obtained either by summing diagranwderstanding of how the unitarity properties of the pertur-
[31] or via nonperturbative topological contributioh32]. bative theory might translate into unitarity with respect to a
However, the topology would have to be in the infinite mo- nonperturbative physical spectrum that manifests confine-
mentum frame(Perhaps a winding number for Wilson loop ment and chiral symmetry breaking. Indeed it is our strong
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belief that the Regge region must play a special role in untranslates into similar properties for the Pomeron and hadron
raveling this relationship within QCD. Since small transverseReggeon diagrams. The unitarity of the critical Pomeron will
momenta are involved, the physical properties of confinebe clearly related to the original perturbative unitarity of
ment and chiral symmetry breaking must be evident in theyuarks and gluons. Indeed it could also be that, since the
t-channel unitarity condition. Conversely, if asymptotic free-construction stays so close to perturbation theory, the prob-

dom has maximal applicability, the involvement of large mo-jem of eliminating large field unphysical degrees of freedom
menta should imply that the Pomeron is not too far fromy|| have been avoided.

perturbation theory. Therefore, th@nulti-) Regge region
should provide a unique possibility to understand the rela-
tionship between perturbation theory and the physical states
appearing in the unitarity condition.

If the Regge limit of QCD can be constructed by the This work was supported by the U.S. Department of
essentially perturbative methods we describe then the unitaEnergy, Division of High Energy Physics, Contracts
ity properties of massive quark and gluon Reggeon diagram#/-31-109-ENG-38 and DEFGO05-86-ER-40272.
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