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Chiral anomaly and high-energy scattering in QCD

Alan R. White*
High Energy Physics Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439

~Received 4 April 2002; published 23 September 2002!

Infrared properties of the triangle anomaly and the ‘‘anomaly pole’’ are elaborated and applied to the study
of high-energy scattering in QCD, when the gauge symmetry is partially broken to SU~2!. It is shown that the
chiral flavor anomaly provides a wee-gluon component for Goldstone bosons that combines with interactions
due to the U~1! anomaly to produce an infrared transverse momentum scaling divergence in scattering ampli-
tudes. After the divergence is factorized out, as a wee-gluon condensate in the infinite momentum pion, the
remaining physical amplitudes have confinement and chiral symmetry breaking. A lowest-order contribution to
the pion scattering amplitude is calculated in detail. Although originating from very complicated diagrams, the
amplitude has a remarkable~semi!perturbative simplicity. The momentum structure is that of single gluon
exchange but zero transverse momentum quarks inject additional spin and color structure via anomaly inter-
actions.
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I. INTRODUCTION

Any solution of the full Regge limit of QCD must, almos
certainly, involve a resolution of the unsolved problem
matching perturbation theory with confinement. Since
limit involves large energies its description should not be
far from perturbation theory. Conversely, since small m
mentum transfers are involved, both confinement and ch
symmetry breaking must be manifest in the contribution
physical t-channel states. In this paper we will show tha
transition from perturbation theory to confinement can
deed occur in the Regge region.

For some time we have pursued what might be calle
‘‘semiperturbative’’ description of the QCD Pomeron. In d
ing so we have made extensive use of the formalism
~multi-!Regge theory, which many authors currently study
the Pomeron make little or no reference to. In this paper
endeavor to keep, at least the most unfamiliar parts of,
formalism to a minimum. Nevertheless, we can summa
the reasons why we believe that Regge poles and Re
theory must play a fundamental role in solving the Reg
limit of QCD as follows.

In general, multiparticlet-channel unitarity has bee
shown to be satisfied when the onlyJ-plane singularities are
Regge poles and the Regge cuts generated by the
provided the Regge cut discontinuities satisfy ‘‘Reggeon u
tarity’’ @1–3#. No other solution is known. It is well estab
lished @4–9# that when the gauge symmetry of QCD
spontaneously broken, multi-Regge limits of quark a
gluon amplitudes are described perturbatively by Regg
diagrams containing massive gluon and quark Regge po
Both t-channel~Reggeon! unitarity ands-channel unitarity
are satisfied. General arguments imply that the small tra
verse momentum part of the massless theory can be obta
smoothly from the massive theory. In which case, the uni
ity properties of the massive theory, including Reggeon u
tarity, should persist in the massless theory.@Note that the
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Balitskiı̆-Fadin-Kuraev-Lipatov~BFKL! Pomeron, which is
not a Regge pole and also does not satisfys-channel unitar-
ity, is a large transverse momentum phenomenon that
pears only when a subclass of diagrams is isolated
summed to all orders—without a transverse momentum
off.#

The critical Pomeron@10# is an abstract solution o
Reggeon unitarity, obtained via Reggeon field theory~RFT!,
that produces asymptotically rising cross sections. A sin
Regge pole and the corresponding Regge cuts are the
J-plane singularities. Since the critical Pomeron retains
factorization properties of a single Regge pole, if it occurs
QCD it will be associated@11# with a ‘‘universal wee-parton
distribution’’ in hadrons. This universality property allow
wee partons to carry vacuum properties which, in combi
tion with rising cross sections, should lead to the maxim
asymptotic applicability of the parton model.

We expect the occurrence of the critical Pomeron in QC
to be of crucial importance, therefore, both for the satisf
tion of t-channel unitarity and for the maximal validity of th
parton model. To see that it can indeed occur we have p
posed@9,11,12# starting with the gluon and quark Reggeo
diagrams of spontaneously broken QCD. With a transve
momentum cutoff imposed, the gauge symmetry can be
stored in stages and RFT can be used to analyze the infr
divergences that occur. We have anticipated that the o
additional ingredient beyond the perturbative Regge beh
ior of gluons and quarks will be chirality transitions pro
duced by the fermion anomaly. Quarks will, therefore, pl
an essential role.

We have now shown that chirality transitions occur@13–
15# in effective triangle diagram Reggeon interactions o
tained by placing quark lines on-shell in large quark loo
These interactions appear in the Reggeon vertices that co
different Reggeon channels~in a general multi-Regge limit!.
In particular, they occur in the triple-Regge vertex@16# that
couples three distinct Reggeon channels—each carryin
separate transverse momentum. Such vertices include
couplings of bound-state Reggeons~e.g. pions and nucleons!
together with their couplings to the physical Pomeron. Effe
©2002 The American Physical Society07-1
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tively, therefore, vertices of this kind determine the bou
states of the theory and their high-energy scattering am
tudes.

Our expectation has long been that when the gauge s
metry is restored first to SU~2!, giving ‘‘color superconduct-
ing QCD,’’ SU~2! color confinement will be due to the ap
pearance of a condensate in Reggeon states produce
infrared divergent ‘‘wee-gluon’’ configurations couplin
through anomaly interactions. The resulting Pomeron co
then be in a supercritical phase@2# of RFT, implying that the
critical Pomeron would occur as the full SU~3! gauge sym-
metry is restored~provided the transverse cutoff can be r
moved first—a strong requirement!. A priori, however, to
understand in detail how the anomaly interactions prod
the condensate, and determine both hadron states an
Pomeron, it is necessary to self-consistently construct the
multi-ReggeS matrix. This is a very complicated project t
carry out. We outlined, essentially, how it could be done
@15#, although we did not then have the full knowledge
anomaly vertices that we now have.

In this paper, as an intermediate step before attemptin
construct the full multi-ReggeS matrix, we approach the
problem from a different standpoint. We use a procedure
is less rigorously formulated~as will become apparent! than
the multi-Regge approach. However, it leads directly to
plicit results and provides a straightforward understanding
the physics that is involved. Also the terminology used is,
hope, more widely familiar. The new approach is not on
sufficient to show how, in infinite momentum scatterin
anomalies determine both the physical states and the
changed Pomeron, but it also allows us to obtain expl
high-energy scattering amplitudes. In fact, we directly cal
late the on-shell~massless! pion amplitude rather than th
amplitude for spacelike Reggeized pions to scatter,
multi-Regge theory would lead us to try to calculate.

We start directly from infrared properties of the triang
diagram. It is well known@17–21# that, when the quarks
involved are massless, the chiral flavor anomaly requires
an ‘‘anomaly pole’’ appear in the vertices for an axial curre
to couple to pairs of vector currents carrying lightlike m
menta. If there is confinement and the chiral symmetry
broken spontaneously this pole becomes a physical G
stone pole. In Sec. II we study in detail how the pole
generated in the triangle diagram and show that, in the
mentum configuration involved, one propagator carries z
momentum~and undergoes a chirality transition! while the
other two carry the external light-cone momenta. We a
show that while the tensor coupling of the anomaly p
necessarily vanishes on-shell at finite momentum, an
shell coupling potentially exists at infinite momentum.

In Sec. III we show that in color superconducting QC
the role of light-cone momenta in producing the anom
pole implies the existence of crucial wee-gluon effect
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couplings for Goldstone bosons at infinite momentum.~The
massive gluons produced by the color symmetry break
are essential for the existence of these couplings.! As a result,
the quark-antiquark ‘‘pion’’ and quark-quark~or antiquark-
antiquark! ‘‘nucleon’’ Goldstone states that appear@22# have
just the ~massless! wee gluon content that we envisage
emerging from our general Reggeon diagram analysis.
presence of the wee gluons then leads directly to the co
bution of U~1! anomaly Reggeon interactions in the hig
energy scattering of pions~and nucleons!. An overall loga-
rithmic divergence is produced that selects anom
mediated scattering as the dominant physical process.
divergence can be factorized off as the expected ‘‘cond
sate’’ within the scattering pions—with the residue being t
physical scattering amplitude. The ‘‘anomaly pole’’ is man
fest as a transverse momentumd-function that factorizes the
momentum dependence of the divergent wee gluon inte
tions and the ‘‘parton interaction’’ of the massive sector
the theory.

The lowest-order contribution to the pion scattering a
plitude has a remarkable simplicity. The momentum struct
is just that of lowest-order gluon exchange. However, z
momentum quarks inject spin and color structure~via
anomaly interactions! that modifies the signature and colo
symmetry properties of the amplitude. Because of the co
plexity of the initial diagrams and the resulting reductio
process we limit the presentation, in this paper, to an ‘‘ex
tence proof’’ that demonstrates how the kinematical and
namical properties of the chiral flavor and U~1! anomalies
actually combine with transverse momentum divergence
produce physical amplitudes. To do this we follow the redu
tion process through in detail for just one of the diagra
involved.

In Sec. IV we discuss both the conclusions that can
drawn from our results and the further work that needs to
done to establish the relationship of the critical Pomeron
QCD. We also discuss some more general issues of princ

II. PROPERTIES OF THE TRIANGLE GRAPH

In our previous paper@14# we based our infrared anomal
analysis on the rather abstract discussions of@18# and @19#.
In this paper we will use explicit evaluations of the triang
graph ~in particular kinematic configurations! that exist in
the literature@20,21#. In the following we summarize and
expand the results and properties we will use. We will p
ticularly emphasize the important role of~both external and
internal! light-cone momenta in the infrared properties th
we exploit.

A. Invariant amplitudes and Ward identities

We consider the elementary triangle diagram amplitud
Gmab~k1 ,k2! 5
1

~2p!4E d4p Tr$g5gm~k” 22p” !ga~2k” 11k” 22p” !gb~2k” 12p” !%

~p1k12k2!2~k22p!2~p1k1!2
~2.1!
7-2
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where the notation is illustrated in Fig. 1. The significance
routing the external momenta as we have done will be
cussed shortly. The amplitude

Tmab~k1 ,k2!5Gmab~k1 ,k2!1Gmba~k2 ,k1! ~2.2!

is the lowest order interaction of the axial vector curre
Am(q), whereAm5c̄g5gmc and the vector currents,Va(k1)
andVb(k2), whereVm5c̄gmc andc is a massless fermion
field. Tmab can be decomposed into invariant amplitudes
writing

Tmab~k1 ,k2!5A1esabmk1
s1A2esabmk2

s1A3edsamk1bk1
dk2

s

1A4edsamk2bk1
dk2

s1A5edsbmk1ak1
dk2

s

1A6edsbmk2ak1
dk2

s . ~2.3!

Bose symmetry implies

Tmab~k1 ,k2!5Tmba~k2 ,k1! ~2.4!

and so requires that

A1~k1 ,k2!52A2~k2 ,k1!

A3~k1 ,k2!52A6~k2 ,k1! ~2.5!

A4~k1 ,k2!52A5~k2 ,k1!.

In addition, the vector Ward identities

k1
aGmab50, k2

bGmab50 ~2.6!

require

A25k1
2A51k1•k2A6 ~2.7!

A15k2
2A41k1•k2A3 . ~2.8!

A priori, a term of the form

A~k1 ,k2!edsabk1
dk2

s~k11k2!m ~2.9!

FIG. 1. Triangle diagram notation.
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with A(k2 ,k1)52A(k1 ,k2), could be added to Eq.~2.3!.
Such a term separately satisfies the Ward identities~2.6!.
However, because of the identity

edsabk1
dk2

s@k11k2#m52~edsamk1b2edsbmk2a2edsbmk1a

1edsbmk2b!k1
dk2

s1esabmk2
s~k1•k2

2k1
2!2esabmk1

s~k1•k22k2
2! ~2.10!

Eq. ~2.9! can be re-expressed in the form~2.3!. As we will
see, the identity~2.10! can be used@20# to simplify Eq.~2.3!
in many special kinematic situations. Note that, withA a
constant, Eq.~2.9! does not satisfy Bose symmetry. Neve
theless, in asymmetric momentum configurations it can,
fectively, appear with a constant coefficient. This will b
important for the discussion later in this section.

We define the integral~2.1! as the limitm→0 of that in
which a fermion massm is added. Equations~2.3! and ~2.5!
hold also whenmÞ0 and ultraviolet regularization can b
carried out with Eqs.~2.7! and~2.8! maintained. Indeed, it is
well known that the Ward identities~2.6! can be regarded a
a consequence of routing the external momenta as we h
done in Fig. 1. An ‘‘anomaly’’ then appears in the Wa
identity for the axial current. Since only theA1 andA2 terms
in Eq. ~2.3! contribute to the axial current divergence, th
anomaly has to appear in these terms. In fact, ultravio
regularization of Eq.~2.1! directly produces the contribution

Tmab~k1 ,k2!5
1

4p2esabmk1
s1

1

4p2esabmk2
s1•••

~2.11!

leading to the divergence equation~whenm50)

~k11k2!mTmab5
1

2p2
edsabk1

dk2
s . ~2.12!

The ~coefficient on the! right-hand side of Eq.~2.12! is
commonly referred to as ‘‘the anomaly.’’ Even though th
anomaly occurs only inA1 andA2 the vector Ward identities
~2.7! and ~2.8! require related terms to appear in the oth
Ai . We will be particularly concerned with the infrared b
havior of the masslessAi that is required@18,19#.

B. Explicit formulas for the Ai

No ~nonintegral! analytic expression for the full ampli
tude ~2.1! exists in the literature. However, it is possible
give explicit expressions in limited kinematic configuration
For example, whenk1

25k2
2 the imaginary parts of each of th

invariant amplitudesAi is given in@20#. For our purposes we
will use the following set of formulas, given in@21#, for the
full amplitudes.
7-3



es

e
m
rm
re
ard

to

ht

at

ot

ALAN R. WHITE PHYSICAL REVIEW D 66, 056007 ~2002!
Whenk1
250 (k2

2 ,q2,0,m2.0) ,

A652A352
1

2p2

1

k2
22q2S k2

2

k2
22q2 L12

m2

k2
22q2 L221D

A45
1

2p2

1

k2
22q2 L1

A25
1

4p2 S k2
2

k2
22q2 L12

m2

k2
22q2 L221D

A15
1

4p2 S k2
2

k2
22q2 L11

m2

k2
22q2 L211D ~2.13!

A552A42
3

p2 k2
2 d

dk2
2 S 1

k2
22q2 L1D

1
3

2p2 k2
4S d

dk2
2D 2S 1

k2
22q2 L1D

1
3

4p2 k2
2 d

dk2
2 S 1

k2
22q2 L2D

1
1

2p2 m2k2
2S d

dk2
2D 2S 1

k2
22q2 L2D

where

L152r ln
r11

r21
1b ln

b11

b21

L252r ln2
r11

r21
1b ln2

b11

b21
~2.14!

r25124m2/q2, b25124m2/k2
2 .

Note that the simple relationship betweenA6 andA2 in Eq.
~2.13! is required by the Ward identity~2.7! which, when
k1

250, becomes

A25k1•k2A65
q22k2

2

2
A6 . ~2.15!

If the limit m2→0 is taken in Eq.~2.13! the result is

A15
1

4p2 S k2
2

k2
22q2 ln

k2
2

q2 11D
A25

1

4p2 S k2
2

k2
22q2 ln

k2
2

q2 21D ~2.16!

A352A65
1

2p2

1

k2
22q2S k2

2

k2
22q2 ln

k2
2

q2 21D .

While the Ward identity~2.7! does not determineA5 in this
limit, A4 can be obtained from Eq.~2.8!.
05600
If instead the limitk2
2→0 is taken, withm2.0, the result

is

A652A35
1

2p2

1

q2 S 11
m2

q2 ln2
r11

r21D
~2.17!

A452A552
1

2p2

1

q2S 22r ln
r11

r21D .

A152A2 can be obtained from the vector Ward identiti
and using Eq.~2.10! gives @21#

Tmab5A6qmeabsdk1
sk2

d1~A41A6!~emasdk1
sk2

dk2b

2embsdk1
sk2

dk2a! ~2.18!

whereA4 andA6 are given by Eq.~2.17!. Note that the first
term has the form of Eq.~2.9!. This is consistent just becaus
k1

25k2
250,q2Þ0 is not possible in a symmetric momentu

configuration. Also the anomaly is produced by the first te
alone while, within the momentum configuration that we a
discussing, each term separately satisfies the vector W
identities.

Whenk2
2→0, with q2 fixed, Eq.~2.16! gives

A1,2→6
1

4p2 , A3→
1

2p2

1

q2 . ~2.19!

That is, a pole appears inA3 (52A6). If, instead, we inte-
grate over spacelike values ofq2, we obtain

E dq2A3~q2,k2
2! f ~q2,k2

2! →
k2

2→0

1

p
f ~0,0!

5E dq2
1

p
d~q2! f ~q2,0!

~2.20!

@provided f (q2,k2
2) is regular atq2,k2

250].
The pole that appears inA3 ~and A6) is the ‘‘anomaly

pole’’ discussed by a number of authors@18–21#. The coef-
ficient coincides with that of the anomaly and it is possible
give general arguments@18,19# that this pole is directly re-
quired by Eq.~2.12!. The simplest way to see that this mig
be the case is to note that ifk1

25k2
250 andA4 andA5 are not

~sufficiently! singular the identities~2.7! and ~2.8! reduce to
the very simple form

A35
2

q2 A1 , A65
2

q2 A2 . ~2.21!

Equation~2.11! then leads directly to Eq.~2.19!. In fact, we
will see below how the momentum routing of Fig. 1 th
produces the ultraviolet anomaly~2.11! is also responsible
for the numerator that accompanies the anomaly pole.

The amplitudesA4 andA5 will play very little role in our
discussion. It is well known that these amplitudes do n
contribute atk1

25k2
250 whenTmab is contracted with physi-
7-4
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and so, form2Þ0, the pole is absent. The only finiteq2

singularity in either amplitude is the threshold atq254m2. If
we continue around this threshold thenr→2r and so

ln
r11

r21
→p i 2 ln

r11

r21
~2.23!

and the pole atq250 is present. It is present on the physical
sheet only atm25k1

25k2
250.

We conclude that the Goldstone boson pole appears, in
very special kinematics, because an unphysical singularity
enters the edge of the physical region in the massless limit. It
occurs inA3 ~andA6), and not in the otherAi , because the
unphysical singularity is a double pole rather than a single
pole. It would be interesting to determine more explicitly
how this feature relates to the momentum routing ambiguity
associated with the anomaly.

D. Internal momentum analysis

In the next section we will want to derive anomaly pole
couplings from the reduction of more complicated diagrams
to triangle diagrams and also to separate the anomaly pole
from the ultraviolet anomaly contribution. For these pur-
poses it is important to determine the internal momentap in
Eq. ~2.1! that generate the pole. We will see that light-cone
momenta play a crucial role. Note that an external light-cone
momentum is necessarily involved since ifk1

25k2
25q250

then, necessarily,k1ik2ik1 where k1 is lightlike. We first
consider reaching theq250 limit via the momentum con-
figuration

CHIRAL ANOMALY AND HIGH-ENERGY SCATTERING IN QCD PHYSICAL REVIEW D66, 056007 ~2002!
cal polarization tensors. Our analysis will also be concer
with momentum configurations and components ofTmab
such that these amplitudes do not contribute. Note that
~2.17! implies, and it is straightforward to check direct
from Eq. ~2.13!, that the limitsm→0 andk1

2 ,k2
2→0 do not

commute forA4 andA5. A property that we will avoid in our
analysis.

Finally we emphasize that if we keep only the pole ter
in Tmab , as we will eventually do, then the vector Wa
identities will necessarily be violated, for at least some m
menta. As elaborated in@15# the Reggeon Ward identitie
that are necessary to avoid infrared divergences in Re
limit amplitudes depend on Ward identities being satisfi
for all momenta. We will see below that when the Wa
identities are satisfied only by a limited range of momen
infrared divergences occur that, nevertheless, produce ga
invariant amplitudes.

C. Interpretation

The results of the previous subsection extend straight
wardly to the case when there are gauge and flavor sym
tries andTmab is a three-point amplitude for currents defin
in terms of appropriate combinations of fermion fields. T
anomaly in Eq.~2.12! is then a number determined by ad
ing all contributing triangle diagrams. Most importantly, as
very well known, the ultraviolet anomaly in all~flavored!
axial current Ward identities remains unchanged as ga
field interactions are included@25#. As a result, the genera
arguments alluded to above@18,19# @and more directly the
identities~2.21!# determine that a pole with coefficient give
by the anomaly is always present in the special kinem
configurationk1

25k2
25m250. As first argued by ’t Hooft

@17#, if there is confinement and there are no physical ma
less fermions, this pole has to be reproduced by a Golds
boson pole. As we will discuss in the next section, this w
provide the basis for our use of the chiral flavor anomaly
extract ‘‘infinite momentum’’ pion couplings to physical cu
rent components that produce scattering amplitudes. For
U~1! anomaly there will be no Goldstone boson pole b
instead thed function ~2.20!, produced by the integration o
the anomaly pole overq2, will contribute in an essentia
manner to infinite momentum amplitudes.

To interpret the pole in Eq.~2.1! in terms of Landau sin-
gularities we note the following. The expressions for theAi
given above demonstrate that, when a fermion massm is
present, only two-particle normal thresholds are presen
each invariant channel. These thresholds are responsibl
the lnq2 and lnk2

2 factors that are present in Eq.~2.17!. The
pole atq25k2

2, which is superficially present in each of th
05600
d

q.

s

-

ge
d

,
ge-

Ai , cancels when the logarithms have their physical sh
values. On unphysical sheets of the logarithms a pole
present and corresponds to the triangle Landau singula
When k2

2→0 followed by q2→0 the physical sheet thresh
olds coincide at the point of interest and the unphysical sh
singularity is able to enhance the thresholds.

The simplest example of this last discussion is provid
by Eq. ~2.17! which gives

A6~q2,m2! →
q2→0

1

2p2

1

q2 X11
m2

q2 ln2

3F11S 2q2

m2 D 1/2

1•••GC→” ` ~2.22!

A4~q2,m2! →
q2→0

1

2p2

1

q2 S 22r lnF11
2

r
1•••G D→`
k15~k1 /A2,k1 /A2,0,0![k1
15k125k1 , k1

250, k'50
~2.24!

k25~2k2 /A2,k2 /A2,0,0![k2
150, k2

25k2152k2 , k'50

in which k1
25k2

250 andq2522k1k2 .
7-5
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We will shortly understand the anomaly pole contributi
to Eq. ~2.1! as produced by external momentum numera
factors together with a pole produced~by the denominators!
in a part of the integration region that includes zero inter
momentum. At first sight, Eq.~2.24! is not a very sensible
configuration to discuss. If we consider the pole contribut
of A3 to T322 , for example, this has the form

T23252esd23

k1
sk2

dk12

2p2q2
52

k1
2 k2

2p2q2 5
k1

4p2 ~2.25!
it
f

m

re

05600
r

l

n

and so there is no divergence asq2→0. At best we can
obtain a finite contribution by takingq2;k2→0, with k1

kept finite. As a consequence, in the momentum configu
tion ~2.24!, the anomaly pole contribution cannot be disti
guished from other nonsingular contributions. However,
our initial goal of obtaining a simple understanding of t
origin of the denominator pole the momentum configurat
~2.24! will be very useful.~Indeed, it will play a key role
throughout the paper.!

If we drop the numerator terms in Eq.~2.1! and keep only
the k1 andk2 dependence we obtain
I ~k1 ,k2 ,m2!5I ~q2,m2!5E dp1dp2d2p'@2p1~p22k2!2p'
2 2m21 i e#21

3@2~p12k1!~p22k2!2p'
2 2m21 i e#21@2~p12k1!p22p'

2 2m21 i e#21. ~2.26!
u-
gin
We will find that I (q2,m2) is finite ase→0 only whenm2

Þ0. This is not surprising sinceI (q2,m2) is closely related
to A4 and A6, as given by Eq.~2.17!. As we already noted
above, thek1

2 ,k2
2→0 limit commutes with the massless lim

for A6, but not forA4. As a result, we expect that for part o
I (q2,m2) the limit m2→0 will not exist. @Of course, the
numerator terms in Eq.~2.1! will play a central role in de-
termining the nature of the divergence that occurs.# However,
the pole term we are looking for appears, with the sa
~anomaly! coefficient, in both kinematic terms in Eq.~2.18!
as m2→0. We therefore anticipate that the momentum
gion generating it will be unambiguous in this limit.
e

-

We will first evaluateI (q2,m2) exactly. After we deter-
mine the origin of the pole we will give a more direct arg
ment to locate the contributing momentum region. We be
by making the~scaling! change of variables

p15x1k1 , p25x2k2 ,
~2.27!

p'5~k1k2!1/2x'

and also writem22 i e52k1k2m52q2m. If we carry out
the angularx' integration~which gives a factor of 2p) and
write y5x'

2 /2 we then have
the
.

I ~q2,m2!5
p

4q2 I ~m!5
p

4q2E
2`

1`

dx1E
2`

1`

dx2E
0

1`

dy

3
1

@~x221!x12y2m#@~x221!~x121!2y2m#@x2~x121!2y2m#
. ~2.28!

The propagators can be separated via partial fractions and they integration can then be carried out to give

I ~m!5E
2`

1`

dx1E
2`

1`

dx2

1

~x221!~x22x1!
ln@~x221!x12m#2

1

~x121!~x22x1!

3 ln@x2~x121!2m#1
1

~x221!~x121!
ln@~x221!~x121!2m#. ~2.29!

We can evaluate Eq.~2.29! by contour integration in thex2 plane as follows. The three logarithmic branch points are on
same side of thex2 integration and the contour can be closed to zero unless 1.x1.0. @Note that if the numerators of Eq
~2.1! were present then we could not close the contour without obtaining a contribution from the largex2 region.# When 1
.x1.0 the logarithmic branch cuts lie as illustrated in Fig. 2.
7-6
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FIG. 2. The x2 plane (m
5@m22 i e#/q2).
o
-

nd
fie
a

el
vio
t
io
ec
th

d

al

ion
he

f

ence
me
In this case, the contour can be closed around the
branch cut, as illustrated, andI (m) is then given as an inte
gral over just this discontinuity, i.e.

I ~m!52p i E
0

1

dx1E
11m/x1

`

dx2

1

~x221!~x22x1!

52p i E
0

1

dx1

1

12x1
ln@11x1~12x1!/m#

~2.30!

which an integration by parts allows us to rewrite as

I ~m!52p i E
0

1

dx1ln@12x1#
122x1

m1x1~12x1!

→
m→0

2p i E
0

1

dx1ln@12x1#F 1

x1
2

1

~12x1!G .
~2.31!

The first term in Eq.~2.31! is finite while the second one
has a logarithmic divergence of the kind we expected to fi
As we discussed, we expect this divergence to be modi
by, and to be dependent on, the numerator terms that we
presently ignoring. The first term we expect to be clos
related to the anomaly pole term. If we consider the beha
of the integrands of both terms nearx150 then we note tha
the first term has a constant term in its Taylor expans
while the second does not. If we extract this term as a pi
that is independent of how we handle the divergence of
second term we obtain

I ~m!52p i E
0

1

dx1@11O~x1!#52p i 1••• ~2.32!
to
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giving

I ~q2,m2! →
m→0

p2i

2q2 1•••. ~2.33!

If an additional functionR(p1 ,p2 ,p') ~produced by propa-
gator numerators, for example! were present in the integran
of I (q2,m2) then, if we again use the limitk2→0 to obtain
q2→0, the pole residue would simply contain an addition
factor of R(0,0,0,0).

Note that if we cut off thex2 integration atx25l2 we
obtain an extra contribution toI (0) of the form

I ~0!52p i E
0

1

dx1

1

12x1
lnFl22x1

l221 G
52p i E

0

1

dx1ln@12x1#F 1

l22x1
2

1

l221G
~2.34!

in which the integrand has no constant term in its expans
aroundx150 and so, in this sense, does not modify t
anomaly term extracted in Eq.~2.32!. Therefore the anomaly
term originates close to the lower end point for thex2 inte-
gration ~i.e. x25p2 /k2;1) and is, indeed, independent o
how we treat the largex2 region.

That the integration by parts, to obtain Eq.~2.31!, is nec-
essary to clearly expose the anomaly term is a consequ
of the contour integration we used. We can extract the sa
term more directly fromI (q2,m2) as follows. First we write

E
0

1` dy

@~x221!~x121!2y2m#
→

m→0
ln~x121!1•••

~2.35!

giving, if we undo the scaling ofx2 ,
I ~q2,m2!→ p

8k1
E

0

1

dx1ln~x121!E
2`

1`

dp2

1

@~p22k2!x12m2/2k1#@p2~x121!2m2/2k1#
1••• . ~2.36!
r-
h

We can then close thep2 contour around the second pole
obtain, in the limitm2→0,

I ~q2!5
p2i

4k1
S E

0

1

dx1

ln~12x1!

k2x1
D 1•••

5
p2i

2q2 1••• ~2.37!
which reproduces Eq.~2.31!, and hence Eq.~2.33!, directly.
Note that the denominatork2x1 in Eq. ~2.37! is provided

by the propagator that carries only thek2 external momen-
tum. The factorsk2

21 and x1
21 represent the separate ‘‘pa

ticle’’ and ‘‘antiparticle’’ poles of this propagator and bot
contribute in an essential manner.k2

21 produces the (q2)21

pole in the final result. The residue of the pole atx150,
7-7
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ALAN R. WHITE PHYSICAL REVIEW D 66, 056007 ~2002!
multiplied by ln(12x1) @which is the integrated propagato
contribution obtained from Eq.~2.35!#, is integrated to pro-
duce the final anomaly coefficient. That both particle a
antiparticle poles contribute to the anomaly pole is a v
important point that we will elaborate on shortly.

To determine that Eq.~2.33! is indeed the anomaly coef
ficient that we want we must reintroduce the propagator
merators, that we have so far neglected, and evaluate the
zero internal momentum. In the configuration~2.24! the ex-
ternal momentum numerators contribute the combination
lightlike momenta andg matrices shown in Fig. 3. The cor
responding contribution toG322(k1 ,k2) is

Tr$g5g3@k2•g#g2@k1•g#g2@~k12k2!•g#%

5Tr$g5g3@k2
2g2#g2@k1

1g12k2
2g2#g2@k1

1g1#%

5Tr$g5g3g2g2g1g2g1%k1
2 k2

522 Tr$g5g3g2g2g1%k1
2 k2 . ~2.38!

The well-known identity for a product of three orthogonalg
matrices

gagbgl5gabgl1gblga2galgb1 i emabggmg5

~2.39!

then gives

24 Tr$ ig5
21g5g2g3%k1

2 k254i Tr$g5
2%k1

2 k2

516ik1
2 k2 . ~2.40!

Combined with Eq.~2.33!, this gives the desired contributio
of the anomaly pole@after taking into account the factor o
1/(2p)4 in the original integral~2.1!#.

If we return to the original momenta we see from Eq
~2.35!–~2.37! that the relevant integration region for th
anomaly pole is

~ i! p'
2 &q2 ~ ii ! 0<p1<k1 ~ iii ! p2;k2→0

~2.41!

and that any additional factors in the integrand~besides the
propagator denominators! are to be evaluated at zero intern
momentum. The surviving external light-cone momentu
then flows directly around two of the three internal propa
tors. This will be very important in the next section.

FIG. 3. Vertices and propagator numerators forG322(k1 ,k2).
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In the following, we will use manipulations analagous
Eqs.~2.38! and~2.40!, in which the numerators carrying th
limiting momentum configuration are combined, to det
mine whether the anomaly is present in diagrams. Howe
as we noted above, the anomaly pole terms are not actu
singular in the limiting momentum configuration we ha
discussed. To consistently isolate anomaly pole contributi
to Gmab it is necessary to work in a kinematical configur
tion where singular contributions are obtained. This is
case if an additional external transverse momentumq' is
part of the limiting momentum configuration, such thatq2

;q'
2 , while the corresponding propagator numerator p

vides a factor that isO(q') and vanishes more slowly tha
q2. We will, nevertheless, be able to apply the above analy
by exploiting the Lorentz invariance properties of the inte
nal momentum integration.

E. Frame dependence of the anomaly numerator

A second momentum configuration that can be used
approachq250 is

k15~k/A2,k/A2,0,0![k1
15k, k1250, k'50

k25~2k/A2,2k cosu/A2,0,2k sinu/A2! ~2.42!

;
u→0

2k12~0,0,ku/A2,0!52k12~0,0,q,0!

where

q25~k11k2!2 ;
u→0

. ~2.43!

In the configuration~2.42!, we obtain the largest numerator
we consider the anomaly contribution ofA3 to T223. This
has the form

T2235esd23

k1
sk2

dk12

q2
5

k2@ku/A2#

q2
;

u→0
A2k

u

~2.44!

and so a divergence is present.
In the limit q→0, the external momentum flow andg-

matrix couplings are now as shown in Fig. 4. Essentially
same calculation as Eqs.~2.38! and~2.40! gives the numera-
tor in Eq.~2.44! directly from the external momentum propa
gator numerators.~Note that the propagator that carries ze
momentum in the limiting configuration is now that corr
sponding to the vertical line in Fig. 4.! It remains, therefore,
to understand the anomaly pole as arising from an inte
zero momentum configuration.

Since all invariants remain unchanged it must, of cour
be possible to obtain Eq.~2.42! from Eq.~2.24! via a Lorentz
transformation. This can be done as follows. We first
7-8
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CHIRAL ANOMALY AND HIGH-ENERGY SCATTERING IN QCD PHYSICAL REVIEW D66, 056007 ~2002!
k15k25q ~which can be done trivially via a Lorentz tran
formation to the ‘‘center of mass frame’’!. We then apply a
boostay(z) to obtain

k1→S q coshz

A2
,

q

A2
,
q sinhz

A2
,0D

k2→S q coshz

A2
,2

q

A2
,
q sinhz

A2
,D ~2.45!

5k12~0,A2q,0,0!

which, if q coshz5k is kept finite asq→0, differs from Eq.
~2.42! only by a rotation.

If we consider Eq.~2.1! directly in the momentum con
figuration ~2.42!, the numerator contribution giving Eq
~2.44! will be multiplied by a denominator integral that is
Lorentz invariant. If the reverse Lorentz transformation
that giving Eq.~2.42! from Eq. ~2.24! is applied to the mo-
mentum integration variables thenI (q2,0), as given by Eq.
~2.28!, will appear and the above analysis can be used
extract the anomaly pole, with Eq.~2.42! now appearing as
the limiting momentum configuration. This implies, o
course, that the limitq2→0 is provided by an internal mo
mentum configuration that is reached by an infinite bo
from the original zero momentum region.

We can further enhance the anomaly numerator if we
stead applyay(z) directly to Eq.~2.24!, but now letq2→0
by takingk2→0. This gives

k1→S k1coshz

A2
,
k1

A2
,
k1sinhz

A2
,0D

~2.46!

k2→S k2coshz

A2
,2

k2

A2
,
k2sinhz

A2
,0D

and so, for example,T232 ~defined with respect to the axe
of the new frame! is given by

T232;esd23

k1
sk2

dk12

q2

;
@2k1k2coshz#k1coshz

A2q2
. ~2.47!

FIG. 4. Vertices and propagator numerators forT223 .
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Now, if we letk2→0 and take coshz→` such thatk2coshz
remains finite, the numerator in Eq.~2.47! →` while q2

→0 and most importantly~as we discuss in the next subse
tion! that part of the numerator contained in square brack
remains finite. This demonstrates that the anomaly pole
have a finite coupling to infinite momentum states.@It is, of
course, crucial for the enhancement~2.47! that the tensor
component discussed is defined with respect to the axe
the new frame.#

It will be important in succeeding sections that both t
component ofTmab that dominates and the zero momentu
line involved, depend on how the anomaly pole limit is a
proached~or, equivalently, the Lorentz frame involved!. This
is because our analysis of anomaly contributions in hi
energy scattering is not Lorentz invariant, but rather we co
bine contributions that are~initially calculated! in different
finite and infinite momentum frames.

As noted in@18#, if we consider the helicities of the inter
nal massless fermions producing the anomaly pole numer
we find that the fermion that carries zero momentum m
effectively flip its helicity. Equivalently, it must reverse it
particle-antiparticle identification. The vertex at one end
the propagator must be that for production of a parti
while, simultaneously, that at the other end describes the
duction of the antiparticle. This is possible just because
we discussed above, both particle and antiparticle poles c
tribute to a divergence that occurs when the propagator
ries zero momentum. This process is an integral part of
formation of a pion pole.

The pion scattering amplitude that we derive in the n
section will also contain a zero momentum propaga
@within a U~1! anomaly interaction# which describes a physi
cal zero momentum transition. If this process, and that p
ducing the pion pole, are to be interpreted as a physical p
cesses the Dirac sea must be shifted at the second v
relative to the first. The production of the antiparticle has
be reinterpreted as production of a state that fills a hole in
sea, i.e. the absorption of an antiparticle. That is to say, th
must be spectral flow of the Dirac sea during the interacti
In a field-theoretic path integral language, this phenome
is what produces a ‘‘chirality transition’’ due to a topologic
background gauge field. However, in our discussion ther
no implication that a topological background field is i
volved.

We also note that the part of our calculation of t
‘‘anomaly pole’’ in the above that involved only the denom
nators could equally well be applied to the calculation@26#
of a gluon triangle~involving an effective vertex! that ap-
pears in the coupling of a Reggeized gluon to on-shell g
ons. This coupling need not satisfy a gauge invariance W
identity. Of course, thee-tensor structure of the anomaly th
is due to the fermionic numerators will not occur. Howev
a particle-antiparticle transition, via a zero momentu
propagator, can be responsible for the helicity transition t
occurs.

The ultraviolet anomaly is well known to originate from
the region
7-9
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ALAN R. WHITE PHYSICAL REVIEW D 66, 056007 ~2002!
p1;p2;p'→`. ~2.48!

Therefore, in principle, we can keep the anomaly pole
Tmab while dropping the ultraviolet anomaly if we integra
only over the momentum region~2.41!. Isolating the
anomaly pole from the ultraviolet anomaly will be an impo
tant part of our analysis in the following. While we can su
pose that, as a matter of principle, we are restricting
integration region, in practice we will simply use an anoma
pole coupling as discussed in the following subsection. T
violates full gauge invariance but, as we discuss, if we k
only the anomaly pole term and restrict our analysis tok1

2

5k2
250,q2;0 , we will keep the partial gauge invarianc

that is sufficient to produce gauge-invariant amplitudes. N
ertheless, the loss of full gauge invariance plays a cru
role in generating the transverse momentum infrared div
gences that are the cornerstone of our confinement dynam
By manipulating the relative contributions of the anoma
pole and the ultraviolet anomaly we will effectively be reg
lating the relative ultraviolet and infrared spectral flow.
le

t
s

n

m
w
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F. The pole residue as a Goldstone boson coupling

A major question is whether we can use the identificat
of the anomaly pole as a Goldstone boson pole to ob
information about the interactions of physical Goldsto
bosons. If we keep just the anomaly pole contributions ofA3
andA6 to Tmab we can write

Tmab~k1 ,k2!52
1

2p2

~edsamk1b2edsbmk2a!k1
dk2

s

~k11k2!2
1••• .

~2.49!

This expression does not satisfy the vector Ward identi
and does not have the axial current anomaly. According
the above discussion, it is nevertheless obtained if we k
only the integration region~2.41! in Eq. ~2.1!, together with
the momentum dependence of propagator numerators g
by the external momenta.

Whenk1
25k2

250, we can use the identity~2.10! to obtain
@what is essentially Eq.~2.18! with m2→0]
Tmab~k1 ,k2!52
1

2p2

†2edsab@k11k2#m1~edsbmk1a2edsamk2b!‡k1
dk2

s

~k11k2!2
1••• ~2.50!
we

are

pt-
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as
where the additional omitted terms are those that are
singular asq25(k11k2)2→0. @Note that to justify omitting
these terms it is crucial that we consider a componen
which there is a singularity atq250 and the numerator doe
not cancel the denominator singularity, as in~2.25!.# Each
term in Eq.~2.50! separately satisfies the vector Ward ide
tities ~for momenta which satisfyk1

25k2
250) but only the

first term has the appropriate factorized form to provide
pion pole coupled to the axial currentAm . The second term
corresponds to theA4 and A5 contributions in Eq.~2.3!
which we anticipated would not contribute to the tensor co
ponents that would appear in our discussion. Therefore,
might expect that we can use

Tmab~k1 ,k2!5
1

2p2

@k11k2#medsabk1
dk2

s

~k11k2!2
1•••

~2.51!

to obtain physical pion pole couplings, anticipating that@k1
1k2#m provides the coupling to the axial currentAm while
the factoredsabk1

dk2
s provides the coupling to currentsVa

andVb . @In a general current vertex the 1/2p2 in Eq. ~2.51!
will be replaced by the appropriate anomaly coefficien#
Equation~2.51! not only satisfies the vector Ward identitie
but also produces the anomaly in the axial current. Rem
ably, perhaps, we have obtained these properties from
~2.49! simply by restricting to the momentum region

k1
25k2

250, q2→0 ~2.52!
ss

in

-

a

-
e

k-
q.

and asking for a factorizable pole residue. Therefore, if
restrict our discussion to the region~2.52! @and to compo-
nents ofTmab to which the second term in Eq.~2.50! does
not give a leading contribution# all desired, factorization,
gauge invariance and anomalous divergence properties
contained in Eq.~2.51!.

While it is well known that Eq.~2.51! describes well the
decay of a physical~massive! pion into physical photons
there is, not surprisingly, an obvious problem with attem
ing to use it to discuss the coupling of a pion to dynami
gluon currents. It is crucial for our infrared anomaly analy
that the ‘‘pion’’ is massless. In this case the ‘‘pion pole
appears only in theq2→0 limit in which k1ik2ik1 wherek1

is lightlike. Because of thee tensor, the numerator in Eq
~2.51! then vanishes in any finite momentu
configuration—as we have seen explicitly above. In gene
if the limiting configuration is approached via a vanishin
spacelike momentumq andk1 is the nonvanishing compo
nent ofk then, at best,

edsabk1
dk2

s;k1q ~2.53!

which, of course, still vanishes asq→0. The fundamental
reason for this is that Eq.~2.51! is antisymmetric ink1 and
k2 and, because of Bose symmetry, can only describe
contribution of antisymmetric momentum configurations
the kind we have discussed. For consistency, it must va
at the symmetric point wherek1

25k2
25q250. The conclu-

sion is, clearly, that we cannot obtain a finite coupling
q2→0 and the limit onto the~massless! pion mass shell is
7-10
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CHIRAL ANOMALY AND HIGH-ENERGY SCATTERING IN QCD PHYSICAL REVIEW D66, 056007 ~2002!
taken. Therefore, the anomaly provides no information ab
physical, finite momentum, massless pion-gluon interactio

However, we see from Eq.~2.47! that if we go to an
‘‘infinite momentum frame’’ we can keep components ofq
finite, even thoughq2→0 and the ratioq/k1 goes to zero. If
we use Eq.~2.51!, instead of Eq.~2.47!, to evaluateT232 in
this frame, we obtain

T232;esd32

k1
sk2

dk12

q2

;
@2k1k2~sinhz!#k1sinhz

A2q2
~2.54!

which, not surprisingly, gives the same leading result as
~2.47!. @Note that the second term in Eq.~2.50! gives a non-
leading contribution.# The ‘‘infinite momentum’’ pion cou-
pling is now given as

esd32k1
sk2

d;@k1k2sinhz# ~2.55!

which, as we noted above, is finite ifk2→0 with k2coshz
kept finite. We conclude that, although the anomaly provi
no information about finite momentum gluon couplings,
can potentially provide information about the ‘‘wee-gluon
or ‘‘wee-parton’’ couplings of the infinite momentum pion
We will discuss such couplings in the next section. We w
find that the current component involved cannot be that o
simple local current but must itself originate from a nonloc
interaction that produces an effective local interaction at
finite momentum.

III. BUILDING COLOR SUPERCONDUCTING PION
AMPLITUDES

A. The gluon and quark spectrum

When the gauge symmetry of QCD is spontaneously b
ken from SU~3! to SU~2! the resulting theory is commonl
called ‘‘color superconducting QCD.’’ Our eventual goal
to give a detailed construction of high-energy scattering a
plitudes ~for Goldstone bosons! in color superconducting
QCD and then to discuss the restoration of the full gau
symmetry using Reggeon field theory. In this paper we w
to concentrate on how the kinematical and dynamical pr
erties of the chiral flavor and U~1! anomalies discussed in th
previous section combine with transverse momentum in
red divergences to produce such amplitudes. For this purp
we will use only general properties of the gluon and qu
spectrum, which we now discuss, and will make only qua
tative comments about color and color factors.

Some number of quark flavors will be present, which
will not specify since we will not give them distinct masse
The symmetry breaking could be due to the expecta
value of a complex color triplet scalar field, with Yukaw
couplings generating a mass for SU~2! singlet quarks. Alter-
natively, and perhaps preferably, since the scalar field it
plays no role in our discussion, the symmetry breaking co
equally well be dynamical and due to a diquark condens
associated with the additional chiral symmetry breaking d
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cussed below. Independently of the nature of the symm
breaking, the complete structure of the broken gauge gro
i.e. all the interactions of massless and massive glu
amongst themselves together with their interactions w
massless and massive quarks, will be important.

The gluon spectrum consists of a massless SU~2! triplet,
two massive SU~2! doublets with mass;MC , and a massive
singlet with massMC . The quark spectrum consists of
massless SU~2! doublet and a massive singlet for each flav
with massmC;MC . Because of the equivalence of qua
and antiquark color representations, there is an extended
ral symmetry@22#. In particular, SU~2! color singlet axial
currents can be formed from pairs of quark fields and pairs
antiquark fields, in addition to the usual quark-antiquark c
rents. We will generically refer to the SU~2! singlet quark-
antiquark Goldstone bosons associated with chiral symm
breaking as pions and will refer to the singlet quark-qua
Goldstone bosons as nucleons.

We will be considering infrared divergences due to bo
the massless quarks and the massless gluons. To dis
these divergences we should, initially, invoke a seco
symmetry-breaking mechanism to give all quarks and glu
masses. A second complex triplet scalar could be used
this purpose or the symmetry breaking could again be
namical. We simply assume that there is an an initial masM
for the SU~2! gluons that is taken to zero and an SU~2! quark
massm that is also taken to zero. Whenm→0 the anomaly
pole discussed in the last section, will be produced by ma
less quark loops. This will be our starting point. When t
gluon massM→0 also, there will be an overall infrare
divergence that will produce confinement and select the c
zero amplitudes in which the anomaly pole becomes a p
or nucleon pole. As we will see, our analysis involves on
on mass-shell states and gauge-invariant transverse mo
tum diagrams. The only breaking of gauge invariance in
discussion will be that associated with phase-space cutof
anomaly generating diagrams. As we implied in the previo
section, gauge invariance will be preserved for those m
menta involved in physical amplitudes.

B. Transverse momentum infrared divergences

Before discussing anomaly couplings we first summari
briefly, the established properties of the gauge-invari
massless transverse momentum diagrams that will be
volved. The overall infrared divergence we discuss in
following will be produced when these diagrams coup
through anomaly generating effective interactions.

It is well known from perturbative calculations@4–9# that
in gauge theories the Regge limit is described by transve
momentum diagrams. When all gluons and quarks hav
mass there are no infrared divergences and high-order l
ing and next to leading log calculations show that these d
grams exponentiate~in momentum space! to produce Regge
pole and Regge cut behavior. Both gluons and quarks lie
Regge trajectories, i.e. they ‘‘Reggeize.’’ Reggeization of
gluon corresponds to the exponentiation
7-11
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s

t2M2 [
1

t2M2E dJSJ

~J21!
→ s12D(t)

t2M2

[
1

t2M2E dJSJ

„J211D~ t !…
~3.1!

where 12D(t) is the~massive! gluon Regge trajectory given
~in the leading log approximation! by

D~2Q2!5
~Q21M2!

16p2 E d2k1

k1
21M2

d2k2

k2
21M2

3d2~Q2k12k2!. ~3.2!

As is illustrated by Eq.~3.1!, momentum space exponen
tiation corresponds to power series summation in theJ plane
(J5 complex angular momentum!. We can further illustrate
this by considering an amplitude for which the leading hig
energy behavior is given by the Regge-cut correspondin
two Reggeized gluons. In this case the lowest-order resu
~apart from a normalization factor!

A0~J,t !5
1

J21E d2k1

k1
21M2

d2k2

k2
21M2

3d2~Q2k12k2! ~3.3!

where t5Q2. The momentum space exponentiation cor
th
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K
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-
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sponding to Reggeization of the gluons is now described
replacing the fixed pole atJ51 by the two-Reggeon propa
gator

G25
1

J211D~k1
2!1D~k2

2!
~3.4!

giving

A0~J,t !→A~J,t !5E d2k1

k1
21M2

d2k2

k2
21M2

3
d2~Q2k12k2!

J211D~k1
2!1D~k2

2!
. ~3.5!

Further momentum space exponentiation is provided
Reggeon interactions that, in theJ plane, simply iterate Eq
~3.5!, which we identify as a ‘‘two-Reggeon state.’’ The form
of the interaction depends on thet-channel color of the iter-
ated Reggeon state, i.e. we can write@5# ~imposingk11k2

5k181k28)

G22~k1 ,k2 ,k18 ,k28!5a~k11k2!21bM2

2cR22~k1 ,k2 ,k18 ,k28!, ~3.6!

wherea, b and c are color factors~that include an overall
normalization factor! and
R22~k1 ,k2 ,k18 ,k28!5
~k1

21M2!~k2
281M2!1~k2

21M2!~k1
281M2!

~k12k18!21M2 1
~k1

21M2!~k1
281M2!1~k2

21M2!~k2
281M2!

~k12k28!21M2 .

~3.7!
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The ~massive! BFKL equation@4# is simply the color zero
Reggeon ‘‘Bethe-Salpeter’’ equation obtained by iterating
Reggeon interactionG22 in Reggeon diagrams.G22 is not a
Fredholm kernel and so the solution of the BFKL equat
need not contain only Regge poles. Indeed, the BF
Pomeron is generated from the large transverse momen
region and is a fixed cut. For our purposes, we will impo
an upper transverse momentum cutoff and~ultimately! will
utilize only the infrared properties of the BFKL equation.

In general, it can be shown@27# that the contributions of
all logarithms~down to an arbitrary nonleading level! can be
described by transverse momentum diagrams. AbstractSma-
trix results @1–3# on unitarity in the complex angular mo
mentum plane~Reggeon unitarity! imply that the transverse
momentum diagrams can be organized into an elaborate
ponentiation phenomenon in which a complete set
Reggeon diagrams appears, involving all possibleJ-plane
multi-Reggeon states. For our present purposes we req
only a few infrared properties that existing calculation
combined with general arguments, imply are satisfied by
complete set of Reggeon diagrams~or, equivalently, the
complete set of transverse momentum diagrams!. A more
extensive discussion can be found in@9#.
e

L
m

e

x-
f
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,
e

When M→0 infrared divergences appear in both t
Reggeon trajectories and the~integrated! Reggeon interac-
tions. At first sight the divergence

D~Q2! →
M2→0

ln M2 ~3.8!

exponentiates to zero all Reggeon amplitudes via the Re
pole exponentiation~3.1!. In the J plane this exponentiation
of divergences is reflected in the vanishing of the Regg
propagator~3.4!, and all higher multi-Reggeon propagator
However, since divergences also appear in the Reggeon
teractions, to discuss theM→0 limit in detail, it is advanta-
geous to undo the Reggeon diagram organization and
back to transverse momentum diagrams. The Reggeon i
actions and Reggeon trajectory contributions can be c
bined into ‘‘kernels’’KN

I ( . . . ,ki , . . . ,kj8, . . . ), whereI de-
notes SU~2! color. If the kernels are defined to include
transverse momentum conservingd-function they are dimen-
sionless~in transverse momentum! and describe the iteration
of dimensionless lowest-order ‘‘multigluon transverse m
mentum states’’TN where
7-12
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TN5
1

J21E )
i 51

N
d2ki

ki
2 . ~3.9!

For example,

K2
I ~k1 ,k2 ,k18 ,k28!

5d2~k11k22k182k28!

3FG2,2
I ~k1 ,k2 ,k18 ,k28!1k1

2k2
2@D~k1

2!1D~k2
2!#

3F1

2
d2 ~k12k18!1

1

2
d2 ~k12k28!G G. ~3.10!

For simplicity we refer toTN as a ‘‘multigluon state’’ in
the following. In this context a multigluon state will alway
be the lowest-order transverse momentum diagram con
uting to a multi-Reggeon state. As such, the multigluon s
will carry the color and signature properties of the par
multi-Reggeon state. Note that gauge invariance~in the form
of Reggeon Ward identities@15#! implies that the kernelsKN

I

have zeros~when anyki or kj8 vanishes! which, at fixedQ2,
prevent the poles in theTN from producing divergences. A
fixed Q2, therefore, the divergences come only from the t
jectory and interaction terms contained in the kernels.

When thet-channel color is nonzero the divergences p
duced byG2,2

I do not cancel those due to theD(ki
2) terms in

Eq. ~3.10! and, in general, for a multigluon kernel with non
zero color, the interaction divergences do not cancel the
jectory divergences. As a result

TNKN
I 5

1

J21E )
i 51

N
d2ki

ki
2

3KN
I ~ . . . ,ki , . . . ,kj8, . . . !→`,

Q2,IÞ0 ~3.11!

and so the exponentiate of divergences due to Reggeiza
dominates and sends the sum of all diagrams in any colo
channel to zero, as illustrated in Fig. 5. WhenI 50 andQ2

Þ0, the trajectory and interaction divergences do cancel
a result there is no exponentiation of divergences.K2

0, as
given by Eq.~3.10!, is the familiar~massless! BFKL kernel
and if there is no ultraviolet cutoff on the transverse m
menta~as we will shortly impose! the iteration shown in Fig.
5 produces the BFKL Pomeron.

The disappearance of all colored multigluon states is
confinement since, in the color zero diagrams, the glu
poles in the states remain—even though there is a canc
tion of divergences forQ2Þ0. If the iterated diagrams ar
coupled gauge invariantly to scattering states then such
plings will also have the necessary zeros to make the c
plete amplitude finite at fixedQ2. This is the infrared finite-
ness property which is extensively exploited in BFK
applications. Nevertheless, atQ250 a singularity remains
that is associated with the multigluon states and whose e
nature depends on the behavior of the kernels asQ2→0.
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Confinement could be produced if theQ250 singularity can
be absorbed into a ‘‘condensate,’’ as will be the case at
end of our analysis.1

In leading-log calculations the infrared finiteness prope
of the dimensionless kernels leads directly to conform
scale invariance. In general nonleading log contributions
introduction of a scale for the gauge coupling destroys
scale-invariance properties. If, however, there is an infra
fixed point for the gauge coupling~as is the case when
large number of massless quarks are present! the scale in-
variance properties will still be present in the infrared regio
In this paper we effectively assume the existence of suc
fixed point. We will also, for the purposes of this pape
impose an upper cutoff on the transverse momenta. Infra
finiteness then implies that the kernelsKN

0 scale canonically
asQ2→0 so that

E
uki u

2,ukj8u2,l
)

i

d2ki

ki
2 )

j

d2kj8

k8 j
2

KN
0 ~k1 , . . .kN ,k18 , . . .kN8 !

;El'dQ2

Q2 ~3.12!

where, as in the above,Q5(ki5(kj8 . If Eq. ~3.12! is ob-
tained via the limitM2→0, this divergence would appear a
a factor of ln@M2/l'#.

To understand the implications of this last divergence
formally rewrite Eq.~3.12!, analogously to Eq.~3.11!, as

~J21!2TNTN8 KN
0 ~3.13!

and note that infrared finiteness implies firstly thatJ
21)TN8 KN

0 is finite when theki are finite and, also, tha
(J21)TNKN

0 is finite when thekj8 are finite. Consequently
there are two contributions to the divergence in Eq.~3.12!,
depending on whether theQ2 integration is performed as
part of the integration over theki or as part of the integration
over thekj8 . In the first case the divergence is obtained fro
the region$ki!kj8; i , j % , whereas in the second case it is t
region$kj8!ki8; i , j %. In effect, either theTN or theTN8 inte-
gration produces the divergence, but not both.

If a color zero multigluon state is coupled without th
Ward identity zero~involving the transverse momentum o
the complete state! that is~normally! a consequence of gaug
invariance, Eq.~3.12! is a potential source of an infrare

1In effect, we will use the scale invariance properties of co
SU~2! Reggeon diagrams, which generate all of the conformal sy
metry properties of the BFKL Pomeron, only to generate a fac
izing infrared condensate. We then build up the Regge pole na
of the Pomeron through the remaining, massive, part of the ga
group.

FIG. 5. Iteration of a massless gluon kernel.
7-13
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FIG. 6. Isolation of the diver-
gence associated withTN .
g

g
n

m
a
i

7.
n
si

on
nju
eld

n
ig

lo

te

ng
rg
ou

f
u

si
m
us

ss-
so,
-

so

st

ill
t is
ver-
ned
po-
tes
at-
rse
be

out
r di-

ta

lso

ed
n

es.
ign
tate
divergence. This will be the case for the anomaly couplin
that we discuss below. It is important that as the kernelKN

0 is
iterated a divergence always occurs whenQ2→0. The de-
gree of divergence does not increase but rather, in an inte
involving a product of many kernels, there is a distinct co
tribution from eachTN . The divergentTN can then be iso-
lated and the remaining integrations organized, in the co
plete set of diagrams, as illustrated in Fig. 6. It follows th
the residue of the logarithmic divergence can be written
the factorized form

1

J21E dQ2

Q2 E )
i

d2ki

ki
2 d2S Q2( ki D

3uMN
0 ~J,k1 , . . .kN ,l'!u2 ~3.14!

whereMN
0 is given by the sum of diagrams shown in Fig.

In the following we will need to know the interactio
between massless multigluon states and the mas
~Reggeized! gluons that are also in the theory. For SU~2!
color zero we can distinguish two classes of multiglu
states, as follows. First we introduce the color charge co
gation operator for both gluons and quarks. For a gluon fi
with color matrixAa,b

i , color charge conjugationC gives

Aab
i →2Aba

i ~3.15!

while a quark with a given helicity is transformed to an a
tiquark of the opposite helicity. We can also define the s
naturet of a multigluon state ast561 for an even or odd
numbers of gluons. There are, essentially, two distinct co
zero combinations of gluon fields, i.e.

Tr$d i j A
iAj%, Tr$e i jkAiAjAk% ~3.16!

which both haveC511 but can, respectively, createt5
11 and t521 states. However, since a multigluon sta
inherits the signature of a multi-Reggeon state,t must satisfy

t5CP ~3.17!

whereP andC are, respectively, the behavior of the coupli
of the multigluon state under the parity and color cha
conjugation operations. In perturbation theory such c
plings haveP511 for color zero.P521 corresponds to
‘‘abnormal’’ parity ~as would be required for the coupling o
a color zero axial vector—such as the winding-number c
rent!. From Eqs.~3.16! and ~3.17!, it then follows that only
even signature combinations of gluons can couple. Odd
nature multigluon states can couple only via the abnor
parity properties of the anomaly couplings that we disc

FIG. 7. Diagrams contributing toMN
0 .
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next. However, a kernel describing the interaction of ma
less and massive gluons will not contain any anomaly and
as illustrated in Fig. 8, it will vanish for odd-signature com
binations of massless gluons. In the following we will al
need to assume that, at least forl' sufficiently small, when
odd signature gluons do couple~via an anomaly coupling!
and then interact amongst themselves theMN

0 (J, . . . ) given
by Fig. 7 is not singular forJ>1. This will justify our ex-
traction of an overall scaling divergence from what, in lowe
order, is just a simple, odd-signature, multigluon state.

We will need only elementary properties of quark~and
antiquark! transverse momentum diagrams. Although we w
not need to discuss Reggeization effects in any detail, i
important that massless gluons again produce infrared di
gences in multiquark transverse momentum kernels defi
analagously to the multigluon kernels. Again, also, the ex
nentiation of Reggeization implies that only color zero sta
survive. In fact, because our introduction of Regge kinem
ics will be to some extent artificial, even the use of transve
momentum diagrams for quarks will seem, in part, to
forced. If the ‘‘full multi-Regge’’ calculation, to which we
refer at various points in this paper, were to be carried
then quark transverse momentum diagrams would appea
rectly and naturally. Color zero quark~and antiquark! states
would be directly selected by infrared divergences.

For fermions, in addition to using light-cone momen
k65(k06k1)/A2 , it is convenient@28# to use complex mo-
mentak5k21 ik3 to describe transverse momenta and a
to use a corresponding notation for transverseg matrices, i.e.

g5~g21 ig3!/A2,
~3.18!

g* 5~g22 ig3!/A2.

We then have

g25g* 250, gg* 1g* g52. ~3.19!

In the Regge limit the transverse part of an exchang
fermion propagator dominates, i.e. for a massless fermio

k”

k2
→ 1

2 S g*
1

k*
1g

1

k D ~3.20!

where the two terms represent the two different chiraliti
For two fermion exchange the combination of opposite s
chiralities dominates and so the transverse momentum s
corresponding to Eq.~3.9! is

FIG. 8. Interaction of massive and massless gluons.
7-14
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F25
1

JE d2k1d2k2S g

k1
^

g

k2
1

g*

k1*
^

g*

k2*
D ~3.21!

where thê sign indicates that the twog matrices are sepa
rately associated with the two fermion lines.

C. Pion couplings to wee gluons

We now generalize the light-cone analysis of the trian
anomaly pole in the previous section to derive furth
anomaly pole couplings involving wee gluons. It will b
helpful to describe these couplings before we discuss t
role in producing high-energy scattering amplitudes.

The massless pion~and nucleon! Goldstone states we cre
ate will have two distinct components, as illustrated in F
9~a!. A massless pion, with light-cone momentumk1

1 , will
contain an~odd-signature, color zero! ‘‘wee-gluon’’ compo-
nent with light-cone momentumk2

2 ~wherek2
2/k1

1→0) to-
gether with a massless quark-antiquark pair that carries
flavor quantum numbers and the light-cone momentumk1

1 .
The pion coupling to both components will be provided
the triangle diagram anomaly as illustrated in Fig. 9~b!. We
discuss a diagram containing three massless gluons since
is the simplest color zero, odd signature, multigluon state
the kind discussed in the previous subsection. Our discus
will easily generalize to any number of massless gluons c
pling at adjacent points. The anomaly couplings we obt
will imply that the leading high-energy behavior in pion sca
tering arises when either the quark or the antiquark carrie
the light-cone momentumk1

1 . For our immediate discussio
we will take it to be the quark that carries this momentum

Figure 9~b! contains two ‘‘effective vertices’’ that are eac
obtained by placing propagators on shell in a larger diagr
as illustrated in Fig. 10. As in our discussion of the elem
tary triangle diagram we justify keeping only the anoma
pole part of the diagram by appropriately restricting the
ternal momentum region. As we discuss in the followi
subsection, the on-shell propagators will then arise con
tently from longitudinal momentum integrations~that are ex-
ternal to the triangle!. We again allow lightlike momentak1

1

and k2
2 to flow through the diagram and generate the n

merator factors shown. The pion mass shell will be a
proached in the limit that we takek2

2→0 with k1
1 kept fixed.

In this limit, therefore, the massless gluons become w
gluons.

FIG. 9. ~a! Pion components;~b! the anomaly coupling.
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The generation of an effective vertex for the wee gluons
straightforward and is illustrated in Fig. 11. The wee gluo
will all carry the same~longitudinal! polarization and so, as
the hatched lines in Fig. 11 are placed on-shell, we will o
tain an effective vertex

g2E dk118 g1k1
1

k118 k1
11•••

g2E dk218 g1k1
1

k218 k1
11•••

g2

5g2g1g2g1g254g2 . ~3.22!

We will give more details on how these integrations ar
later.

The generation of an effective vertex involving the exte
nal quark-antiquark pair is a little more complicated. B
cause the internal quark and antiquark carry distinct quan
numbers they can interact only by gluon exchange. To ob
a gauge-invariant transverse momentum diagram the g
must be on-shell. In a conventional transverse momen
diagram the produced quark-antiquark pair would have
posite chiralities@to couple to the transverse momentum st
~3.21!#. This will not be the case in our analysis since t
quark-antiquark pair will carry the light-cone momentu
k1

1 . However, as we discuss further in the following, w
expect our analysis to be the continuation to lightlike pi
momentum of spacelike Reggeized pion exchange wit
which the quark-antiquark pair would appear as a transve
momentum state.

The interaction needed to produce a quark-antiquark
~with opposite chiralities! in a transverse momentum sta
has theg-matrix structure shown in Fig. 12~a!. The quark-
antiquark interaction that we will need is shown in Fi
12~b!. In both cases we have included the~upper! g matrices
that come from the internal numerators of the triangle d
gram as well as the~lower! g matrices associated with th
propagating quark-antiquark state. The middleg matrices are
the couplings to be produced by the exchanged gluon. In
‘‘needed interaction,’’ oneg' interaction will be necessary to
obtain the anomaly numerator. In our case we will needg2
because we will specifically choose the$3% component of the
axial vector current generating the triangle diagrams

FIG. 10. Reduction to a triangle.

FIG. 11. Generation of an effective vertex.
7-15
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utilize ~see Fig. 15 below!. The replacement of the secon
g' interaction byg2 is necessary to allow the quark to car
a lightlike momentum implying, of course, that the sp
structure of the quark-antiquark state cannot be symmet

The g-matrix structure of the interaction due to the e
change of an on-shell massless gluon can be written as

(
i 51

4

g i
^ g i5g1

^ g11g2
^ g21g'

* ^ g'1g' ^ g'
*

~3.23!

where thê factor indicates that the twog matrices operate
on distinct fermion lines. The diagonal nature of this int
action implies that it cannot produce either the interaction
Fig. 12~a! or that of Fig. 12~b!. The exchange of an on-she
massive gluon with massMC produces, however, an add
tional interaction

g• k̂^ g• k̂

MC
2

~3.24!

wherek̂ is the momentum of the gluon. As is shown in Fi
13, the new interaction contains the needed coupling.@It also
contains the transverse state coupling of Fig. 12~a!.# The
g-matrix and momentum structure of the effective vert
involving Fig. 13 is then as illustrated in Fig. 14. We ha
defined k̃ such thatk1

1 flows directly into the quark line
without flowing along the exchanged gluon line.~This will
give the final high-energy behavior most directly.! In this
case thek̂ appearing in Fig. 13 is identified withk̃1k2

2 and
so, as illustrated, the component of Eq.~3.24! that we need is

k̃2~k2
21 k̃2!g2^ g2

MC
2

. ~3.25!

In Fig. 15 we combine together the anomaly triangle d
gram numerators and theg-matrix dependence of the abov
effective vertices for the triangle diagram of Fig. 10. As
lustrated, the resulting numerator factor is

FIG. 12. ~a! Production of a transverse state;~b! the needed
interaction.

FIG. 13. The exchange of an on-shell massive vector.
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g2@k2
2g2#g5g3@k1

1g1#g2@k1
1g1#g2

522g5g2g2g3g1g2~k1
1!2k2

2

524g2g5
2~k1

1!2k2
21•••

524g2~k1
1!2k2

21••• ~3.26!

which includes the anomaly numerator, together with an
ditional g2 that couples to the produced quark-antiqua
pair. The role of theg2 coupling in producing Eq.~3.26! is
clear.

We will put the exchanged gluon on mass shell via thek̃1

integration. Including the numerator factor of (k̃21k2
2) that

appears in Eq.~3.25! this integration has the form

E dk̃1~ k̃21k2
2!g2

2~ k̃21k2
2!k̃12 k̃'

2 2MC
2

3•••;g2. ~3.27!

The momentum dependence of the quark-antiquark effec
vertex is then simply the remaining factor ofk̃2 in Eq. ~3.25!.
The denominator of the reduced diagram coincides with t
of the triangle diagram, and so the anomaly pole is genera
straightforwardly. The full anomaly pole amplitude produc
by Fig. 9~a! is therefore

g2

@~k1
1!2k2

2k̃2#

MC
2 q2

. ~3.28!

The presence of a massive gluon is clearly crucial for
generation of this amplitude.@Since we are not going to sum
diagrams nor include color factors in our discussion we w
also ~effectively! ignore all numerical factors.#

D. The four-current amplitude and the contributing diagrams

A major purpose of the approach developed in this pa
is to avoid, as much as possible, the multi-Regge theory
has been a feature of our previous papers. Our intention
focus directly on properties of the anomaly and thus to
rive, as directly as is possible, at the dynamical interacti
of pions~and nucleons!. Having the above pion couplings i

FIG. 14. Generation of a second effective vertex.

FIG. 15. The full anomaly numerator.
7-16
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hand, it might be anticipated that we could obtain a p
scattering amplitude by considering a four axial vector c
rent amplitude

Mm1m2m3m~p1 ,p2 ,p3 ,p4!

5^Am1

1 ~p1!Am2

2 ~p2!Am3

3 ~p3!Am4

4 ~p4!& ~3.29!

in which the currents carry flavor quantum numbers such
pion ~or nucleon! scattering could appear. If there is confin
ment @of SU~2! color# and chiral symmetry breaking, w
expect to find a contribution to the current amplitude of t
form ~with a momentum conservingd function removed!

Mm1m2m3m →
p1

2 ,p2
2 ,p3

2 ,p4
2→0

p1m1
p2m2

p3m3
p4m4

p1
2p2

2p3
2p4

2

3A~s,t !1••• ~3.30!

wheres5(p11p3)2, t5(p11p2)2 and, up to a normaliza
tion factor,A(s,t) is the pion scattering amplitude. The om
ted terms are less singular aspi

2→0,i 51, . . . ,4.
We would not expect, of course, to be able to find the p

amplitudeA(s,t) at finite momentum. Instead, we might a
ticipate that combining the Regge limit (s→`, t fixed! with
the mass-shell limit (pi

2→0,i 51, . . . ,4) would enable us to
exploit the infinite momentum properties of the anomaly d
cussed in the previous section. We would look for the
pearance of pion poles via the anomaly pole interactions
cussed above. Isolating the anomaly pole dynamically~i.e.
within a larger diagram! is, however, highly nontrivial. To
proceed without multi-Regge theory we will have to follow
procedure which may appear contrived, if not artificial.
will, nevertheless, have the significant advantage of taking
directly to the high-energy pion scattering amplitude. Wh
we will briefly explain how the procedure would be full
justified within a complete multi-Regge analysis, we will b
able to stay away from the full calculation. We will indee
consider a four-current amplitude but the currents will not
simple local operators. We will also describe the format
of amplitudes in terms of diagrams that can be thought
initially, as Feynman diagrams. However, many of the in
gration regions in the diagrams will be cutoff, or even r
moved altogether. Before amplifying on our procedure,
discussing the justification, we first describe the kinds
diagrams that will be involved.

To have all the necessary anomaly effects present the
grams must, unfortunately perhaps, be extremely com
cated. Even though almost all of this complexity will grad
ally drop away as we proceed towards a physical p
scattering amplitude. The simplest class of diagrams wh
combine all the anomaly interactions are those shown in
16~a!. As indicated, the diagrams contain both massless
massive gluons together with massless quarks. From
grams of the form shown in Fig. 16~a!, we will obtain pion
scattering via Pomeron exchange as illustrated in Fig. 16~b!.
The Fi amplitudes contain diagrams that will generate
flavor anomaly and a pion pole as described above. ThU
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amplitudes contain diagrams that will generate the U~1!
anomaly, as described in@13# and @14#. The U amplitudes
will provide the coupling of the pion to the ‘‘Pomeron’’ tha
is exchanged in the Regge limit.

Having discussed the diagrams that generate the fla
anomaly in the previous subsection it will be helpful, at th
point, to give the structure of the diagrams contributing
UL . Apart from the substitution of a quark-antiquark pair f
a gluon, these are essentially the diagrams discussed in@13#.
The simplest diagrams have the form shown in Fig. 17.
illustrated schematically in Fig. 18, if the hatched lines a
placed on-shell the diagram of Fig. 17 reduces to a trian
diagram containing the anomaly. A crucial feature of th
reduction is that the ‘‘anomaly pole’’ is integrated over a
so, as illustrated, is manifest as ad function that factorizes
the transverse momentum dependence of the wee gluon
teraction and the ‘‘parton interaction’’ of the quarks and ma
sive gluons. To give more details of this reduction we w
need the kinematics used to discuss the full diagrams of
16~a!.

Let us first assume that~schematically! the diagrams of
Fig. 16~a! are generated by full Feynman diagrams involvi
local axial vector currents. In the next subsection we w
expose the subtleties which imply that this cannot be
case. This will lead directly to an amended procedure, wh
we then follow. We would like eachFi amplitude to be an
anomaly pole amplitude derived, in principle, from under
ing diagrams within which, a loop integration is restricted
the region~2.41!. In this region a light-cone momentum ci
culates which is essentially the corresponding external~pion!
momentum. This momentum is ‘‘large’’ compared to the ze
mass of the gluons. The central idea would be that, in
combined Regge and mass-shell limit, the dominant con
bution to the full amplitude is obtained from this region
integration. We would argue that the internal large light-co
momenta will combine with the external Regge limit to pr
duce similar results to a multi-Regge limit in that we will b
allowed to treat all the massless gluons as if they were
changed in a Regge kinematic regime. As a result m
propagators will be placed on shell, including those that
duce theF amplitude to an effective triangle diagram th

FIG. 16. ~a! The simplest diagrams;~b! p2p scattering via
Pomeron exchange.
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ALAN R. WHITE PHYSICAL REVIEW D 66, 056007 ~2002!
contains the flavor anomaly as described in the previous
section. Similarly, within theU-amplitude lines will be
placed on shell by both the external Regge limit and
internal ‘‘Regge limit’’ of the massless gluons such that t
triangle diagrams appear that contain the~U~1!! anomaly. As
with the flavor anomaly, the internal integration can be
stricted to a light-cone region such that the anomaly inter
tion is separated out.

Provided the massless gluon configurations reduce
transverse momentum diagrams as we have just describe
would expect,a priori, that the violation of gauge invarianc
associated with isolating the anomaly pole will produce
logarithmic scaling divergence discussed in Sec. III B. W
would expect this divergence to occur separately for all o
signature massless gluon combinations, since interact
which iterate this divergence are absent in this case. Th
fore, in the ‘‘dominant’’ ~divergent! contribution from dia-
grams of the form of Fig. 16~a!, all the massless gluon
should carry zero transverse momentum. This, in turn, wo
appear to self-consistently justify keeping only the anom
pole part of theF andU amplitudes.

E. Dynamical isolation of the anomaly pole

As we saw in Sec. II, the lightlike kinematic configur
tions in which the anomaly pole appears in the triangle d
gram are extremely special. Consequently, as we no

FIG. 17. One of the simplest diagrams contributing toUL .

FIG. 18. Producing the U~1! anomaly.
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above, isolating its occurrence within larger diagrams is v
nontrivial. In particular, if we use the full uncut diagram o
Fig. 10 as an axial current coupling, except that the inter
loop integration is restricted to the region~2.41!, then we
have the following problem with the above schematic pro
dure. When the uncut diagram appears as part of a m
bigger diagram, as it should do in the diagrams of Fig. 16~a!,
the integration restriction is not actually sufficient to indu
the Regge kinematics we want. Even if it were, the light-li
momentum configurations produced by multigluon tran
verse momentum divergences, although very close to th
in which the anomaly pole appears, would not be quite w
is needed.

These problems are caused because when the diagram
gives the pion coupling of Fig. 9~a! is a component of a
larger diagram, the light-cone momentum denoted byk̃82in
Fig. 19~a! should be integrated over. The presence of t
momentum has two effects. First it gives a mass; k̃82k1

1 to
the quark-antiquark pair that prevents the appearance o
pion anomaly pole. Secondly, if it flows through any of th
massless gluon propagators, it will combine with the lig
like momentum flowing in from theU amplitude to remove
the transverse momentum divergence of the massless g
state.

To remove these problems we make the momentum
striction thatk̃8250, i.e. k̃82is not integrated over. This will
allow us to follow explicitly the schematic procedure ou
lined in the previous subsection. In effect, though, it is th
restriction that generates the logarithmic transverse mom
tum divergences which are the cornerstone of our dynam
Within this presentation, it may therefore appear artific
and perhaps even unphysical at first sight. However, this
striction would automatically appear if the current was no
simple local operator but was instead a nonlocal curr
component that originates from a further external infin
momentum limit as illustrated in Fig. 19~b!. ~As would be
exactly the case if we used multi-Regge theory to first obt
the pion as a spacelike Reggeized state.! In this case, the
axial vector current component is an effective point coupl
derived by placing an intermediate quark state on shell,
an integration overk̃82. ~Using the k̃82 integration for this
purpose leaves intact the full loop integration generating
anomaly.!

Probably, the feature that local axial vector currents
not only not needed but are not wanted in our formalism i
deep matter of principle. It seems to be essential that
pion be extracted as a wee-parton component of additio
infinite momentum external states.~Effectively exploiting
the ‘‘triviality of the infinite momentum vacuum’’ to the

FIG. 19. ~a! k̃8250; ~b! the P̃81→` coupling.
7-18
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CHIRAL ANOMALY AND HIGH-ENERGY SCATTERING IN QCD PHYSICAL REVIEW D66, 056007 ~2002!
maximum.! The additional external states should be vec
particles with the appropriate polarizations to induce an a
vector current vertex. It is interesting~and perhaps also
deep feature of our procedure! that the quantum number
involved imply these particles could actually beWs and the
Z0.

Although it would be a more complicated calculatio
there would be other advantages in making the further i
nite momentum limit part of our discussion. In particular
would eliminate the need to appeal to the phase-space
striction involved in generating the anomaly pole to just
placing the hatched lines of the anomaly generating diagr
on shell. Indeed, it should now be clear that if we want
proceed systematically we cannot really avoid multi-Reg
theory and we are paying a heavy price by trying to do so
we simply studied the limit producing the multi-Regge a
plitude of Fig. 20 no questionable procedures would be n
essary. The appearance of the reduced triangle diagram i
coupling of the externalW andZ0 states would be~compli-
cated but! straightforward in principle. The anomaly~or
pion! pole would directly appear in conjunction with th
transverse momentum divergences. The one subtlety
would remain would be the interplay between the ultravio
and infrared contributions of both the chiral and U~1! anoma-
lies. However, we will not elaborate on this here.

It is important to note that, in this paper, we will isola
the anomaly pole~in principle by a phase-space restrictio!
in all the anomaly subdiagrams within our amplitudes.
@15# we proposed starting with initial states that had effe
tively the same wee gluon content as the pions we create
the anomaly pole. However, we then allowed them to sca
into arbitrary multi-Reggeon states and argued that
anomaly interactions generate an overall logarithmic infra
divergence that selects the allowed physical states and
plitudes. In the present discussion, we will require pion po
in both the initial and final states. Nevertheless, for sub
reasons the overall divergence will remain logarithmic.

As a final point, before we proceed to the construction
actual amplitudes, we note that that we will impose a cu
in all transverse momenta. This has a dual purpose. Firs
obtain contributions from ‘‘relatively simple’’ ~gauge-
dependent! Feynman diagrams to gauge-invariant transve
momentum diagrams~that have contributions, of course
from many Feynman diagrams!. Secondly we will want to
exploit the infrared scaling properties of multigluon tran
verse momentum diagrams that lead to infrared divergen
as discussed in the above subsection. Our final results wi

FIG. 20. A multi-Regge amplitude.
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presented entirely in terms of transverse momentum
grams or, at a later stage, Reggeon diagrams.

F. Light-cone momenta and Lorentz frames

Light-cone momenta are clearly a central feature of o
discussion. In discussing the various components of d
grams of the form of Fig. 16~a! we will need to allow for a
variety of light-cone momenta, both externally and as in
gration variables. In particular, to introduce the triple-Reg
U~1! anomaly interaction the wee gluons in an outgoing p
must be associated with a light cone whose space directio
orthogonal to that of the incoming wee gluon light cone.
describe this we will need to introduce some new light-co
notation. In addition we will need to introduce a set of Lo
entz frames in which the various external momenta take s
cific forms.

We begin in what we will call the ‘‘finite momentum
frame’’ FL for the left-hand part of Fig. 16~a!. In this frame
we write

p15k11
1q12

5k121q11

5S k

A2
,

k

A2
,0,0D 1S q

A2
,2

q

A2
,0,0D . ~3.31!

The notation is straightforward in thatk11
is a vector with

raised index component along the light cone defined by
positive $1% axis ~and all other orthogonal components a
zero!. Simiilarly q12

is a vector with raised index compone
along the light cone defined by the negative$1% axis. The
same vectors can be labeled via lowered index compon
as usual. We similarly write

p252k21
2q22

52k222q21

52S k

A2
,0,

k

A2
,0D 2S q

A2
,0,2

q

A2
,0D ~3.32!

where nowk21
is a vector with raised index compone

along the light cone defined by the positive$2% axis while
q22

is a vector with raised index component along the lig
cone defined by the negative$2% axis. Since

p1
25p2

252kq ~3.33!

we see that

q→0⇒p1
2 , p2

2→0. ~3.34!

In the ‘‘infinite momentum frame’’FI , in which we will
consider the complete scattering process, the momentap1
andp2 are obtained from their finite momentum frame form
by applying a boostaz(z) along thez axis. If C5coshz and
S5sinhz then
7-19
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p15S C
k1q

A2
,
k2q

A2
,0,S

k1q

A2
D ~3.35!

and

p252S C
k1q

A2
,0,

k2q

A2
,S

k1q

A2
D . ~3.36!

Similarly, in the ‘‘finite momentum frame’’FR the mo-
menta entering the right-hand part of Fig. 16~a! have the
form

p35k21
1q22

5S k

A2
,0,

k

A2
,0D 1S q

A2
,0,

2q

A2
,0D ~3.37!

and

p452k11
2q12

52S k

A2
,

k

A2
,0,0D 2S q

A2
,2

q

A2
,0,0D ~3.38!

and so we also have

p3
25p4

252kq. ~3.39!

For the right-hand momenta, however, the infinite m
mentum frameFI is reached from the finite momentum
frameFR by applying a boostaz(2z) along thez axis.FR is
therefore reached fromFL by a boostaz(22z). In FI

p35S C
k1q

A2
,0,

k2q

A2
,2S

k1q

A2
D ~3.40!

and

p452S C
k1q

A2
,
k2q

A2
,0,2S

k1q

A2
D . ~3.41!

Evaluating all momenta inFI we have

s5~p11p3!25~p21p4!2 →
q→0

~C21S2!k2 ;
C→`

2C2k2

~3.42!

t5~p11p2!2 →
q→0

2k2. ~3.43!

Therefore, we now have three external momentum scale
addition to one mass scale, in our discussion, i.e.

q2!MC
2 !k2!s. ~3.44!
05600
-

in

The mass-shell limit is nowq→0 and the Regge limits/t
→` is obtained asC→`. In the following we will combine
these limits by taking

q;1/C→0, qC@MC . ~3.45!

G. Constructing amplitudes

To construct amplitudes corresponding to the diagrams
Fig. 16~a! we proceed as outlined in the above subsectio
We first consider Fig. 9 as a one loop Feynman diagr
within F1 and ignore the hatches. We consider the analag
diagram withinF2 and connect the two diagrams with th
UL diagram of Fig. 17 to obtain the full diagram shown
Fig. 21. ~The double-dashed line carries zero moment
within the anomaly configuration that will be discuss
later.! If we then treat this diagram as a subdiagram and j
it with its own reflection we obtain a complete diagram
the form shown in Fig. 16~a!. The left and right-hand sub
diagrams will be joined only by the exchanged gluons~three
massless and one massive!, which will carry finite transverse
momentum~in all three Lorentz frames!. The relevant parts
of the left and right-hand subdiagrams will have analago
forms in theFL andFR frames, respectively, and will be in
relative Regge limit in theFI frame. The combination of the
Regge limit with the phase space retrictions we impose w
as anticipated, place a large number of lines on-shell s
that the central quark loop withinUL reduces to a triangle
diagram as illustrated schematically in Fig. 18. The cruc
element will be, of course, that this diagram also contains
anomaly pole. To understand this we must determine all
effective vertices that are produced by the reduction to tra
verse momentum integrals.

To discuss the diagram of Fig. 21, we will begin in theFL
frame and as we evaluate each part of the diagram we
discuss the effect of transforming to theFI frame. In theFL
frame p1 and p2 are given, respectively, by Eqs.~3.31! and
~3.32!. We direct the large light-cone momentak11

andk21

through the diagram as shown and restrict the integratio
both Fi diagrams to the momentum region corresponding
Eq. ~2.41!. Note that

k11
2k21

5S k

A2
,

k

A2
,0,0D 2S k

A2
,0,

k

A2
,0D

5S 0,
k

A2
,2

k

A2
,0D ~3.46!

is a spacelike momentum lying in the$x,y% plane. We intro-
duce notation for all the loop momenta of Fig. 21 in Fig. 2
We show only that part of the diagram involvingF1 and part
of UL . The part containingF2 can obviously be discusse
analagously. The hatched lines are those placed on she
longitudinal momentum integrations and each of the hatc
is labeled by the index for the momentum involved. We d
cuss each integration separately as follows.
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H. The massless gluons

Provided the loop momentump in the lower part of Fig.
22 is much less thank11 ~as will be the case in the anoma
pole contribution we will extract! theki8 integrations over the
momenta of the vertical massless gluon exchanges ca
reduced to transverse momentum diagrams by placing

FIG. 21. Connecting theF1 andF2 amplitudes.
II B

s
at
in
ce
a

05600
be
he

hatched fermion lines on shell. We can illustrate this~very
well-known! procedure as follows. Using conventional ligh
cone coordinates, which in the notation of Sec. III F cor

spond to light-cone vectorsk811
andk812

, we can write

FIG. 22. Notation for Fig. 21.
E d4k18d
4k28H gmg•~k182k11

1q12
!gng•~k282k11

1q12
!gt

~k182k11
1q12

!2~k282k11
1q12

!2 J
^ H gmg•~p2k182q12

!gng•~p2k282q12
!gt

~p2k182q12
!2~p2k282q12

!2 J 1

~k182 k̃18!2~k282k18!2~k281q12
!2

;H gm
E dk18

2g1k11

~k18
2k11

1••• !2
gn

E dk28
2g1k11

~k28
2k11

1••• !2
gtJ ^ H gm

E dk18
1g1p1

~k18
1p11••• !2

gn

E dk28
1g1p1

~k18
1p11••• !2

gtJ
3E d2k1'8 d2k2'8

1

~k1'8 2 k̃1'8 !2~k2'8 2k1'8 !2~k2'8 !2

;g1
^ g1E d2k1'8 d2k2'8 d2k3'8

d2S k̃1'8 2(
i

ki'D
~k1'8 2 k̃'8 !2~k2'8 2k1'8 !2~k2'8 !2

~3.47!
nd
ga-
be

ple
which is a transverse state of the kind discussed in Sec. I
This illustrates how the integrals~3.22! arise. Also theg1

(5g2) factor is the effective vertex appearing in Fig. 11.
Equation~3.47! is, as anticipated, infrared divergent. A

we discussed at length in Sec. III B, if the three gluon st
carries color all of the divergences will exponentiate
higher orders. If it carries color zero the only divergen
which will not exponentiate is the overall divergence th
.

e

t

potentially occurs whenk̃1'8 is integrated over and theki'8
are scaled uniformly to zero. If this divergence is present a
we isolate its contribution, the massless multigluon propa
tors will contribute only at zero momentum and there will
no effect in transforming their contribution from theFL
frame to the FI frame. ~While the contribution of the
anomaly amplitudes to which the multigluon states cou
will depend on the small light-cone momentumq12

, the con-
7-21
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ALAN R. WHITE PHYSICAL REVIEW D 66, 056007 ~2002!
tribution of the transverse propagators and interactions
be independent of this momentum.! To discuss the exact na
ture of the divergence we must include the effective verti
provided by the anomaly amplitudes and the contribution
the quark-antiquark state.

For the reasons discussed in Sec. III E, we do not integ
over k̃18

2 and so atk̃1'8 50 the effective vertex provided b
the F1 amplitude will be the anomaly pole amplitude of E
~3.28!. In frameFI we will use Eq.~2.55! which gives the
pion coupling after the current momentum factor has b
removed. In the present notation the full effective vertex p
vided by theF1 amplitude is then~without the current mo-
mentum factor!

k̃2

esd32~k11
!s~q12

!d

q2
; k̃2

@kqC#

MC
2 q2 ~3.48!

which, whenqC is kept finite, gives a finite pion pole res
due. Note that, since this vertex is independent ofk̃1'8 , it will

not affect the divergence atk̃1'8 50 . This is a crucial conse
quence of the absence of a vector Ward identity for
anomaly pole contribution.

In the Regge limit, theq19 , q29 andq39 integrations will, in
analogy with Eq.~3.47!, be reduced to transverse momentu
integrals in the$x,y% plane by placing on shell the labele
hatched lines. (q39 is the momentum of the horizontal mas
less gluon line attached to the bottom of the diagram.! Since
theFL , FI andFR frames differ only by boosts acting in th
$z,t% plane, theqj9 transverse momentum integrations will b
the same in each of the frames we discuss and will prod
the same infrared divergence. If we continue to work in
FL frame the combination of theki8 andqj9 longitudinal in-
tegrations generates the effective vertices shown in Fig.
We will combine these vertices to obtain the anomaly am
tude produced by theUL loop shortly.

I. Quark transverse momentum integrals

The reduction to transverse integrals of the quark lo
integrations, overk̃1 in Fig. 22 and overk̃2 in the lower part
of Fig. 21, is not straightforward. This reduction should

FIG. 23. Massless gluon effective vertices.
05600
ill

s
f

te

n
-

e

ce
e

3.
i-

p

responsible for placing all of the hatched massive vec
propagators on shell. However, the light-cone mome
flowing along these lines (q12

and q22
) is small ~and zero

on mass shell! in FL , although it is finite inFI . Apparently,
therefore, there is no Regge limit kinematics for us to e
ploit. Nevertheless, we need to place the relevant lines
shell, both to obtain a gauge-invariant result in which w
understand the exponentiation of infrared divergences, an
utilize the anomaly couplings.

In the full multi-Regge limit of Fig. 20 thepi momenta
would be initially taken spacelike and~as we remarked ear
lier! quark transverse integrals would be obtained natura
Assuming a Reggeized pion appears, the multi-Regge am
tude will contain corresponding asymptotic dependence
invariant subenergies. This dependence should disappe
the scalar pions are placed on mass shell atpi

250, i 51,..,4
and the on-shell amplitude should factorize out straightf
wardly. Even though the full multi-Regge amplitude is ind
pendent of the subenergies~at pi

250) it is obtained by
asymptotic expansion around infinite subenergies. Co
spondingly, any transverse integrals that are involved sho
be initially obtained at infinite subenergies. In effect, we a
attempting to obtain these integrals directly at zero sube
gies by appealing only to properties of the anomaly po
generating the pions.

In fact, even with the kinematic constraints we have i
posed, we will be able to place all the massive gluon lines
shell ~and so, consistently, use the anomaly couplings!. The
result will be formally the same as carrying out the lar
subenergy limit but only a limited range of transverse m
menta will be involved. The discontinuity that is~effectively!
taken will be that of an unphysical pseudothreshold~at zero
subenergy!, rather than a physical normal threshold. Presu
ably ~although we will not attempt to prove this! the un-
physical chirality transition involved in the anomaly po
couplings can be viewed as producing this contribution.~In
the last section we described the relationship between an

FIG. 24. Theg-matrix structure generating theg5 vertex.
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CHIRAL ANOMALY AND HIGH-ENERGY SCATTERING IN QCD PHYSICAL REVIEW D66, 056007 ~2002!
physical singularity and the anomaly pole and in@13# we
emphasized that triple-Regge anomaly interactions are du
unphysical multiple discontinuities containing pseudothre
olds.!

As we have already noted, our discussion of the effec
vertex of Fig. 14 applies directly to the placing on-shell

the upper~massive gluon! line associated with thek̃1
11

inte-

gration in Fig 22. Thek̃1
12

integration associated with th
lower on-shell line is very similar and massive gluon e
change must again be involved. To see this we must esta
which g matrix couplings appear at the vertices. In fa
these couplings are almost entirely determined by the
quirement that the anomaly be present in the reducedUL
diagram. The completeg-matrix structure of Fig. 21 that is
not included in Fig. 23 is shown in Fig. 24. The top a
bottom trios ofg matrices in the initial figure are those du
to the effective vertices ofF1 and F2 that are analagous t
Fig. 14 together with the resulting propagator compone
We specifically choose the$3% component for both theF1
and F2 external currents. This choice, together with t
choice of the space directions for the large light-cone m
menta ofp1 andp2, determines the relative structure of th
trios. The appearance of theg36 matrices is a direct conse
quence of the Regge limit. The upper inset in Fig. 24 sho
how the identity~2.39! generates ag5 interaction. The par-
ticipating g11 andg21 matrices have to be produced by th
longitudinal momentum integrals~via massive gluon ex-
change!, as we discuss below. The remainingg1 andg2 ma-
trices are needed to allow the reduction of the remain
product to the unit matrix~plus terms that give zero whe
contracted with the massless gluon vertices!, as the lower
inset illustrates. It is not difficult to see that the requireme
of a g5 interaction, together with a nonzero reduction of t
remaining matrix product, determines the complete struc
of Fig. 24.

In Fig. 25 we have isolated theg-matrix structure and the
relevant momenta for the quark loops that coupleF1 andF2
in Fig. 21. Each of theg matrices in Fig. 25 is either a verte
component of a massive gluon propagator or is a numer
component of a quark propagator. Although theg matrices
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contract, as we have already discussed, the correspon
momentum factors remain. We ignore the loop momentump
since it will be set to zero by the generation of the U~1!

anomaly pole. Also, sincek̃1'8 5 k̃2'8 50 after the transverse
momentum divergence is extracted, we first ignore both
these momenta.

The k̃1
1 integration is given by Eq.~3.27! while the k̃1

2

integration has the form

E dk̃1
2~ k̃1

1g11q22
•g1!

2k̃1
1k̃1

212q22
• k̃12 k̃1'

2 2MC
2

3•••;g13•••. ~3.49!

The two integrations give, respectively,

2k̃1
1k̃1

212k̃1•q12
5 k̃1'

2 1MC
2 ~3.50!

and

2k̃1
1k̃1

212k̃1•q22
5 k̃1'

2 1MC
2 . ~3.51!

In the FI frame,q12
andq22

are boosted to become almo
the same lightlike momentumq31

, i.e.

q12
;~Cq,2q,0,Sq! ;

q→0
q31

,

~3.52!
q22

;~Cq,0,2q,Sq! ;
q→0

q31
,

and so Eqs.~3.50! and ~3.51! have a common solution asq
→0 ~which is why a pseudothreshold is involved! with

k̃1
1; k̃1

2; k̃13;
MC

2

Cq
, k̃12

2 &MC
2 . ~3.53!

Incorporating all the remaining momentum factors given
the g matrices of Fig. 25~a! ~together with a factor ofMC

22

from the additional exchanged gluon propagator! the k̃1'

transverse momentum integral has the form
1

MC
2 E d2k̃1'$F1numerator%3$antiquark numerator%3$gluon numerator%

3$quark numerator%/$propagator denominator%2

5
1

MC
2 E d2k̃1'k̃12k̃12~ k̃121q!k11

~ k̃1
2!2

~3.54!

;
qk11

MC
2 H E

uk̃13u;MC
2 /Cq

dk̃13J H E
MC

2 /Cq&uk̃12u&MC

dk̃12

k̃12
2 J ;

qk11

MC
2 H MC

2

CqJ H Cq

MC
2 J ;

qk11

MC
2

~3.55!
7-23
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which gives a finite answer in theFI frame whenk11
;C

→`, with Cq kept finite. Note that the part of the integran
in Eq. ~3.54! that does not vanish whenq50 is odd with
respect tok̃12 and hence integrates to zero. If this were n
the case, the combination of light-cone momentum fact
from each fast quark numerator would give an amplitu
increasing likeC4;s2.

Conversely, if we obtain only finite results of the form
Eq. ~3.55! for each transverse momentum integral, we w
not obtain any increasing behavior ass→`. To obtain the
maximally increasing amplitude, we must consider thek̃1'8

dependence in more detail. If, for example, we directk̃18 so

that in thek̃1' integral we substitutek̃128 for k̃12 in the anti-
quark numerator in Eq.~3.55!, this will give

qk11

MC
2

→
k̃128 k11

MC
2

;kC →
C→`

`. ~3.56!

Alternatively we can keep thek̃128 dependence of one of th
denominators giving

E dk̃12k̃12

~ k̃122 k̃128 !2

;

k̃182→0E dk̃12k̃128

k̃12
2

~3.57!

which again leads to Eq.~3.56!. If we keep the contribution
of the form of Eq.~3.55! from thek̃2' integral we will obtain
a factor ofC from the left subdiagram~of Fig. 21!. Treating
the transverse integrals from the right subdiagram in
analagous manner will give an amplitude increasing l
C2;s.

Obviously we could also keep the factor ofq in the k̃1'

integral and keep nonleadingk̃218 behavior in thek̃2' integral.
Either way we gain one power of the energy while reduc
the degree of divergence of either thek̃1'8 or thek̃2'8 integra-
tion. We will see that we cannot obtain a further power of t
energy by reducing the degree of divergence of all thek̃'8

FIG. 25. The quark loops:~a! g-matrices;~b! momenta.
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integrals since there will then be no overall transverse div
gence. To see this we must consider the final part of
diagram that we have not yet discussed in detail.

J. The U„1… anomaly amplitude and the infrared divergence

As illustrated in Fig. 26~a!, combining Fig. 23 and Fig. 24
produces a triangle ofg matrices which has the appropria
structure to give the anomaly. The large light-cone mome
k11

andk21 flow in and out of theg5 vertex and do not ente
the triangle diagram. As shown in Fig. 26~b! the external
momenta that flow through the diagram inFL are q12

and
q22

together with thek̃i8 and theqj9 ~all of which are zero in
the infrared divergence configuration for the massless g
ons, when the mass-shell limit is taken!. In @14# we dis-
cussed, at length, momentum configurations of this k
which produce the anomaly pole. For our present purpose
is simplest to go straight to theFI frame. In this frame the
timelike components ofp1 and p2 that areO(q) in the FL
frame are boosted to give the finite lightlike momentu
q31

;Cq, as in Eq.~3.52!, which then flows through the
diagram as in Fig. 26~c!. In this last figure we have droppe
the small~transverse! momenta along lines where the finit
lightlike momentum flows. If we defineq̃3' to be the~small!
momentum transverse toq31

that is flowing through the
~double! dashed vertical line then

q̃3'5~ k̃181 k̃28!3'2q̃8 ~3.58!

whereq̃85q 29 1q 39 . Comparison with the momentum con
figration ~2.42! shows that the anomaly ‘‘d-function ampli-
tude’’ has the form

~q31
!2q̃3d~ q̃3'

2 ! ~3.59!

which sets to zero momentum the double-dashed line.
The d function in Eq.~3.59! couples theqi9 and k̃ j8 infra-

red divergences. As we saw above, these divergences are
modified by the need to obtain nonzero quark transverse
mentum integrals. To consider the remaining divergence
keep only the scaling infrared divergence from each mass
multigluon state which, as discussed in Sec. III B, is the o
divergence that survives high-order exponentiation. T
overall divergence that remains then has the form

FIG. 26. ~a! The triangle;~b! momenta inFL ; ~c! momenta in
FI .
7-24
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E d2q̃8'$multigluon scaling amplitude%

E d2k̃81'd2k̃82'$multigluon scaling amplitude%2$anomaly%$quark momentum%

~3.60!

E d2k̃83'd2k̃84'$multigluon scaling amplitude%2$anomaly%$quark momentum%

;E d2q̃ '8

q̃8'
2 E d2k̃ 1'8 d2k̃ 2'8

k̃81'
2 k̃82'

2
d„~ q̃ '8 2 k̃ 1'8 2 k̃ 2'8 !2

…~ q̃ '8 2 k̃ 1'8 2 k̃ 2'8 !k̃ 128

E d2k̃ 3'8 d2k̃ 4'8

k̃83'
2 k̃84'

2
d„~ q̃ '8 2 k̃ 3'8 2 k̃ 4'8 !2

…~ q̃ '8 2 k̃ 3'8 2 k̃ 4'8 !k̃ 328

;E d2q̃ '8

q̃8'
2

which is a simple logarithmic divergence as we anticipated. We will not attempt to prove that this divergence can
canceled by other diagrams that we have not discussed.

K. The physical scattering amplitude

We keep as the physical scattering amplitude the coefficient of the divergence~3.60!—the divergence being factorized o
as a ‘‘condensate’’ that is to be part of the definition of a physical pion state.~We have discussed how this is consistent
Reggeon states in@14#.! The physical amplitude is then given by

)
i

$Fi anomaly pole amplitude%$quark k̃ i'8 integrals% )
j 5L,R

$U j anomaly amplitude%

3$massive gluon propagator% ~3.61!
ua
ffe

-
re

to
tu
rie

r-

ur
ms

ple
go
and so combining Eqs.~3.48!, ~3.55!, ~3.57! and ~3.59! we
obtain

S kCq

MC
2 q2D 4S ~kC!

MC
2

~kCq!

MC
2 D 2

~qC!4
1

t1MC
2

5S 1

q2D 4FC2q2

MC
2 G4Fsq2

MC
4 GF t

MC
2 G2F s

t1MC
2 G . ~3.62!

We have reorganized the result into the separate sq
brackets because each represents a different physical e
as we now briefly discuss.

The factor of (1/q2)4 in Eq. ~3.62! is, of course, the con
tribution of the four pion poles. All but the last two squa
brackets are finite constants when the limit 1/q;C→` and
so the pion scattering amplitude we obtain is~up to a nor-
malization factor, of course!

A~s,t !5F t

MC
2 G2F s

t1MC
2 G . ~3.63!

It might be tempting to interpret the first factor as related
the Adler zeroes that should occur at zero four momen
for each pion. However, our analysis has been car
05600
re
ct,

m
d

through with the constraint thatk2(52t)@MC
2 and so Eq.

~3.63! cannot be used att50. Because of thee tensor that
appears in the current coupling, it is the transverse~with
respect to the Regge limit! component of each of thepi that
contributes to the factor oft. It is natural, therefore, that if
the pions aquire a massmp we will have, when all pions are
on shell,

F t

MC
2 G2

→FOS mp
2

MC
2 D G 2

. ~3.64!

The massive SU~2! singlet gluon Reggeizes in higher o
ders, with an infrared finite trajectoryag(t) that satisfies
ag(MC

2 )51. Also, since we consider the exchange of fo
transverse momentum gluons, when we add all diagra
only the even signature amplitude will survive.~Indeed, it is
argued in@14# that only even signature exchanges can cou
via the anomaly.! Therefore, as we add all diagrams and
to higher orders we anticipate that we will have

F s

t1MC
2 G→F sag(t)1~2s!ag(t)

t1MC
2 G ~3.65!
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and so there will be no pole att1MC
2 50. Nevertheless

Reggeized gluon exchange will provide the leading contri
tion to the Pomeron. It is interesting, of course, that only
quark ~or the antiquark! carries the lightlike momentum o
the pion that produces the high-energy behavior. This is
termined by the generation of the anomaly pole via an in
nal light-cone momentum, and we comment further on t
below.

The factor of

Fsq2

MC
4 G ~3.66!

is off-shell energy dependence that could be naturally c
celed by off-shell propagators. Finally, we note that the f
tor of

FC2q2

MC
2 G4

~3.67!

is a wee gluon contribution, withCq being the boosted lon
gitudinal momentum of wee gluons that in the finite mome
tum frame have vanishing momentum, orthogonal to the
quark. In higher orders this contribution will include sums
uMN

0 u2 integrals as factors, whereMN
0 appears in Eq.~3.14!

and contains diagrams of the form illustrated in Fig. 7.
say more about this factor it is probably necessary to
couple the mass-shell and Regge limits by performing
full multi-Regge calculation discussed above.

L. The parton amplitude and color confinement

We have emphasized that the exponentiation of infra
divergences already selects color zero transverse mome
states but that this is not confinement because color
massless multigluon states still contribute at zeroQ2. How-
ever, if the complete set of physical amplitudes is defined
the presence of the overall infrared divergence we have
scribed then there will be both confinement and chiral sy
metry breaking. This is because the massless multigl
states will contribute only via the condensate and the ini
and final states must be Goldstone bosons for the diverg
to be present. Although we have not kept color factors
can make the following comments about how color confi
ment is realized.

In the original diagrams of the form of Fig. 16~a! the color
factors have all of the complexity of theg-matrix structure
illustrated in Figs. 24 and 26. After removal of the col
singlet divergent gluons, however, the remaining amplitu
necessarily describes SU~2! color zero scattering. In this am
plitude, we can interpret the flavor anomaly as unlocking
quark content of a pion via a dynamical fluctuation of t
Dirac sea~i.e. the zero momentum chirality transition!. This
fluctuation produces a ‘‘hard’’ quark carrying all the ligh
cone momentum together with a wee gluon condensate
an antiquark. The antiquark carries only a soft moment
and is also, essentially, a ‘‘wee parton.’’ It has been produ
out of the Dirac sea via a chirality transition that is compe
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sated for by the~effectively classical! background gluon
field.

The full amplitude can be represented, as in Fig. 27~a!, by
simple massive gluon exchange between the fast qua
This ‘‘parton interaction’’ produces all the transverse m
mentum that is exchanged. The quark-gluon coupling is n
however, a normal perturbative interaction. Although, as
lustrated in Fig. 27~b!, it can be computed~‘‘semi’’ ! pertur-
batively. Accompanying the hard quark interaction, there i
soft interaction in which the slow antiquark, ultimately,
absorbed into the condensate. It is replaced by another
quark produced out of the condensate. The production
absorption being mediated by a further zero moment
quark chirality transition~shown as the double-dashed line!.
During the interaction~which we have redrawn compared
earlier figures to make its structure more transparent! color
and spin structure, but not momentum, is fed into the f
quark-gluon coupling@the massive gluons can carry SU~2!
color#. The spin structure input transforms this coupling fro
a vector to an axial vector coupling. This being made p
sible by the chirality transition of the zero momentum qua
The input of color into the fast quark interaction helps co
vert the odd-signature single gluon exchange to even sig
ture.

An outgoing fast quark carries color, which is neutraliz
by a ~condensate produced! soft antiquark. The Dirac sea
completes the confinement by locking the pairs back int
massless Goldstone boson pion via a final zero momen
chirality transition of the soft antiquark that is accompani
by the disappearance of the background ‘‘classical glu
field.’’ Apparently then, in the infinite momentum frame,
physical pion contains a hard elementary quark plus a c
compensating ‘‘unphysical antiquark’’ that is described by
antiquark field, but with the Dirac sea shifted. Conversely
quark-antiquark constituents of a pion cannot be libera
without an accompanying gluon field that is responsible
moving the Dirac sea back to its perturbative location. T
the dynamical participation of the Dirac sea frees and c
fines infinite momentum frame quarks~and also modifies
interactions! in this manner is natural if in a finite momen
tum pion the quarks are confined by a nonperturbative
justment of the Dirac sea, as proposed by Gribov@29#. Since
no strong force between quarks is involved, Dokshitzer@30#
has called this ‘‘soft and gentle confinement.’’ He has argu
for some time that significant experimental evidence for t
form of confinement is provided by the momentum prop

FIG. 27. ~a! The parton amplitude;~b! the parton interaction.
7-26
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ties of multihadron production. Since there appears to
very little momentum reordering in the transition fro
quarks to pions, confinement must take place in a soft
gentle manner. A readjustment of the Dirac sea of the
quarks-antiquarks that combine with the hard quarks to fo
hadrons should have just this property.

M. The supercritical Pomeron

In higher orders more massive gluons will be exchang
and more wee quark-antiquark pairs will input addition
structure into the interaction. An example of a coupling th
will produce two Pomeron exchange is shown in Fig. 28~a!.
We also expect to find vertices, of the form shown in F
28~b!, which include a pair of massive gluons produced b
wee gluon interaction only. To have the axial vector struct
for the anomaly, the produced gluon represented by the
agonal element cannot have the polarization to be exchan
in the scattering process. The wee gluon interaction c
however, take place sufficiently far across the rapidity a
that it leads to particle pole interactions within Pomeron v
tices, just as is expected in the supercritical Pomeron ph
@2#. Since the Pomeron is also exchange degenerate with
Reggeized gluon, all features of supercritical RFT appea
be present.

IV. DISCUSSION

The analysis of this paper demonstrates clearly how~at
least the zero momentum part of! the spectral flow of the
Dirac sea, which does not enter in standard perturba
theory, enters the~multi-!Regge region interactions that d
scribe the scattering of bound states. The manifestatio
this spectral flow is the chirality transition that a zero m
mentum propagator undergoes in producing the anom
pole. While we had formulated the basic physics of this p
nomenon in our previous papers, we had been unable to
a simple starting point to begin to calculate amplitudes i
sufficiently well-defined way. In the new approach presen
in this paper the wee gluon content of Goldstone boso
produced by the flavor anomaly, provides this starting po
The rotation of the wee gluons during the scattering proc
introduces, essentially, the triple-Regge kinematics nee

FIG. 28. ~a! A two Pomeron vertex;~b! a supercritical vertex?
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for the U~1! anomaly interactions to appear. As we noted
@14#, because of chirality conservation the anomaly inter
tions cancel, even when the kinematics allow their presen
if the scattering states are elementary quarks or gluons
contrast, since the initial wee gluon coupling of the pion po
involves a chirality transition, there is no reason for t
chirality transitions to cancel in the subsequent scattering

As has become apparent, our ‘‘new approach’’ is not
tually logically separate from the multi-Regge formalis
used in our previous papers. Rather it is, essentially, a sh
cut that reproduces multi-Regge results without doing
full calculation. The basic idea we have used is that the
ternal light cone momenta of the flavor anomaly couplin
introduce all the large light-cone momenta needed, in ad
tion to the elastic scattering Regge limit, and so this avo
the introduction of complicated multi-Regge limits. This h
enabled us to keep the kinematics ‘‘relatively’’ simple. How
ever, we have had to supplement our analysis with additio
constraints that appear artificial but really just introduce f
tures that would be provided directly by an underlying mu
Regge limit. The ‘‘axial vector currents’’ to which our Gold
stone bosons have coupled are not local currents but ra
effective local current components that would be produc
by a nonlocal infinite momentum interaction. Such curre
components appear naturally within a multi-Regge am
tude.

We have described the formation of amplitudes in ter
of transverse momentum diagrams that can be thought
initially, as originating from particular Feynman diagram
However, many of the integration regions in the Feynm
diagrams are cut-off, or even removed altogether. Ag
multi-Regge theory provides the underlying justification.
have all the necessary anomaly effects present the initial
grams must be extremely complicated. Remarkably, thou
after infrared divergences are extracted and the anomaly
tributions isolated, almost all of the complexity disappea
and the physical pion scattering amplitude has the v
simple structure we have described. Although we have
discussed combining diagrams to obtain explicit color a
signature factors it is clear that, in first approximation, t
Pomeron is a Regge pole with the same trajectory as a m
sive, Reggeized, gluon just as we anticipated in our mu
Regge work.

It is amusing~and there may also be deeper implication!
that a complete calculation of the multi-ReggeS matrix
would not be necessary to obtain our results. It would
sufficient to calculate the eight-point amplitude forW6 and
Z0 vector mesons in which the scattering of Reggeized pi
occurs. The Reggeized pion scattering amplitude could
factorized out and the on-shell amplitude we discuss wo
be obtained by continuing this amplitude from a spacelike
a lightlike pion mass. In the language of the present pa
this implies that the wee gluon structure of a pion is b
understood if it is obtained as a wee parton component o
infinite momentum, elementary, vector meson.

We believe that in the multi-Regge framework the ex
tence of a Reggeon condensate in color superconduc
QCD would clearly be a derived result. In additio
Reggeized Goldstone bosons would be the only compo
7-27
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states obtained. The arguments of@15# imply that if the initial
Reggeon states are color zero Goldstone bosons the ov
logarithmic divergence will produce final states only of th
kind. That is, there should be a completeness relation. In
case, the condensate~or rather the infrared divergences an
anomalies that produce it! can be said to be responsible f
confinement and chiral symmetry breaking. Conversely,
quark content of a pion or nucleon is ‘‘liberated’’ only if it i
accompanied by an~effectively classical! gluon background
‘‘condensate’’ that is associated with a shift of the~zero mo-
mentum part of! the Dirac sea. The implication being that,
infinite momentum, quarks are locked inside a hadron b
relatively simple spectral flow of the Dirac sea. This form
confinement would have a natural connection with the fin
momentum Dirac sea confinement proposed by Gribov@29#.

As we have described in more detail in other plac
@15,9#, we expect that SU~3! color is obtained by critical
Pomeron behavior@10# that randomizes the SU~2! direction
of the condensate within SU~3!, while also decoupling the
massive Reggeized gluon, as it becomes massless. Thus
viding complete SU~3! confinement. The shifting of the
Dirac sea that produces confinement then becomes a c
pletely dynamical part of the Pomeron, and hadrons, that
no simple ‘‘classical’’ component. With the better unde
standing and explicit calculational ability that the results
this paper demonstrate, we should be able to directly iden
the higher-order superconducting pion amplitudes with th
of supercritical RFT and so establish the connection betw
the critical Pomeron@10# and QCD. A further implication
will be that the physical states of QCD~or rather those tha
scatter via the physical Pomeron! are either chiral symmetry
breaking Goldstone bosons~pions! or contain, as a compo
nent, a two quark state that is a Goldstone boson in the c
superconducting theory~nucleons!. Conversely, the very na
ture of the Pomeron will be determined by chiral symme
breaking.

A basic implication of our general program has alwa
been that the Regge limit of QCD, including those propert
that are a consequence of confinement and chiral symm
breaking, would be reachable by essentially perturba
calculations—with the dynamical participation of the Dir
sea being the only extra ingredient. The results of this pa
emphasize this implication. According to our results, t
only nonperturbative element in color superconducting hi
energy amplitudes is the wee-gluon condensate which ca
directly understood as a consequence of the all-orders s
mation of transverse momentum infrared divergences
couple via anomalies~together with the introduction of ultra
violet cutoffs!. We should note that the condensate is ass
ated with wee gluon configurations that have the same qu
tum numbers as the winding number current. Although,
with the currents we use to obtain the flavor anomaly, th
are really infinite momentum local current components t
result from nonlocal interactions. Nevertheless, there co
be a parallel with the Schwinger model where the existe
of a condensate can be obtained either by summing diagr
@31# or via nonperturbative topological contributions@32#.
However, the topology would have to be in the infinite m
mentum frame.~Perhaps a winding number for Wilson loo
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operators in the transverse plane—this might give a dir
analogy with the Schwinger model.!

We have emphasized that, in order to construct hi
energy superconducting QCD as we described, it is ne
sary to introduce cutoffs both in the transverse momenta
in the internal momenta of diagrams that generate anoma
In effect, these cutoffs regulate the relative infrare
ultraviolet spectral flow of the Dirac sea that is due to t
chiral and U~1! anomalies. That all cutoffs can be consi
tently removed, and the necessary critical behavior retain
is a highly nontrivial requirement which, as we have d
cussed elsewhere@9,3#, is likely to significantly restrict the
quark content of QCD. However, it is possible~if not likely!
that the very existence of a hadronS matrix within QCD
requires that asymptotic freedom, and the consequent pe
bation theory, have the maximal applicability. Since part
model cross sections rise asymptotically, this is likely to i
ply that all physical cross sections must rise asymptotica
The critical Pomeron is well known to be the only descr
tion of such cross sections that satisfies all (s- andt-channel!
unitarity properties. Consequently, the occurrence of
critical Pomeron in QCD may actually be a necessary
quirement for the existence of a hadronS matrix.

The nonperturbative formulation of a gauge theory is g
erally presumed to be via some form of Euclidean functio
integral. In this framework color confinement~as it is usually
formulated and studied! is completely disjoint from pertur-
bation theory. In fact, the general expectation is that th
will be a ‘‘nonperturbative’’ Pomeron that is crucially depe
dent on confinement and, as such, is far removed from
turbation theory. However, the Regge region involves a m
ture of large light-cone and small transverse momenta an
appears only in Minkowski space. As a consequence, if
Euclidean path integral is the starting point, detailed prop
ties of the Pomeron can only be determined by a comp
nonperturbative solution of the theory from whic
Minkowski space hadron scattering amplitudes can be
tracted and the Regge limit taken. Something that seems
likely to be possible for a very long time to come. Indee
given that a complete nonperturbative solution of QCD h
been found, the Pomeron would probably be one of the
things to be studied. Note that, since light-cone moment
regions become all important as the continuation
Minkowski space is made, the very existence of this conti
ation is likely to be contingent on the existence of~unitar-
ity?! boundedness properties in the Regge region.

We would like to emphasize that there is no guarantee
a Minkowski region unitaryS matrix can be derived from a
nonperturbative Euclidean path integral—particularly giv
the complexity@23# of the, large field, unphysical degrees
freedom that are present.~Indeed a commonly agreed proc
dure to definitively eliminate these degrees of freedom
not yet been found.! The demonstrated perturbative unitari
@24# is only a formal property since infrared divergences p
vent the existence of a finiteS matrix. There is certainly no
understanding of how the unitarity properties of the pert
bative theory might translate into unitarity with respect to
nonperturbative physical spectrum that manifests confi
ment and chiral symmetry breaking. Indeed it is our stro
7-28
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belief that the Regge region must play a special role in
raveling this relationship within QCD. Since small transve
momenta are involved, the physical properties of confi
ment and chiral symmetry breaking must be evident in
t-channel unitarity condition. Conversely, if asymptotic fre
dom has maximal applicability, the involvement of large m
menta should imply that the Pomeron is not too far fro
perturbation theory. Therefore, the~multi-! Regge region
should provide a unique possibility to understand the re
tionship between perturbation theory and the physical st
appearing in the unitarity condition.

If the Regge limit of QCD can be constructed by t
essentially perturbative methods we describe then the un
ity properties of massive quark and gluon Reggeon diagr
n,

er

TP

H

.

It

-
n
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translates into similar properties for the Pomeron and had
Reggeon diagrams. The unitarity of the critical Pomeron w
be clearly related to the original perturbative unitarity
quarks and gluons. Indeed it could also be that, since
construction stays so close to perturbation theory, the pr
lem of eliminating large field unphysical degrees of freedo
will have been avoided.
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