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Signals for Lorentz violation in electrodynamics

V. Alan Kostelecky´ and Matthew Mewes
Physics Department, Indiana University, Bloomington, Indiana 47405

~Received 20 May 2002; published 23 September 2002!

An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable
sector of the general Lorentz- andCPT-violating standard-model extension. Among the unconventional prop-
erties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of
light produced by galactic and extragalactic objects provide bounds of 3310216 on certain coefficients for
Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically
distant sources yields stringent constraints of 2310232. All remaining coefficients in the photon sector are
measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in
Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be
implemented using existing technology.
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I. INTRODUCTION

Lorentz symmetry underlies the theory of relativity a
all accepted theoretical descriptions of nature at the fun
mental level. A crucial role in establishing both the rotati
and boost components of Lorentz symmetry has been pla
by experimental studies of the properties of light. In the cl
sic tests, rotation invariance is investigated in Michelso
Morley experiments searching for anisotropy in the speed
light, while boost invariance is studied via Kenned
Thorndike experiments seeking a variation of the speed
light with the laboratory velocity@1–3#.

In this work, a theoretical study is performed of vario
experiments testing Lorentz symmetry with light and oth
electromagnetic radiation. The analysis is within the cont
of the Lorentz- andCPT-violating standard-model extensio
@4#, developed to allow for small general violations in Lo
entz andCPT invariance@5#. The Lagrangian of this theory
includes all observer Lorentz scalars formed by combin
standard-model fields with coupling coefficients having L
entz indices. At the level of quantum field theory, the vio
tions can be regarded as remnants of Planck-scale ph
appearing at attainable energy scales. The coefficients
Lorentz violation may be related to expectation values
Lorentz tensors or vectors in an underlying theory@6#. To
date, experimental tests of the standard-model exten
have been performed with hadrons@7–10#, protons and neu-
trons @11#, electrons@12,13#, photons@14,15#, and muons
@16#.

In the present context of studies of electrodynamics,
standard-model extension is of interest because it provid
general field-theoretic framework for investigating the Lo
entz properties of light. The theory contains as a subs
general Lorentz-violating quantum electrodynamics~QED!,
which includes a general Lorentz-violating extension of
Maxwell equations. We study experiments that can meas
the coefficients for Lorentz violation in this generalized ele
trodynamics. Our attention is restricted here to exception
sensitive experiments that could be in a position to detect
minuscule effects motivating the standard-model extensi

A basic feature of Lorentz-violating electrodynamics
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the birefringence of light propagatingin vacuo. This results
in several potentially observable effects, including pulse d
persion and polarization changes. One goal of this work is
consider the implications of these effects for the propaga
of radiation on astrophysical scales. We use available ob
vations to constrain certain coefficients for Lorentz violatio

Another goal of this work is to analyze modern versio
of some classic tests of special relativity based on reson
cavity oscillators@17–19#, which have extreme sensitivity to
the properties of electromagnetic fields. These experime
depend on the Earth’s sidereal and orbital motion. Howe
the advent of the International Space Station~ISS! makes it
feasible to perform laboratory experiments in space, wh
the orbital motion can yield different sensitivity to Lorent
violating effects @20#. We consider here both space- an
Earth-based laboratory experiments with resonant cavitie

The structural outline of this paper is as follows. Secti
II presents some basic results and definitions for the gen
Lorentz-violating electrodynamics and outlines the conn
tion to some test models. We then consider birefringe
experiments, beginning in Sec. III A with some general
sues. Constraints stemming from the resulting effects
pulse dispersion from astrophysical sources are address
Sec. III B, while those from polarization changes over co
mological scales are treated in Sec. III C. A general analy
for laboratory-based experiments on the Earth and in spac
presented in Sec. IV A. Sections IV B and IV C apply th
analysis to experiments with optical and microwave reson
cavities. We summarize in Sec. V. Throughout this work,
adopt the conventions of Ref.@4#.

II. LORENTZ-VIOLATING ELECTRODYNAMICS

This section provides some background and contex
information about the general Lorentz-violating electrod
namics. The basic formalism is presented, and some de
tions used in later sections are introduced. We also disc
the connection between this theory and some test model
Lorentz violation.
©2002 The American Physical Society05-1
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A. Basic theory

The standard model of particle physics is believed to
the low-energy limit of a fundamental theory that includes
the forces in nature. The natural scale of this fundame
theory is likely to be determined by the Planck mass. T
possibility that Lorentz- andCPT-violating signals from this
theory may be observable at energies attainable today le
the development of the standard-model extension@4#, which
is a general theory based on the standard model but allow
for violations of Lorentz andCPT symmetry@5#. The addi-
tional terms must be small because the usual standard m
agrees well with experiment. They may originate from spo
taneous symmetry breaking in the fundamental theory@6#.

The standard-model extension can be defined as the u
standard-model Lagrangian plus all possible additio
Lorentz- andCPT-violating terms involving standard-mode
fields that maintain invariance under Lorentz transformati
of the observer’s inertial frame. This invariance ensures
the physics is independent of the choice of coordinates.
Lorentz violation is associated with rotations and boosts
particles or localized field configurations in a fixed obser
inertial frame.

Many of the detailed investigations of the standard-mo
extension have been performed under the simplifying
sumption that the additional Lorentz- andCPT-violating
terms preserve the SU(3)3SU(2)3U(1) local gauge sym-
metry of the usual standard model. Another widely adop
simplifying assumption is that the coefficients for Loren
violation are independent of position. This implies the vio
tion is restricted to the Lorentz symmetry instead of the f
Poincare´ symmetry and has several useful consequences
experiment, including the conservation of energy and m
mentum. It is also often convenient to restrict attention to
renormalizable sector of the theory, since this is expecte
dominate the physics at low energies. However, nonren
malizable terms are known to play an important role
higher energies@21#.

Extracting terms involving the photon fields from th
standard-model extension yields a Lorentz- a
CPT-violating extension of QED@4#. The fermion sector of
this theory has been widely studied. Here, we focus atten
on the pure-photon sector and limit attention to the renorm
izable terms, which involve operators of mass dimens
four or less. The relevant Lagrangian is@4#

L52
1

4
FmnFmn1

1

2
~kAF!keklmnAlFmn

2
1

4
~kF!klmnFklFmn, ~1!

whereFmn[]mAn2]nAm . This theory maintains the usua
U~1! gauge invariance under the transformationsqAm
→qAm1]mL. The Lagrangian contains the standard Ma
well term and two additional Lorentz-violating terms. Th
first of these extra terms isCPT odd, and its coefficient
(kAF)k has dimensions of mass. The other isCPT even. Its
coefficient (kF)klmn is dimensionless and has the symmetr
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of the Riemann tensor and a vanishing double trace, wh
implies a total of 19 independent components.

The CPT-odd term has received much attention in t
literature@22#. This term provides negative contributions
the canonical energy and therefore is a potential source
instability. One solution is to set the coefficient to zer
(kAF)k50. This is theoretically consistent with radiativ
corrections in the standard-model extension and is well s
ported experimentally: stringent constraints onkAF have
been set by studying the polarization of radiation from d
tant radio galaxies@14#.

In contrast, much less is known about theCPT-even co-
efficient kF . Theoretical studies show that it provides po
tive contributions to the canonical energy and that it is rad
tively induced from the fermion sector in the standard-mo
extension@4,23#. Constraints on some components have
cently been obtained from optical spectropolarimetry of c
mologically distant sources@15#. In the present work, we
focus on the experimental implications of thisCPT-even
term. The coefficient (kAF)k is set to zero for the analysis.

The equations of motion from Lagrangian~1! are

]aFm
a1~kF!mabg]aFbg50. ~2!

These are modified source-free inhomogeneous Maxw
equations. The homogeneous Maxwell equations,

]mF̃mn[
1

2
emnkl]mFkl50, ~3!

remain unchanged.
Although it lies beyond our present scope, the techniq

presented here and the results obtained can be generaliz
the nonrenormalizable sector. The nonrenormalizable te
can be classified according to their mass dimension. The
mensions of the corresponding coefficients are inverse p
ers of mass, and it is plausible that these coefficients
suppressed by corresponding powers of the Planck sc
Terms of this type appear in various special Loren
violating theories, including noncommutative field theori
incorporating QED@24#. Indeed, any coordinate-independe
theory with a photon sector containing nonrenormaliza
Lorentz-violating terms must be a subset of the standa
model extension. It would be interesting to provide a detai
study of the nonrenormalizable terms in the Loren
violating electrodynamics and their experimental signals.

B. Analogy and definitions

A useful analogy exists between the Lorentz-violati
electrodynamicsin vacuoand the conventional situation i
homogeneous anisotropic media@4#. The idea is todefine

fields DW andHW by the six-dimensional matrix equation

S DW

HW
D 5S 11kDE kDB

kHE 11kHB
D S EW

BW
D , ~4!
5-2
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whereEW andBW are the electric and magnetic fields obtain
from solving the modified Maxwell equations~2!. The 3
33 matriceskDE , kHB , kDB , andkHE are defined by

~kDE! jk522~kF!0 j 0k,

~kHB! jk5
1

2
e jpqekrs~kF!pqrs,

~kDB! jk52~kHE!k j5~kF!0 jpqekpq.
~5!

The double-trace condition on (kF)klmn translates to the
tracelessness of (kDE1kHB), while (kF)k[lmn]50 implies
the tracelessness ofkDB52(kHE)T. This leaveskDE and
kHB with eleven independent elements and the matrixkDB
52(kHE)T with eight, which together represent the 19 i
dependent components ofkF . Note also thatkDE and kHB
are parity even, whilekDB52(kHE)T is parity odd.

With these definitions, the modified Maxwell equatio
~2!, ~3! take the familiar form

¹W 3HW 2]0DW 50, ¹W •DW 50,

¹W 3EW 1]0BW 50, ¹W •BW 50. ~6!

As a consequence, many results from conventional elec
dynamics in anisotropic media also hold for this Loren
violating theory. For example, the energy-momentum ten
takes the standard form in terms ofEW , BW , DW and HW . This
implies the usual Poynting theorem, which can be applied
conjunction with the symmetries of the matrices in Eq.~4! to
show that the vacuum is lossless.

For the applications to be addressed in later sections,
convenient to introduce the following decomposition
(kF)klmn coefficients:

~ k̃e1! jk5
1

2
~kDE1kHB! jk,

~ k̃e2! jk5
1

2
~kDE2kHB! jk2

1

3
d jk~kDE! l l ,

~ k̃o1! jk5
1

2
~kDB1kHE! jk,

~ k̃o2! jk5
1

2
~kDB2kHE! jk,

k̃ tr5
1

3
~kDE! l l . ~7!

The first four of these equations define traceless 333 matri-
ces, while the last defines a single coefficient. All parity-ev
coefficients are contained ink̃e1 , k̃e2 and k̃ tr , while all
parity-odd coefficients are ink̃o1 andk̃o2 . The matrixk̃o1

is antisymmetric while the other three are symmetric.
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The form of this decomposition helps in determining t
portion of the parameter space to which experiments are
sitive and how different experiments might overlap. For e
ample, typical laboratory experiments with electromagne
cavities search for rotation-violating parity-even observab
The sensitivity of such experiments is therefore expected
be dominantly to the ten rotation-violating parity-even co
ficients k̃e1 and k̃e2 . For those observables depending
leading order on the velocity, the eight coefficientsk̃o1 and
k̃o2 can be expected to play a role. Finally, at second or
in the velocity one can expect the sole rotation-invaria
quantityk̃ tr to affect measurements. These considerations
confirmed by the results of the detailed analysis in the s
tions below.

As another example of the use of the decomposition~7!,
recall that birefringence is known to depend on ten linea
independent combinations of the components ofkF , which
can be chosen as@15#

ka5@~kF!0213, ~kF!0123, ~kF!02022~kF!1313,

~kF!03032~kF!1212, ~kF!01021~kF!1323,

~kF!01032~kF!1223, ~kF!02031~kF!1213,

~kF!01121~kF!0323, ~kF!01132~kF!0223,

~kF!02122~kF!0313]. ~8!

Relating these to thek̃ matrices, we find

~ k̃e1! jk52S 2~k31k4! k5 k6

k5 k3 k7

k6 k7 k4
D ,

~ k̃o2! jk5S 2k2 2k9 k8

2k9 22k1 k10

k8 k10 2~k12k2!
D . ~9!

In this way, we can see directly that birefringence is co
trolled by the matricesk̃e1 and k̃o2 .

In terms of thek matrices defined in Eq.~5!, and assum-
ing as before that (kAF)a50, the Lagrangian~1! becomes

L5
1

2
~EW 22BW 2!1

1

2
EW •~kDE!•EW 2

1

2
BW •~kHB!•BW

1EW •~kDB!•BW . ~10!

Similarly, using instead thek̃ matrices defined in Eq.~7!, we
find

L5
1

2
@~11k̃ tr!EW

22~12k̃ tr!BW
2#1

1

2
EW •~ k̃e11k̃e2!•EW

2
1

2
BW •~ k̃e12k̃e2!•BW 1EW •~ k̃o11k̃o2!•BW . ~11!
5-3
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The form of Eq.~11! shows that a nonzero coefficientk̃ tr
shifts the effective permittivitye and effective permeability
m by (e21)52(m2121)5k̃ tr , corresponding to a shift in
the speed of light. However, it is possible to remove an ov
all shift in the speed of light by making advantageous co
dinate transformations accompanied by suitable field red
nitions, which combine to sete5m2151 and transfer the
Lorentz violation to a different sector of the theory. An e
plicit example of this procedure is provided in the next su
section for a toy model involving scalar QED.

In the general context of the standard-model extens
such transformations modify various other coefficients
Lorentz violation. In fact, similar transformations can mo
the nine independent coefficientsk̃e2 , k̃o1 , and k̃ tr into
other sectors of the theory. Note that this effect is fra
dependent because the coefficients mix under boosts.
also that the possibility of absorbingk̃e2 , k̃o1 , k̃ tr else-
where offers insight as to why birefringence experimen
which directly compare light with light, are insensitive
these coefficients. However, cavity experiments invo
comparisons of radiation with matter, so all 19 coefficie
are observables in this case.

C. Connection to some test models

Several phenomenological test models for Lorentz pr
erties of light have been proposed. The standard-model
tension contains all observer-independent sources of Lor
violation in terms of known particles, so it is expected
incorporate the existing test models as special cases. In
subsection, we comment on the relationships to some po
lar test models.

Since typical test models assume only one type of ma
other than the photon, it suffices for our purposes to cons
a toy version of the standard-model extension that inclu
only one scalar field and a limited type of Lorentz violatio
We therefore work with a model of Lorentz-violating scal
QED, defined by the Lagrangian

L5~hmn1~kf!mn!~Dmf!†Dnf2m2f†f2
1

4
FmnFmn

2
1

4
~kF!klmnFklFmn. ~12!

In this expression, the covariant derivative takes the us
form, Dmf5]mf1 iqAmf, and for simplicity we have lim-
ited the types of Lorentz violation to those described by
real symmetric coefficient (kf)mn and by a coefficient
(kF)klmn of the type in Eq.~1!.

An interesting test model for Lorentz violation is provide
by the kinematical framework of Robertson@25# and its ex-
tension to arbitrary synchronizations by Mansouri and S
@26#. These approaches suppose the existence of a ‘‘
ferred’’ frame in which light propagates isotropically as me
sured by a standard set of rods and clocks. The Lorentz tr
formation between observers is then generalized
incorporate small changes from the conventional boost
special relativity. Within a given synchronization, three p
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rametersg0 , g1 , g2 are needed to fix the generalized Loren
transformation and hence to characterize the Lorentz vi
tion.

The construction of the generalized Lorentz transform
tion can be illustrated in the context of the model~12!. Con-
sider the special case of the model for which only the co
ficient (kf)00 is nonzero in a certain frameS. Writing this
coefficient as (kf)005k221, where k2 deviates slightly
from 1, the Lagrangian takes the form

L5~Dmf!†Dmf1~k221!uD0fu22m2f†f1
1

2
~EW 22BW 2!.

~13!

In the S frame, the propagation of light is rectilinear an
isotropic, so it may be identified with the preferred frame
the test model. The Lorentz violation appears only in thef
sector of the Lagrangian, which we can suppose descr
the detailed physics of the rods or clocks in the test mod

The generalized Lorentz transformationsTm
n considered

in the kinematical test models are the linear transformati
x8m5Tm

nxn from the preferred frameS to a coordinate sys-
temSattached to an observer moving at constant velocity
the preferred frame. By construction, the observerS defines
coordinates using the same rods and clocks and a presc
synchronization. However, in the present context
Lorentz-violating properties of the rods and clocks are fix
by the Lorentz-violating scalar term in the Lagrangian~13!.
The generalized Lorentz transformationsTm

n from S to Sare
therefore also determined in the context of the model~12!.
They are the transformations leaving invariant the scalar s
tor and hence preserving the combinationhmn1(kf)mn up to
a possible resynchronization. For example, for the spe
case of Eq.~13!, the Robertson parameters are found to
g051/g15A(12b2)/(12k2b2), g251. The corresponding
Mansouri-Sexl parameters area51/b5A(12k2b2), d51,
with e52b(12k2b2)/(12b2) in Einstein synchronization
or e52k2b in slow-clock synchronization. In contrast, th
standard Lorentz transformationsLm

n preservehmn.
In this simple example, the transformationTm

n leaves in-
variant the rods and clocks, whileLm

n leaves invariant the
speed of light. Both are equally valid. In the frames rela
by Tm

n , observers agree on rod lengths and clock rates
disagree on the velocity of light. Moreover, the velocity
light is no longer isotropic as measured by these rods
clocks. In contrast, observers related by Lorentz transfor
tions agree that light propagates isotropically with spee
but may disagree on rod lengths and clock rates. The des
tion is a matter of coordinate choice, and one can mo
freely from one to the other usingTm

n , Lm
n , and their in-

verses.
Note that a ‘‘preferred’’ frame in which light propagate

isotropically typically fails to exist in the full standard-mod
extension, although in principle one can impose the existe
of such a frame by suitably restricting the coefficients
Lorentz violation. From this perspective, the special sta
enjoyed by photons relative to other particles in the kin
matical test models appears somewhat unnatural, and
structure of the standard-model extension offers more g
5-4
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SIGNALS FOR LORENTZ VIOLATION IN ELECTRODYNAMICS PHYSICAL REVIEW D66, 056005 ~2002!
eral possibilities for kinematical frameworks. Note also th
the standard-model extension addresses modifications t
known particles, so the effects on physical rods and clo
can be directly analyzed. This is infeasible in kinemati
frameworks, which consider the transformations betwe
frames rather than the underlying physics.

Another interesting test model is thec2 model @27#, de-
veloped for application to studies of Lorentz invariance a
limiting case of theTHem formalism@28,29#. Thec2 model
is defined by a Lagrangian describing the behavior of cla
cal pointlike test particles in the presence of electromagn
fields. The model assumes the existence of a ‘‘preferr
frame in which the limiting speed of the test particles is
while the speed of light isc.

To see the relation between thec2 model and the mode
~12!, consider another Lagrangian written in a frameS as

L5~Dmf!†Dmf2m2f†f1
1

2
~EW 22k2BW 2!, ~14!

wherek2 deviates slightly from 1 as before. In this theor
the Lorentz violation appears in the photon sector. With
identificationk5c, the Lagrangian for this sector is identic
to that of thec2 model. Moreover, thef sector is conven-
tional, representing a quantum field theory of minima
coupled scalar particles. The model~14! can therefore be
regarded as the field-theoretic equivalent of thec2 model.

The two models~14! and ~13! are related by the coordi
nate transformationt→t/k, xW→xW followed by the field re-
definition Am→Am /k and charge rescalingq→kq. They
therefore describe the same physics. Although it is poss
to choose coordinates so that either the photon or the sc
propagates conventionally, the Lorentz violation cannot
eliminated simultaneously from both sectors.

We thus see that thec2 model is contained in the theor
~12! as a special case. In the terminology of Eq.~7!, the
parameterc2 could be identified with the combination o
coefficients (12k̃ tr)/(11k̃ tr), as can be seen from Eq.~11!.
However, caution is required in interpreting bounds obtain
with thec2 model in terms ofk̃ tr because the identification i
valid only in a frameS with conventional particles, which
typically fails to exist in the standard-model extension.

III. ASTROPHYSICAL TESTS

In this section, we consider radiation propagating in fr
space. The Lorentz-violating electrodynamics predicts b
fringence, which allows sensitive tests of Lorentz symme
from observations of radiation propagated over astrophys
distances. We begin with some general theory, and then
obtain two sets of bounds on Lorentz violation from veloc
and birefringence constraints.

A. General theory

The basic features of plane-wave solutions to the Lore
violating electrodynamics have been presented in R
@4,15#, so only relevant essentials are given here. With
standard ansatzFmn(x)5Fmn(p)e2 ipaxa

for a plane wave
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with wave 4-vectorpa5(p0,pW ), the equation determining
the dispersion relation and the electric fieldEW is the modified
Ampère law

M jkEk[„2d jkp22pj pk22~kF! j bgkpbpg…E
k50. ~15!

The dispersion relation is obtained as usual by requiring v
ishing determinant ofM jk. It suffices for our present pur
poses to consider only leading-order effects in the coe
cients (kF)klmn for Lorentz violation. To leading order, on
finds

p6
0 5~11r6s!upW u, ~16!

where

r52
1

2
k̃a

a , s25
1

2
~ k̃ab!22r2, ~17!

with

k̃ab5~kF!ambnp̂mp̂n , p̂m5pm/upW u. ~18!

Note thatpW 2r and pW 2s are observer Lorentz scalars, whic
implies r ands are scalars under observer rotations.

The dispersion relation~16! has two solutions, with cor-
responding electric fieldsEW 6 . In conventional electrody-
namics, the dispersion relation isp05upW u and all fieldsEW

perpendicular topW are solutions, so the propagation is ind
pendent of the polarization. However, in the present case
propagation is governed by two specific modesEW 6 , with the
general solution to Eq.~15! being any linear combination o
the two. This leads to birefringence: light generically has t
components, each propagating independently.

There are several possible definitions for the velocity
the radiation, including the phase velocityvp

j [p0pj /pW 2, the

group velocityvg
j [(¹WpW )

j p0, and the velocity of energy trans
port ve

j [u j 0/u00, whereumn is the energy-momentum tenso
With the analogy discussed in Sec. II B, one can show
standard arguments thatvW g5vW e for a wave with fixedpW .
Also, Eq. ~16! can be used to find explicit leading-order e
pressions for the magnitudes of the phase and group ve
ties. We thereby obtainvp5vg5ve511r6s to leading or-
der in (kF)klmn . Note also that, to leading order, we ca
write p̂a5(p0,pW )/upW u'(1,v̂) in the expressions~17! for r

and s. The quantityv̂ can be regarded as the direction
propagation of the radiation, since the difference betwee
and the other velocities arises only at higher order and
irrelevant here.

The mode dependence of the velocity offers interest
possibilities for experimental tests of the theory. The veloc
difference is

Dv[v12v252s, ~19!

and is expected to be tiny. However, for sufficiently lar
path lengths this difference might become apparent in
form of observable effects on the pulse shape or the po
5-5
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ization of radiation. In the next two subsections, we exp
these features to obtain constraints on (kF)klmn .

An explicit form for the solutionsEW 6 is needed for some
of the analysis. Using the dispersion relation~16!, the matrix
in the Ampère law ~15! can be written

M 6
jk52@2~r6s!d jk1 p̂ j p̂k22k̃ jk#pW 2. ~20!

The form of this matrix shows that the solutionsEW 6 are
wavelength independent but vary with the direction of pro
gation. Also, at leading order in (kF)klmn the difference
M 12M 2 is proportional to the identity, so the leading-ord
solutionsEW 1 and EW 2 are perpendicular. In fact, at leadin
order,EW 6 are perpendicular topW as well.

To expressEW 6 explicitly, a choice of inertial frame mus
be made. It is convenient to adopt a standard reference fr
to report the results of observations and hence ultimatel
place constraints on the set of coefficientskF .

A natural choice for the reference frame is a Sun-cente
celestial equatorial frame with theZ axis aligned along the
celestial north pole at equinox 2000.0. TheZ axis is then at a
declination of 90°, and theX andY axes lie at declination 0°
and can be chosen to be at right ascension 0° and 90°
spectively. The unit vectorX̂ thus points towards the verna
equinox on the celestial sphere. The timeT is chosen such
thatT50 when the Earth crosses theXY plane on a descend
ing trajectory. In what follows, we adopt this standard fram
to report results.

For the practical determination ofEW 6 for a given wave, it
is easiest first to work in a special ‘‘primed’’ frame chos
for that wave. The result of the calculation can then be
lated to the standard Sun-centered frame by performin
suitable observer rotation. A convenient primed frame fo
given wave is the frame in which the wave 4-vector takes
form p̂8a5(1;0,0,1) to leading order. The solution forEW 6

can be expressed explicitly in terms of the coefficientskF8 in

this frame. Up to a normalization, it is found to beEW 6

}(sinj,612cosj,0), where tanj52k̃812/( k̃8112 k̃822). The
two modes are thus linearly polarized.

From the solutionsEW 6 and dispersion relation, it is evi
dent thats andj are the relevant parameters for birefringe
effects for a particular source. In particular,s sinj5k̃812and
s cosj51

2(k̃8
112 k̃822) represent the minimal linear combina

tions of kF8 that govern birefringence. The parameterr is
common to both modes, but does not contribute to biref
gence and cannot be detected in the experiments discu
below.

The results in the primed frame can be related to the s
dard frame by a suitable observer rotation, described in
pendix A. The direction of travel of the light in the standa
frame determines two vectors§s

a and§c
a in ka space@see Eq.

~A4!#, and it turns out that the birefringence of the lig
depends on the two specific linear combinations of the co
ficientska in Eq. ~8! that are parallel to these vectors.
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B. Velocity constraints

For the two radiation modesEW 6 propagating over a dis
tance L, the velocity difference~19! induces a difference
Dt'DvL between the two travel times. Local measureme
made on radiation emitted as a single burst from a dis
source can therefore provide sensitivity to the coefficientska

for Lorentz violation@30#.
To apply this idea, it is useful to consider distant sourc

that produce radiation in a relatively narrow burst charac
ized by a small widthw, such as millisecond pulsars o
sources of gamma-ray bursts. These sources typically
duce essentially unpolarized radiation, so the intensity
each mode should be comparable. The burst can then
regarded as a superposition of two independently propa
ing pulses, one for each mode. For a sufficiently great d
tanceL, a nonzeroDv would cause the two pulses to sep
rate enough to become distinguishable. This type of sig
would manifest itself as two pulses with similar time stru
ture but differing in arrival time. The pulses would each
linearly polarized, and they would have mutually perpe
dicular polarization angles.

If only a single pulse is observed, a limit on Lorentz vi
lation can be deduced. The relationship between the
served pulse widthwo and the source pulse widthws is ap-
proximatelywo'ws1Dt. Observations ofwo can therefore
be used to obtain a conservative bound onDt5DvL52sL
and hence a bound on the coefficientska.

Table I lists data for fifteen sources suitable for placi
this type of constraint. The first five lines list gamma-r
bursts with known redshifts. The widths listed for these co
tain all significant time structure of the pulse. The distancL
is determined from the redshift by the look-back time in
conservative cosmology for a matter-dominated unive
with Hubble constantH0580 km s21 Mpc21. The next
eight sources in the table are millisecond pulsars. The lis
pulse width is that at 10% peak intensity. The final tw
sources are giant-pulse pulsars. These exhibit intense pu
with characteristic widths on the order of severalms.

TABLE I. Source data for velocity constraints.

Source L wo Refs.

GRB 971214 2.2 Gpc 50 s @31,32#
GRB 990123 1.9 Gpc 100 s @32,33#
GRB 980329 2.3 Gpc 50 s @32,34#
GRB 990510 1.9 Gpc 100 s @32,35#
GRB 000301C 2.0 Gpc 10 s @36,37#
PSR J195912048 1.5 kpc 64ms @38#

PSR J193912134 3.6 kpc 190ms @38#

PSR J182422452 5.5 kpc 300ms @38#

PSR J212911210E 10.0 kpc 1.4 ms @38#

PSR J174822446A 7.1 kpc 1.3 ms @38#

PSR J131211810 19.0 kpc 4.4 ms @38#

PSR J061320200 2.2 kpc 1.4 ms @38#

PSR J104524509 3.2 kpc 2.2 ms @38#

PSR J053412200 2.0 kpc 10ms @38,39#
PSR J193912134 3.6 kpc 5ms @38,40#
5-6
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For each source in Table I, we takes<wo/2L as a bound
on s. For a single source, this places constraints on a t
dimensional subspace of the full 10-dimensional param
space of the coefficientska. The subspace is represented
the linear combinationss sinj and s cosj associated with
that particular source. To bound all ten coefficientska, ten
linearly independent constraints of this type are needed. T
is feasible using five or more sources at different positions
the sky.

We proceed by assuming the constraint for each sourc
Table I is consistent with a measurement ofs50, and we
take the bounds<wo/2L as a reasonable estimate of t
error in a null measurement. The associatedx2 distribution is
x25(4L2s2/wo

2 , where the sum is over the fifteen source
This is a quadratic form inka. Consideringukau and mini-
mizing x2 with respect to the other nine degrees of freedo
we obtain a bound of

ukau,3310216 ~21!

in the Sun-centered celestial equatorial frame, at the 9
confidence level.

This bound is much less stringent than that obtain
through polarization measurements, as discussed be
However, the method is relatively straightforward and avo
some of the complexities involved in the polarization ana
sis.

C. Polarization constraints

In this subsection, we expand on the material found
Ref. @15#. An improvement on the previous result is made
considering the cosmological redshift of light.

A general electric fieldEW can be decomposed into its b
refringent componentsEW 6 . Defining unit vectors «̂6

5EW 6 /uEW 6u, the decomposition is

EW ~x!5~E1«̂1e2 ip1
0 t1E2«̂2e2 ip2

0 t!eipW •xW. ~22!

The differing phase velocities of the two modes results i
change in relative phase as the wave propagates, give
@15#

Df5~p1
0 2p2

0 !t'2pDvpL/l'4psL/l, ~23!

where Dvp is the difference in phase velocities,l is the
wavelength, andL is the distance traveled. The phase chan
modifies the polarization state of the radiation, with larg
effect for more distant sources. Appendix B provides a b
review of pertinent concepts involving polarization in th
present context.

In the primed frame described in Sec. III A, the Stok
vectors forê6 aresW656(cosj,sinj,0). These vectors cor
respond to opposite points on the equator of the Poinc´
sphere, as expected for linearly polarized modes. As
scribed in Appendix B, the axis of rotation induced by t
phase changeDf54psL/l is therefore in thes1-s2 plane.
This affects bothc andx, as can be seen from Fig. 1.
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A change in phase can arise from a change in eitherL or
l. The induced change in the polarization depends not o
on kF but also on the initial polarization. For cosmologic
sources, it may be impossible to determine independently
polarization at the source, in which case one cannot de
mine whether a change in polarization is strictly due to
change inL. It is therefore of more interest to focus on th
wavelength dependence of the polarization change. Mak
the reasonable assumption that the emitted polarizatio
relatively constant over a given range of wavelengths,
relevant quantity becomes the phase shift as a function
wavelength,

df54psLS 1

l
2

1

l0
D , ~24!

relative to a reference wavelengthl0. Standard spectropola
rimetric techniques then allow a measurement of this effe
Note that knowledge of physical processes in certain clas
of objects producing the polarized radiation might make
feasible to include a known initial polarization in the anal
sis, but this is unlikely to improve significantly the constrai
obtained here.

The effect on the measured polarization as the wavelen
is changed can be visualized using the Poincare´ sphere. Sup-
pose a source produces radiation with constant polariza
over a range of wavelengths. This radiation can be rep
sented by a single point on the Poincare´ sphere. As the light
propagates towards the Earth, the presence of Lorentz v
tion causes this point to rotate along an arc on the sphere
any fixed wavelength, the rotation axis and rate depend
the coefficients (kF)klmn and on the position of the source o
the sky. However, Eq.~24! shows that shorter wavelength
rotate more than longer ones. Therefore, as measuremen
the Stokes vector are made over a range of wavelengths
results trace a circular arc on the surface of the Poinc´
sphere.

Let c0 and x0 represent the observed polarization of
point on this arc with the reference wavelengthl0. Using

FIG. 1. Rotation of the Stokes vector aboutsW152sW2 .
5-7
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this point as a reference, we require the change in polar
tion relative to this point induced by Eq.~24!. This polariza-
tion change is given by

sj~c,x!5mjk~df!sk~c0 ,x0!, ~25!

wheremjk is the rotation matrix aboutsW1 by df. The matrix
mjk is analogous to the Mueller matrix used in polarimetry
describe the effects of various filters and polarizers on lig
Its explicit form is given as Eq.~8! of Ref. @15#. The anglex,
which controls the amount of circular polarization, is abs
from most published spectropolarimetric data. It is theref
most effective to focus attention on the changedc5c2c0
in c from the reference valuec0, which is given as Eq.~9!
of Ref. @15#. A procedure for fitting this equation to existin
spectropolarimetric data is also provided in this referen
and a 90% confidence-level bound ofukau,3310232 is ob-
tained from spectropolarimetric data for 16 cosmologi
sources.

In the present work, we use the same procedure to ob
a slight improvement on the existing bound by incorporat
the redshift of the light as it propagates to the Earth. Cosm
logical redshift implies that over the path traveled the lig
has shorter wavelength than observed. Taking the same
servative cosmology as in the previous subsection and i
grating the phase change over the propagation time yiel

Df5
4ps

l

2

H0
S 12

1

A11zD , ~26!

wherel is the observed wavelength andz is the redshift. To
account for the redshift, it therefore suffices to replaceL with
Leff52„12(11z)21/2

…/H0 in the analysis.
Table II lists 16 sources with published values ofc. The

second column of the table displays the effective dista
Leff traveled by the light. The third column provides th
range of wavelengths for which data are used. In fitting

TABLE II. Source data for polarization constraints.

Source Le f f ~Gpc! 1030Le f f /l log10s

IC 5063 @41# 0.04 0.56–2.8 230.8
3A 0557-383@42# 0.12 2.2–8.5 231.2
IRAS 18325-5925@42# 0.07 1.0–4.9 231.0
IRAS 19580-1818@42# 0.14 1.8–9.3 231.0
3C 324@43# 2.44 82–180 232.3
3C 256@44# 3.04 110–220 232.4
3C 356@45# 2.30 78–170 232.3
F J084044.51••• @46# 2.49 88–170 232.4
F J155633.81••• @46# 2.75 99–160 232.4
3CR 68.1@47# 2.48 84–180 232.4
QSO J2359-1241@48# 2.01 110–120 231.2
3C 234@49# 0.61 55–81 231.7
4C 40.36@50# 3.35 120–260 232.4
4C 48.48@50# 3.40 120–260 232.4
IAU 02112122 @50# 3.40 120–260 232.4
IAU 08281193 @50# 3.53 130–270 232.4
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dc, we choose to setc0 equal to the mean value of th
measuredc. For each source,x0 and l0 are fitted to the
data. These angles can be thought of as the two degree
freedom needed to describe the unknown polarization at
source. Ideally, at this point the data would be fitted to all
sources simultaneously. However, sinceka has 10 elements
and each source introduces two additional parameters,
would be involved. Instead, we examine each source in
vidually and look for the desired wavelength dependence

Adopting the same analysis strategy as described in R
@15# yields the bounds for each source listed in the last c
umn of Table II, which can be combined to yield a bound

ukau,2310232 ~27!

in the Sun-centered celestial equatorial frame, at the 9
confidence level.

IV. LABORATORY TESTS

The Lorentz-violating electrodynamics predicts shifts
cavity-resonance frequencies, which offers the opportun
for sensitive tests of Lorentz symmetry in laboratories on
Earth and in space. This section presents a general fra
work for the analysis of such experiments. We begin w
some general considerations and then separately consid
more detail the cases of optical cavities and microwave c
ties.

A. General considerations

Many tests of special relativity search for variations
some observable that might arise from the rotation or bo
of the apparatus due to the motion of the Earth. Loren
violating theories predict periodic variations at multiples
the Earth’s sidereal or orbital frequencies. For examp
high-sensitivity measurements of coefficients in the ferm
sector of the standard-model extension have been perfor
by comparing two clocks as the Earth rotates@11#. The
clocks are typically the frequencies associated with spec
Zeeman atomic transitions, and the standard-model exten
predicts variations in these frequencies with the orientat
of the apparatus and hence with the Earth’s rotation. Sim
tests could be performed in space, with the frequency va
tions depending on the orbital and rotational properties of
spacecraft@20#.

Resonant cavities can also serve as clocks, and they
be used in clock-comparison experiments to test proper
of electromagnetic fields instead of atomic transitions.
particular, clock-comparison experiments of this type can
used to probe the photon sector of the standard-model ex
sion. One relevant issue in the analysis of these experim
is establishing the transformation between the laborat
frame and a standard celestial frame. Another is the dete
nation of the predicted frequency shifts. In this subsecti
these issues are addressed in a general context.

1. Generic laboratory experiment

Consider a general laboratory-based experiment mea
ing some electrodynamic observableO. Typically, the con-
5-8
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stitutive relations~4! change the observable from its conve
tional valueO0. We consider a changedO, taken to be linear
in the matriceskDE , kHB , and kDB52kHE

T . In a frame
fixed to the laboratory,dO can be written as

dO5~MDE! lab
jk ~kDE! lab

jk 1~MHB! lab
jk ~kHB! lab

jk

1~MDB! lab
jk ~kDB! lab

jk , ~28!

where (MDE) lab, (MHB) lab, and (MDB) lab are experiment-
specific constant matrices determined by the apparatus.
symmetries of thek matrices can be imposed on theirM
counterparts when convenient.

Due to the orbital and rotational motion of the Earth
the space platform, the laboratory cannot be considered
inertial frame. As a result, the laboratory-frame coefficie
(kDE) lab

jk , (kHB) lab
jk , and (kDB) lab

jk vary in time. We can ex-
ploit the induced variation inO by searching for periodic
fluctuations inO at the relevant frequencies. A measurem
of this type of variation would be a signal for Lorentz viol
tion.

To determine the dependence of the periodic variation
the coefficients (kF)klmn , we seek an expression similar
Eq. ~28! in an inertial frame. A suitable choice for a standa
inertial frame is the Sun-centered celestial equatorial fra
defined in Sec. III A. The coefficients for Lorentz violatio
in this frame, (kDE)JK, (kHB)JK, and (kDB)JK, are constant.

The observer Lorentz transformation between the t
frames can be used to relate the corresponding two setsk
matrices. Since the velocity of the Earth with respect to
Sun isb %'1024, it suffices for our purposes to constru
the transformation to leading order. At this order, the Lore
matrix L n

m implementing the transformation from the Su
centered frame to the laboratory frame is

L T
0 51, L J

0 52bJ,

L T
j 52~R•bW ! j , L J

j 5RjJ, ~29!

wherebW is the velocity of the laboratory with respect to th
Sun-centered frame andRjJ is the spatial rotation from the
Sun-centered frame to the laboratory frame. Some calc
tion shows that the induced transformation between thk
matrices is

~kDE! lab
jk 5T0

jkJK~kDE!JK2T1
( jk)JK~kDB!JK,

~kHB! lab
jk 5T0

jkJK~kHB!JK2T1
( jk)KJ~kDB!JK,

~kDB! lab
jk 5T0

jkJK~kDB!JK1T1
k jJK~kDE!JK

1T1
jkJK~kHB!JK, ~30!

where

T0
jkJK5RjJRkK, T1

jkJK5RjPRkJeKPQbQ. ~31!

The tensorT0 is a rotation, whileT1 is a leading-order boos
contribution. Although the contributions involvingT1 are
suppressed byb, they access distinct combinations of coe
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ficients and can introduce different time dependence, wh
may lead to fundamentally different tests.

To apply Eqs.~30! and~31!, the laboratory frame must b
specified. Appendix C defines our standard Earth-based
space-based frames and establishes the transformations
these to the reference Sun-centered celestial equat
frame.

2. Cavity experiments

Two classes of cavities are of interest in the present c
text: optical cavities, for which the wavelength of the light
much smaller than the cavity size, and microwave cavit
for which the wavelength and cavity size are comparable
both cases, the interesting quantity is the fractional reson
frequency shiftdn/n.

For a given cavity, letEW 0 , BW 0 , DW 0 , HW 0 be the fields
associated with a conventional mode of resonant angular
quencyv0. NonzerokF coefficients can perturb these res
nance fields. LetEW , BW , DW , HW be the perturbed fields for th
resonant mode in the presence of Lorentz violation, and
dn5dv/2p represent the change in the resonant freque
relative to the conventional case. A manipulation of t
Lorentz-violating Maxwell equations then yields the fra
tional resonant-frequency shift as

dn

n
52S E

V
d3x~EW 0* •DW 1HW 0* •BW ! D 21

3E
V
d3x„EW 0* •DW 2DW 0* •EW 2BW 0* •HW 1HW 0* •BW

2 iv0
21¹W •~HW 0* 3EW 2EW 0* 3HW !…, ~32!

where the integrals are over the volumeV of the cavity. This
equation holds for any harmonic system, even for large
ferences between the conventional and perturbed mo
Note that the divergence term results in a surface inte
over the boundary ofV.

For the application to Lorentz violation, the perturbe
modes are expected to differ only slightly from the unp
turbed ones. Also, the boundary conditions can reasonabl
taken such that the divergence term in Eq.~32! vanishes. The
point is that, for leading-order effects, we can approxim
the cavity as lossless and idealize the surface of the cavit
a perfect conductor. The boundary condition of vanish
surface tangential electric fieldEW 0 follows as usual from the
Faraday equation¹W 3EW 1]0BW 50 and the vanishing ofEW 0
inside the conductor. The latter can be regarded as a co
quence of the Lorentz force law. To determine the tangen
perturbed fieldEW on the cavity surface, we note that Loren
violation in the photon sector leaves the force law un
fected. Disregarding for simplicity any effects on the for
law arising from Lorentz violation in the fermion sector o
the standard-model extension, which in any case would
expected to enhance a signal, it follows that the tangen
component ofEW also vanishes on the surface. With the
5-9
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boundary conditions, the normal component of (HW 0* 3EW

2EW 0* 3HW ) is zero at the surface of the cavity.
For leading-order effects of Lorentz violation, it suffice

to expand the remaining terms of Eq.~32! in the coefficients
(kF)klmn . If the cavity is void of matter, thenDW 05EW 0 , HW 0

5BW 0, and the constitutive relations~4! yield the approximate
relations

DW 2EW .kDE•EW 01kDB•BW 0,

HW 2BW .kHE•EW 01kHB•BW 0. ~33!

If the cavity contains matter, we adopt instead a general
ear relation between the unperturbed fields (D0 ,H0) and
(E0 ,B0) and assume for simplicity a lossless medium.
either case, we find that the leading-order fractional f
quency shift becomes

dn

n
52

1

4^U&EV
d3x„EW 0* •kDE•EW 02BW 0* •kHB•BW 0

12Re~EW 0* •kDB•BW 0!…, ~34!

where ^U&5*Vd3x(EW 0•DW 0* 1BW 0•HW 0* )/4 is the time-
averaged energy stored in the unperturbed cavity. Note
dn/n is real, reinforcing the argument that the vacuum
lossless and indicating that theQ factor of the cavity remains
unaffected by Lorentz violation at leading order.

B. Optical cavity experiments

Among the classic tests of Lorentz invariance are
Michelson-Morley @1# and Kennedy-Thorndike@2# experi-
ments. Both concern the speed of light, with the form
searching for spatial anisotropy and the latter seeking de
dence on the laboratory velocity. The standard-model ex
sion can be used as a general framework for analyzing th
experiments. In this section, we consider modern version
these tests that use optical cavities to achieve improved
sitivities @17–19#.

1. Theory

We can use the results in Sec. IV A to obtain an expr
sion for the fractional frequency shiftdn/n arising from
Lorentz-violating effects in an optical cavity. The idea is
regard the cavity as two parallel reflecting planar surfa
with plane waves propagating between them normal to
surfaces, and then to apply Eq.~34!.

The resonant modes of optical cavities can be regarde
standing waves. For simplicity and definiteness, we supp
the unperturbed cavity contains a medium having transv
relative permittivitye and relative permeabilitym51, with
the casee51 corresponding to a cavity void of matter. A
usual, the unperturbed fields can be taken as

EW 0~x!5EW 0cos~v0N̂•xW1f!e2 iv0t,

BW 0~x!5 iAeN̂3EW 0sin~v0AeN̂•xW1f!e2 iv0t, ~35!
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where N̂ is a unit vector pointing along the length of th
cavity, f is a phase, andEW 0 is a vector perpendicular toN̂
that specifies the polarization. The conventional resonant
quencies are given byv05pm/Ae l , wherem is an integer
and l is the length of the cavity.

Substitution of Eq.~35! into Eq. ~34! yields the desired
result for the fractional frequency shift:

dn

n
52

1

2uEW 0u2
@EW 0* •~kDE! lab•EW 0 /e

2~N̂3EW 0* !•~kHB! lab•~N̂3EW 0!]. ~36!

This expression for the fractional frequency shift is also o
tained in an alternative approach from a different physi
perspective, as described in Appendix D.

The laboratory-frame matricesMlab introduced in Eq.
~28! can be extracted from Eq.~36!. We find

~MDE! lab
jk 52

Re~E0* ! j~E0!k

2euEW 0u2
,

~MHB! lab
jk 5

Re~N̂3EW 0* ! j~N̂3EW 0!k

2uEW 0u2
,

~MDB! lab
jk 50. ~37!

These equations show that in the presence of Lorentz vi
tion the frequency of an optical-cavity oscillator depen
both on the orientation of the cavity and on the polarizat
of the light with respect to the laboratory frame.

To analyze an experiment with an optical cavity, one c
now proceed as follows. First, determine the laborato
frame matricesMlab from the apparatus by applying Eq
~37!. These matrices are constant if the cavity is fixed in
laboratory but vary with time if the cavity is rotated in th
laboratory. Next, relate the laboratory-frame matricesk lab to
those in the reference Sun-centered frame using the tran
mation ~30! and the material in Appendix C. The time de
pendence of the cavity resonant frequency can then be
culated using Eq.~36! or equivalently Eq.~28!. Finally, the
amplitudes and phases of particular harmonics can be
tained and compared to the experimental data.

As an illustration of the analysis procedure, consider la
light incident on a cavity positioned horizontally in an Eart
based laboratory, with the light linearly polarized along thz
axis. Denote byu the angle between thex axis and the cavity
orientation. Then,N̂5(cosu,sinu,0), and in the laboratory
frame the fractional frequency shift becomes

dn

n
52

1

4
@2~kDE! lab

33/e2~kHB! lab
112~kHB! lab

22#

2
1

2
~kHB! lab

12sin 2u

2
1

4
@~kHB! lab

112~kHB! lab
22#cos 2u. ~38!
5-10
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The next step is to transform this result to the Su
centered celestial equatorial frame. Using Eqs.~30! and~31!,
the fractional frequency shift takes the form

dn

n
5A1Bsin2u1Ccos2u, ~39!

where

A5A01A1sinv %T% 1A2cosv %T% 1A3sin2v %T%

1A4cos2v %T% ,

B5B01B1sinv %T% 1B2cosv %T% 1B3sin2v %T%

1B4cos2v %T% ,

C5C01C1sinv %T% 1C2cosv %T% 1C3sin2v %T%

1C4cos2v %T% . ~40!

The quantitiesA0,1,2,3,4, B0,1,2,3,4, andC0,1,2,3,4 are linear in
the coefficients for Lorentz violation and depend on the
latitudex. They are given explicitly to orderb in Appendix
E. Note that the coefficientk̃ tr appears only inA0, resulting
in a constant frequency shift. It follows that sensitivity tok̃ tr
is suppressed by at least two powers ofb in this experiment.

The analysis could now proceed along several lines. O
possibility is to adopt the birefringent constraints~27!. The
expressions in Appendix E can then be simplified by sett
(k̃e1)JK5(k̃o2)JK50. This shows that the eight coefficien
k̃e2 , k̃o1 are directly accessible through fitting the me
sured frequency shift to Eq.~40!. Another possibility is to
include all coefficients in the analysis. This would provide
direct laboratory check on the birefringence results.
though in practice the sensitivity is much reduced, the s
tematics of laboratory-based experiments are fundamen
different from those in cosmological tests and so this ch
is worthwhile. We remark that the isolation of specific coe
ficients for Lorentz violation can be aided by consideri
different experimental configurations. These include ado
ing a different polarization and rotating the apparatus in
laboratory, which produces a time dependence inu.

2. Experiment

A modern Michelson-Morley experiment with sensitivi
to a fractional frequency shiftdn/n of about 10213 was per-
formed by Brillet and Hall@17#. A similar sensitivity was
achieved by Hils and Hall@18# in a Kennedy-Thorndike ex
periment, recently repeated using a cryogenically coo
cavity by Braxmaieret al. @19#. These experiments compa
the fractional frequency shifts between two lasers. One la
is stabilized to a molecular transition and serves as a re
ence frequency. A portion of the light from the second la
is sent into one end of an optical cavity, and the light eme
ing at the other end is used to tune this laser to the ca
resonant frequency. The remaining light from the second
ser is combined with the light from the reference laser, a
the beat frequency is measured. In the classic analysis
frequency of the reference laser is independent of violati
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of special relativity while the frequency of the cavity
stabilized laser depends on the speed of light along
length of the cavity.

The Brillet-Hall experiment studies spatial isotropy b
seeking changes in the beat frequency as the cavity is rot
in the laboratory with a period of about 10 s. The vec
Fourier amplitude is measured at twice the cavity rotat
frequency. In the present context, if we suppose for defin
ness a vertical laser polarization as in the previous sub
tion, this experiment offers sensitivity to the quantitiesB and
C in Eq. ~39! through the time dependence ofu. The re-
ported fractional frequency shift is 1.562.5310215. The
analysis yielding this bound supposes a signal at 2v % and
averages over several days of data. Within the framew
leading to Eq.~40!, this bound would translate to a constrai
on a particular combination of the coefficientsB3 , B4 , C3 ,
C4 at the level of about a part in 1015.

A complete dataset of the type taken in this experim
could be analyzed using Eq.~40! to extract several differen
measurements of combinations ofBn andCn . For example,
consider the one-day dataset displayed in Fig. 2 of Ref.@17#.
In this dataset, no variation is seen in the frequency ab
the level ofAB21C2&4310213. In fact, these data exhibi
a one-day signal involving a roughly constant Fourier amp
tude of about 2310213 with nearly constant phase, attribute
to a slight tilt in the rotation platform. Since a nonzero val
of AB0

21C0
2 would produce a similar signal, compellin

measurements ofB0 , C0 via this method appear problemati
However, bounds on combinations of the quantititesBn , Cn
for nÞ0 could be extracted by studying the behavior of t
data at both the sidereal frequencyv % and its harmonic
2v % . As can be seen from the expressions in Appendix
the quantitiesBn , Cn involve unsuppressed combinations
the coefficientsk̃e1 , k̃e2 for Lorentz violation, along with
combinations of the coefficientsk̃o1 , k̃o2 suppressed by
one power of the velocity. It therefore appears feasible
perform a systematic analysis of a complete dataset i
Michelson-Morley experiment with an optical cavity to me
sure combinations of the coefficientsk̃e1 , k̃e2 with a sen-
sitivity of order 1021461 and combinations ofk̃o1 , k̃o2

with a sensitivity of order 1021061.
The Hils-Hall experiment seeks changes in the beat

quency as the velocity of the laboratory varies with t
Earth’s rotation. The analysis assumes that experiment
the Michelson-Morley type exclude observable sensitivity
the orientationu of the cavity. In the context of Eq.~39!, this
corresponds to assuming negligibleB andC terms. The Fou-
rier amplitude at the sidereal frequency is analyzed, obta
ing a bound of 2310213 at the 90% confidence level. With
the configuration leading to Eq.~40!, this bound constrains
the combinationAA1

21A2
2.

Since at present many combinations ofB and C remain
unconstrained, the assumption of negligibleB, C terms is
undesirable in the analysis of Kennedy-Thorndike expe
ments. If this assumption is relaxed, the Fourier amplitude
the sidereal frequency contains contributions fromA1 , A2 ,
B1 , B2 , C1 , C2. It should therefore be possible to measu
5-11
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combinations of the coefficientsk̃e1 , k̃e2 at the level of

about 10213 and combinations of the coefficientsk̃o1 , k̃o2

at the level of about 1029. A complete analysis could als
analyze the second Fourier amplitude, which would prov
a measurement of a combination ofA3 , A4 , B3 , B4 , C3 ,
C4.

The analysis of Braxmaieret al. focuses on a variation in
dn/n with the orbital motion of the Earth. The assumption
negligibleB, C terms is again made. The data are avera
daily, and a bound on the fractional frequency shift of 4
65.3310212 is obtained. In the context of Eq.~40!, the
analysis restricts the sensitivity toA0. Using Eq. ~E1! in
Appendix E, it then follows that the reported constraint c
responds to a bound on a combination ofk̃o1 , k̃o2 at the
level of about 1028. Sensitivity toC0 could also be obtained
if B and C terms were included. Note that the polarizati
chosen in deriving Eq.~40! implies the coefficientB0 is in-
dependent ofb % and hence cannot be extracted.

The above discussion shows that many interesting p
pects remain for measurements of the coefficientsk̃ using
optical cavities. Note that the published experimental ana
ses to date are each sensitive to different combination
coefficients for Lorentz violation. A systematic analys
could in principle provide sensitivity to all the coefficien
k̃e1 and k̃e2 at the level of about 10213 or better and sup-
pressed sensitivity to the coefficientsk̃o1 and k̃o2 at the
level of about 1029 or better. Note also that an analysis alo
the above lines could readily be applied to space-based
involving optical cavities, including ones on the ISS or
dedicated missions such as the proposed OPTIS experi
@51#. Some potential advantages of space-based tests are
cussed below in the context of experiments using microw
cavities.

C. Microwave cavities

Microwave-cavity oscillators are among the most sta
clocks, and as such they offer interesting prospects for L
entz tests. In particular, there has recently been renewe
terest in superconducting cavity-stabilized oscillators
clocks for use on the ISS@52#. Superconducting cavitie
made of niobium have achievedQ factors of 1011 or better,
and frequency stabilities of 3310216 have been demon
strated. In this section, we focus on perturbations
microwave-cavity resonant frequencies arising from the
efficients (kF)klmn for Lorentz violation.

1. Theory

Equation ~34! can be applied to obtain the fraction
resonant-frequency shiftdn/n for a superconducting micro
wave cavity of any geometry. The highestQ factors have
been demonstrated in cylindrical cavities with circular cro
section, so we focus on this case. For simplicity, we supp
the cavity contains a medium of relative transverse perm
tivity e, relative axial permittivitye8, and relative perme-
ability m51. The vacuum case is recovered as the limie
5e851.
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The invariance of the cylindrical geometry under a par
transformation suggests the matrixMDB vanishes, since the
coefficients (kDB) jk are parity odd. Also, the cavity is invari
ant under rotations about the symmetry axis, so in a ca
frame with 3 axis along the symmetry axis we expect
rotational symmetry to imply diagonal matrices (MDE)cav
and (MHB)cav with equal$11% and$22% components. Indeed
for both TEmnp and TMmnp modes, we obtain

dn

n
5~MDE!cav

11 @~kDE!cav
11 1~kDE!cav

22 #1~MDE!cav
33 ~kDE!cav

33

1~MHB!cav
11 @~kHB!cav

11 1~kHB!cav
22 #1~MHB!cav

33 ~kHB!cav
33

~41!

in the cavity frame.
For the TMmnp modes, some calculation reveals that t

nonzero elements of theM matrices are

~MDE!cav
11 5~MDE!cav

22 52
1

4

e8~ppR!2

ee8~ppR!21e2~xmnd!2 ,

~MDE!cav
33 52

1

2

e~xmnd!2

e82~ppR!21ee8~xmnd!2 ,

~MHB!cav
11 5~MHB!cav

22 5
1

4
, ~42!

whereR and d are the radius and length of the cavity, an
wherexmn is the nth zero of themth-order Bessel function
Jm(x). The corresponding results for the TEmnp modes are

~MDE!cav
11 5~MDE!cav

22 52
1

4e
,

~MHB!cav
11 5~MHB!cav

22

5
1

4

~ppR!2

~ppR!21~xmn8 d!2 ,

~MHB!cav
33 5

1

2

~xmn8 d!2

~ppR!21~xmn8 d!2 , ~43!

wherexmn8 is the nth zero of the derivative ofJm(x). Note
that taking the optical-cavity limitp→` of any TMmnp or
TEmnp mode yields a result identical to that obtained by a
eraging over all optical-cavity polarizations in Eq.~37!.

For practical applications, it is useful to generalize E
~41! to the case where the cavity is arbitrarily oriented in o
of the standard laboratory frames introduced in Appendix
In the laboratory frame, denote the components of a u
vector parallel to the symmetry axis of the cavity byN̂j . The
fractional frequency shift is then found to be
5-12
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dn

n
5~MDE!cav

11 ~kDE! lab
j j 1~MHB!cav

11 ~kHB! lab
j j

1@~MDE!cav
33 2~MDE!cav

11 #N̂j N̂k~kDE! lab
jk

1@~MHB!cav
33 2~MHB!cav

11 #N̂j N̂k~kHB! lab
jk . ~44!

This implies the relationships

~MDE! lab
jk 5@~MDE!cav

33 2~MDE!cav
11 #N̂j N̂k1~MDE!cav

11 d jk,

~MHB! lab
jk 5@~MHB!cav

33 2~MHB!cav
11 #N̂j N̂k1~MHB!cav

11 d jk,

~MHB! lab
jk 50. ~45!

Using Eq.~44! and the transformation~30!, we can write the
fractional frequency shift for a general mode in terms
coefficients for Lorentz violation in the Sun-centered cel
tial equatorial frame. To orderb, we find

dn

n
52

1

4
N̂j N̂kRjJRkK~ k̃e8!

JK2
1

4
~M213M3!k̃ tr

2
1

2
~M 3d jk/M21N̂j N̂k!RjJRkKeJPQbQ~ k̃o8!

KP.

~46!

In this equation, we define the quantities

M1[24@~MDE!cav
33 2~MDE!cav

11 1~MHB!cav
33 2~MHB!cav

11 #,

M2[24@~MDE!cav
33 2~MDE!cav

11 2~MHB!cav
33 1~MHB!cav

11 #,

M3[24@~MDE!cav
11 2~MHB!cav

11 #, ~47!

which depend on the cavity mode and control the linear co
binations

~ k̃e8!
JK5M1~ k̃e1!JK1M2~ k̃e2!JK,

~ k̃o8!
JK5M1~ k̃o2!JK1M2~ k̃o1!JK ~48!

of coefficients for Lorentz violation. These equations rev
that the sensitivity of experiments with microwave caviti
to Lorentz violation varies with the mode and with the pe
mittivity of the medium in the cavity. As before, to this ord
k̃ tr contributes only to an unobservable constant freque
shift.

As an illustration, consider a cavity void of matter an
operated on the fundamental TM010 mode, as planned fo
some space- and ground-based experiments. For this
we findM153, M25M351, and the fractional frequenc
shift ~46! becomes
05600
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dn

n U
TM010

52
1

4
N̂j N̂k@2~kDE! lab

jk 1~kHB! lab
jk 2d jk~kHB! lab

l l #

52
1

4
N̂j N̂kRjJRkK@3~ k̃e1!JK1~ k̃e2!JK#

2
1

2
~d jk1N̂j N̂k!RjJRkKeJPQbQ

3@3~ k̃o2!KP1~ k̃o1!KP#2k̃ tr . ~49!

The observable shift depends on the traceless symmetric
trix combination 3(k̃e1)JK1(k̃e2)JK and the traceless ma
trix combination 3(k̃o2)JK1(k̃o1)JK. The first of these con-
tains five linearly independent combinations of the 11 par
even coefficients for Lorentz violation, while the seco
contains all eight parity-odd coefficients. Note that certa
harmonics may be sensitive to smaller subset of these
quantities. For example, for a fixed Earth-based cavity, ifv̂
represents the rotational axis of the Earth’s revolution, th
the sidereal harmonics are insensitive to the componen
3(k̃e1)JK1(k̃e2)JK proportional to v̂Jv̂K, reducing the
number of combinations to 12.

If an Earth-based experiment is performed over a per
of time DTexp short compared to the orbital period of th
Earth, then the velocityb is roughly constant and the exper
ment is sensitive primarily to the four linear combinatio
corresponding to the vector amplitudes of the two harmon
To acquire sensitivity to other combinations, the Earth-ba
experiment could either be repeated several times during
year, or the cavity could be rotated in the laboratory. In co
trast, for a satellite-based experiment, perturbations cause
orbital plane and hence the analogue ofv̂ to precess with
time. Also, the smaller orbital period implies different ha
monics and access to more coefficients for the sameDTexp.
As a result, if the experiment is performed two or more tim
with significantly different orbital planes, all 13 combina
tions of coefficients can be accessed through the orb
frequency harmonics.

Equation~44! can be adapted to either a space-based
Earth-based experiment and, if necessary, to the case
rotating cavity. In the remainder of this section, we off
some remarks about possible experiments with microw
cavities on the ISS and on the Earth.

2. Space-based experiment

The construction of the ISS offers the possibility of pe
forming Lorentz tests in low Earth orbit. Of particular re
evance in the present context is the SUMO experiment@52#,
which plans to use superconducting microwave-cavity os
lators as clocks on upcoming ISS flight missions.

The ISS operates in several different flight modes, wh
correspond to different laboratory configurations in the S
centered celestial equatorial frame. Each flight mode the
fore involves different transformations~30!, which could
lead to different sensitivities to the Lorentz-violating coef
cients. If, for example, the ISS orientation were fixed in Su
5-13
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V. ALAN KOSTELECKÝ AND MATTHEW MEWES PHYSICAL REVIEW D 66, 056005 ~2002!
centered frame, corresponding to no rotation during an o
then the signal would involve only boost-dependent ter
with a 92-minute period. For definiteness and simplicity,
focus here on a flight mode with the ISSz-axis aligned along
its orbital velocity with respect to the Earth. This corr
sponds to the standard laboratory frame introduced in
pendix C.

For a microwave cavity with fixed orientationN̂ in this
ISS laboratory frame, several harmonics could be stud
The fractional frequency shiftdn/n varies with the Earth’s
orbital frequency, the ISS orbital frequencyvs , and the ISS
orbital-precession frequency. The most interesting of thes
likely to be the highest frequency,vs .

In practice, the fractional frequency shift may be me
sured relative to another oscillator clock via the beat f
quency of the combined signal. The reference clock could
a different physical system, such as a hydrogen mase
atomic clock, which could conveniently be operated on
transition known to be insensitive to Lorentz violation@20#.
A comparison of two microwave cavities could also be us
For example, SUMO may involve a pair of cavities orient
at right angles to each other. The observed signal would t
depend strongly on the orientation of the pair in the I
frame. Thus, at leading order inb, a cavity oriented withN̂
perpendicular to the orbital plane is insensitive to the par
even coefficients for Lorentz violation, and on
b-suppressed parity-odd terms appear in the frequency s
In contrast, a cavity positioned withN̂ in the orbital plane
maximizes the sensitivity in the second harmonics ofvs ,
while one with N̂ at 45° from the orbital plane maximize
the first harmonics. These results can be obtained dire
from Eq. ~44!.

For a pair of identical cavities, the variation in the be
frequency takes the general form

nbeat

n
[

dn1

n
2

dn2

n

5AssinvsTs1AccosvsTs

1Bssin 2vsTs1Bccos 2vsTs1C, ~50!

whereAs , Ac , Bs , andBc are four linear combinations o
the coefficients (kF)klmn for Lorentz violation. These com
binations depend on the orientationsN̂1 , N̂2 of the cavity
pair and on the orientation of the orbital plane with respec
the Sun-centered celestial equatorial frame. The preces
of the ISS orbit slowly changes the four combinations,
lowing access to more coefficients. Typically, the combin
tions are rather cumbersome. Appendix F contains their
plicit form for a maximal-sensitivity case, for whichN̂1

5(0,0,1) andN̂25(1,1,0)/A2. The expressions involve th
linear combinations~48!, which hold for an arbitrary mode
and arbitrary permittivitiese, e8.

3. Earth-based experiment

For an Earth-based experiment with a cavity pair fixed
the laboratory, the dominant frequency is the Earth’s side
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frequencyv % . The equivalent of the ISS orbital plane in th
case is the plane in which the laboratory moves, which p
allels the equatorial plane at the latitude of the laboratory.
before, the configuration of maximum sensitivity has o
cavity in this plane and the other at 45° to it. However, f
laboratories located in middle latitudes, it suffices to orie
one cavity horizontally in the east-west direction and t
other either vertically or horizontally in the north-south d
rection. The east-west cavity is then maximally sensitive
the second harmonics, while the north-south cavity is n
maximal sensitivity to the first harmonics. The latter are p
portional to cos 2x, so for colatitudes in the range 30°,x
,60° there is at most a 14% reduction in sensitivity.

For definiteness, we consider the configuration with
second cavity oriented vertically in the laboratory. T
laboratory-frame orientation vectors are thenN̂15(0,1,0)
and N̂25(0,0,1). Paralleling the discussion leading to E
~50!, we write the fractional beat frequency due to Loren
violation as

nbeat

n
5A% ssinv %T% 1A% ccosv %T% 1B% ssin 2v %T%

1B% ccos 2v %T% 1C% . ~51!

At first order inb, we find

A% s5
1

4
sin2x~k̃e8!

YZ2
1

4
b %sin 2x@sinV %T„~ k̃o8!

YY

2~ k̃o8!
ZZ
…2sinhcosV %T~ k̃o8!

ZX

1coshcosV %T~ k̃o8!
YX#2

1

2
bL„sin2x~k̃o8!

YZ

2cos2x~k̃o8!
ZY
…,

A% c5
1

4
sin 2x~k̃e8!

XZ2
1

4
b %sin 2x@sinV %T~ k̃o8!

XY

1sinhcosV %T~ k̃o8!
ZY1coshcosV %T„~ k̃o8!

XX

2~ k̃o8!
ZZ
…#2

1

2
bL„sin2x~k̃o8!

XZ

2cos2x~k̃o8!
ZX
…,

B% s5
1

4
~11sin2x!~k̃e8!

XY1
1

4
b %~11sin2x!

3@sinV %T~ k̃o8!
XZ1coshcosV %T~ k̃o8!

YZ

1sinhcosV %T„~ k̃o8!
XX2~ k̃o8!

YY
…#

1
1

8
bLsin2x„~ k̃o8!

XY1~ k̃o8!
YX
…,
5-14
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B% c5
1

8
~11sin2x!„~ k̃e8!

XX2~ k̃e8!
YY
…

2
1

4
b %~11sin2x!@sinV %T~ k̃o8!

YZ

2coshcosV %T~ k̃o8!
XZ1sinhcosV %T„~ k̃o8!

XY

1~ k̃o8!
YX
…#1

1

8
bLsin 2x„~ k̃o8!

XX2~ k̃o8!
YY
…,

C% 5
3

8
cos2x~k̃e8!

ZZ2
1

4
b %cos2x@sinV %T„~ k̃o8!

YZ

12~ k̃o8!
ZY
…2sinhcosV %T„~ k̃o8!

XY2~ k̃o8!
YX
…

1coshcosV %T„~ k̃o8!
XZ12~ k̃o8!

ZX
…#

2
3

8
bLsin 2x~k̃o8!

ZZ, ~52!

where the convenient combinations~48! have been adopted
As before, these equations are valid for any specific m
and for arbitrary permittivitiese, e8.

A Lorentz-violating signal would thus manifest itself as
sidereal variation in the fractional beat frequency accord
to Eq. ~51!. At zeroth order inb, the corresponding ampli
tude associated with this variation is constant and determ

by the four parity-even coefficients (k̃e8)
XZ, (k̃e8)

YZ,

(k̃e8)
XY, and (k̃e8)

XX2(k̃e8)
YY. These linearly independen

combinations of (kF)klmn remain unmeasured to date. Whe
the first-order terms inb are included, the amplitudes als
contain harmonics at the Earth’s orbital frequencyV % . The
resulting variations depend on the eight parity-odd coe

cientsk̃o8 . The three of these represented byk̃o1 have yet to
be measured.

The above experiment provides access to the spec
parity-even coefficients at the level of the cavity stabili
which for available microwave cavities could be at the ord
of 10213 or better. Theb suppression reduces the sensitiv
to the parity-odd coefficients to about 1029 or better. The
experiments can be performed on any cavity mode and
cavities with or without matter. For example, as can be s
from the explicit expressions~48!, a pair of sapphire-filled
cavities (e.9.5,e8.11.5) operated on a whispering-galle
mode@53# offers sensitivity to linear combinations of coe
ficients for Lorentz violation that differ from those of a pa
of vacuum cavities operated on the fundamental TM010
mode. In fact, for any specified combination of cavities w
known fields, the matrices (MDE)cav, (MHB)cav in Eq. ~41!
can be determined and hence the fractional beat freque
can be obtained as above. Note also that other coeffici
could be accessed by placing the cavity pair on a rota
turntable, which would also allow a dataset to be obtained
weeks or days rather than months.
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D. Cavity deformation

In this remaining subsection, we offer a few remarks co
cerning the possibility that Lorentz violation might alte
atomic binding forces and hence the structural propertie
matter. In particular, one resulting effect relevant to cav
experiments might be a deformation of the cavity, whi
could change the resonant frequency. The issue is whe
possible deformations arising from Lorentz-violating effec
in the standard-model extension could cancel the predic
effects. The differences between the transformation pro
ties and nature of the various coefficients for Lorentz vio
tion make it unlikely that coefficients other than (kF)klmn

could cause complete cancellation of the signals discus
above, so a more interesting question is whether the co
cients (kF)klmn could alter the dimensions of a cavity so
to offset completely the predicted signals.

Any leading-order modifications to atomic and molecu
binding forces arising from nonzero (kF)klmn are expected to
come from modifications to the Coulomb potential. The fo
of the Gauss law~6! in the presence of Lorentz violation du
to (kF)klmn implies that the modified Coulomb potential fo
a point chargeq is

F~xW !5
q

4puxW u
S 11

xW•kDE•xW

2xW2 D . ~53!

The leading-order effects on the physical dimensions of
cavity are therefore expected to depend only on the ma
kDE . We could account phenomenologically for such effe
by adding a term to Eq.~28! of the form Mmatter

jk (kDE) lab
jk ,

where the constant matrixMmatter
jk is determined by the prop

erties of the material from which the cavity is made. F
example, in a simple ionic lattice model,Mmatter

jk depends on
the charge of the ions, the lattice configuration, and the
entation of the cavity with respect to the lattice.

For the optical and microwave cavities considered he
this extra term cannot completely cancel the predicted fr
tional frequency shifts. Although a partial cancellation mig
be possible in principle, it requires that the matrixMmatter

jk

takes a special form that is improbable in light of the co
plexity of the binding forces of solids.

V. SUMMARY

In this work, we studied the Lorentz-violating electrod
namics derived from the renormalizable sector of the f
Lorentz-violating standard-model extension. Some basic
terial is presented in Sec. II A, followed by a useful analo
and some definitions in Sec. II B. Section II C discusses
connection to some test models.

The bulk of the paper is devoted to tests of the Loren
violating electrodynamics and methods to measure the
independent coefficients (kF)klmn for Lorentz violation. We
first consider astrophysical tests based on the prediction
the vacuum is birefringent. Theoretical issues pertaining
vacuum birefringence are discussed in Sec. III A. One pot
tially observable effect is the dispersion of pulses over as
physical distances. The constraint~21! on (kF)klmn from this
5-15
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effect is obtained in Sec. III B. Another potentially obser
able effect arises in the comparative spectropolarimetry
cosmological sources. The tight bound~27! on 10 of the 19
coefficients (kF)klmn is obtained in Sec. III C.

The possibility of sensitive laboratory tests of Lorentz
variance is examined in Sec. IV A. A general framework
the analysis of both Earth-based and space-based ex
ments is provided. The analysis is applied to two types
cavity-stabilized oscillator experiments. In Sec. IV B, w
consider optical-cavity experiments. High sensitiv
microwave-cavity experiments are discussed in Sec. IV
We find that appropriate laboratory tests can access al
coefficients (kF)klmn .

Table III summarizes the existing constraints. The 19
efficients (kF)klmn are represented by the matricesk̃e1 ,
k̃e2 , k̃o1 , k̃o2 , k̃ tr defined in Eq.~7!. The number of in-
dependent components in each matrix is shown in the sec
column. The order of magnitude of the astrophysical bou
is shown in the third and fourth column. These boun
tightly constrain the 10 coefficients (kF)klmn contained in
k̃e1 and k̃o2 . However, as indicated in the table by th
notation n/a, the remaining coefficients are unobservabl
astrophysical tests. In contrast, laboratory experiments w
optical and microwave cavities can in principle access all
coefficients. As discussed in Sec. IV B, several recent exp
ments with optical cavities@17–19# offer sensitivity to a few
of the coefficients at levels lying between about 1028 and
10215, but no definitive analysis has been performed. T
matrices for which a few components are probably c
strained in this way are indicated by the symbol! in the
table. To date, no measurements of Lorentz violation us
microwave cavities have been reported.

In conclusion, astrophysical observations place bounds
Lorentz violation in electrodynamics that are competiti
with ones in the fermion sectors obtained by other mea
Laboratory experiments are needed to complement th
measurements by spanning the allowed parameter spa
the photon sector, and the technology presently exists to
form them. These experiments offer a promising avenue
search for new physics lying beyond the standard mode
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TABLE III. Existing constraints.

Astrophysical tests Laboratory tests

Coeff. No. Velocity Polarization Optical Microwave

k̃e1
5 -16 -32 ! -

k̃e2
5 n/a n/a ! -

k̃o1
3 n/a n/a ! -

k̃o2
5 -16 -32 ! -

k̃ tr
1 n/a n/a - -
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APPENDIX A: BIREFRINGENCE VECTORS

For a distant source viewed from the Earth at declinat
d and right ascensionr, the direction of propagation toward
the Earth can be written asp̂m5(1;2cosdcosr,
2cosdsinr,2sind). The matrix

RjK5S sindcosr sindsinr 2cosd

sinr 2cosr 0

2cosdcosr 2cosdsinr 2sind
D ~A1!

implements the rotation between the primed frame and
standard Sun-centered frames. With this definition,
primed-frame basis vectorê38 points from the source toward

the Earth. The vectorsê18 and ê28 point south and west, re
spectively.

Writing ssinj and scosj in terms of coefficients in the
Sun-centered celestial equatorial frame gives

ssinj5
1

2
~R1JR2K1R2JR1K!kF

JmKnp̂mp̂n ,

scosj5
1

2
~R1JR1K2R2JR2K!kF

JmKnp̂mp̂n . ~A2!

Note thatj is not a rotational scalar, unliker ands.
The rotation~A1! can be substituted in this result to yie

ssinj andscosj in terms of (kF)klmn in Sun-centered ce
lestial equatorial coordinates. The relevant combinations
the (kF)klmn are the 10 coefficientska given in Eq.~8!. It is
convenient to expressssinj andscosj as the scalar produc
of ka with two 10-dimensional vectors. Defining

§s
a51

cos2 d1cos2 r 2sin2 dsin2 r

sin2 dcos2 r 2cos2 d2sin2 r

22sindsinrcosr

2sindsinrcosr

sind~sin2 r 2cos2 r !

2cosdsinr

cosdcosr

2sindcosdcosr

2cos2 dsinrcosr

2sindcosdsinr

2 , ~A3!
5-16
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§c
a5

¨

22sindsinrcosr

22sindsinrcosr

1

2
~11sin2 d!~sin2 r 2cos2 r !

1

2
~sind1sin2 r 2sin2 dcos2 r !

~11sin2 d!sinrcosr

2sindcosdcosr

2sindcosdsinr

cosdsinr

sind~sin2 r 2cos2 r !

2cosdcosr

©
,

~A4!

we find

ssinj5§s
aka,

scosj5§c
aka. ~A5!

APPENDIX B: POLARIZATION REVIEW

Conventionally, polarization is defined by the behavior
the electric field vector@54#. The polarization of a genera
plane wave can be described by an ellipse residing in
plane perpendicular to the direction of propagation. In ter
of the primed-frame variables introduced in Sec. III A and
leading order in (kF)klmn , this plane is spanned by the bas
vectorsê18 and ê28 . The orientation and shape of the ellip
can be described by two angles,c andx. The anglec de-
termines the orientation of the ellipse and is defined as
angle between the major axis of the ellipse andê18 . The
anglex describes the shape of the ellipse and the helicity
the wave, and it is defined byx56arctanr, wherer is the
ratio of the minor to major axes of the ellipse.

In polarimetry, the ellipse is commonly parametrized u
ing Stokes parameters. We define a Stokes vector by

~s0,sW ![~ uE18u
21uE28u

2,uE18u
22uE28u

2,

2ReE18* E28 , 2ImE18* E28!

5s0~1,cos 2xcos 2c,cos 2xsin 2c,sin 2x!. ~B1!

In the context of the discussion in Sec. III C, the losslessn
of the vacuum implies that the Stokes parameters0 is unaf-
fected at leading order by a relative-phase change. We th
fore normalize tos051 throughout. Withs051, each Stokes
vector sW represents a unique point on a two-dimensio
sphere of unit radius, called the Poincare´ sphere. As illus-
trated in Fig. 2, 2c and 2x are the angles that specify th
position ofsW on this sphere. An arbitrary polarization is re
resented by a single point on the sphere. The points in
s1-s2 plane represent all linear polarizations. The points
the upper hemisphere all represent elliptical polarizations
positive helicity, with the pole being the special case of c
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cular polarization. Similarly, the lower hemisphere represe
polarizations of negative helicity.

In Sec. III C, the quantity of interest is the polarizatio
change induced by the phase shiftDf in Eq. ~23!. The effect
of Df on the Stokes vectorsW can be visualized in terms o
motion on the Poincare´ sphere. Consider an arbitrary ortho
normal elliptical basis$«̂1 ,«̂2%. The associated Stokes ve
tors sW «̂1

, sW «̂2
determine opposite points on the Poinca´

sphere. Decomposing a general electric field in this ba
gives polarization componentsEne2 ifn, n51,2, whereEn
and fn are real. Examining the Stokes vector for this co
figuration shows that a changeD(f12f2) in the relative
phase results in a right-handed rotation of the Stokes ve
by the angleD(f12f2) about the axis given bysW «̂1

5

2sW «̂2
.

APPENDIX C: STANDARD FRAMES

This appendix defines our standard frames for Earth-
space-based laboratories. We provide the rotations and
locities used in transforming to the reference Sun-cente
celestial equatorial frame, which is defined in Sec. III A.

1. Earth-based laboratory

For a laboratory fixed to the surface of the Earth in t
northern hemisphere, we choose the standard frame to
coordinates (t,x,y,z) such that thex axis points south, they
axis points east, and thez axis points vertically upwards
With the reasonable approximation that the orbit of the Ea
is circular, the rotation from the Sun-centered celestial eq
torial frame to the standard laboratory frame is given by

RjJ5S cosxcosv %T% cosxsinv %T% 2sinx

2sinv %T% cosv %T% 0

sinxcosv %T% sinxsinv %T% cosx
D .

~C1!

FIG. 2. The Poincare´ sphere.
5-17
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In this equation,j 5 x,y,z 51,2,3 denotes an index in th
laboratory frame, whileJ5X, Y, Z denotes an index in the
Sun-centered frame. The Earth’s sidereal angular freque
is v % .2p/(23 h 56 min), andx is the colatitude of the
laboratory. The timeT% is measured in the Sun-centere
frame from one of the times when they andY axes coincide,
to be chosen conveniently for each experiment. The timeT%

therefore differs from the celestial equatorial timeT by a
constant shift for each experiment.

The velocity 3-vector of the laboratory in the Su
centered frame is

bW 5b %S sinV %T

2coshcosV %T

2sinhcosV %T
D 1bLS 2sinv %T%

cosv %T%

0
D .

~C2!

Here, V % and b % are, respectively, the angular frequen
and speed of the Earth’s orbital motion. The quantityh
.23.4° is the angle between theXY celestial equatoria
plane and the Earth’s orbital plane. The speedbL
5r %v %sinx&1.531026 is that of the laboratory due to th
rotation of the Earth.

The reader is warned that the standard laboratory fra
defined above may differ from a frame fixed to the appara
in the laboratory. For example, the apparatus rotates in
laboratory in some experiments considered here. Where
fusion could occur, we distinguish with labels the quantit
defined in the standard laboratory frame from those in
apparatus frame.

2. Space-based laboratory

For our standard laboratory fixed to an Earth-orbiti
space platform such as the ISS, we choose thez axis to be
aligned with the velocitybW s of the satellite with respect to
the Earth. Thex axis is chosen to point towards the Eart
The y axis completes a right-handed coordinate system, t
directed along the satellite orbital angular momentum w
respect to the Earth.

The components of the matrixRjJ describing the rotation
from the reference Sun-centered frame to this standard s
lite frame are

R1X52cosacosvsTs1sinacoszsinvsTs,

R1Y52sinacosvsTs2cosacoszsinvsTs ,

R1Z52sinzsinvsTs ,

R2X5sinasinz,

R2Y52cosasinz,

R2Z5cosz,

R3X52cosasinvsTs2sinacoszcosvsTs ,

R3Y52sinasinvsTs1cosacoszcosvsTs ,

R3Z5sinzcosvsTs . ~C3!
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Here, j 51,2,3 denotes an index in the satellite frame. T
satellite orbital angular frequency is denotedvs . The time
Ts is measured in the Sun-centered frame from a con
niently chosen time when the satellite crosses the equat
plane, so the timesTs and T differ by a constant for each
experiment. Also,z is the angle between the satellite orbit
plane and the Earth’s equatorial plane. For examplez
.52° for the ISS. The quantitya is the azimuthal angle a
which the orbital plane intersects the Earth’s equato
plane. The satellite intersects the equatorial plane twice
orbit, and a can be regarded as the angle between theX
direction and a vector from the Earth’s center to the po
where the intersection occurs on an ascending trajectory

The velocity of the satellite with respect to the Su
centered celestial equatorial frame is

bW 5b %S sinV %T

2coshcosV %T

2sinhcosV %T
D

1bsS 2cosasinvsTs2sinacoszcosvsTs

2sinasinvsTs1cosacoszcosvsTs

sinzcosvsTs

D .

~C4!

The quantitiesb % , V % are defined as before. The quanti
bs is the speed of the satellite with respect to the Earth.
example,bs.331025 for the ISS.

APPENDIX D: OPTICAL FREQUENCY SHIFT

This appendix provides an alternative method to obt
the fractional resonant-frequency shiftdn/n for optical cavi-
ties, given in Eq.~36!. As before, the cavity is regarded a
two reflecting parallel planar surfaces separated by a dista
l. For convenience, we let one coincide with thex-y plane
and place the other atz5 l . We approximate the light enter
ing the cavity as a plane wave with phase velocity paralle
thez axis. After each reflection inside the cavity, the reflect
wave must have the same frequency as the incident wave
we consider light of constant frequencyp0. For simplicity,
we sete51 in what follows.

At leading order in the coefficients for Lorentz violation
Eq. ~16! implies that the magnitude of the wave vector f
each birefringent mode isupW 6u5p65@12(r6s)#p0. De-
composing the light entering the cavity into birefringe
modes, we write

EW 0~x!5e2 ip0t@eip↑1z~ «̂↑1•EW 0!«̂↑11eip↑2z~ «̂↑2•EW 0!«̂↑2#.

~D1!

Here,p↑65@12(r↑6s↑)#p0, wherer↑ ands↑ denote the
values of r and s for light with phase velocity in thez
direction. The unit vectors«̂↑6 are the associated birefrin
gent basis.
5-18
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We suppose that the wave reflected atz5 l has phase ve
locity in the 2z direction. Decomposing this wave in th
same fashion gives

EW 1~x!5e2 ip0t
„e2 ip↓1z~ «̂↓1•EW 1!«̂↓1

1e2 ip↓2z~ «̂↓2•EW 1!«̂↓2…, ~D2!

where the subscript↓ denotes quantities for phase velocity
the 2z direction. Similar expressions can be written for t
electric fieldEW n(x) after n reflections. For thenth reflection
with n odd, the incident and reflected waves are related
EW n11(x)uz5 l5eid l ,nEW n(x)uz5 l . A similar relation involving
d0,n holds for evenn at z50. The complex factorseid0,n,
eid l ,n account for any phase change or loss due to trans
sion or absorption. They may depend on the interaction
the wave with the surfaces and could also depend on
incident polarization and various coefficients for Loren
violation. For simplicity, we suppose here that they are c
stant, and denote them byd0 andd l .

Superposing the contributions inside the cavity yields
total electric field as

EW ~x!5e2 ip0t@~eip↑1z«̂↑1«̂↑1
† 1eip↑2z«̂↑2«̂↑2

† !

1e2 id0~e2 ip↓1z«̂↓1«̂↓1
†

1e2 ip↓2z«̂↓2«̂↓2
† !m#•M•EW 0 . ~D3!

At leading order, the matrixm is given by

m5ei (2p0l 1d01d l )F 12 i2p0l

3S r1s cosj s sinj 0

s sinj r2s cosj 0

0 0 0
D G , ~D4!

where the bar signifies the average value over the two dif
ent propagation directions. The matrixM is the geometric
seriesM5(n50

` mn5(12m)21.
The resonant frequency is often viewed as the freque

at which a standing wave is produced in the cavity. Howev
this notion may fail for nonzerokF because the wavelengt
of light traveling in one direction can differ from that fo
light traveling in the opposite direction. A more appropria
definition that applies also in the conventional case is to t
the resonant frequency as the frequency maximizing
magnitude of the electric field or the energy density. T
resonant frequency for a cavity is determined experiment
by measuring the transmitted light, so we adopt the ene
density of the transmitted light as the relevant quantity. U
ing instead the magnitude of the transmitted electric or m
netic field yields the same result at leading order.
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We assume that the electric fieldEW T of the transmitted
light is proportional to the component of the total elect
field in the cavity propagating in thez direction:

EW T}e2 ip0t~eip↑1z«̂↑1«̂↑1
† 1eip↑2z«̂↑2«̂↑2

† !•M•EW 0 .
~D5!

The time-averaged energy density is

^u&5
1

4
Re~EW * •DW 1BW * •HW !

5
1

4
@EW * •~11kDE!•EW 1BW * •~11kHB!•BW #. ~D6!

With this equation and the Faraday lawip0BW 5¹W 3EW , the
energy density of the transmitted wave can be calcula
Maximizing with respect top0 and solving forp0 yields the
perturbed resonant frequency. We find

dn

n
5

EW 0*

uEW 0u
•S r1s cosj s sinj 0

s sinj r2s cosj 0

0 0 0
D •

EW 0

uEW 0u
.

~D7!

The barred quantities can be determined from

r52
1

2
~ k̃e2!112

1

2
~ k̃e2!222~ k̃o1!122k̃ tr ,

s sinj5
1

2
~ k̃o2!112

1

2
~ k̃o2!222~ k̃e1!12,

s cosj52
1

2
~ k̃e1!111

1

2
~ k̃e1!222~ k̃o2!12, ~D8!

which holds for a wave traveling in the1z direction. For a
wave traveling in the2z direction, one must instead use E
~D8! with sign changes for the parity-odd coefficients:kDB
→2kDB , kHE→2kHE . The barred quantities in Eq.~32!
then are merely those in Eq.~D8! with kDB5kHE50. The
net result is Eq.~36!, as desired.
5-19
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APPENDIX E: LABORATORY-FRAME QUANTITIES

In the scenario of Sec. IV B 1 and in terms of the matric
k̃ introduced in Eq.~7!, the quantitiesA0,1,2,3,4defined in Eq.
~40! can be written as

A05
1

8
~123 cos2x!@3e1~ k̃e1!ZZ1e2~ k̃e2!ZZ#

2
1

8
~9e12e2!k̃ tr1

1

4
b %@2~e223e1cos2x!

3sinh cosV %T~ k̃o1!XY1~3e122e223e1cos2x!

3„cosh cosV %T~ k̃o1!XZ

1sinV %T~ k̃o1!YZ
…23e1~123 cos2x!

3„cosh cosV %T~ k̃o2!XZ1sinV %T~ k̃o2!YZ
…#

1
9

4
e1bLsinx cosx~k̃o2!ZZ,

A152
1

2
sinx cosx@3e1~ k̃e1!YZ1e2~ k̃e2!YZ#

1
3

2
e1b %sinx cosx@sinV %T„~ k̃o2!YY2~ k̃o2!ZZ

…

2cosh cosV %T„~ k̃o1!XY2~ k̃o2!XY
…

1sinh cosV %T„~ k̃o1!XZ2~ k̃o2!XZ
…#

1
1

2
bL@e2~ k̃o1!YZ13e1~sin2x2cos2x!~k̃o2!YZ#,

A252
1

2
sinx cosx@3e1~ k̃e1!XZ1e2~ k̃e2!XZ#

1
3

2
e1b %sinx cosx@sinV %T„~ k̃o1!XY1~ k̃o2!XY

…

1cosh cosV %T„~ k̃o2!XX2~ k̃o2!ZZ
…

2sinh cosV %T„~ k̃o1!YZ2~ k̃o2!YZ
…#

1
1

2
bL@e2~ k̃o1!XZ13e1~sin2x2cos2x!~k̃o2!XZ#,

A352
1

4
sin2x@3e1~ k̃e1!XY1e2~ k̃e2!XY#

2
3

4
e1b %sin2x@sinV %T„~ k̃o1!XZ1~ k̃o2!XZ

…

1cosh cosV %T„~ k̃o1!YZ1~ k̃o2!YZ
…

1sinh cosV %T„~ k̃o2!XX2~ k̃o2!YY
…#
05600
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3

2
e1bLsinx cosx~k̃o2!XY,

A452
1

8
sin2x@3e1„~ k̃e1!XX2~ k̃e1!YY

…1e2„~ k̃e2!XX

2~ k̃e2!YY
…#1

3

4
e1b %sin2x@sinV %T„~ k̃o1!YZ

1~ k̃o2!YZ
…2cosh cosV %T„~ k̃o1!XZ1~ k̃o2!XZ

…

12 sinh cosV %T~ k̃o2!XY#

2
3

4
e1bLsinx cosx@~k̃o2!XX2~ k̃o2!YY#. ~E1!

In this equation, we have introduced the quantities

e15
21e

3e
, e25

22e

e
, ~E2!

which both reduce to 1 in the vacuum limite→1.
The remaining coefficients are independent ofe. The co-

efficientsB0,1,2,3,4are given by

B052
1

2
bLsinx~k̃o1!XY,

B152
1

2
sinx@~k̃e1!XZ2~ k̃e2!XZ#

1
1

2
b %sinx@sinV %T„~ k̃o1!XY

1~ k̃o2!XY
…1cosh cosV %T„~ k̃o2!XX

2~ k̃o2!ZZ
…2sinh cosV %T„~ k̃o1!YZ

2~ k̃o2!YZ
…#2

1

2
bLcosx„~ k̃o1!XZ

1~ k̃o2!XZ
…,

B25
1

2
sinx@~k̃e1!YZ2~ k̃e2!YZ#

2
1

2
b %sinx@sinV %T„~ k̃o2!YY

2~ k̃o2!ZZ
…2cosh cosV %T„~ k̃o1!XY

2~ k̃o2!XY
…1sinh cosV %T„~ k̃o1!XZ

2~ k̃o2!XZ
…#1

1

2
bLcosx„~ k̃o1!YZ

1~ k̃o2!YZ
…,
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B35
1

4
cosx@~k̃e1!XX2~ k̃e2!XX2~ k̃e1!YY1~ k̃e2!YY#

2
1

2
b %cosx@sinV %T„~ k̃o1!YZ

1~ k̃o2!YZ
…2cosh cosV %T„~ k̃o1!XZ

1~ k̃o2!XZ
…12 sinh cosV %T~ k̃o2!XY#

2
1

4
bLsinx@~k̃o2!XX2~ k̃o2!YY#,

B452
1

2
cosx@~k̃e1!XY2~ k̃e2!XY#

2
1

2
b %cosx@sinV %T„~ k̃o1!XZ1~ k̃o2!XZ

…

1cosh cosV %T„~ k̃o1!YZ1~ k̃o2!YZ
…

1sinh cosV %T„~ k̃o2!XX2~ k̃o2!YY
…#

1
1

2
bLsinx~k̃o2!XY. ~E3!

The coefficientsC0,1,2,3,4are

C052
3

8
sin2x@~k̃e1!ZZ2~ k̃e2!ZZ#

2
1

4
b %sin2x@sinV %T„~ k̃o1!YZ23~ k̃o2!YZ

…

1cosh cosV %T„~ k̃o1!XZ23~ k̃o2!XZ
…

12 sinh cosV %T~ k̃o1!XY#2
3

4
bLsinx cosx~k̃o2!ZZ,

C15
1

2
sinx cosx@~k̃e1!YZ2~ k̃e2!YZ#

2
1

2
b %sinx cosx@sinV %T„~ k̃o2!YY2~ k̃o2!ZZ

…

2cosh cosV %T„~ k̃o1!XY2~ k̃o2!XY
…

1sinh cosV %T„~ k̃o1!XZ2~ k̃o2!XZ
…#

1
1

2
bL@~ k̃o1!YZ2~sin2x2cos2x!~k̃o2!YZ#,
05600
C25
1

2
sinx cosx@~k̃e1!XZ2~ k̃e2!XZ#

2
1

2
b %sinx cosx@sinV %T„~ k̃o1!XY1~ k̃o2!XY

…

1cosh cosV %T„~ k̃o2!XX2~ k̃o2!ZZ
…

2sinh cosV %T„~ k̃o1!YZ2~ k̃o2!YZ
…#

1
1

2
bL@~ k̃o1!XZ2~sin2x2cos2x!~k̃o2!XZ#,

C352
1

4
~11cos2x!@~ k̃e1!XY2~ k̃e2!XY#

2
1

4
b %~11cos2x!@sinV %T„~ k̃o1!XZ1~ k̃o2!XZ

…

1cosh cosV %T„~ k̃o1!YZ1~ k̃o2!YZ
…

1sinh cosV %T„~ k̃o2!XX2~ k̃o2!YY
…#

1
1

2
bLsinx cosx~k̃o2!XY,

C452
1

8
~11cos2x!@~ k̃e1!XX2~ k̃e2!XX2~ k̃e1!YY

1~ k̃e2!YY#1
1

4
b %~11cos2x!@sinV %T„~ k̃o1!YZ

1~ k̃o2!YZ
…2cosh cosV %T„~ k̃o1!XZ1~ k̃o2!XZ

…

12 sinh cosV %T~ k̃o2!XY#

1
1

4
bLsinx cosx@~k̃o2!XX2~ k̃o2!YY#. ~E4!

APPENDIX F: SATELLITE-FRAME QUANTITIES

The quantitiesAs,c , Bs,c appearing in Eq.~50! of Sec.
IV C 2 can be expressed in terms of the matricesk̃ intro-
duced in Eq.~7! through the convenient combinations~48!.
In terms of the various orientation angles specified in App
dix C, for the quantityAs we find
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As5
1

4
cos 2z@sina~k̃e8!

XZ2cosa~k̃e8!
YZ#1

1

8
sin 2z@~11sin2a!~k̃e8!

XX1~11cos2a!~k̃e8!
YY2sin 2a~k̃e8!

XY#

1
1

4
bs@sina„~ k̃o8!

XZ2~ k̃o8!
ZX
…2cosa„~ k̃o8!

YZ2~ k̃o8!
ZY
…#1

1

4
b %@cosacos 2zcosV %T„cosh~k̃o8!

YX

2sinh~k̃o8!
ZX
…1cosa cos 2z sinV %T„~ k̃o8!

YY2~ k̃o8!
ZZ!2sina cos 2z cosV %T„cosh@~k̃o8!

XX2~ k̃o8!
ZZ#

1sinh~k̃o8!
ZY
…2sina cos 2z sinV %T~ k̃o8!

XY1cos2a sin 2z cosV %T„cosh~k̃o8!
ZX1sinh~k̃o8!

YX
…

1cos2a sin 2z sinV %T„~ k̃o8!
YZ1~ k̃o8!

ZY
…1sin2a sin 2z cosV %T„cosh@~k̃o8!

XZ1~ k̃o8!
ZX#2sinh~k̃o8!

XY
…

1sin2a sin 2z sinV %T~ k̃o8!
ZY2

1

2
sin 2a sin 2z cosV %T„cosh~k̃o8!

YZ1sinh@~k̃o8!
XX2~ k̃o8!

YY#…

2
1

2
sin 2a sin 2z sinV %T~ k̃o8!

XZ. ~F1!

The quantityAc is

Ac52
1

4
cosz sina~k̃e8!

YZ2
1

4
cosz cosa~k̃e8!

XZ2
1

8
sinz sin 2a„~ k̃e8!

XX2~ k̃e8!
YY
…1

1

4
sinz cos 2a~k̃e8!

XY

1
1

4
bs@sinz„~ k̃o8!

XY2~ k̃o8!
YX
…1cosz cosa„~ k̃o8!

ZX2~ k̃o8!
XZ
…1cosz sina„~ k̃o8!

ZY2~ k̃o8!
YZ
…#

1
1

4
b %†cosa cosz cosV %T„cosh@~k̃o8!

XX2~ k̃o8!
ZZ#1sinh~k̃o8!

ZY
…1cosa cosz sinV %T~ k̃o8!

XY

1sina cosz cosV %T„cosh~k̃o8!
YX2sinh~k̃o8!

ZX
…1sina cosz sinV %T„~ k̃o8!

YY2~ k̃o8!
ZZ
…1cos 2a sinz cosV %T

3„cosh~k̃o8!
YZ1sinh@~k̃o8!

XX2~ k̃o8!
YY#…1cos 2a sinz sinV %T~ k̃o8!

XZ2sin 2a sinz cosV %T„cosh~k̃o8!
XZ

2sinh@~k̃o8!
XY1~ k̃o8!

YX#…1sin 2a sinz sinV %T~ k̃o8!
YZ
‡. ~F2!

The quantityBs is

Bs5
3

8
sinz sina~k̃e8!

YZ1
3

8
sinz cosa~k̃e8!

XZ2
3

16
cosz sin 2a„~ k̃e8!

XX2~ k̃e8!
YY
…1

3

8
cosz cos 2a~k̃e8!

XY

2
1

8
bs@sinz cosa„~ k̃o8!

XZ1~ k̃o8!
ZX
…1sinz sina„~ k̃o8!

YZ1~ k̃o8!
ZY
…2cosz sin 2a„~ k̃o8!

XX2~ k̃o8!
YY
…

1cosz cos 2a„~ k̃o8!
XY1~ k̃o8!

YX
…#1

3

8
b %†2cosa sinz cosV %T„cosh@~k̃o8!

XX2~ k̃o8!
ZZ#1sinh~k̃o8!

ZY
…

2cosa sinz sinV %T~ k̃o8!
XY2sina sinz cosV %T„cosh~k̃o8!

YX2sinh~k̃o8!
ZX
…2sina sinz sinV %T„~ k̃o8!

YY

2~ k̃o8!
ZZ
…1cos 2a cosz cosV %T„cosh~k̃o8!

YZ1sinh@~k̃o8!
XX2~ k̃o8!

YY#…1cos 2a cosz sinV %T~ k̃o8!
XZ

2sin 2a cosz cosV %T„cosh~k̃o8!
XZ2sinh@~k̃o8!

XY1~ k̃o8!
YX#…1sin 2a cosz sinV %T~ k̃o8!

YZ
‡. ~F3!

The quantityBc is

Bc5
3

16
~cos2a2sin2a cos2z1sin2z!~ k̃e8!

XX1
3

16
~sin2a2cos2a cos2z1sin2z!~ k̃e8!

YY1
3

16
sin 2a~11cos2z!~ k̃e8!

XY

1
3

16
sin 2z@sina~k̃e8!

XZ2cosa~k̃e8!
YZ#2

1

16
bs@2~cos2a2sin2a cos2z1sin2z!~ k̃o8!

XX12~sin2a2cos2a cos2z

1sin2z!~ k̃o8!
YY1sin 2a~2 cos2z1sin2z!„~ k̃o8!

XY1~ k̃o8!
YX
…1sina sin 2z„~ k̃o8!

XZ1~ k̃o8!
ZX
…2cosa sin 2z„~ k̃o8!

YZ
056005-22
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1~ k̃o8!
ZY
…#1

3

16
b %†sin 2a~11cos2z!cosV %T„cosh~k̃o8!

YZ1sinh†~ k̃o8!
XX2~ k̃o8!

YY
‡…

1sin 2a~11cos2z!sinV %T~ k̃o8!
XZ2sina sin 2z cosV %T„cosh†~ k̃o8!

XX2~ k̃o8!
ZZ
‡1sinh~k̃o8!

ZX
…

2sina sin 2z sinV %T~ k̃o8!
XY1cosa sin 2z cosV %T„cosh~k̃o8!

YX2sinh~k̃o8!
ZX
…1cosa sin 2z sinV %T

3„~ k̃o8!
YY2~ k̃o8!

ZZ
…22~sin2a cos2z2cos2a!cosV %T„cosh~k̃o8!

XZ2sinh~k̃o8!
XY
…22~cos2a cos2z2sin2a!

3cosV %T sinh~k̃o8!
YX22~cos2a cos2z2sin2a!sinV %T~ k̃o8!

YZ12 sin2z„cosV %T cosh~k̃o8!
ZX1sinV %T~ k̃o8!

ZY
…‡.

~F4!

Finally, the quantityC is

C5
1

16
~3 sin2a sin2z21!~ k̃e8!

XX1
1

16
~3 cos2a sin2z21!~ k̃e8!

YY1
1

16
~3 cos2z21!~ k̃e8!

ZZ1
3

16
sin 2a sin2z~k̃e8!

XY

2
3

16
sin 2z@sina~k̃e8!

XZ2cosa~k̃e8!
YZ#1

1

8
bsF~3 sin2a sin2z21!~ k̃o8!

XX1~3 cos2a sin2z21!~ k̃o8!
YY1~3 cos2z21!

3~ k̃o8!
ZZ2

3

2
sin 2a sin2z„~ k̃o8!

XY1~ k̃o8!
YX
…1

3

2
sin 2z„sina†~ k̃o8!

XZ1~ k̃o8!
ZX
‡2cosa†~ k̃o8!

YZ1~ k̃o8!
ZY
‡…G

1
1

8
b %

F~3 sin2a sin2z21!cosV %T„cosh~k̃o8!
XZ2sinh~k̃o8!

XY
…1~3 cos2asin2z21!„cosV %T sinh~k̃o8!

YX

1sinV %T~ k̃o8!
YZ
…2~3cos2z21!„cosV %T cosh~k̃o8!

ZX1sinV %T~ k̃o8!
ZY
…2

3

2
sin 2a sin2z cosV %T„cosh~k̃o8!

YZ

1sinh@~k̃o8!
XX2~ k̃o8!

YY#…2
3

2
sin 2a sin2z sinV %T~ k̃o8!

XZ2
3

2
sina sin 2z cosV %T„cosh@~k̃o8!

XX2~ k̃o8!
ZZ#

1sinh~k̃o8!
ZY
…2

3

2
sina sin 2z sinV %T~ k̃o8!

XY1
3

2
cosa sin 2z cosV %T„cosh~k̃o8!

YX2sinh~k̃o8!
ZX
…

1
3

2
cosa sin 2z sinV %T„~ k̃o8!

YY2~ k̃o8!
ZZ
…G. ~F5!
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Kostelecký~World Scientific, Singapore, 2002!.
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~2001!; V.A. Kostelecký et al., Phys. Rev. Lett.84, 4541
05600
d

~2000!; M.S. Berger and V.A. Kostelecky´, Phys. Rev. D65,
091701~R! ~2002!.

@7# KTeV Collaboration, Y.B. Hsiunget al., Nucl. Phys. B~Proc.
Suppl.! 86, 312 ~2000!; H. Nguyen, in Ref.@5#.

@8# OPAL Collaboration, R. Ackerstaffet al., Z. Phys. C76, 401
~1997!; DELPHI Collaboration, M. Feindtet al., Report No.
DELPHI 97-98 CONF 80 1997; BELLE Collaboration, K. Ab
et al., Phys. Rev. Lett.86, 3228~2001!; Y. Sakai, in Ref.@5#.

@9# FOCUS Collaboration, R. W. Gardner, in Ref.@5#.
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