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Signals for Lorentz violation in electrodynamics
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An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable
sector of the general Lorentz- aP T-violating standard-model extension. Among the unconventional prop-
erties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of
light produced by galactic and extragalactic objects provide boundsxdfd3'® on certain coefficients for
Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically
distant sources yields stringent constraints of 32 All remaining coefficients in the photon sector are
measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in
Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be
implemented using existing technology.
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[. INTRODUCTION the birefringence of light propagatirig vacua This results
in several potentially observable effects, including pulse dis-
Lorentz symmetry underlies the theory of relativity and persion and polarization changes. One goal of this work is to
all accepted theoretical descriptions of nature at the fundaconsider the implications of these effects for the propagation
mental level. A crucial role in establishing both the rotationof radiation on astrophysical scales. We use available obser-
and boost components of Lorentz symmetry has been playeghtions to constrain certain coefficients for Lorentz violation.
by experimental studies of the properties of light. In the clas- Another goal of this work is to analyze modern versions
sic tests, rotation invariance is investigated in Michelson-of some classic tests of special relativity based on resonant-
Morley experiments searching for anisotropy in the speed o¢avity oscillatord17—19, which have extreme sensitivity to
light, while boost invariance is studied via Kennedy- the properties of electromagnetic fields. These experiments
Thorndike experiments seeking a variation of the speed ofjiepend on the Earth’s sidereal and orbital motion. However,
light with the laboratory velocity1-3]. _ the advent of the International Space StatitBS) makes it
In this work, a theoretical study is performed of various toaqiple to perform laboratory experiments in space, where
experiments testing Lgrentz symmetry ‘.N'th.“ght and Otherthe orbital motion can vyield different sensitivity to Lorentz-
electromagnetic radiation. The analysis is within the Comex(/iolating effects[20]. We consider here both space- and

of the Lorentz- andC PT-violating standard-model extension g, haceq laboratory experiments with resonant cavities.
[4], developed to allow for small general violations in Lor- . . . )
The structural outline of this paper is as follows. Section

entz andCPT invariance{5]. The Lagrangian of this theory | presents some basic results and definitions for the general

includes all observer Lorentz scalars formed by combinin t7-violat lectrod . 4 outli th
standard-model fields with coupling coefficients having Lor- -orentz-violaling electrodynamics and outlines the connec-
tion to some test models. We then consider birefringence

entz indices. At the level of quantum field theory, the viola- X S ) ,

tions can be regarded as remnants of Planck-scale physi€XPeriments, beginning in Sec. Ill A with some general is-

appearing at attainable energy scales. The coefficients fGiU€s. Constraints stemming from the resulting effects on

Lorentz violation may be related to expectation values ofoulse dispersion from astrophysical sources are addressed in

Lorentz tensors or vectors in an under|ying themﬂy To Sec. Il B, while those from pOIarization Changes over cos-

date, experimental tests of the standard-model extensiomological scales are treated in Sec. Il C. A general analysis

have been performed with hadrofs-10], protons and neu- for laboratory-based experiments on the Earth and in space is

trons [11], electrons[12,13, photons[14,15, and muons presented in Sec. IV A. Sections IV B and IV C apply this

[16]. analysis to experiments with optical and microwave resonant
In the present context of studies of electrodynamics, theavities. We summarize in Sec. V. Throughout this work, we

standard-model extension is of interest because it providesadopt the conventions of Re#].

general field-theoretic framework for investigating the Lor-

entz properties of light. The theory contains as a subset a

general LorentZ-ViOIating quantum eleCtrOdynan’ﬂ@ED), II. LORENTZ-VIOLATING ELECTRODYNAMICS

which includes a general Lorentz-violating extension of the

Maxwell equations. We study experiments that can measure This section provides some background and contextual

the coefficients for Lorentz violation in this generalized elec-information about the general Lorentz-violating electrody-

trodynamics. Our attention is restricted here to exceptionallynamics. The basic formalism is presented, and some defini-

sensitive experiments that could be in a position to detect theéons used in later sections are introduced. We also discuss

minuscule effects motivating the standard-model extensionthe connection between this theory and some test models for
A basic feature of Lorentz-violating electrodynamics is Lorentz violation.
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A. Basic theory of the Riemann tensor and a vanishing double trace, which

The standard model of particle physics is believed to bdMPlies a total of 19 independent components.
the low-energy limit of a fundamental theory that includes all "€ CPT-odd term has received much attention in the
the forces in nature. The natural scale of this fundamentd]térature[22]. This term provides negative contributions to
theory is likely to be determined by the Planck mass. TheéN€ canonical energy and therefore is a potential source of
possibility that Lorentz- an@ P T-violating signals from this Instability. One solution is to set the coefficient to zero,
theory may be observable at energies attainable today led &aF)“=0. This is theoretically consistent with radiative
the development of the standard-model extengiinwhich corrections in the standard_—model extenspn and is well sup-
is a general theory based on the standard model but aIIowinBOrtEd experlmenFaIIy: Strlngent (;onstramt; @RF have '
for violations of Lorentz andC PT symmetry[5]. The addi- been set by stu_dylng the polarization of radiation from dis-
tional terms must be small because the usual standard mod@nt radio galaxie§14].
agrees well with experiment. They may originate from spon- !N contrast, much less is known about @&T-even co-
taneous symmetry breaking in the fundamental thé6ty folClent k_,:. '_I'heoretlcal studle_s show that it provu_je_s posi-

The standard-model extension can be defined as the usuiye contributions to the canonical energy and that it is radia-
standard-model Lagrangian plus all possible additionalively mduced from the fe_:rm|on sector in the standard-model
Lorentz- andC P T-violating terms involving standard-model €Xtension(4,23]. Constraints on some components have re-
fields that maintain invariance under Lorentz transformation&€ntly been obtained from optical spectropolarimetry of cos-
of the observer’s inertial frame. This invariance ensures thaftologically distant sourcegl5]. In the present work, we
the physics is independent of the choice of coordinates. ThiPcus on the experimental implications of thsPT-even
Lorentz violation is associated with rotations and boosts oferm. The coefficientk,r)* is set to zero for the analysis.
particles or localized field configurations in a fixed observer The equations of motion from Lagrangi&b) are
inertial frame.

Many of the detailed investigations of the standard-model a,F “+(ke)
extension have been performed under the simplifying as- K
sumption that the additional Lorentz- ar@P T-violating N .
terms preserve the SU(3)SU(2)x U(1) local gauge sym- These; are modified source-free |nhomoger_1eous Maxwell
metry of the usual standard model. Another widely adopted@duations. The homogeneous Maxwell equations,
simplifying assumption is that the coefficients for Lorentz
violation are independent of position. This implies the viola- 5
tion is restricted to the Lorentz symmetry instead of the full d,Frr=
Poincaresymmetry and has several useful consequences for
experiment, including the conservation of energy and mo-
mentum. It is also often convenient to restrict attention to theemain unchanged.
renormalizable sector of the theory, since this is expected to Although it lies beyond our present scope, the techniques
dominate the physics at low energies. However, nonrenofpresented here and the results obtained can be generalized to
malizable terms are known to play an important role atthe nonrenormalizable sector. The nonrenormalizable terms
higher energie$21]. can be classified according to their mass dimension. The di-

Extracting terms involving the photon fields from the mensions of the corresponding coefficients are inverse pow-
standard-model extension yields a Lorentz- anders of mass, and it is plausible that these coefficients are
CPT-violating extension of QE4]. The fermion sector of suppressed by corresponding powers of the Planck scale.
this theory has been widely studied. Here, we focus attentiolferms of this type appear in various special Lorentz-
on the pure-photon sector and limit attention to the renormalviolating theories, including noncommutative field theories
izable terms, which involve operators of mass dimensiorincorporating QEL24]. Indeed, any coordinate-independent

9°FAY=0. )

maBy

N| =

"3, F =0, @3)

four or less. The relevant Lagrangian[# theory with a photon sector containing nonrenormalizable
Lorentz-violating terms must be a subset of the standard-

[=— EF Favy l(kAF)KE L ANFAY model extension. It would be_ interesting to provide a detailed

4" 2 R study of the nonrenormalizable terms in the Lorentz-

1 violating electrodynamics and their experimental signals.

= 2 (Ke) PR, 1)
B. Analogy and definitions

A useful analogy exists between the Lorentz-violating

electrodynamicsn vacuoand the conventional situation in
homogeneous anisotropic medi]. The idea is todefine

fieldsD andH by the six-dimensional matrix equation

whereF ,,=d,A,—3d,A,. This theory maintains the usual
U(1) gauge invariance under the transformatiogd,
—qA,+d,A. The Lagrangian contains the standard Max-
well term and two additional Lorentz-violating terms. The

first of these extra terms I€PT odd, and its coefficient 5 14 « E
(kap)© has dimensions of mass. The otheG® T even. Its = DE b8 ( %) , 4)
coefficient Kg) . .., is dimensionless and has the symmetries H ke  1tkus/\ B
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whereE andB are the electric and magnetic fields obtained
from solving the modified Maxwell equation®). The 3
X 3 matriceskpg, kug, Kpg, andkye are defined by

—2(ke

jk_ 0jOk
(KDE)] = ),

: 1
(k)K= 5 EPIeS(kp) P,

—( KHE)kj = (kF)ijqekpq_

(KDB)jk

)

The double-trace condition onk{),,,, translates to the
tracelessness ofkpe+ kpg), While (Kg)yu,)=0 implies
the tracelessness ofpg=— (xyg)'. This leaveskpe and
kg With eleven independent elements and the madtiix

=—(kyg)' with eight, which together represent the 19 in-'

dependent components kf . Note also thakkpg and xyg
are parity even, whilecpg=— (kpg) " is parity odd.

With these definitions, the modified Maxwell equations
(2), (3) take the familiar form

>

VX H- V.D=

o
(wh

=0,

>

VXE+d,B=0, V-B=0. (6)
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The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-

ficients ke, and k._ . For those observables depending at
leading order on the velocity, the eight coefficierts. and

ko can be expected to play a role. Finally, at second order

in the velocity one can expect the sole rotation-invariant

quantity x,, to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.

As another example of the use of the decomposition
recall that birefringence is known to depend on ten linearly
independent combinations of the componentgkof which
can be chosen d45]

K= (ke) 253 (k)23 (k) 920 (k) B39
(kF)OSOS_ (kF)].ZlZ’ (kF)0102+(kF)13231
(kF)OlOS_ (kF)12231 (kF)0203+(kF)12131

(kF)0112+ (kF)OSZSr (kF)Oll3_ (kF)0223,

As a consequence, many results from conventional electro-

dynamics in anisotropic media also hold for this Lorentz-

violating theory. For example, the energy-momentum tensor

takes the standard form in terms Bf B, D and H. This

implies the usual Poynting theorem, which can be applied in

conjunction with the symmetries of the matrices in E4.to
show that the vacuum is lossless.

For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(Kg) kr o COEfficients:

(kei )K= (KDE+KHB)J
~ jk:E _15Jk I
(Ke-) (KDE Kpnp) ¥ 3 (kpe)",
- ) 1 )
(Ko+)Jk:§(KDB+KHE)'k,
(;o—)ijE(KDB_KHE)jk’

- 1

@)

Ktr:§(KDE)”-

The first four of these equations define traceless33matri-

ces, while the last defines a single coefficient. All parity-even L=

coefficients are contained iRe, , ke— and x,, while all

parity-odd coefficients are iRy, andx,_ . The matrixx,
is antisymmetric while the other three are symmetric.

(ke) %212~ (ke) ™19, ®
Relating these to the matrices, we find
—(k3+kH k® Kk
(}e-%—)jk: _ k5 k3 K’ ,
K® kK" k*
2k?  —k° K8
(ko Vi=| —K° —2kb K 9
k8 klO Z(kl_ k2)

In this way, we can see directly that birefringence is con-
trolled by the matrices,, andx,_ .

In terms of thex matrices defined in Ed5), and assum-
ing as before thatkyg)“=0, the Lagrangiaril) becomes

|_\

1 25 2o 1. N
:E(E -B )+§ -(kpg)-E— B’(KHB)'B
+E-(kpg)-B. (10)

Similarly, using instead the matrices defined in Ed7), we
find

=

1 -~ = -~ - o~ ~ -
E[(1+Ktr)E2_(1_Ktr)Bz]+_E'(Ke++Kef)'E

N

B (Kes—Ke_) B+E-(kos+Ko_)-B. (11)

NIH
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The form of Eq.(11) shows that a nonzero coefficiert, ~ fameterso, di, g, are needed to fix the generalized Lorentz
shifts the effective permittivitye and effective permeability transformation and hence to characterize the Lorentz viola-
by (e—1)=—(u *—1)=ky, corresponding to a shift in tion. . .
#1e )s/p(;ed c))f Iigrft/.L Howe\)/er,Kit{ is possigle to rgmove an over-. The construction Of_ the generalized Lorentz transforma-
all shift in the speed of light by making advantageous coor-t'%n C?r? be |IIu_st|rated n ft?ﬁ contgxf ]?f theh_mr(])(na’l_’l). g}on- ¢
dinate transformations accompanied by suitable field redefiz'2€" N€ Sg{??'a case of the modet for which only the coet-
nitions, which combine to set=x =1 and transfer the f|C|eqt .(k¢) is noggero2 in a certain fgamE..ertlng- this
Lorentz violation to a different sector of the theory. An ex- ?Oeff'i'eﬂt aLs Ky) .:k _kl’ \t/\r/]he][e k" deviates slightly
plicit example of this procedure is provided in the next sub- rom 1, the Lagrangian takes the form
section for a toy model involving scalar QED. 1
In the general context of the _standard-model_e_xtension,ﬁz(D#¢)TDM¢+(k2_1)|DO¢|2_m2¢T¢+ ~(E2-B?).
such transformations modify various other coefficients for 2
Lorentz violation. In fact, similar transformations can move (13)

the nine independent coefficienis—, o+, and ky INO |y yhe S frame, the propagation of light is rectilinear and
other sectors of the theory. Note that this effect is framégyqpic, so it may be identified with the preferred frame of
dependent because the coeff|C|ents~m|x Ender~boosts. No{ﬁe test model. The Lorentz violation appears only in #he
also that the possibility of absorbinge_, xo., xy €lse-  sector of the Lagrangian, which we can suppose describes
where offers insight as to why birefringence experimentsthe detailed physics of the rods or clocks in the test model.
which directly compare light with light, are insensitive 0 The generalized Lorentz transformation, considered

these coefficients. However, cavity experiments involvein the kinematical test models are the linear transformations
comparisons of radiation with matter, so all 19 coefficientsy’»=T# x* from the preferred fram& to a coordinate sys-

are observables in this case. tem S attached to an observer moving at constant velocity in
the preferred frame. By construction, the obserSelefines
C. Connection to some test models coordinates using the same rods and clocks and a prescribed

Several phenomenological test models for Lorentz propSynchronization. However, in the present context the

erties of light have been proposed. The standard-model e)l__orentz-violating_ properties of the ro_ds and clocks are fixed
tension contains all observer-independent sources of Loren y the Lorelr_wtz-(;nlc_)latlng scala:c term n thef Laggang(saﬁ).
violation in terms of known particles, so it is expected to | "€ 9eneralized Lorentz transformations, from 2. to Sare

incorporate the existing test models as special cases. In thig€refore also determined in the context of the mddé).
subsection, we comment on the relationships to some popu- ey are the transformations leaving invariant the scalar sec-
lar test mo;jels. tor and hence preserving the combinatigft + (k 4)“” up to

Since typical test models assume only one type of matte® possible resynchronization. For example, for the special
other than the photon, it suffices for our purposes to consider@s€ of Eq(13), tr;e Robezrtszon parameters are found to be
a toy version of the standard-model extension that include8o=1/91= V(1= B%)/(1-k*B?), g,= 1. The corresponding
only one scalar field and a limited type of Lorentz violation. Mansouri-Sex| parameters age=1b=(1-k’8?), d=1,

We therefore work with a model of Lorentz-violating scalar With €= — B(1—k??)/(1— g?) in Einstein synchronization
QED, defined by the Lagrangian or e=—k2B in slow-clock synchronization. In contrast, the
standard Lorentz transformations*, preservenp*”.

o v + oo, v In this simple example, the transformatidrt, leaves in-
L=(n""+(kg)"")(D,¢) D, p—m"p p— 2 F,,F variant the rods and clocks, while*, leaves invariant the
speed of light. Both are equally valid. In the frames related
by T#,, observers agree on rod lengths and clock rates but

disagree on the velocity of light. Moreover, the velocity of

light is no longer isotropic as measured by these rods and
In this expression, the covariant derivative takes the usuatlocks. In contrast, observers related by Lorentz transforma-
form,D ,¢=d,¢+igA,¢, and for simplicity we have lim- tions agree that light propagates isotropically with speed 1
ited the types of Lorentz violation to those described by aut may disagree on rod lengths and clock rates. The descrip-
real symmetric coefficient ki;)*” and by a coefficient tion is a matter of coordinate choice, and one can move

1 A v
~ 7 (Ke) i uFORA (12

(Kg) knuo Of the type in Eq(1). freely from one to the other using*,, A*,, and their in-
An interesting test model for Lorentz violation is provided verses.
by the kinematical framework of Robertsf25] and its ex- Note that a “preferred” frame in which light propagates

tension to arbitrary synchronizations by Mansouri and Sexlsotropically typically fails to exist in the full standard-model
[26]. These approaches suppose the existence of a “prextension, although in principle one can impose the existence
ferred” frame in which light propagates isotropically as mea-of such a frame by suitably restricting the coefficients for
sured by a standard set of rods and clocks. The Lorentz trangorentz violation. From this perspective, the special status
formation between observers is then generalized t@njoyed by photons relative to other particles in the kine-
incorporate small changes from the conventional boosts imatical test models appears somewhat unnatural, and the
special relativity. Within a given synchronization, three pa-structure of the standard-model extension offers more gen-
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eral possibilities for kinematical frameworks. Note also thatyjith wave 4-vectorp®=(p°,p), the equation determining
the standard-model extension addresses modifications to 3
known particles, so the effects on physical rods and clock
can be directly analyzed. This is infeasible in kinematical
frameworks, which consider the transformations between MIKEk=(— 5“<p2—pjpk—Z(kF)jBV"poy)EEO. (15)
frames rather than the underlying physics.

Another interesting test model is thé model[27], de-  The dispersion relation is obtained as usual by requiring van-
veloped for application to studies of Lorentz invariance as ashing determinant oMk, It suffices for our present pur-
limiting case of theTHeu formalism[28,29. Thec? model  poses to consider only leading-order effects in the coeffi-
is defined by a Lagrangian describing the behavior of classieients Kg) ., for Lorentz violation. To leading order, one
cal pointlike test particles in the presence of electromagnetiéinds
fields. The model assumes the existence of a “preferred” .
frame in which the limiting speed of the test particles is 1, pl=(1+p=o)lpl, (16)
while the speed of light is.

To see the relation between tb model and the model Where
(12), consider another Lagrangian written in a fraBas

He dispersion relation and the electric figlds the modified
mpere law

— L a 2_1 T 2 2
1 . . p__zka ’ o _E(kaﬁ’) U (17)
£:(DM¢)TD“¢—m2¢T¢+E(Ez—szz), (14)
with
wherek? deviates slightly from 1 as before. In this theory, T apBris o N -
the Lorentz violation appears in the photon sector. With the k= (kg)*"p,p,,  p*=p*I[pl. (18)

identificationk=c, the Lagrangian for this sector is identical
to that of thec® model. Moreover, thep sector is conven- 'YO'€ :
tional, representing a quantum field theory of minimally MPliesp anda are scalars under observer rotations.
coupled scalar particles. The moddi) can therefore be The dispersion reIan(ELG) has two solutions, with cor-
regarded as the field-theoretic equivalent of ¢Renodel. responding electric field€. . In conventional electrody-
The two modelg14) and (13) are related by the coordi- namics, the dispersion relation £=|p| and all fieldsE

nate transformation—t/k, x—x followed by the field re- perpendicular t@ are solutions, so the propagation is inde-
definition A,—A,/k and charge rescaling—kg. They pendent of the polarization. However, in the present case the

to choose coordinates so that either the photon or the scalgeneral solution to Eq15) being any linear combination of
propagates conventionally, the Lorentz violation cannot bghe two. This leads to birefringence: light generically has two
(12\)/\/6 thus see tTat the? Imoﬂd is co_nteTmed "]2 E‘g) thﬁOW There are several possible definitions for the velocity of
as a special case. In the terminology o , the TSR : il i/ a2
parameterc® could be identified with the combination of tr]riJatj;zr(')(::ril’ |r]10_lu(<$n)? t‘t]eaﬁ:li;i 32:2:?{ ofeog e/rp ’t:lis
coefficients (+ ry)/(1+xy), as can be seen from EQLL. gortzi)Dj =00 ggog Whepreap“; is the ener -rr):omentu%ytensor
However, caution is required in interpreting bounds obtained, .  ~¢ P . 9y i
, > , ~ , . ith the analogy discussed in Sec. Il B, one can show by
with thec” model in terms ok, because the identification is - - . N
standard arguments tha,=v. for a wave with fixedp.

valid only in a frameS with conventional particles, which . L .

typically fails to exist in the standard-model extension. Also, Eq.(16) can be used to find explicit leading-order ex-
pressions for the magnitudes of the phase and group veloci-

ties. We thereby obtain,=vy=ve=1+p= o to leading or-

der in (Kg) .- Note also that, to leading order, we can

In this section, we consider radiation propagating in freewrite p“=(p° p)/|p|~(1,0) in the expression$l?) for p

space. The Lorentz-violating electrodynamics predicts bireang . The quantityo can be regarded as the direction of

fringence, which allows sensitive tests of Lorentz symmetryyropagation of the radiation, since the difference between it

from observations of radiation propagated over astrophysicgind the other velocities arises only at higher order and is

distances. We begin with some general theory, and then wigrelevant here.

obtain two sets of bounds on Lorentz violation from velocity  The mode dependence of the velocity offers interesting

and birefringence constraints. possibilities for experimental tests of the theory. The velocity
difference is

Note thatpp andp?c are observer Lorentz scalars, which

Ill. ASTROPHYSICAL TESTS

A. General theory
. . Av=v,—-v_=20, 19
The basic features of plane-wave solutions to the Lorentz- * 7 (19

violating electrodynamics have been presented in Refsqnd is expected to be tiny. However, for sufficiently large
[4,15], so only relevant essentials are given here. With theyath lengths this difference might become apparent in the
standard ansatg ,,(x)=F ,,(p)e P« for a plane wave form of observable effects on the pulse shape or the polar-
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ization of radiation. In the next two subsections, we exploit TABLE I. Source data for velocity constraints.
these features to obtain constraints &R)(,,,, -

An explicit form for the solutions.. is needed for some  S°Urce L Wo Refs.
of the analysis. Using the dispersion relatid®), the matrix ~ Grg 971214 2.2 Gpc 50 s [31,37
in the Ampee law (15) can be written GRB 990123 1.9 Gpc 100 s [32,33

GRB 980329 2.3 Gpc 50 s [32,34

, o GRB 990510 1.9 Gpc 100 s  [32,35

M= —[2(p= o) 1%+ pl p*—2kI]p2. (20 GRB000301C 2.0 Gpc 10 s [36,37
PSR J1959 2048 1.5 kpc 64us [38]
PSR J1939 2134 3.6 kpc 19Qus [38]
The form of this matrix shows that the solutioﬁs: are PSR J1824 2452 5.5 kpc 30Qus [38]
wavelength independent but vary with the direction of propaPSR J2129 1210E 10.0 kpc 1.4 ms [38]
gation. Also, at leading order inkf),,,, the difference PSR J1748 2446A 7.1 kpc 1.3 ms [38]
M, —M _ is proportional to the identity, so the leading-order psr J1312 1810 19.0 kpc 4.4 ms [38]
solutionsE, and E_ are perpendicular. In fact, at leading PSR J0613 0200 2.2 kpc 1.4 ms [38]
order,E . are perpendicular tp as well. PSR J1045 4509 3.2 kpe 2.2ms [38]

To expressEi explicitly, a choice of inertial frame must PSR J0534 2200 2.0 kpc 1Qus (38,39
be made. It is convenient to adopt a standard reference franfe>R 119382134 3.6 kpc ws (38,49
to report the results of observations and hence ultimately to
place constraints on the set of coefficiekgs B. Velocity constraints

A natural choice for the reference frame is a Sun-centered R
celestial equatorial frame with the axis aligned along the For the two radiation modes.. propagating over a dis-
celestial north pole at equinox 2000.0. Thaxis is then ata tancelL, the velocity difference(19) induces a difference
declination of 90°, and thi andY axes lie at declination 0° At~AuvL between the two travel times. Local measurements
and can be chosen to be at right ascension 0° and 90°, r&ade on radiation emitted as a single burst from a distant
spectively. The unit vectoX thus points towards the vernal SOUrce can therefore provide sensitivity to the coeffici&fts

equinox on the celestial sphere. The tifigs chosen such [OF Lorentz violation[30]. . .
thatT=0 when the Earth crosses the plane on a descend- To apply this idea, it is useful to consider distant sources

ing trajectory. In what follows, we adopt this standard framef[hat produce radiation in a relatively narrow burst character-

to report results ized by a small widthw, such as millisecond pulsars or

. T . . sources of gamma-ray bursts. These sources typically pro-
For the practical determination & for a given wave, it g y ypicaly b

. . : i e " duce essentially unpolarized radiation, so the intensity of
is easiest first to work in a special “primed” frame chosen

for that wave. The result of the calculation can then be reeaCh mode should be comparable. The burst can then be
) - '“regarded as a superposition of two independently propagat-
lated to the standard Sun-centered frame by performing 9 Hperposi WO Ihdep y propag

mg pulses, one for each mode. For a sufficiently great dis-

form p’“=(1;0,0,1) to leading order. The solution f&r.  would manifest itself as two pulses with similar time struc-
can be expressed explicitly in terms of the coefficidgtsn  ture but differing in arrival time. The pulses would each be

this frame. Up to a normalization, it is found to K. linearly polarized, and they would have mutually perpen-
o (sing+1-cos&,0), where ta=2k''%(k'11-k’?). The dicular polarization angles.
two modes are thus linearly polarized. If only a single pulse is observed, a limit on Lorentz vio-

lation can be deduced. The relationship between the ob-
dent thato and¢ are the relevant parameters for birefringentserv.eOI pulse widthv, and the source pulse widtli, is ap-
_ _ o =io proximatelyw,~wg+ At. Observations ofv, can therefore

effects for a particular source. In particularsiné=k ““and o ;sed to obtain a conservative boundAdn= AvlL=20L
o cosé=3(k'1*—k'??) represent the minimal linear combina- and hence a bound on the coefficiekis
tions of kg that govern birefringence. The paramefeiis Table | lists data for fifteen sources suitable for placing
common to both modes, but does not contribute to birefrinthis type of constraint. The first five lines list gamma-ray
gence and cannot be detected in the experiments discusskedrsts with known redshifts. The widths listed for these con-
below. tain all significant time structure of the pulse. The distahce

The results in the primed frame can be related to the staris determined from the redshift by the look-back time in a
dard frame by a suitable observer rotation, described in Apeonservative cosmology for a matter-dominated universe
pendix A. The direction of travel of the light in the standard with Hubble constantH,=80 kms* Mpc™!. The next
frame determines two vectos§ ands? in k? space[see Eq. eight sources in the table are millisecond pulsars. The listed
(A4)], and it turns out that the birefringence of the light pulse width is that at 10% peak intensity. The final two
depends on the two specific linear combinations of the coefsources are giant-pulse pulsars. These exhibit intense pulses
ficientsk? in Eqg. (8) that are parallel to these vectors. with characteristic widths on the order of sevega.

From the solutionfﬁi and dispersion relation, it is evi-
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For each source in Table I, we take<sw,/2L as a bound
on o. For a single source, this places constraints on a two-
dimensional subspace of the full 10-dimensional parameter
space of the coefficiente®. The subspace is represented by
the linear combinationg siné and o cosé associated with
that particular source. To bound all ten coefficiekis ten
linearly independent constraints of this type are needed. This
is feasible using five or more sources at different positions on
the sky.

We proceed by assuming the constraint for each source in
Table | is consistent with a measurementoof 0, and we
take the boundr<w,/2L as a reasonable estimate of the
error in a null measurement. The associg¢édlistribution is
x?=324L%¢%w?3, where the sum is over the fifteen sources.
This is a quadratic form ik?. Considering|k? and mini-
mizing x? with respect to the other nine degrees of freedom,
we obtain a bound of

|k?|<3x 10716 (21) FIG. 1. Rotation of the Stokes vector abaut=—s_ .

in the Sun-centered celestial equatorial frame, at the 90% A change in phase can arise from a change in either
confidence level. \. The induced change in the polarization depends not only
This bound is much less stringent than that obtaine®n ke but also on the initial polarization. For cosmological
through polarization measurements, as discussed belowources, it may be impossible to determine independently the
However, the method is relatively straightforward and avoidgPolarization at the source, in which case one cannot deter-

some of the complexities involved in the polarization analy-mine whether a change in polarization is strictly due to a
sis. change inL. It is therefore of more interest to focus on the

wavelength dependence of the polarization change. Making

the reasonable assumption that the emitted polarization is

relatively constant over a given range of wavelengths, the
In this subsection, we expand on the material found inrelevant quantity becomes the phase shift as a function of

Ref.[15]. An improvement on the previous result is made bywavelength,

considering the cosmological redshift of light.

A general electric field can be decomposed into its bi-
refringent componentsEi . Defining unit vectorse+
=E. /|E.|, the decomposition is

C. Polarization constraints

B (1 1)
Sp=4moL WL (24

relative to a reference wavelength. Standard spectropola-
E(X):(E+g+e—ip31+ Eigfe—ip(it)eiﬁ-i_ (22)  rimetric techniques then allow a measurement of this effect.
Note that knowledge of physical processes in certain classes
of objects producing the polarized radiation might make it
asible to include a known initial polarization in the analy-
s, but this is unlikely to improve significantly the constraint
obtained here.

The effect on the measured polarization as the wavelength
is changed can be visualized using the Poinsateere. Sup-
pose a source produces radiation with constant polarization
where Av,, is the difference in phase velocities, is the  over a range of wavelengths. This radiation can be repre-
wavelength, andl is the distance traveled. The phase changgented by a single point on the Poincaphere. As the light
modifies the pOlarization state of the radiation, with Iarger ropagates towards the Earth, the presence of Lorentz viola-
effect for more distant sources. Appendix B provides a briefjon causes this point to rotate along an arc on the sphere. For
review of pertinent concepts involving polarization in the any fixed wavelength, the rotation axis and rate depend on
present context. _ _ the coefficientsKg) ,, .., and on the position of the source on

In the primed frame described in Sec. Il A, the Stokesthe sky. However, Eq(24) shows that shorter wavelengths
vectors fore. ares. = *(cosé,sing0). These vectors cor- rotate more than longer ones. Therefore, as measurements of
respond to opposite points on the equator of the Poincarthe Stokes vector are made over a range of wavelengths, the
sphere, as expected for linearly polarized modes. As deresults trace a circular arc on the surface of the Poincare
scribed in Appendix B, the axis of rotation induced by thesphere.
phase changA ¢=4moL/\ is therefore in thes'-s? plane. Let o and yo represent the observed polarization of a
This affects both) andy, as can be seen from Fig. 1. point on this arc with the reference wavelength Using

The differing phase velocities of the two modes results in
change in relative phase as the wave propagates, given
[15]

Ap=(p —p®)t~=2mAv LIN~4maL/N, (23
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TABLE Il. Source data for polarization constraints. Sy, we choose to sefy, equal to the mean value of the
measuredy. For each sourceyy and Ao are fitted to the
Source Lett (GPO  10%%ere/N logir  data. These angles can be thought of as the two degrees of
IC 5063[41] 0.04 056_2.8 _30g [reedom needed to Qesc_ribe the unknown pola}rization at the
3A 0557-383[42] 012 59.85 _31, Source. Ideally, at this point the data would be fitted to all the
IRAS 18325-592542] 0.07 10-4.9 _31 Sources simultaneously. However, siricehas 10 elements
IRAS 19580-181§42] 0.14 18-93 _310 and each source introduces two addlponal parameters_, thls
3C 324[43] 244 87180 _303 V\{ould be involved. Instead, we examine each source indi-
' ' vidually and look for the desired wavelength dependence.
3C 256[44] 3.04 110-220 —s24 Adopting the same analysis strategy as described in Ref.
3C 356[45] 2.30 78-170 —-323 [15] yields the bounds for each source listed in the last col-
FJ084044.5 - - [46] 249 88-170  —-324  ymn of Table II, which can be combined to yield a bound of
F J155633.8 - - - [46] 2.75 99-160 —32.4
3CR 68.1[47] 2.48 84-180  —32.4 |k3|<2x10 %2 (27
QSO J2359-124148] 2.01 110-120 —31.2 . . .
3C 234[49] 061 55-81 —31.7 in the Sun-centered celestial equatorial frame, at the 90%
4C 40.36[50] 3.35 120-260 324  confidence level.
4C 48.48[50] 3.40 120-260 —32.4
IAU 0211—122[50] 3.40 120-260  —32.4 IV. LABORATORY TESTS
IAU 0828+ 193[50] 3.53 130-270 —324 The Lorentz-violating electrodynamics predicts shifts in

cavity-resonance frequencies, which offers the opportunity

for sensitive tests of Lorentz symmetry in laboratories on the

%arth and in space. This section presents a general frame-

work for the analysis of such experiments. We begin with

some general considerations and then separately consider in

(25) {pore detail the cases of optical cavities and microwave cavi-
ies.

this point as a reference, we require the change in polariz
tion relative to this point induced by E{R4). This polariza-
tion change is given by

Sj(lan): mjk(5¢)sk( I#OIXO)!

wherem!® is the rotation matrix abougt, by 8¢. The matrix
miX is analogous to the Mueller matrix used in polarimetry to
describe the effects of various filters and polarizers on light. Many tests of special relativity search for variations in
Its explicit form is given as E(8) of Ref.[15]. The angley, some observable that might arise from the rotation or boost
which controls the amount of circular polarization, is absentof the apparatus due to the motion of the Earth. Lorentz-
from most published spectropolarimetric data. It is thereforeviolating theories predict periodic variations at multiples of
most effective to focus attention on the chanye=¢— ¢y  the Earth’s sidereal or orbital frequencies. For example,
in ¢ from the reference valug,, which is given as Eq(9) high-sensitivity measurements of coefficients in the fermion
of Ref.[15]. A procedure for fitting this equation to existing sector of the standard-model extension have been performed
spectropolarimetric data is also provided in this referenceby comparing two clocks as the Earth rotafdd]. The
and a 90% confidence-level bound |&f|<3x 10 32is ob-  clocks are typically the frequencies associated with specific
tained from spectropolarimetric data for 16 cosmologicalZeeman atomic transitions, and the standard-model extension
sources. predicts variations in these frequencies with the orientation
In the present work, we use the same procedure to obtaiof the apparatus and hence with the Earth’s rotation. Similar
a slight improvement on the existing bound by incorporatingtests could be performed in space, with the frequency varia-
the redshift of the light as it propagates to the Earth. Cosmotions depending on the orbital and rotational properties of the
logical redshift implies that over the path traveled the lightspacecraff20].
has shorter wavelength than observed. Taking the same con- Resonant cavities can also serve as clocks, and they can
servative cosmology as in the previous subsection and intdse used in clock-comparison experiments to test properties
grating the phase change over the propagation time yields of electromagnetic fields instead of atomic transitions. In
particular, clock-comparison experiments of this type can be

A. General considerations

_A4mo 2 1 used to probe the photon sector of the standard-model exten-
Agp= N H_o 1- N+z/ (26) sion. One relevant issue in the analysis of these experiments

is establishing the transformation between the laboratory
where\ is the observed wavelength amds the redshift. To frame and a standard celestial frame. Another is the determi-
account for the redshift, it therefore suffices to replaceith ~ Nation of the predicted frequency shifts. In this subsection,
Ler=2(1—(1+2) " Y)/H, in the analysis. these issues are addressed in a general context.

Table Il lists 16 sources with published valuesyaf The
second column of the table displays the effective distance
L traveled by the light. The third column provides the  Consider a general laboratory-based experiment measur-
range of wavelengths for which data are used. In fitting toing some electrodynamic observalfle Typically, the con-

1. Generic laboratory experiment
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stitutive relationg4) change the observable from its conven-ficients and can introduce different time dependence, which
tional value®,. We consider a chang#), taken to be linear may lead to fundamentally different tests.

in the matriceskpg, kyg, and kpg=—kpe. In a frame To apply Egqs(30) and(31), the laboratory frame must be
fixed to the laboratoryd© can be written as specified. Appendix C defines our standard Earth-based and
, , , , space-based frames and establishes the transformations from
80=(Mpe) K ko) (Mup)E(kus)lk these to the reference Sun-centered celestial equatorial
i e frame.
+(Mpg)la( kpB)iab: (28

: 2. Cavity experiments
where (Mpg)iap, (Mug)iap, and (Mpg)ap are experiment- y exp

specific constant matrices determined by the apparatus. The Two classes of cavities are of interest in the present con-
symmetries of thec matrices can be imposed on their text: optical cavities, for which the wavelength of the light is
counterparts when convenient. much smaller than the cavity size, and microwave cavities,

Due to the orbital and rotational motion of the Earth orfor which the wavelength and cavity size are comparable. In
the space platform, the laboratory cannot be considered dwoth cases, the interesting quantity is the fractional resonant-
inertial frame. As a result, the laboratory-frame coefficientsfrequency shiftsv/v.

(kpE)lb: (Kue)lb, and (kpg)l, vary in time. We can ex- For a given cavity, letEy, By, Do, Ho be the fields
ploit the induced variation irO by searching for periodic associated with a conventional mode of resonant angular fre-
fluctuations in©O at the relevant frequencies. A measuremeniquencyw,. Nonzerokg coefficients can perturb these reso-
of this type of variation would be a signal for Lorentz viola- o -a fields. LeE, B, D, H be the perturbed fields for the

tion. ) L o resonant mode in the presence of Lorentz violation, and let
To determine the dependence of the periodic variation oy, _ 5,2 represent the change in the resonant frequency
the coefficients Ke) ., We seek an expression similar 10 gjative to the conventional case. A manipulation of the

Eqg. (28) in an inertial frame. A suitable choice for a standard Lorentz-violating Maxwell equations then yields the frac-
inertial frame is the Sun-centered celestial equatorial framg o) resonant-frequency shift as
defined in Sec. Ill A. The coefficients for Lorentz violation
in this frame, «pe)’, (kyp)’X, and (kpg)’K, are constant.
The observer Lorentz transformation between the two
frames can be used to relate the corresponding two sets of
matrices. Since the velocity of the Earth with respect to the
Sun is B,~10"4, it suffices for our purposes to construct
the transformation to leading order. At this order, the Lorentz
matrix A*, implementing the transformation from the Sun-
centered frame to the laboratory frame is —iwy V- (HEXE—E} xH)), (32)

ov IR T
—=- Jd3x(E3.D+H3.B)
v v

XJ d*x(Ey-D—-Dg-E—B%-H+HZ-B
v

A%=1, A%=-p’
T J ' . . .
where the integrals are over the voluMef the cavity. This
Al=—(R-B). Al,=RF, 29 equation holds for any harmonic system, even for large dif-
T R-A) J 29 ferences between the conventional and perturbed modes.

where,é is the velocity of the laboratory with respect to the Note that the divergence term results in a surface integral

Sun-centered frame ari@” is the spatial rotation from the over the bounda}ry QV. D
Sun-centered frame to the laboratory frame. Some calcula- For the application to Lorentz violation, the perturbed

tion shows that the induced transformation between ghe modes are expected to differ only sl_lghtly from the unper-
turbed ones. Also, the boundary conditions can reasonably be

matrices Is taken such that the divergence term in BB) vanishes. The
(kpe) K= TR (kpe) K= TIIK (e ) 3K, point is that, for leading-order effects, we can approximate
the cavity as lossless and idealize the surface of the cavity as
(KHB){'gb:T%kJK(KHB)JK_T(ljk)KJ(KDB)JK, a perfect conductor. The botlndary condition of vanishing
surface tangential electric field, follows as usual from the
(ko) =TI (kpg) K+ T (kpg) K Faraday equatiolV X E+d,B=0 and the vanishing oE,

ikIK 3K inside the conductor. The latter can be regarded as a conse-
+T (k)™ (30 guence of the Lorentz force law. To determine the tangential
where perturbed fielcE on the cavity surface, we note that Lorentz
violation in the photon sector leaves the force law unaf-
TUIK=RIIRKK TIIK=RIPRKIKPQRQ (31 fected. Disregarding for simplicity any effects on the force
law arising from Lorentz violation in the fermion sector of
The tensofT, is a rotation, whileT, is a leading-order boost the standard-model extension, which in any case would be
contribution. Although the contributions involving, are expected to enhance a signal, it follows that the tangential
suppressed by, they access distinct combinations of coef- component ofE also vanishes on the surface. With these
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boundary conditions, the normal component cbi{;(xl? where N is a unit vector pointing along the length of the
- EZ; X I:|) is zero at the surface of the cavity. cavity, ¢ is a phase, anéo is a vector perpendicular t

For leading-order effects of Lorentz violation, it suffices that specifies the polarization. The conventional resonant fre-
to expand the remaining terms of E§2) in the coefficients ~quencies are given byo=wm/ Jel, wherem is an integer
(Ke) a0 - If the cavity is void of matter, theD,=E,, Hy and| is the length of the cavity.

= - . . : Substitution of Eq.(35) into Eq. (34) yields the desired
=By, and the constitutive relatiortd) yield the approximate o5yt for the fractional frequency shift:
relations

ov - -
Ij)_EzKDE'EO_'—KDB'B)Oi TZ_M[ES'(KDE)BU EOIE

ﬁ_ézKHE'E0+KHB'§0. (33) _(NXES)'(KHB)Iab'(NXEO)]' (36)

If the cavity contains matter, we adopt instead a general linThis expression for the fractional frequency shift is also ob-
ear relation between the unperturbed field®,(H,) and tained in an alternative approach from a different physical
(Eo,Bo) and assume for simplicity a lossless medium. Inperspective, as described in Appendix D.

either case, we find that the leading-order fractional fre- The laboratory-frame matrices,, introduced in Eqg.

quency shift becomes (28) can be extracted from E¢36). We find
- 3 =% = _ S % 5 =
7_ 4<U> Vd X(EO‘KDE'EO BO.KHB'BO DE/lab 26|E0|2
+2RE} - kpg-Bo)), (34) Re(NXE$)I(NXEg)

(Myp)ih= 2IE, 2
where (U)=[yd3(Eq-D% +Bo-H)/4 is the time- , °
averaged energy stored in the unperturbed cavity. Note that (MDB)f;‘b:O. (37
ovlv is real, reinforcing the argument that the vacuum is
lossless and indicating that tigefactor of the cavity remains
unaffected by Lorentz violation at leading order.

These equations show that in the presence of Lorentz viola-
tion the frequency of an optical-cavity oscillator depends

both on the orientation of the cavity and on the polarization

of the light with respect to the laboratory frame.

B. Optical cavity experiments To analyze an experiment with an optical cavity, one can

Among the classic tests of Lorentz invariance are thd'W proceed as follows. First, determine the laboratory-
Michelson-Morley[1] and Kennedy-Thorndik§2] experi-  frame matricesM,, from the apparatus by applying Eq.
ments. Both concern the speed of light, with the former(37)' These matrices are constant if the cavity is fixed in the

searching for spatial anisotropy and the latter seeking depetl]e_\boratory but vary with time if the cavity is rotated in the

dence on the laboratory velocity. The standard-model exte aboratory. Next, relate the laboratory-frame matriegg to

hose in the reference Sun-centered frame using the transfor-

e e aln GO nd the maiel i App C. The ime -
P : ’ endence of the cavity resonant frequency can then be cal-

thesg tests that use optical cavities to achieve improved sefif;|1ted using Eq(36) or equivalently Eq(28). Finally, the
sitivities [17-19. amplitudes and phases of particular harmonics can be ob-
tained and compared to the experimental data.
As an illustration of the analysis procedure, consider laser
We can use the results in Sec. IV A to obtain an expreshght incident on a cavity positioned horizontally in an Earth-
sion for the fractional frequency shiffv/v arising from  based laboratory, with the light linearly polarized along zhe
Lorentz-violating effects in an optical cavity. The idea is to axis. Denote by the angle between theaxis and the cavity
regard the cavity as two parallel reflecting planar surfacesrientation. ThenN=(cos,sin6,0), and in the laboratory
with plane waves propagating between them normal to thérame the fractional frequency shift becomes
surfaces, and then to apply E®@4).
The resonant modes of optical cavities can be regarded as v 1
standing waves. For simplicity and definiteness, we suppose —=- Z[Z(KDE)?;SL/E—(KHB)%alt:,—(KHB)ézb]
the unperturbed cavity contains a medium having transverse
relative permittivitye and relative permeabilityy=1, with
the casee=1 corresponding to a cavity void of matter. As 1 1.
usual, the unperturbed fields can be taken as ~ 5 (Kup)igpSin 20

1. Theory

Eo(X) =Eqcoq woN- X+ ¢p)e o,

1 1 _ 22
By(x) =i Vel X E,sin wo el - X+ ¢)e—iodt,  (35) Z[(KHB)Iab (KHB)iapnlCOS 26. (39
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The next step is to transform this result to the Sun-of special relativity while the frequency of the cavity-
centered celestial equatorial frame. Using E86) and(31), stabilized laser depends on the speed of light along the

the fractional frequency shift takes the form length of the cavity.
5 The Brillet-Hall experiment studies spatial isotropy by
or = A+ Bsin26+ Ccos2¥, (39) _seeking changes in .the beat frequency as the cavity is rotated
4 in the laboratory with a period of about 10 s. The vector
Fourier amplitude is measured at twice the cavity rotation
where . -
frequency. In the present context, if we suppose for definite-
A=Ay+A;SiNw, Ty +Ayc0sw, Ty +Agsin2w, T ness a vertical laser polarization as in the previous subsec-
tion, this experiment offers sensitivity to the quantitizand
+A4C082wg T, C in Eq. (39) through the time dependence 6f The re-

ported fractional frequency shift is ©3.5x10 °. The

B=Bo+BiSiNweTe +B2C080e Te 1 BsSin2w, Te analysis yielding this bound supposes a signal @t, 2and

+B,c082w, T, , averages over several days of data. Within the framework
leading to Eq(40), this bound would translate to a constraint
C=Cy+CiSiNwg Ty +CrCo0amg Ty +C3SiN2w, T on a particular combination of the coefficiels, B,, Cs,

C, at the level of about a part in 1D

T CaC0S205 T (40 4A complete dataset of tp;m type taken in this experiment
The quantitiesAo ;234 Bo1234 andCoqo34are linear in  could be analyzed using E¢40) to extract several different
the coefficients for Lorentz violation and depend on the co/measurements of combinations&f andC, . For example,
latitude x. They are given explicitly to ordeg in Appendix ~ consider the one-day dataset displayed in Fig. 2 of R&f.
E. Note that the coefficient, appears only i, resulting In this dataset, no var|at|onillsé seen in the frequency gbpve
in a constant frequency shift. It follows that sensitivitysg the level of B+ C*<4>10". In fact, these data exhibit

) o . a one-day signal involving a roughly constant Fourier ampli-
IS suppressed'by at least two powerssah this expen'ment. tude of about X 10~ 3 with nearly constant phase, attributed
The analysis could now proceed along several lines. On

possibility is to adopt the birefringent constrairi?). The ??c a %Iz—z'ghtc;[”t n thlz rotagon platfo_rm..l Smge a Inonzero \lllglue
expressions in Appendix E can then be simplified by settind) o+ Lo would produce a similar signal, compelling

~ ~ . . - measurements &,, C, via this method appear problematic.
,(.K“)iK:(KO*)JI_(:O' This shqws that the e'gh_t coefficients However, boundsoon gombinations of thgpquanqitB(gs Ci
Ke—, Ko+ are directly accessible through fitting the mea-for n0 could be extracted by studying the behavior of the
sured frequency shift to Eq40). Another possibility is t0  yata at both the sidereal frequenay, and its harmonic
include all coefficients in the analysis. This would provide 824, . As can be seen from the expressions in Appendix E,

direct laboratory check on the birefringence results. Al-the quantities,, C,, involve unsuppressed combinations of
though in practice the sensitivity is much reduced, the sys:

; : the coefficients«o. , ko for Lorentz violation, along with
tematics of laboratory-based experiments are fundamentally S 2 ~
different from those in cosmological tests and so this checlombinations of the coefficients,, , «,- suppressed by

is worthwhile. We remark that the isolation of specific coef-on€ power of the velocity. It therefore appears feasible to
ficients for Lorentz violation can be aided by consideringP€rform a systematic analysis of a complete dataset in a
different experimental configurations. These include adoptMichelson-Morley experiment with an optical cavity to mea-

ing a different polarization and rotating the apparatus in thesure combinations of the coefficierks, , k. with a sen-

laboratory, which produces a time dependencé.in sitivity of order 10°*4*! and combinations ok,. , xo_
_ with a sensitivity of order 101%1,
2. Experiment The Hils-Hall experiment seeks changes in the beat fre-

A modern Michelson-Morley experiment with sensitivity quency as the velocity of the laboratory varies with the
to a fractional frequency shiffv/v of about 10 '3 was per- ~ Earth’s rotation. The analysis assumes that experiments of
formed by Brillet and Hall[17]. A similar sensitivity was the Michelson-Morley type exclude observable sensitivity to
achieved by Hils and Hall18] in a Kennedy-Thorndike ex- the orientatiory of the cavity. In the context of E¢39), this
periment, recently repeated using a cryogenically coole@orresponds to assuming negligitdeandC terms. The Fou-
cavity by Braxmaieet al.[19]. These experiments compare fier amplitude at the sidereal frequency is analyzed, obtain-
the fractional frequency shifts between two lasers. One laséRg a bound of 2<10™*° at the 90% confidence level. With
is stabilized to a molecular transition and serves as a refethe configuration leading to E¢40), this bound constrains
ence frequency. A portion of the light from the second laseithe combination\/A21+A22.
is sent into one end of an optical cavity, and the light emerg- Since at present many combinationsBfand C remain
ing at the other end is used to tune this laser to the cavityinconstrained, the assumption of negligide C terms is
resonant frequency. The remaining light from the second laundesirable in the analysis of Kennedy-Thorndike experi-
ser is combined with the light from the reference laser, andnents. If this assumption is relaxed, the Fourier amplitude at
the beat frequency is measured. In the classic analysis, thbe sidereal frequency contains contributions frém A,,
frequency of the reference laser is independent of violation8,, B,, C,, C,. It should therefore be possible to measure
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combinations of the coefficients,, , x._ at the level of The invariance of the cylindrical geometry under a parity
about 10 *® and combinations of the coefficients .. , x,_ gggfsf{;remnflst'on s?lgg?estsatrri\te (r)nda(;w,:i)s%vﬁlrgschaisit, ngne\,g:?
at the level of about 10°. A complete analysis could also koe) parity ' ' y

: . . ., ant under rotations about the symmetry axis, so in a cavity
analyze the second Fourier amplitude, which would prowd%rame with 3 axis along the symmetry axis we expect the
a measurement of a combination Af, A,, B3, B4, C3,

c rotational symmetry to imply diagonal matricedpe) cay
4- -
The analysis of Braxmaiegt al. focuses on a variation in and (Myg) cay With equal{11} and{22} components. Indeed,

Svlv with the orbital motion of the Earth. The assumption of for both TEnnp and TMpn, modes, we obtain

negligible B, C terms is again made. The data are averaged5

daily, and a bound on the fractional frequency shift of 4.8 °V _ 11 11 22 33 33
; ; —= + +

+5.3x10 2 is obtained. In the context of Eq40), the v (Mpe)cal (kpe)cavt (KpE) cadd + (MpE) cad KDE) cav

analysis restricts the sensitivity #,. Using Eq.(E1) in 1" 1 2 23 23

Appendix E, it then follows that the reported constraint cor- +(Muyg) cal (kHe)cavt (khB)ead + (Mug) dad KHB) cay

responds to a bound on a combination«Qf, , k,_ at the (41)

level of about 108. Sensitivity toC, could also be obtained

if B and C terms were included. Note that the polarizationin the cavity frame.

chosen in deriving Eq(40) implies the coefficienB, is in- For the TM,,, modes, some calculation reveals that the
dependent of3, and hence cannot be extracted. nonzero elements of th&1 matrices are

The above discussion shows that many interesting pros-
pects remain for measurements of the coefficientasing 1 €' (mpR)?

optical cavities. Note that the published experimental analy- (Mpg)il=(Mpg)22=
ses to date are each sensitive to different combinations of

coefficients for Lorentz violation. A systematic analysis

could in principle provide sensitivity to all the coefficients 3 e(Xmnd)?

ke andk._ at the level of about 10" or better and sup- (Moe)ea=~ 3 €' 2(mpR)Z+ €€’ (Xpnd)?’

pressed sensitivity to the coefficienks. andx,_ at the

level of about 10° or better. Note also that an analysis along 1
the above lines could readily be applied to space-based tests (MHB)g;\,:(MHB)ggv:_!
involving optical cavities, including ones on the ISS or in 4
dedicated missions such as the proposed OPTIS experiment

[51]. Some potential advantages of space-based tests are dighereR andd are the radius and length of the cavity, and
cussed below in the context of experiments using microwavevherex,, is the nth zero of themth-order Bessel function

4 ee'(ﬂ'pR)2+ ez(and)2 ’

(42)

cavities. Jm(X). The corresponding results for the J& modes are
1
i iti 11 22
C. Microwave cavities (Mpg)ea= (Mpe)ea~ — Ic

Microwave-cavity oscillators are among the most stable
clocks, and as such they offer interesting prospects for Lor-
. . 11 _ 22

entz tests. In particular, there has recently been renewed in- (Mug)ca™ (Mup)cay
terest in superconducting cavity-stabilized oscillators as

2

clocks for use on the I1S$52]. Superconducting cavities :E (7pR)
made of niobium have achieve factors of 18 or better, 4 (mpR)*+ (X d)?’
and frequency stabilities of 810 ¢ have been demon-
strated. In this section, we focus on perturbations of 1 (x! d)?
microwave-cavity resonant frequencies arising from the co- ( MHB)?S\F— Zf“” —, (43)
efficients Ke) ., for Lorentz violation. 2 (mpR)“+ (Xppd)

1. Theory wherex/,, is thenth zero of the derivative of,(x). Note

Equation (34) can be applied to obtain the fractional that taking the optical-cavity limip—co of any TMy;,, or
resonant-frequency shiiv/v for a superconducting micro- TEmnp, mode yields a result identical to that obtained by av-
wave cavity of any geometry. The higheStfactors have eraging over all optical-cavity polarizations in E7).
been demonstrated in cylindrical cavities with circular cross For practical applications, it is useful to generalize Eq.
section, so we focus on this case. For simplicity, we supposétl) to the case where the cavity is arbitrarily oriented in one
the cavity contains a medium of relative transverse permitof the standard laboratory frames introduced in Appendix C.
tivity e, relative axial permittivitye’, and relative perme- In the laboratory frame, denote the components of a unit
ability x=1. The vacuum case is recovered as the limit vector parallel to the symmetry axis of the cavity &y, The
=e'=1. fractional frequency shift is then found to be
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7:(MDE)gal\\XKDE)gb“‘(MHB)éalnﬂKHB)gb
+[(Mpe)3a~ (Mpe) sm NN (kpe) i,
+[(Mug) oo (Mug) e NN (kpp) - (44)
This implies the relationships
(Mp)l=[(Mpe) 33~ (Mpe)amd NINF+ (Mpe) s,

(M= (Mup) 3~ (Mup) s NN+ (Myg) en %,

(Mup)li=0. (45)

Using Eq.(44) and the transformatio(80), we can write the

PHYSICAL REVIEW D66, 056005 (2002

Sv 1... ' j j
v :_Z,N]'\IK[Z(KDE)fgb*‘(KHF_z)le;b_5JK(KHE‘):!i
TMo10
1"]"k JRKKr2( % VKL (& \IK
=_ZN N“RMR [3(Ke+) +(Ke—) ]
1 :
- §(5JK+N]NK)RJJRKKEJPQBQ

X[3(ko-) P+ (ko4 ) P1— Ky (49)

The observable shift depends on the traceless symmetric ma-
trix combination 3f,. )’ + (ke_)’K and the traceless ma-
trix combination 3%,_)"*+ (k.. ) K. The first of these con-
tains five linearly independent combinations of the 11 parity-
even coefficients for Lorentz violation, while the second
contains all eight parity-odd coefficients. Note that certain

fractional frequency shift for a general mode in terms ofharmonics may be sensitive to smaller subset of these 13
coefficients for Lorentz violation in the Sun-centered celesqyantities. For example, for a fixed Earth-based cavity if

tial equatorial frame. To orde8, we find

ov

14

FDA ~ 1 ~
NINKRVRKK (kg )IK— 7 (Mat3Ma)ky

N

1 . RPN ~
- E(M 3% M+ NINK)RIRKKIPQBQ( ) KP,

(46)

In this equation, we define the quantities
My=—4[(Mpe) &~ (Mpe)gavt (Mug)day (Mug)ead,

Mo==4[(Mpe)za~ (Moe)cay~ (Mug)eat (Mus)zal,

Ma=—4[(Mpg) ea— (Mup) ead: (47)

represents the rotational axis of the Earth’s revolution, then
the sidereal harmonics are insensitive to the component of

3(ker )+ (ke_)’¢ proportional to w’w®, reducing the
number of combinations to 12.

If an Earth-based experiment is performed over a period
of time ATe,, short compared to the orbital period of the
Earth, then the velocity is roughly constant and the experi-
ment is sensitive primarily to the four linear combinations
corresponding to the vector amplitudes of the two harmonics.
To acquire sensitivity to other combinations, the Earth-based
experiment could either be repeated several times during the
year, or the cavity could be rotated in the laboratory. In con-
trast, for a satellite-based experiment, perturbations cause the

orbital plane and hence the analogue&mto precess with
time. Also, the smaller orbital period implies different har-
monics and access to more coefficients for the samg,,.

As a result, if the experiment is performed two or more times
with significantly different orbital planes, all 13 combina-
tions of coefficients can be accessed through the orbital-

which depend on the cavity mode and control the linear comfrequency harmonics.

binations

(ke )K= My (kes ) K+ My(ke ),

(ko) K= My (ko )T+ My(kos ) 'K (48)

of coefficients for Lorentz violation. These equations reveal

Equation(44) can be adapted to either a space-based or
Earth-based experiment and, if necessary, to the case of a
rotating cavity. In the remainder of this section, we offer
some remarks about possible experiments with microwave
cavities on the ISS and on the Earth.

2. Space-based experiment

The construction of the ISS offers the possibility of per-

that the sensitivity of experiments with microwave cavitieSforming Lorentz tests in low Earth orbit. Of particular rel-
to Lorentz violation varies with the mode and with the per-eyance in the present context is the SUMO experinigal,
Lnlttmty of the medium in the cavity. As before, to this order \yhjch plans to use superconducting microwave-cavity oscil-
Ky contributes only to an unobservable constant frequenciators as clocks on upcoming ISS flight missions.

shift.

The ISS operates in several different flight modes, which

As an illustration, consider a cavity void of matter and correspond to different laboratory configurations in the Sun-
operated on the fundamental )\ mode, as planned for centered celestial equatorial frame. Each flight mode there-
some space- and ground-based experiments. For this cadere involves different transformationg30), which could
we find M;=3, M,=M3=1, and the fractional frequency lead to different sensitivities to the Lorentz-violating coeffi-

shift (46) becomes

cients. If, for example, the ISS orientation were fixed in Sun-

056005-13



V. ALAN KOSTELECKY AND MATTHEW MEWES PHYSICAL REVIEW D 66, 056005 (2002

centered frame, corresponding to no rotation during an orbifrequencyw,, . The equivalent of the ISS orbital plane in this
then the signal would involve only boost-dependent termsase is the plane in which the laboratory moves, which par-
with a 92-minute period. For definiteness and simplicity, weallels the equatorial plane at the latitude of the laboratory. As
focus here on a flight mode with the 1S%xis aligned along before, the configuration of maximum sensitivity has one
its orbital velocity with respect to the Earth. This corre- cavity in this plane and the other at 45° to it. However, for
sponds to the standard laboratory frame introduced in Aplaboratories located in middle latitudes, it suffices to orient
pendix C. one cavity horizontally in the east-west direction and the

For a microwave cavity with fixed orientatioN in this ~ other either vertically or horizontally in the north-south di-
ISS laboratory frame, several harmonics could be studiedection. The east-west cavity is then maximally sensitive to
The fractional frequency shifév/v varies with the Earth’s the second harmonics, while the north-south cavity is near
orbital frequency, the ISS orbital frequenay, and the ISS maximal sensitivity to the first harmonics. The latter are pro-
orbital-precession frequency. The most interesting of these igortional to cos 2, so for colatitudes in the range 3@%
likely to be the highest frequencys. <60° there is at most a 14% reduction in sensitivity.

In practice, the fractional frequency shift may be mea- For definiteness, we consider the configuration with the
sured relative to another oscillator clock via the beat fre-Second cavity oriented vertically in the laboratory. The
guency of the combined signal. The reference clock could bé&boratory-frame orientation vectors are thsiR=(0,1,0)

a different physical system, such as a hydrogen maser Q{nd N,=(0,0,1). Paralleling the discussion leading to Eq.

atomic clock, which could conveniently be operated on &50), we write the fractional beat frequency due to Lorentz
transition known to be insensitive to Lorentz violati®0].  yiolation as

A comparison of two microwave cavities could also be used.
For example, SUMO may involve a pair of cavities oriented
at right angles to each other. The observed signal would then Vbeat
depend strongly on the orientation of the pair in the ISS
frame. Thus, at leading order j§, a cavity oriented witH\
perpendicular to the orbital plane is insensitive to the parity-
even coefficients for Lorentz violation, and only
B-suppressed parity-odd terms appear in the frequency shifft first order in 8, we find
In contrast, a cavity positioned witll in the orbital plane
maximizes the sensitivity in the second harmonicswgf 1 1
while one withN at 45° from the orbital plane maximizes A= Zsinzx(}e,)YZ— 7 Besin 2x[sinQ o T((ko)YY
the first harmonics. These results can be obtained directly
from Eq. (44). T NZZY o ~ \ZX

For a pair of identical cavities, the variation in the beat (191) %) = Sin 7C0SQ Tl ko)
frequency takes the general form

=AeSiNwgTg+AgCOSw e T+ By sSiN 2w Tg

+BgcC0S 2w Ty +Co . (51

~ 1 ~
+c0s7cosQ . T(ky ) X]— EB,_(sinZX(KO,)YZ
Vpeat ovy vy

vy —cogx (ko))
= ASiNw T+ ALCOSwg T
1 ~ 1 ~
+ BSin 2w T+ B,C0S 2w T+ C, (50) Age= sin 2x(Ker)*2— 788N 2x[sinQT( Ko )Y

where As, A., Bs, andB; are four linear combinations of

H - zY - XX
the coefficients Kg) .., for Lorentz violation. These com- +5in7c0s0 6 T(ko1) ™"+ COS7C0S0 6 T(( 1o1)

binations depend on the orientatioNs, N, of the cavity B
pair and on the orientation of the orbital plane with respect to — (ko)) ] = EﬂL(SInZX(KO’)
the Sun-centered celestial equatorial frame. The precession

of the ISS orbit slowly changes the four combinations, al- —co§X(7<O,)ZX),

lowing access to more coefficients. Typically, the combina-
tions are rather cumbersome. Appendix F contains their ex-

plicit form forA a maximal-sensitivity case_, for_ Whicﬁl1 Byo= £(1+sin2X)(7<e/)XY+ E,B@(1+sin2)()
=(0,0,1) andN,=(1,1,0)A/2. The expressions involve the 4 4
linear combinationg48), which hold for an arbitrary mode

H - XZ - YZ
and arbitrary permittivities, €. X[sinQgT(ko)"+ coSnCOSQ e T( ko)

- ~ \XX_ (T \YY
3. Earth-based experiment +5in7C0806 (ko)™ — (ko) " )]

For an Earth-based experiment with a cavity pair fixed in

1 ~ ~
T4 XY YX
the laboratory, the dominant frequency is the Earth’s sidereal * 8 Busin2x (o)™ (101 ),
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D. Cavity deformation

1 ~ ~
— H XX __ YY
Bee= g (1+8ix) ((er) ™~ (k) ™) In this remaining subsection, we offer a few remarks con-

1 cerning the possibility that Lorentz violation might alter
ot . . ~ vz atomic binding forces and hence the structural properties of
4’8®(1+S'n2X)[S'nQ®T(K°') matter. In particular, one resulting effect relevant to cavity

_ _ experiments might be a deformation of the cavity, which
—0s7c0sQ , T(Kko ) *4+sinncosQ T((ke)*Y  could change the resonant frequency. The issue is whether
1 possible deformations arising from Lorentz-violating effects
+ (o) 9T+ = BLsin 2¢ (e ) X = (kg YY), in the standar_d-model extension could cancel th_e predicted
8 effects. The differences between the transformation proper-
ties and nature of the various coefficients for Lorentz viola-
tion make it unlikely that coefficients other thakg{,, .,

3 - 1 - could cause complete cancellation of the signals discussed
Co= gCng(Ker)zz— ZB@COS?X[SMQ@T(( Kor) "% above, so a more interesting question is whether the coeffi-
cients Kg) ., could alter the dimensions of a cavity so as
+2(% )2 —sin 70080, T((%0 )XY = (%)Y ) to offset completely the predicted signals.
Any leading-order modifications to atomic and molecular
+ cosncosQ®T((7<0,)xz+ 2(k0) %] binding forces arising from nonzeré) ,, ., are expected to
3 come from modifications to the Coulomb potential. The form
. ~ of the Gauss lawi6) in the presence of Lorentz violation due
—ghusin 2x(01)%%, CEE (Kg) e . implies that the modified Coulomb potential for
a point chargey is
where the convenient combinatiofé8) have been adopted. B(X) = q (1+ X- KDE'X) (59
As before, these equations are valid for any specific mode 477|>Z| 2%2

and for arbitrary permittivitieg, €’.

A Lorentz-violating signal would thus manifest itself as a The leading-order effects on the physical dimensions of the
sidereal variation in the fractional beat frequency accordingavity are therefore expected to depend only on the matrix
to Eq. (51). At zeroth order ing, the corresponding ampli- «pe. We could account phenomenologically for such effects
tude associated with this variation is constant and determinebly adding a term to E(28) of the form MK (ko).
by the four parity-even coefficientskg)*?, (ke)¥% ~ Where the constant .matrMJrrl](atter.iS determined by the prop-
(o)XY, and {ke')*= (%)Y, These linearly independent erties of the material from which the cavity is made. For

combinations of Kg) . ., remain unmeasured to date. When example, in a simple ionic lattice modek{;,,.edepends on
the first-order terms i are included, the amplitudes also the charge of the ions, the lattice configuration, and the ori-
contain harmonics at the Earth’s orbital frequefzy . The

entation of the cavity with respect to the lattice.
resulting variations depend on the eight parity-odd coeffi- For the optical and microwave cavities considered here,

] ~ ~ this extra term cannot completely cancel the predicted frac-
cientsk,: . The three of these representedmy, have yetto  tional frequency shifts. Although a partial cancellation might
be measured. be possible in principle, it requires that the mat/ix’

. . ape matter
The above experiment provides access to the specifie@hes a special form that is improbable in light of the com-

parity-even coefficients at the level of the cavity stability, plexity of the binding forces of solids.
which for available microwave cavities could be at the order
of 10713 or better. TheB suppression reduces the sensitivity
to the parity-odd coefficients to about 1D or better. The
experiments can be performed on any cavity mode and for In this work, we studied the Lorentz-violating electrody-
cavities with or without matter. For example, as can be seenamics derived from the renormalizable sector of the full
from the explicit expression&t8), a pair of sapphire-filled Lorentz-violating standard-model extension. Some basic ma-
cavities (=9.5,¢'=11.5) operated on a whispering-gallery terial is presented in Sec. Il A, followed by a useful analogy
mode[53] offers sensitivity to linear combinations of coef- and some definitions in Sec. 1l B. Section Il C discusses the
ficients for Lorentz violation that differ from those of a pair connection to some test models.

of vacuum cavities operated on the fundamental oM The bulk of the paper is devoted to tests of the Lorentz-
mode. In fact, for any specified combination of cavities withviolating electrodynamics and methods to measure the 19
known fields, the matricesMlpg) cay: (Mpg)cavin EQ.(41)  independent coefficientkg),, ,, for Lorentz violation. We

can be determined and hence the fractional beat frequendirst consider astrophysical tests based on the prediction that
can be obtained as above. Note also that other coefficientie vacuum is birefringent. Theoretical issues pertaining to
could be accessed by placing the cavity pair on a rotatingacuum birefringence are discussed in Sec. Il A. One poten-
turntable, which would also allow a dataset to be obtained irially observable effect is the dispersion of pulses over astro-
weeks or days rather than months. physical distances. The constrai@l) on (Kg) . ., from this

V. SUMMARY
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TABLE Ill. Existing constraints. Administration under grant number NAG8-1770 and by the
United States Department of Energy under grant number DE-
Astrophysical tests Laboratory tests FG02-91ER40661.

Coeff. No. \Velocity Polarization Optical Microwave

}eJr 5 -16 -32 * - APPENDIX A: BIREFRINGENCE VECTORS

Ke- 5 na na * i For a distant source viewed from the Earth at declination
Ko+t 3 n/a n/a * - d and right ascension the direction of propagation towards
Ko- 5 -16 -32 * - the Earth can be written asp#“=(1;— cosdcosr,

K 1 n/a n/a - - —cosdsinr,—sind). The matrix

effect is obtained in Sec. Ill B. Another potentially observ- sindcosr sindsinr ~ —cosd

able effect arises in the comparative spectropolarimetry of
cosmological sources. The tight bou(®V) on 10 of the 19 _ .
coefficients Kkg) .., is obtained in Sec. lll C. —cosdcosr  —cosdsinr  —sind

The possibility of sensitive laboratory tests of Lorentz in-
variance is examined in Sec. IV A. A general framework for_ ) .
the analysis of both Earth-based and space-based expelfoplements the rotation between the primed frame and the
ments is provided. The analysis is applied to two types oftandard Sun-centered Aframes. With this definition, the
cavity-stabilized oscillator experiments. In Sec. IV B, we primed-frame basis vectey points from the source towards
consider optical-cavity ~experiments. High sensitivity the Earth. The vectore] and e} point south and west, re-
microwave-cavity experiments are discussed in Sec. IV Cspectively.
We fi_n_d that appropriate laboratory tests can access all 19 Writing o'siné and ocosé in terms of coefficients in the
coefficients Kg) exuy - Sun-centered celestial equatorial frame gives

Table Il summarizes the existing constraints. The 19 co-
efficients kg),\,, are represented by the matric§§+,
Ke— s Kot Ko, Ky defined in Eq.7). The number of in-
dependent components in each matrix is shown in the second
column. The order of magnitude of the astrophysical bounds
is shown in the third and fourth column. These bounds
tightly constrain the 10 coefficientk{),, ,, contained in L ik ookl daKen
e+ and k,_ . However, as indicated in the table by the ocosé= S (RPRT=RTRTIKp,p,.  (A2)
notation n/a, the remaining coefficients are unobservable in
astrophysical tests. In contrast, laboratory experiments with
optical and microwave cavities can in principle access all theyote that¢ is not a rotational scalar, unlike and o
coefficients. As discussed in Sec. IV B, several recent experi- The rotation(A1) can be substituted in this result to yield
ments with optical cavitiefl7—19 offer sensitivity to afew  ;gin¢ and ocosé in terms of e) r . in Sun-centered ce-
of the coefficients at levels lying between about &nd  |estial equatorial coordinates. The' relevant combinations of
1075, but no definitive analysis has been performed. Thene (k.),, ., are the 10 coefficients® given in Eq.(8). It is
matrices for which a few components are probably cononyenient to expresssin ¢ andocosé as the scalar product

strained in this way are indicated by the symbolin the  of ka with two 10-dimensional vectors. Defining
table. To date, no measurements of Lorentz violation using

microwave cavities have been reported.
In conclusion, astrophysical observations place bounds on co2 d+codr —sir dsirér
Lorentz violation in electrodynamics that are competitive _ .
with ones in the fermion sectors obtained by other means. Sir? dcos'r —cos’ d—sirf r
Laboratory experiments are needed to complement these —2sindsinrcosr
measurements by spanning the allowed parameter space in
the photon sector, and the technology presently exists to per-

RIK= sinr —cosr 0 (AL)

1 ~ A
osing= E(R13R2|<+ RZJRlK)ki]:MKVpMpV'

—sindsinrcosr

form them. These experiments offer a promising avenue to " sind(sin’ r —cosr)
search for new physics lying beyond the standard model. Ss™ — cosdsinr ' (A3)
cosdcosr
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—2sindsinrcosr
— 2sindsinrcosr

1
§(1+sin2 d)(sirPr—cosr)
1 . .
E(S|nd+sm2 r—sirf dcos’r)
(1+sir? d)sinrcosr
—sindcosdcosr
—sindcosdsinr

cosdsinr
sind(sirPr—cosr)
—cosdcosr
(A4)
we find
asiné=s2k?,
ocosé=sZka, (A5)

APPENDIX B: POLARIZATION REVIEW
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FIG. 2. The Poincarsphere.

cular polarization. Similarly, the lower hemisphere represents
polarizations of negative helicity.

In Sec. Ill C, the quantity of interest is the polarization
change induced by the phase siiip in Eq. (23). The effect

Conventionally, polarization is defined by the behavior ofof A¢ on the Stokes vectas can be visualized in terms of

the electric field vectof54]. The polarization of a general
plane wave can be described by an ellipse residing in th

plane perpendicular to the direction of propagation. In termggrs s

of the primed-frame variables introduced in Sec. Ill A and to
leading order inKg) .\ ., » this plane is spanned by the basis
vectorse] ande,. The orientation and shape of the ellipse
can be described by two angleg,and y. The angley de-

termines the orientation of the ellipse and is defined as th

angle between the major axis of the ellipse a&jd The

motion on the Poincarephere. Consider an arbitrary ortho-
eormal elliptical basige;,£,}. The associated Stokes vec-
S;,, S;, determine opposite points on the Poiricare

sphere. Decomposing a general electric field in this basis
gives polarization component,e '%n, n=1,2, whereE,

and ¢, are real. Examining the Stokes vector for this con-
figuration shows that a chang®(®,— ¢,) in the relative
Bhase results in a right-handed rotation of the Stokes vector

by the angleA(¢,— ¢,) about the axis given b)E;:1=

ey

angley describes the shape of the ellipse and the helicity of -

the wave, and it is defined by= *+arctam, wherer is the
ratio of the minor to major axes of the ellipse.

In polarimetry, the ellipse is commonly parametrized us-

ing Stokes parameters. We define a Stokes vector by
(s%9)=(E|*+[Ej|% [E1 [~ [E5I?,
2ReE[*E), 2IME*E))

=5%(1,c0S C0S 24, cos 2ysin 24,5in2y).  (B1)

82'
APPENDIX C: STANDARD FRAMES

This appendix defines our standard frames for Earth- and
space-based laboratories. We provide the rotations and ve-
locities used in transforming to the reference Sun-centered
celestial equatorial frame, which is defined in Sec. Il A.

1. Earth-based laboratory

In the context of the discussion in Sec. Il C, the losslessness For a laboratory fixed to the surface of the Earth in the

of the vacuum implies that the Stokes parameteis unaf-

northern hemisphere, we choose the standard frame to have

fected at leading order by a relative-phase change. We thergoordinates {(x,y,z) such that thex axis points south, thg
fore normalize ts®=1 throughout. Witrs?=1, each Stokes axis points east, and the axis points vertically upwards.
vector s represents a unique point on a two-dimensionalVith the reasonable approximation that the orbit of the Earth

sphere of unit radius, called the Poincaghere. As illus-

is circular, the rotation from the Sun-centered celestial equa-

trated in Fig. 2, 2 and 2y are the angles that specify the torial frame to the standard laboratory frame is given by

position ofs on this sphere. An arbitrary polarization is rep-

resented by a single point on the sphere. The points in the

s'-s? plane represent all linear polarizations. The points in

the upper hemisphere all represent elliptical polarizations of

positive helicity, with the pole being the special case of cir-

COSYCOSwg Tg COSySINwg T, —sSiny
= —SiNwg Ty COSwg Tg 0
SinyCoSwgTg  SiNySiNwgT,  COSy
(C1)
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In this equation,j= x,y,z =1,2,3 denotes an index in the Here,j=1,2,3 denotes an index in the satellite frame. The
laboratory frame, whileJ=X, Y, Z denotes an index in the satellite orbital angular frequency is denoted. The time
Sun-centered frame. The Earth’s sidereal angular frequency, is measured in the Sun-centered frame from a conve-
is wg=27/(23 h 56 min), andy is the colatitude of the njently chosen time when the satellite crosses the equatorial
laboratory. The timeT,, is measured in the Sun-centered plane, so the time3, and T differ by a constant for each
frame from one of the times when tlyeandY axes coincide, experiment. Also{ is the angle between the satellite orbital
to be chosen conveniently for each experiment. The fige plane and the Earth’'s equatorial plane. For examgle,
therefore differs from the ce:lestial equatorial tinieby a  _goe for the ISS. The quantity is the azimuthal angle at
constant shift for each experiment. _ which the orbital plane intersects the Earth’s equatorial
cerl-tg(rae(:\i/?rlg?r:g is3-vector of the laboratory in the Sun- plane. The satellite intersects the equatorial plane twice per
orbit, and @ can be regarded as the angle betweenXhe
direction and a vector from the Earth’s center to the point

SinQgT —SiNwg T4 . ; : .
. where the intersection occurs on an ascending trajectory.
B=PBs| —C0sncosQ.T [+ | CoswsTe |. The velocity of the satellite with respect to the Sun-
—sinycosQ, T 0 centered celestial equatorial frame is
(C2
Here, Q. and B, are, respectively, the angular frequency sinQ,T
and speed of the Earth’s orbital motion. The quantity Bzﬂ@ —cosncosQ, T

=23.4° is the angle between theY celestial equatorial

plane and the Earth’s orbital plane. The spegi —sin7cosQe T
=r,w,SiNY=<1.5x10% is that of the laboratory due to the — cosasinw Ts— sinacos{cosw T
rotation of the Earth. cTEE 5

The reader is warned that the standard laboratory frame +Bs| —SinasinwgTs+ CosaCos{CoSwsTg
defined above may differ from a frame fixed to the apparatus sin{coswT
in the laboratory. For example, the apparatus rotates in the
laboratory in some experiments considered here. Where con- (CH

fusion could occur, we distinguish with labels the quantities
defined in the standard laboratory frame from those in therpe quantitiesB,, , Q. are defined as before. The quantity
apparatus frame. Bs is the speed of the satellite with respect to the Earth. For

— —5
2. Space-based laboratory example,Bs=3X 10"~ for the ISS.

For our standard laboratory fixed to an Earth-orbiting
space platform such as the ISS, we choosezthgis to be APPENDIX D: OPTICAL FREQUENCY SHIFT
aligned with the velocityB, of the satellite with respect to

the Earth. Thex axis is chosen to point towards the Earth. y,¢ ¢actiong) resonant-frequency sh¥ft/ v for optical cavi-

They axis completes a right-handed coordinate system, thu&es, given in Eq.(36). As before, the cavity is regarded as

directed along the satelite orbital angular momentum Withtwo reflecting parallel planar surfaces separated by a distance
respect to the Earth. gp p p y

The components of the matriR” describing the rotation . I;orlconvEnlenrc]e, WS lletv\(/)ne coque W'tﬁ bﬁwhplane
from the reference Sun-centered frame to this standard satétd place the other at=1. We approximate the light enter-

This appendix provides an alternative method to obtain

lite frame are Ing the cavity as a plane wave with phase velocity parallel to
thez axis. After each reflection inside the cavity, the reflected
RX= —cosacoswTs+ sinacos{sinwsTs, wave must have the same frequency as the incident wave, so
we consider light of constant frequengy. For simplicity,
RY= —sinacoswsTs— cosacos{sinwsTs, we sete=1 in what follows.
At leading order in the coefficients for Lorentz violation,
RY= —sin¢sinw,Ts, Eqg. (16) implies that the magnitude of the wave vector for
each birefringent mode ih5i|:pi=[1—(pi a)]p°. De-
RZX=sinasin¢, composing the light entering the cavity into birefringent

modes, we write
R2?Y=—cosasin¢,
> _ a0 f ~ > ~ f ~ > ~
R%4=cos¢, Eo(x)=e" P [ePi+%(g;, -Eq)e), +€Pi1-(&;_-Eg)e;_].
ax . _ (D1)
R>*= —cosasinwsTs— Sinacos{cosw¢T,
Here,th=[1—(thoT)]p°, wherep, ando; denote the

R%®'= —sinasinwT s+ cosacos{cosws T, values ofp and o for light with phase velocity in thez
37 direction. The unit vectoréTi are the associated birefrin-
R*4=sin{cosw,Ts. (C3 gent basis.
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We suppose that the wave reflecteczatl has phase ve-  we assume that the electric fiel} of the transmitted
locity in the —z direction. Decomposing this wave in the Jight is proportional to the component of the total electric
same fashion gives field in the cavity propagating in thedirection:

él(x)=efipot(eiip“z(éi+'El)éu . 0 a A -~ - .
. A > A ETxeiip t(eipTJrZST_*_S‘Tr_‘_+eipT728T_8-Tr_)'M'Eo.
+e Pi-Ye|_-Epe ), (D2) (D5)

where the subscript denotes quantities for phase velocity in
the —z direction. Similar expressions can be written for the The time-averaged energy density is

electric fieldﬁn(x) after n reflections. For theth reflection
with n odd, the incident and reflected waves are related by
Ens1(X)|,—1=€"%nE (X)|,— . A similar relation involving <u>=1Re(l§*~|5+E§*-|:|)
8o, holds for evenn at z=0. The complex factorg'%n, 4
e'd.n account for any phase change or loss due to transmis-
sion or absorption. They may depend on the interaction of
the wave with the surfaces and could also depend on the 1 . I -
incident polarization and various coefficients for Lorentz = 2[E*-(1+ xpe) - E+B*-(1+kpg)-B].  (D6)
violation. For simplicity, we suppose here that they are con-
stant, and denote them [ and 6, .
Superposing the contributions inside the cavity yields th

total eleciric field as SWith this equation and the Faraday lap®B=YV xE, the

energy density of the transmitted wave can be calculated.
- Cip%tr g ipezh At D% ot Maximizing with respect t@° and solving forp° yields the
E(x)=e P [(eP1%e; e, +eP1 "% &) perturbed resonant frequency. We find

+e 1%(e Pz el

—ip,_z; ot = - + o cos sin 0 -

+e P &l )m]-M-E,. (D3) P & osing ,

—=— osing p—ocosé O —.
At leading order, the matrim is given by Vo Bl 0 0 0 |Eol
m= g (2p% + 8+ &) 1—i2p° (D7)

p+ocosé osing O The barred quantities can be determined from

x| osing p—ocosé 0 |, (D4)

0 0 0 1_

1. ~ ~
pP== E(Ke—)ll_ E(Ke—)zz_(Ko+)12_ Kirs

where the bar signifies the average value over the two differ-
ent propagation directions. The mati is the geometric 1 1 _
seriesM=3;_m"=(1-m) . osing= E(Kof)ll— E(Kof)zz— (ker)',

The resonant frequency is often viewed as the frequency
at which a standing wave is produced in the cavity. However,
this notion may fail for nonzeré because the wavelength
of light traveling in one direction can differ from that for - 1~ 1~ 227 \12
. o AR : 0 COSE= — 5 (Ket ) 5 (Ket )™~ (Ko-) ™5 (D8)
light traveling in the opposite direction. A more appropriate 2 2
definition that applies also in the conventional case is to take
the resonant frequency as the frequency maximizing the
magnitude of the electric field or the energy density. Thewhich holds for a wave traveling in the z direction. For a
resonant frequency for a cavity is determined experimentallyvave traveling in the-z direction, one must instead use Eq.
by measuring the transmitted light, so we adopt the energyD8) with sign changes for the parity-odd coefficienis;g
density of the transmitted light as the relevant quantity. Us-—— — kpg, kyg— — knye. The barred quantities in Eq432)
ing instead the magnitude of the transmitted electric or magthen are merely those in EQD8) with kpg=«yg=0. The
netic field yields the same result at leading order. net result is Eq(36), as desired.
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APPENDIX E: LABORATORY-FRAME QUANTITIES

In the scenario of Sec. IV B 1 and in terms of the matrices

« introduced in Eq(7), the quantitiesd\q  » 3 4defined in Eq.
(40) can be written as

1 - ~
Ao=g(1-3 co$x)[3e (kes ) + € (ke )]

1 - 1
5 (9. —€ )kt 7 Bal2(e-—3e,co$x)

X sin7 €05 o T(kos )<Y+ (3€, — 26— 3e,coSy)
X (€057 €080 o T(k o ) X7
+sinQT(ko4 )9 —3e,(1—3 cody)

X (€057 €080 T(ko_ ) Z+5siNQ s T(ko-) Y]

+2e Bisiny cosy(k,_)%2
4 €+PL X X(Ko-)

1. ~ -
Ar=— ESIHX cosy[3e, (ke )Y+ e (ke )Y?]

3 . ) ~ ~
+ §€+B®SIHX cosx[sinQ e T(( Ko—)YY_(Ko—)ZZ)

— €057 €080 T((ko4 )Y = (ko))

+5in 7080, T((ko+ ) ¥4 = (ko-) D]

+ %BL[e_<T<o+>Yz+3e+<sin2x—cos2x><7<o_>“],

1 ) _ ~
Ap=—5siny cosx[ e (ko) 4+ e (ke )]

3 . . ~ ~
+ §5+B®S|nX cosx[SiNQ . T((Ko1 ) Y+ (ko-)*")

+¢05%7 c05Q ; T((ko- )~ (ko_) %)

=sin7 €080, T((ko+ ) "#= (ko-) "]
+ %BL[E_<“KO+>XZ+36+<sin2x— co$x) (ko) %],
1. ~ ~
Ag= = ZSIMX[3e. (ke )"+ € (ke )]
3 . . ~ ~
- ZE+,3@S|n2X[S|nQ@T((Ko+)XZ+(Ko—)xz)

+¢057 080 T((ko4 ) Y2+ (ko)D)

+5in 7 cosQ e T((ko-)**— (ko-) Y]
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3

— 5 € Businy cosy(ko-)*",

Ag=— %Sinzx[aa((?%)”— (ke)™M+ e (ke )

- (;e—)YY)] + §E+B®Sin2X[SiHQ®T((7<O+)YZ

+(Ko-) "9 =087 cosQ o T((ko s )%+ (ko)*?)

+2 sinycosQ . T(k,-)X"]

3 ) ~ ~
— g €+PLsiny cosx[ (ko )*= (ko) Y] (ED
In this equation, we have introduced the quantities
B 2+e _ 2—€ Eo
€= 3¢ ' €= e ' ( )

which both reduce to 1 in the vacuum limdt- 1.
The remaining coefficients are independenkoiThe co-
efficientsBy 5 , 3 4are given by

1
Bo=— 5 Businx(ko: )",

Bi=— ;Sinx[(}eﬂxz— (ke )]

E . . ~ XY
+ 2 Besinx[sinQeT((ko+)

+ (ko)) +cosn cosQ , T((ke_ ) >

—(Ko-)*?)—sin 7 cosQ (ko) ¥*
~ 1 ~
—(ko-) "] = 5 BLeosy (ko)

+(ko-)*D),

B2= 5SinX(kes) Y2~ (Ko )"

1 . . ~ YY
— 5 Bosinx(sin®, (%, )

—(Ko-)*4)—cosn cosQ, T((ko )Y

- (A’;of)XY)_F sinn COSQ$T((7<0+)XZ
—(ko-)H)]+ %mcosx«?on“

+(ko-)"9),
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1 ~ - _ ~
By= ZCOSX[(KE+)XX— (Ko )*= (ke )"+ (ko) Y]

1 i - YZ
- EB@COS)([SIHQ@T(( Ko+)

+(Ko-) Y9~ 057 oSO T((Ko4 ) ¥

+ (ko )P+ 2 sing cosQ . Tk ) Y]

— 2SIy (Ko ) ()",

By=— %COSX[(;&H—)XY— (e )]

1 ~ ~
- EB@COSX[SinQ@T(( KO+)XZ+ (Ko—)xz)

+¢057¢05Q o T((kos ) Y2+ (ko)D)

+5in7cosQ o T((ko- ) *— (k- )Y M]

+ %msinxfxo,)”. (E3)

The coefficientsCy ; , 3 4are

Co=— g8irtx (o1 )7~ (%o )7

2 BuSiALSING, T((0:) 7~ 3(k0)"D)

4057 c080 . T((ko+ )%~ 3(k0-)"?)

) ~ 3 ) ~
+2sinycosQT(ky)*Y]— 7/BLsinx cosx( Ko_ )24,

1. ~ ~
Ci= Esz COSX[(Ke+)YZ_ (Ke—)YZ]

1 ~ ~
— 5 Bosiny cosx[sinQ, T((ko-)""=(k-)%%)

—€057 050 5 T((ko4 )Y — (ko))

+5in 7 cosQ, T((kos )%= (ko) )]

+ %m[&on”— (sin’x—cos'x) (ko-) "7,

PHYSICAL REVIEW D66, 056005 (2002

1 - 5
C,= 5siny cosy[ (ke+ ) ?— (ke—)*4]

2
1 ; ; ~ XYL T XY
— 5 Basiny cosx[sinQ , T((ko )+ (ko))

+¢057 c0sQ , T((ko_ )~ (ko_)??)

—sin7cosQ, T((kos) "% (ke-)Y9)]

+ ;BL[&OQXZ— (sin’x—cos'x) (ko-)"?],

Cs=- %(1+ coS)[ (ke )= (ke-)*"]

- %ﬁ@m coSx)[sinQs T((ko- )+ (ko-)*?)

+¢057c05Q s T((kos ) Y2+ (ko) Y9

+5in 7 cosQ o T((ko- ) > (k- )Y M]

1 ~
+ 5 Businy cosy(ko-)*",
Co=— %(1+ COS’)‘X)[(;e+)XX_ (T(e—)xx_ (7(6+)YY

+ (k)M + %ﬁ@mcoszx)[sinn@T«Tsz
+ (ko) Y9~ 087 080 T((Ko+)*?+ (ko-)*)

+2 sinycosQ, T(k,-)X"]

+ %IBLSinX cosx[ (ko )%= (ko) "Y]. (E4

APPENDIX F: SATELLITE-FRAME QUANTITIES

The quantitiesAs ., Bs. appearing in Eq(50) of Sec.
IV C 2 can be expressed in terms of the matrigeintro-
duced in Eq.(7) through the convenient combinatio(%3).
In terms of the various orientation angles specified in Appen-
dix C, for the quantity 45 we find
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1 - ~ 1 - ~ ~
Ag=5cos 2[sina(ke ) *?—cosa(ke )Y 4]+ gsin 20[(1+sirfa) (ke )X+ (1+ cofa) (ke )Y ' —sin 2a(ke ) Y]

+ %ﬁs[sina((;or)xz— (kor) )= cosar((kor) 7= (ko) 2]+ %B@[Cosacos 2 cos) 5 T(cos7 (ko)™

—siny(ke)2X)+ cosa cos 2 sinQ o T((ko )Y Y— (ko )?%) — sina cos 2 cosQ , T(cosy (ko )X~ (ko) ?]
+sin (ko )?Y)—sina cos 2 sinQ . T(ky )X+ coSa sin 2 cosQ , T(cosy (ke )X+ sin (kg ) YY)

+cofa sin 2, sinQ g T((kor) Y2+ (ko) 2Y) + sirfa sin 27 cosQ . T(cosy[ (ko) X+ (ko) ZX]—sin (ko))

~ 1 ~ ~ ~
+sirfasin 27 sinQ , T(ky )2Y— 58in 2a sin 2¢ cosQ . T(cosn(ky ) Y2+ sing[ (ko ) *— (ko) ']

1 : ; ~ \XZ
— 5Sin 2a sin 2 sinQ, T(ko) 2. (F1)

The quantity A is

1 ~ 1 ~ 1 ~ ~ 1 ~
A=~ cos{ sin a(ke) Y%= 7¢0s¢ cosa (ke ) %— gsing sin 2a((ke )%= (ke ) YY)+ Z5in¢ cos 20( ke )Y

+ %Bs[sin {(ko )XY = (ko) YX)+ cosg cosa((ko )X — (ko) D)+ cosg sina((ke )2 — (ko) Y]

1 ~ ~ ~ ~
+ Z,B@[COSa cos{ cosQ , T(cosy (ko)X= (ko )24+ sin (ko)) + coSa cosE sinQ ; T( ko )XY

+sina cos¢ cosQ , T(cosn(ko ) Y= sin (ke )?X) +sina cost sinQ . T((ke) Y Y= (ko)2?)+ oS 20 sin cosQ T
X (€0sm(ker) Y2+ sin gl (ko)X= (ko) Y Y1)+ cOs 2a sing sinQ), T(ko ) *2— sin 2a sin cosQ, T(cosn( ko ) *?
—sing[ (ko )Y+ (ko) YX])+sin 2a sing sinQ, Tk, ) Y2, (F2)

The quantityB; is

3 ~ 3 ~ 3 ~ ~ 3 ~
BS=§sin§ sina(ke )Y 4+ gsing cosa (ke ) %— Tecost sin 2a((ke )= (ke ) YY)+ geos¢ cos 20( ke )XY

- %Bs[sin§005a((7<or)xz+ (ko)) +sing sina((ko ) Y2+ (ko)) —cose sin 2a((ky )= (ko) ')

+c0s¢ c0s 2u((k )XY+ (ko) Y]+ gﬁ@[— cosa sinZ cosQ , T(cosy[ (ko)X= (ko) 22]+sin (ko )?Y)

—cosa sing sinQ , Tk )XY —sina sinZ cosQ , T(cosy (ke ) Y *—sin (ke )2X)—sina sing sinQ , T((ko)YY
—(Ko)??)+ cos 2x cosZ cosQ  T(Cosn (ko) Y2+ sin g (ko)X= (ko) ¥ Y1)+ c0OS 20 coSZ SINQ T (ko) <2
—sin 2a cos¢ cosQ , T(cosy(kyr )%= sing[ (ko )XY+ (ko) YX]) + sin 2a cosZ sinQ . T(kor) Y. (F3)

The quantityB. is

BCZ%(COSZCZ— sirfa co$ ¢+ Sint) (ke )X+ %(sinza— coSa coSL+sintd) (ke )Y Y+ %sin 2a(1+ o) (ke )XY

+ %sin 2([sina(ke )%~ cosa(ke )Y~ 1—16,85[2(c052a— sirfa coS ¢+ i) (ko )+ 2(sirfa— coda cos¢

+5iM0) (ko) Y Y+ sin 2a(2 c02 ¢+ siE) (ko) <+ (ko) Y+ sina sin 27 (ko) 24 (kg )2X) — cosa sin 20 (ko) Y2
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+ (ko )21+ %ﬂ@[sin 2a(1+c0$¢)cosQ ¢ T(cosn(kor) Y2+ sin gl (ko ) = (ko) YY)

+sin 2a(1+cog¢)sinQ , T(ky )%= sina sin 27 cosQ , T(cosy[ (ko) — (ko )21+ sin (ko) Z)
—sina sin 27 sinQ ; T(ko )XY+ cosa sin 22 cosQ , T(cosy(kyr) Y *—sin (ke )2X)+ cosa sin 2, sinQ , T
X (ko) Y Y= (ko)D) — 2(sirPa coS ¢ — coFa)cosQ , T(cosn(ker ) —sin (ko) XY)— 2(cofa coS — sirfa)
X €080 T sin (ko )Y X~ 2(cofa cof L —sirfa)sinQ ; T(ko) Y2+ 2 sirf£(cosQ . T cosn(ky ) 2*+sinQ e T(ko)? )]
(F4)
Finally, the quantityC is

1 - 1 - 1 - 3 ~
C=15(3 sirfa sinfl— 1) (ke )X+ 1603 cofa sirf{—1) (ke ) '+ 1603 co${— 1) (ke )24+ TeSin 22 SiPL (ke )XY

- %sin 2{[sina(ke )%~ cosa(ke) Y]+ %Bs (3 sirfa sitl—1) (ko )X+ (3 cofa sife—1) (ko) Y Y+ (3 co$¢—1)

X (Kor) %%~ gsin 2a SIPL (ko )XY+ (ko) T+ gsin 20(sinaf (ko )%+ (ko) ?X]—cosal (ko) Y2+ (ko )2 Y])
1 - - ~

+ghe (3 sirfa sinPZ—1)cosQ ; T(Cosn(ko )= sin p( k) *Y)+ (3 cofasintl—1)(cosQ . T siny(ky ) =

+5inQ, T(ko) YD~ (3c08¢—1)(cosQ, T cosn(ko )2 X +siNQ o T(ko )2 ) — gsin 20 SinPZ cosQ , T(cosn(kyr) Y2

~ ~ 3 ~ 3 ~ ~
+sing (ke )= (ko) YY]) — Esin 2a SirfZ sinQ , T( ko) %— Esina sin 27 cosQ , T(cosy (ko) — (ko) 4]

~ 3 ~ 3 ~ ~
+siny(kq)?Y)— Ssinassin 2 sinQ . T(ko )XY+ scosa sin 27 cosQ, T(cosn( ko) Y X—siny(kq)?X)

2
3 ; ; ~ \YY_ [T \ZZ

+ ECOSa sin2sinQ s T((kor) " = (ko)) | (F5)
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