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Effect of hadron dynamics on the proton lifetime

Alfred Scharff Goldhabér
C.N. Yang Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794-3840

T. Goldmanr and Richard R. Silbdr
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

(Received 6 June 2002; published 6 September 002

A detailed, quantitative reexamination of the effect of hadron dynamics on baryon decay, modeled in terms
of Skyrme-field tunneling, indicates that any hadronic suppression should be quite mild. This appears to be
another illustration of the “Cheshire-cat” phenomenon, that variation of the apportionment between description
of the nucleon as a bag of quarks and description as a Skyrme field configuration has little influence on many
nucleon properties. Perhaps the largest remaining uncertainty in evaluating the decay rate has to do with the
overlap between a specified quark-antiquark configuration and a final meson state.
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[. INTRODUCTION a nucleon and ending with a meson and lepton. However,
this remains a daunting task, because there is such poor
There is a limited number of known ways to seek physicsquantitative control on the properties of QCD in exactly this
beyond the standard model of electroweak and strong interegime, phenomena involving energy scales of the same or-
actions. Increasing collision energies in laboratory experider asA ocp~0.2 GeV. Therefore, as in the earlier work, we
ments might reveal new particles. There may be small effectase instead Skyrme’s ansdt] for the nucleon as a topo-
or rare processes at low energies. There might be particles @fgical soliton of the chiral field, and to provide more micro-
such high mass that they could not be created in the laboracopic realism we allow a bag to occupy the interior region
tory but have survived from an early, high-temperature epoclof the Skyrmion, with three valence quarks inside it. This is
in the universe. Recently there has been evidence for netihe hybrid chiral bag mod¢b]. To describe hadronic tunnel-
physics in the second category: the strong experimental ining in the initialB=1 and finalB=0 states, we take a single
dication of neutrino flavor oscillations, which imply small collective variable, the value of the chiral angle at the bag
but nonzero neutrino massgls2]. This evidence encourages boundary radiu®k, where, for the Skyrmion in equilibrium,
further pursuit of other phenomena, including proton decaythe angle would ber/2, halfway between the values 0 at
which, like neutrino mass, is not forbidden by some estabspatial infinity ands at the origin. We estimate the tunneling
lished principles such as gauge invariance. action by using the Skyrme ansatz throughout space, con-
During a period oflunsuccessfiilsearch for baryon num- straining the ansatz by imposing varying values for the chiral
ber non-conservation in large underground detectors, thangle atR.
question arose whether the rearrangement of hadronic de- Assuming that the formulation is exactly correct in every
grees of freedom required for decay might substantially intespect except that we are restricting the tunneling to only
hibit the process. It was suggested that such “hadronithe single variable of the chiral angle at the fixed boundary
guenching” might account for several orders of magnitudeof the bag, the result of this calculation should be a lower
suppression of baryon decé$]. Recent theoretical studies bound on the hadronic matrix element of the four-fermion
guided by the neutrino masses and by the assumption aperator which reduces baryon and lepton numbers each by
“grand unification” of electroweak and strong interactions at one unit. It is a lower bound because taking account of more
some high scale have led to new predictions of baryon decagegrees of freedom should only increase the tunneling prob-
involving different dominant channels from those first dis- ability, barring cancellations due to opposing phases.
cussed, and smaller coefficients for the effective four- In our earlier work[3] it was suggested from crude di-
fermion operators generating the dedal. Evidently, if  mensional considerations that the tunneling between a final,
there were several orders of magnitude further suppressiadnivial vacuum state and a configuration of the chiral field
due to hadron dynamics, the prospects for experimental olwith topological number zero but mass equal to the nucleon
servation would be dim. Accordingly, it seems timely to mass could be equivalent to the motion of a particle with
make a more systematic and quantitative approach to th&eV mass through a GeV potential barrier of thickness about
issue of hadronic suppression, and we attempt that here. 1 fm. This immediately gives a suppression factor 4@n
In principle one would like to carry out a path-integral amplitude or 104 in rate. Tunneling in the initiaB=1 state
computation over the QCD degrees of freedom, starting wittwas ignored. What we find now is that both the initial and
final state tunneling factors are relatively large, meaning that
the Skyrme ansatz indicates a soft degree of freedom associ-
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for fluctuations about th&=1 initial state. tial and final state wave functions, respectiyeljhe ¥’s in

Put differently, quantum fluctuations of the vacuum areEq. (3) do not show arx dependence because that has al-
easily generated in which objects appear which consist of eeady been integrated out in the Skyrme model we use, also
quarter Skyrmion outside the radidsand a quarter anti- to be discussed below. Howevérdoes include a phase fac-
Skyrmion inside(or vice versa In addition, fluctuations of a tor e ™!, not shown, because the initial chiral field wave
Skyrmion are easily generated in which one quarter of théunction has the mass of the nucledd, while the final
baryon number shifts insid@r outside the radiusR. These  (vacuum wave function has exactly zero energy. This factor
are not the only modifications from a traditiondllT bag  assures that the total energy of the final lepton and meson
[7]) estimate of baryon decay. Because the radius of the chwill be the mass of the initial nucleon. The approximate fac-
ral bag boundary is about half that of the MIT bag, one mustorization of the amplitude indicated in the last line of Ed).
pay attention to the dimensional dependence of the fourwill be justified in Sec. IV.
fermion-operator matrix element on the volume which bag

wave functions of quarks occupy. Also, the wave functions lIl. CALCULATION OF INHIBITION FACTOR
for the valence quarks take a different form as the chiral FROM SKYRMION DYNAMICS
boundary angle varies from the case for chiral boundary

angle 0, as in the MIT bag. A. Skyrmion profile function

All these effects are taken into account in what follows.  The Skyrme model of the nucleds] begins with a La-
We begin by defining the matrix element to be estimatedgrangjan
then determine the initial and final state tunneling factors,
and end by putting in factors for the initial quark and final |:§T 1
meson and lepton wave functions. It will be seen that the ﬁZETI’{&MUoWUT}-F—ZTI’{[L#,L,,]Z}, (4)
calculation is nearly identical for the old dominant channel, 32

e*x%, and for the channel favored in more recent calcu- . . :
p—.> - + whereL ,=U"3,U and the static Skyrmion wave functith
lationsp— vK™, except for the larger mass and hence lower,

. . X is defined as

final velocity of K compared tor, and the gamma matrices

appearing in the four-fermion operator, neither of which al- U:ei;.;p(,)
ters the hadronic tunneling. Our conclusion is that, because '
of the large spontaneous chiral fluctuations, hadronic tunne
ing implies at most a quite minor suppression of baryon de
cay.

®

lHere F . is the pion decay constant, which is fitted at 129
MeV by Adkins, Nappi, and WittefANW) [8], smaller than
the experimental value of 188 Melih the conventions of
ANW). The quartic “Skyrme term” stabilizes the soliton
Il. THE DECAY MATRIX ELEMENT against collapse; its coefficient has a dimensionless constant
e which is fitted at the value 5.45 in ANW.

Extremizing £ to get an “equation of motion” for the
profile functionF(r) yields the nonlinear differential equa-

The proton decay amplitude for— ml in terms of initial
and final state wave functiong . and WV isia 1S

. tion
(mI|H,|p)=f dsf d™X W (5, X) W initial(S,X) L L L
2 H [/ ’ H n2__ =
(GO0, (4r +2sirfF|F ~|—2rF +sin 2F| (F") 4}
— i F
~(qal[¢*()|0*)s=1x=0Z, (1) 2 ,—sin2F=0. (6)

r
where “initial” means a Skyrmion with topological number
one and “final” means vacuum with topological number The radial coordinate here is dimensionless, with the cor-
zero. Further, responding dimensional coordinate givenrsyeF.).
For a single nucleofi.e., baryon numbeB=1) I2£q. (6)
— — i has boundary condition§(0)=7 and F(r)—al/rc asr
¢4:2i ‘ﬁloia‘ﬂqa‘pqdodb‘/’qbrabd’ (2) —o0, |t turns out that'(0)=—1.03812, falling off linearly
from the origin, and the asymptotic constart 8.63385. We
and shall use variations of (r) to describe the pion field in the
initial state of the decaying nucleon.
. Note that if F(r) is a solution of this equation, then so is
I:f dsWfinal(S) Winital(S) 3  Z—F(r). Let R be the point whereF(R)=n—F(R)
= /2. [From the solution folF(r), R=1.76; for the ANW
is the inhibition factor due to hadron dynamics that will be choice ofFF, ande this corresponds to a distance from the
calculated in the next section. The integration variabée-  origin of 0.49 fm] Thus we also can createBa=0 configu-
counts for the quantum fluctuatioi® be defined below in ration which solves Eq(6) by taking the piecewise combi-
terms of separate scaling variablsg, ands,,;, for the ini-  nation
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7m—F(r) ifr<R, [
Fo={7 | ™ 0
(r) otherwise.
100}
This solution is valid except at=R, where the derivative of
F is discontinuous. A smoother approximde=0 solution 80
with the constraint (R) = /2 could be obtained easily us-
60}

ing Eq. (7) by some rounding in the neighborhood of the
cusp atr = R. We shall be using (r) for the contribution to
the inhibition factorZ from theB=0 final state wave func-
tion’s chiral field dependence.

The nucleon masM in the Skyrmion picturd8] is just
the value of£ evaluated for the solutioR (r):

40t

20¢

-2 -1
M=Mz+M, o .
FIG. 1. Plot of Vgu(Seyx) in units of F_/e (solid curvg. The
aF2 ) 1 " dot-dashed curve is a quartic fit ¥.,(Sey) and the long-dashed
_ ™ 2E124 9 gj curve is a quadratic fit.
M= — (eFW fo dr[r2F'2+2 sirf F] (8)

where the subscript “ext” refers to scaling external to the
functional argument. Substituting this in the Lagrangian of
. Eq. (4) then gives a “potential’V g Seyx) With a minimum at
Sexi= 0, as shown in Fig. 1.
L _ The figure shows the calculated,,;, which exhibits
Because we mlr?lmlzeﬁ to getF, Mp=M,. Note that both slight turnovers as= + 1.5, together with a quartic fit to it
F(r) andF(r) give the same value fdvl. This means that (narqly distinguishableand a quadratic filacking the turn-
the B=0 state represented Hy does not have an energy overs. As eventually we shall be interested in valuessgf
appropriate to the hadronic part of a final state of, say, a piobetween 0 and 1, the quadratic fit is adequate for our pur-
and an electron, much less to the energy of the vacuum. Thisoses. The fitted quadratic is
assumes one wishes to describe the final meson as produced
from a quark-antiquark pair left by the action of the four- 1
fermion operator on the initial baryon state, rather than by Vexd Sext) = Easéxt, a=63, (10

evolution of the classical chiral field representedfhy

SIF

12
2 +2F

2 o .
M4=—2(eF7T)f drsir F
e 0

_ o _ _ with the factor of3 inserted to mimic the simple harmonic
B. Varying the initial and final state wave functions oscillator potential. Hera has unitsF _/e.

The Skyrmion is a classical soliton solution which mini-  If we now go on to allows,, to have a time dependence,
mizes the Lagrangian, E¢). We want to allow for quantum the Lagrangian in Eq(4) leads, in both termsthose qua-
fluctuations in the calculation of the “tunneling” inhibition dratic and quartic in derivativgsto a dependence d‘ixt,
factor Z, and we do that by making variations B{r) and
F(r). We need to do this differently for the two cases, be- 1.,
cause of the different boundary conditions to be satisfied, L= L(Sex) = 5l exSext™ Vet Sex)
=1 andB=0, respectively. We introduce scaling factgyg

! . : (17
ands,,, respectively, which are allowed to depend on time.
The time derivatives of eac$(t) in the modified Lagrang- o= Lf
ian, Eq. (4), then lead to Schdinger-like equations with ext .3
potential wells that can be reasonably well approximated by
quadratic functions in each This then lets us write the SIN[ SexE (1)]
initial and final statesVf . (Sex) and ¥iia(Sin) as har- 1+8——— |
monic oscillator wave functions. In the end, we can evaluate
a simple integral oves,,; to get the inhibition factof.

dr r2F3(r)
0

m

r

The s -dependence of the “moment of inertidg,, is shown
in Fig. 2.

The variation ofl ., over the ranges,,,=0 to 1 is small,
For purposes of presentation, it is easier to discuss firgio for simplicity we take it to be a constaht,= 135 in units

the scaling of the final staté. The B=0 boundary condi- of 1/eF _ .

C. The final state wave function

tion, thatF vanish at bothr =0 andr=c, can be simply The “momentum” canonical tGey; iS (I ex) Sext- Convert-

maintained by letting ing £ into a Hamiltonian and replacing the momentum by
5 5 —idl dse then gives a Schainger-like equation for the final
F(r)—SeyF(r), 9 state(vacuum wave function,
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FIG. 2. Plot 0fl o, Sey) in units of 1£3F . The horizontal line FIG. 3. Plot 0fViy(Siy) aroundsiy=1 in units ofF . /e.

has_ay—axis value of 135, which we will take as a constant approxi--l—hiS simples;,-dependence can be understood by replacing
mation forl ey;. r, the variable of integration in E@8), by r' =s;r. Figure 3
shows thatV(s;,) has a shallow minimum a;,;=1, as it

1 42 1 should.
T Easéxt Vel Sext) = EW exi( Sexd) - (12) Again, we lets;, have a time dependence and find the
ext JSgy modified Lagrangian to be
This equation has the form of the familiar harmonic oscilla- 1 )
i) == int(Sing) S20+ Vine(Si 1
tor problem. We tak&V ., to be the ground state eigenfunc- £ LLSin) = Vini(Sind) Sine* Vind Sint) (1
tion,
Lint(Sint) = lint, 2(Sint) + lint,4(Sint) (18
W final( Sext) = Next€XP( — agxtsgxllz)v (13 - - _
o) = | 0reF2s,n, 9
where ag,= “mK’ =la/e®. For ANW's e=5.45, we get eF,lo
a2,=3.105 and the normalization constaNg,= ae,/ 7 P
=0.994. The ground state eigenvalue is L 4(Sim):3_77f dr r2F"2(s1)
’ e’F,Jo
1 o
Eo=5\(a/1)=0342 (14) X SIPLF(Sin)]
X{1+2 sirP[F(sinr) 1} (20

in units of F e, i.e.,~240 MeV, using ANW's fitted values

for these coupling constants. Note thatl;y ,'s integrand has a slow fall-off im, which

necessitates some care in calculating the contribution of the
asymptotic tail. By the same change of integration variable

D. The initial state wave function as forV;,, we see that
For the initial state, in making variations of tkewe need e V1. 5 . 3
to maintain theB=1 boundary conditions mentioned below Lint(Sint) = lint,2(1)/STnet ling, a(1)/ Sig - (21
Eq. (6). We therefore have chosen simply to introduce an£valuating the integrals in Eq(18), we find lint 2(1)
other scaling parametet,; so that =110.46 and ;, 4(1)=46.86.
One might worry that;,; is a steeply falling function of
F(r)—F(Smn), (15 sini- However, as already mentioned, we shall be doing the

S o final integration in Eq(3) oversg,;. Thus we need the rela-
where the subscript “int” refers to scaling internal to the jon petween the two scaling variables, which is

function F(r). It will turn out that the scaling variable here,
Sint» IS NOt quite what is needed for the integration ogén
Eq. (1), which we choose in E(3) to be thes,,; defined in

the last sub-section. The relation between the two scalinq_ . ) i o .
variables will be dealt with below. his relation also defines, implicitlg;,, as a function o5;.

Using F(s,,) we can define a “potential” for the initial Note that assiy runs from 0 to 1 too, sy falls from 2 to 1
state wave function from the expression for the nucleor© 0. From Eq.(22) we also have
mass, Eq(8): USexe  2R|dF(r)

dt | dr

2
Sext:; F(sinR). (22

dSint
dt -

(23
Vint(Sint) = M[F(Sind") = M2 /Sini+ M 4Sip; - (16)

r= SintR
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FIG. 4. Plot ofX as a function o, in units of 1£%F . FIG. 6. Plot ofXV as a function ok, (solid curve, compared

with the quadratic fi{dashed curjedescribed in the text.

We need this last relation, Eq23), for converting the
“kinetic energy” term in Eq.(17). With it, the moment of Vint(Sin) still has its minimum asey= Siy= 1, as it must.
inertia term as a function o, becomes The steep rise neak,=2 reflects the K, falloff near sy
=0. The rise neasg,=0 results fromsg,;~ si;tz ass;,; gets
dSexe large. That is, for smalk,, the linear growth ofV, in
> lind( Sind) St = X(Slnt)( ) : (24) s, for larges;y turns intos,,.”* behavior neas=0.
As in the last section, we can now convert the modified
Lagrangian in Eq(17) into a Hamiltonian and thence into a

X(Su) = ( T )2[ 1 r (s 25) Schralinger-like equation for the initial-state wave function
& dF(siR)/dr| MM Winitial »

where Eq.(22) is used to convert the variabkg,; t0 Sgy;. 1 92

Since F’(siyR) falls off like 1/s3, at larges;y, the 1F'2 T 2X(seq) 982 % Vin(Sext) | Wint(Sext)

factor more than compensates the:1/falloff of Ii(Sin) ext

seen in Eq.(21). Thus X(Sey is a steep-sided, somewhat =EW 1 Sexp) - (26)

flat-bottomed well(shown in Fig. 4 instead of a steeply

falling function. We can recast Eq(26) into an (approximatg harmonic

Below we shall replac&(s.x) by a constantXo, which  ggcillator equation on multiplying up th¥(Se,) and ap-
wegtake as its value over the flat bott'o)(b'w 300 in units of proxXimating X (Sey) EW ini(Sex) bY XoEWin(Sex). The prod-
1/e°F . This is a reasonable approximation in that the wave, st 0f X(Sex) Vint(Sex) is sShown as the solid curve in Fig. 6.

function we are trying to findWyis , Will be exponentially |t |ooks a little lopsided, but we can find an approximate
small in the regions wher¥(s,,) is large. quadratic fit toXV as

In addition to the kinetic energy term, we also need to
convert the potential term into a function sf,;. This also

) L 1 —
underg(_)es a dramatic change of form from that in Fig. 3, as X(Sexd) Vint( Sexd) =~| b+ EC(Sext_ s)2 (27)
shown in Fig. 5.
200 with b= 8000, c= 200000 in units of ¥* ands=0.55. The
175 quality of this fit is shown in Fig. 6.
The constant ternb just represents a shift in energy, so
150¢ we want the solution to
125}
] 1 42 —
100
[ - z — t5 2 C(Sext_ 3)21 \Pint(sext)
75} asext
50f =XoEWin(Sext) - (28)
25} )
As before, we takeél o to be the ground state eigenfunc-
0.25 0.5 0.75 1 1.25 1.5 1.75 2 tion,
FIG. 5. Plot of Vi(s) as a function ofsgy in units of —
F.le. e e Winitial(Sext) = Nint €XP(— a’ﬁn(sext_ 5)2/2), (29

056001-5



GOLDHABER, GOLDMAN, AND SILBAR

FIG. 7. Plot ofs’ as a function ofs=s;,;, compared with its
hyperbolic fit(dashed curve

where afh="mK" =c/e*. For ANW's e=5.45, we get
a?,=15.06 and the normalization constaNf,= a,/\/7
=2.189.

E. Calculating the overlap integral

With the wave functions given in Eq§l3) and (29), the
integral overs= s, in the definition of the inhibition factor
Z, Eq.(3), can be readily evaluated to give

2 2
2 exint Xext@int —»
1= 5 > expg — > > S7-
@ext ™ Aint 2(agyt ajy)

With the values ofaey, @i, ands obtained above for the
ANW choices ofF . ande, this evaluates to

(30

7=0.588. (31

F. The initial state wave function, reconsidered

When we first saw the result faf given in the last sec-

tion, it was a major surprise. We had expected the value to be

PHYSICAL REVIEW D 66, 056001 (2002

V(s)
3

- V(1)

s/

0.6 0.8
FIG. 8. Plot ofV[s;(s')]—V[s'=1] arounds’=1. Units are
in F . /e. The dashed curve is a quadratic fit.

Note thats’ asymptotes to 2.55. It can be fit well with a
hyperbola,

s'(sim) =a+b/(si—c), (35

where a=2.167, b=—1.093, andc=0.06351. This fit is
easily inverted to find;,; as a function of’,

sin(S’)=c+b/(s'—a). (36

The fits in Eqs(35) and(36) are, because of the singularities
ats’=a ands;;=c, only valid over a limited range between
the singularities. This is not a serious problem as we are only
interested in variations of (r) arounds’=s;,,=1. As s’
runs, say, from 0 to 2s,, varies from 0.5678 to 6.612,
steeply rising neas’ =2.

We are now in a position to write a Scliinger-like equa-
tion for ¥y, in terms of thes’ variable,

1 d2 ’ r — 4
- m@_"vint[sint(s ) Vin(s") =EWin(s’).
(37

quite a bit smaller, even if not so small as indicated in Ref.
[3]. Thus, we felt compelled to calculate the initial state The function Vil Sin(s')] has a shallow nonsymmetrical

wave functionW ;5 in @ second, more systematic way.
Let us convert the first term of Eq17) to something
more tractable by defining a new varialde so that

ds’ 2 dS 2 dS 2
I2<E) :Iint(d_tm) =l g(sint)(d_tm) ) (32

where
9(S)=[1+\S?)/s®, N=linallino=0.4242. (33
As a function ofs,, s’ is then given by
Sint
s (Sin) = fl Vg(s) ds, (34)

with s’=1 whenss;;=1. A plot of s'(si,) IS shown in
Fig. 7.

minimum ats’=1, as shown in Fig. 8.

Let us once again fi¥/(s’) to a quadrati¢by evaluating
the second derivative of 44(s’) +sin(s’) with respect to
s'], finding

1
Vint[sint(s,)]zv(l)"_ EKint(S,_l)za (38)

whereK;=2X0.644M,=23.44, in units ofF /e, about a
third of the “spring constant” for the final state. This fit is
shown as the dashed curve in Fig. 8. We then approximate
the ground state solution to E(B7) as

Win(s') =Nipe "D 2 for 0<s'<2,  (39)
and we takeV;,(s') equal to O outside that range. Here
a'*=1,K;/e* so a'?=1.721 for ANW’s value ofe. This
value is about half that fot,; found in Sec. Il C, meaning
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sext operator in Eq(2). This has been evaluated for chiral vector-

2 axial combinations in terms of the wave function at the ori-
1.75 gin, providing a flux factor for the two quark to lepton plus
antiquark scattering amplitude. As such, the only change
needed from previous woffl9] is the change in value due to
the change in the standing wave for the quark interior be-
tween the MIT bag models used earligvith zero chiral

1.5
1.25
1

0.75 angle and the constant wave functions appropriate to our
0.5 new chiral boundary condition. The wave-function factor be-
' comes
0.25
. P2 P2
sint ]0(0)+Jl(0) _ 3

1 2 3 4 5 6 7 8

= (43
: _ _ N? 47R3
FIG. 9. Plot ofsgy as a function ofs;,,, compared with the fit

described in the textdashed curve whereN is the normalization and the spherical Bessel func-
tions of the MIT bag are replaced by a constant from the

that the initial state is “softer” than the final state. The fermion upper wave-function component and zero from the

Gaussian in Eq(39) has fallen to 42% of its peak value at |gwer.

the “end points”s’=0 and 2. The normalization constant  Scaling from the result in Ref9], where|4(0)[?=1.1

Niy is determined by integrating the square¥f,(s') over  x 1073 GeV? was used, to the value here wik=0.6 fm,

the range where it is nonzero, and it turns out to be 0.889ye find an enhancement factor of 7.7, which more than com-

The ground state eigenvalue for this initial state wave funcpensates for the overlap suppression fr6m

tion is For the intermediate case of a boundary condition chiral
1 angle of w/4, we need the appropriate frequency for the
Eo=5m= 0.230, (40) quark wave-function solution. We need to solve
2jo(0R)j1(@R)tan o) =[jo(wR) 1~ [j1(0R)]?,
again in units ofF _e. Thus, Eo~160 MeV, using ANW’s (44)

fitted values for these coupling constants. which gives the valuesR=1.7446 for

G. Calculating the overlap integral, part Il sif26(R)]
) . : . Oc=m—0(R)+ ———— (45)

With the wave functions given in Eq§l3) and(39), the 2
integral overs,,; in the definition of the inhibition factaf is . T '
a bit trickier to evaluate. We shall do the integration this timeEvaluating the usual normalization integral, we find
using thes’ variable, which requires knowing hosy,; varies ©R
as a function of’. ng(w)2:47TJ dx X{[jo(x) 1 +[[1(x)]%

From Eq.(22) we show in Fig. 9 hows,, varies as a 0
function of sjy;. =14.935. (46)

One sees thas,,, falls from 2 ats;,;=0 to O (as si;tz
whens;,; gets large. Thus a reasonable(fite dashed curve Equation(43) then becomes
in Fig. 9) is given by " "
io(0)+j1(0)  5.3096

Sexi=1.9065(1+2,). (41) Nw) 14935 (47)

Using the fits in Eqs(35) and(41), we can now evaluate s produces an enhancement factor almost three times
the overlap integral numerically over the range Wh€tgiai  gmaller than above, but still implies that for the net matrix

is defined, element including the tunneling overlap factbthere is no
major change from the original MIT bag calculation.

1= fozw;icnal{sext[sint(s’)]}‘I’inma(s’) ds' =0.4975.
(42)

V. CONCLUSIONS

The fact that hadronic suppression of baryon dezayld
We consider this result to be in substantial agreement witfbe much less significant than suggested in R&f.had be-

(and corroboratingthe value forZ found in Sec. Il E. come clear to us some time ago, but we still were surprised
to find virtually no suppression. It should be emphasized that
IV. THE HYPOWEAK MATRIX ELEMENT Ref. [3] did not assert that the suppression would be large,

_ . _ _ _ only noting that an exponential amplitude suppression factor
The hypoweak interaction matrix element is the first fac-exhibiting a negative exponent with order of magnitude unity
tor in the second line of Eq1), the matrix element of the could easily account for two orders of magnitude reduction

056001-7



GOLDHABER, GOLDMAN, AND SILBAR PHYSICAL REVIEW D 66, 056001 (2002

in the decay rate. What has developed in our much morand the produced antiquark. Independently of the hybrid bag
detailed calculation above is that several effects serve tpicture, this might be a worthwhile subject for additional

weaken this potential suppression. First, the size of thetudy, and probably is the largest source of remaining uncer-
vacuum fluctuations, when examined more carefully, turngainty in the lifetime calculation. Assuming this also does not
out to be larger than simple dimensional counting suggesteghroduce a large effect, then the latest quoted limits on both

Secondly, the initial nucleon wave function as well as thethe old e* #° and newvK* favored channels for proton
final vacuum wave function allow substantial local ﬂUCtua'decay a|ready provide ominous constraints on grand unified
tions in baryon density, so that the overlap between thenodels[11].
former (once acted on by the four-fermion operatand the Note added in proofit is worth recalling that a very dif-
latter can be rather |al’ge. Th|rd|y, the four-fermion matrix ferent approach from that in this paper, name'y, lattice QCD
element becomes larger when one considers the initial quarkgith fermions treated in quenched approximation as studied
as confined in a smaller bag than the MIT bag. by the JLQCD Collaboratiori12], also gives large decay

The net effect, within the remaining uncertainties in therates_further Supporting extension of the “Cheshire-cat”
calculations, is that the present more elaborate analysis use@ncept to baryon decay.
here produces virtually the same prediction as that in the
MIT bag model. This might be one more example of the ACKNOWLEDGMENTS
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