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Effect of hadron dynamics on the proton lifetime
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A detailed, quantitative reexamination of the effect of hadron dynamics on baryon decay, modeled in terms
of Skyrme-field tunneling, indicates that any hadronic suppression should be quite mild. This appears to be
another illustration of the ‘‘Cheshire-cat’’ phenomenon, that variation of the apportionment between description
of the nucleon as a bag of quarks and description as a Skyrme field configuration has little influence on many
nucleon properties. Perhaps the largest remaining uncertainty in evaluating the decay rate has to do with the
overlap between a specified quark-antiquark configuration and a final meson state.
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I. INTRODUCTION

There is a limited number of known ways to seek phys
beyond the standard model of electroweak and strong in
actions. Increasing collision energies in laboratory exp
ments might reveal new particles. There may be small effe
or rare processes at low energies. There might be particle
such high mass that they could not be created in the lab
tory but have survived from an early, high-temperature ep
in the universe. Recently there has been evidence for
physics in the second category: the strong experimenta
dication of neutrino flavor oscillations, which imply sma
but nonzero neutrino masses@1,2#. This evidence encourage
further pursuit of other phenomena, including proton dec
which, like neutrino mass, is not forbidden by some est
lished principles such as gauge invariance.

During a period of~unsuccessful! search for baryon num
ber non-conservation in large underground detectors,
question arose whether the rearrangement of hadronic
grees of freedom required for decay might substantially
hibit the process. It was suggested that such ‘‘hadro
quenching’’ might account for several orders of magnitu
suppression of baryon decay@3#. Recent theoretical studie
guided by the neutrino masses and by the assumptio
‘‘grand unification’’ of electroweak and strong interactions
some high scale have led to new predictions of baryon de
involving different dominant channels from those first d
cussed, and smaller coefficients for the effective fo
fermion operators generating the decay@4#. Evidently, if
there were several orders of magnitude further suppres
due to hadron dynamics, the prospects for experimental
servation would be dim. Accordingly, it seems timely
make a more systematic and quantitative approach to
issue of hadronic suppression, and we attempt that here

In principle one would like to carry out a path-integr
computation over the QCD degrees of freedom, starting w
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a nucleon and ending with a meson and lepton. Howe
this remains a daunting task, because there is such
quantitative control on the properties of QCD in exactly th
regime, phenomena involving energy scales of the same
der asLQCD'0.2 GeV. Therefore, as in the earlier work, w
use instead Skyrme’s ansatz@5# for the nucleon as a topo
logical soliton of the chiral field, and to provide more micr
scopic realism we allow a bag to occupy the interior reg
of the Skyrmion, with three valence quarks inside it. This
the hybrid chiral bag model@6#. To describe hadronic tunnel
ing in the initialB51 and finalB50 states, we take a singl
collective variable, the value of the chiral angle at the b
boundary radiusR, where, for the Skyrmion in equilibrium
the angle would bep/2, halfway between the values 0 a
spatial infinity andp at the origin. We estimate the tunnelin
action by using the Skyrme ansatz throughout space, c
straining the ansatz by imposing varying values for the ch
angle atR.

Assuming that the formulation is exactly correct in eve
respect except that we are restricting the tunneling to o
the single variable of the chiral angle at the fixed bound
of the bag, the result of this calculation should be a low
bound on the hadronic matrix element of the four-fermi
operator which reduces baryon and lepton numbers eac
one unit. It is a lower bound because taking account of m
degrees of freedom should only increase the tunneling p
ability, barring cancellations due to opposing phases.

In our earlier work@3# it was suggested from crude d
mensional considerations that the tunneling between a fi
trivial vacuum state and a configuration of the chiral fie
with topological number zero but mass equal to the nucle
mass could be equivalent to the motion of a particle w
GeV mass through a GeV potential barrier of thickness ab
1 fm. This immediately gives a suppression factor 1022 in
amplitude or 1024 in rate. Tunneling in the initialB51 state
was ignored. What we find now is that both the initial a
final state tunneling factors are relatively large, meaning t
the Skyrme ansatz indicates a soft degree of freedom as
ated with change of the chiral angle at the bag radius, ei
for fluctuations about the vacuum as in the final state~which
consists of vacuum plus a departing meson and lepton!, or
©2002 The American Physical Society01-1
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for fluctuations about theB51 initial state.
Put differently, quantum fluctuations of the vacuum a

easily generated in which objects appear which consist
quarter Skyrmion outside the radiusR and a quarter anti-
Skyrmion inside~or vice versa!. In addition, fluctuations of a
Skyrmion are easily generated in which one quarter of
baryon number shifts inside~or outside! the radiusR. These
are not the only modifications from a traditional~MIT bag
@7#! estimate of baryon decay. Because the radius of the
ral bag boundary is about half that of the MIT bag, one m
pay attention to the dimensional dependence of the fo
fermion-operator matrix element on the volume which b
wave functions of quarks occupy. Also, the wave functio
for the valence quarks take a different form as the ch
boundary angle varies from the case for chiral bound
angle 0, as in the MIT bag.

All these effects are taken into account in what follow
We begin by defining the matrix element to be estimat
then determine the initial and final state tunneling facto
and end by putting in factors for the initial quark and fin
meson and lepton wave functions. It will be seen that
calculation is nearly identical for the old dominant chann
p→e1p0, and for the channel favored in more recent calc
lationsp→ n̄K1, except for the larger mass and hence low
final velocity of K compared top, and the gamma matrice
appearing in the four-fermion operator, neither of which
ters the hadronic tunneling. Our conclusion is that, beca
of the large spontaneous chiral fluctuations, hadronic tun
ing implies at most a quite minor suppression of baryon
cay.

II. THE DECAY MATRIX ELEMENT

The proton decay amplitude forp→ml̄ in terms of initial
and final state wave functionsCfinal andC initial is

^ml̄uHI up&5E dsE d4x Cfinal* ~s,x!C initial~s,x!

3^qq̄l̄ uc4~x!uq3&s

'^qq̄l̄ uc4~x!uq3&s51,x50I, ~1!

where ‘‘initial’’ means a Skyrmion with topological numbe
one and ‘‘final’’ means vacuum with topological numb
zero. Further,

c45(
i

c̄ lOiacqac̄qd
c O db

i cqbG
abd, ~2!

and

I5E dsCfinal* ~s!C initial~s! ~3!

is the inhibition factor due to hadron dynamics that will
calculated in the next section. The integration variables ac-
counts for the quantum fluctuations~to be defined below in
terms of separate scaling variables,sint andsext, for the ini-
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tial and final state wave functions, respectively!. TheC ’s in
Eq. ~3! do not show anx dependence because that has
ready been integrated out in the Skyrme model we use,
to be discussed below. However,I does include a phase fac
tor e2 iMt , not shown, because the initial chiral field wav
function has the mass of the nucleon,M, while the final
~vacuum! wave function has exactly zero energy. This fac
assures that the total energy of the final lepton and me
will be the mass of the initial nucleon. The approximate fa
torization of the amplitude indicated in the last line of Eq.~1!
will be justified in Sec. IV.

III. CALCULATION OF INHIBITION FACTOR
FROM SKYRMION DYNAMICS

A. Skyrmion profile function

The Skyrme model of the nucleon@5# begins with a La-
grangian

L5
Fp

2

16
Tr$]mU]mU†%1

1

32e2
Tr$@Lm ,Ln#2%, ~4!

whereLm5U†]mU and the static Skyrmion wave functionU
is defined as

U5ei tW• r̂F(r ). ~5!

Here Fp is the pion decay constant, which is fitted at 1
MeV by Adkins, Nappi, and Witten~ANW! @8#, smaller than
the experimental value of 188 MeV~in the conventions of
ANW!. The quartic ‘‘Skyrme term’’ stabilizes the solito
against collapse; its coefficient has a dimensionless cons
e which is fitted at the value 5.45 in ANW.

Extremizing L to get an ‘‘equation of motion’’ for the
profile functionF(r ) yields the nonlinear differential equa
tion

S 1

4
r 212 sin2 F DF91

1

2
rF 81sin 2FF ~F8!22

1

4G
2

sin2 F

r 2
sin 2F50. ~6!

The radial coordinater here is dimensionless, with the co
responding dimensional coordinate given byr /(eFp).

For a single nucleon~i.e., baryon numberB51) Eq. ~6!
has boundary conditionsF(0)5p and F(r )→a/r 2 as r
→`. It turns out thatF8(0)521.03812, falling off linearly
from the origin, and the asymptotic constanta58.63385. We
shall use variations ofF(r ) to describe the pion field in the
initial state of the decaying nucleon.

Note that ifF(r ) is a solution of this equation, then so
p2F(r ). Let R be the point whereF(R)5p2F(R)
5p/2. @From the solution forF(r ), R51.76; for the ANW
choice ofFp and e this corresponds to a distance from th
origin of 0.49 fm.# Thus we also can create aB50 configu-
ration which solves Eq.~6! by taking the piecewise combi
nation
1-2
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F̃~r !5H p2F~r ! if r ,R,

F~r ! otherwise.
~7!

This solution is valid except atr 5R, where the derivative of
F is discontinuous. A smoother approximateB50 solution
with the constraintF(R)5p/2 could be obtained easily us
ing Eq. ~7! by some rounding in the neighborhood of th
cusp atr 5R. We shall be usingF̃(r ) for the contribution to
the inhibition factorI from theB50 final state wave func-
tion’s chiral field dependence.

The nucleon massM in the Skyrmion picture@8# is just
the value ofL evaluated for the solutionF(r ):

M5M21M4

M25
pFp

2

2 S 1

eFp
D E

0

`

dr @r 2F8212 sin2 F# ~8!

M45
2p

e2
~eFp!E

0

`

dr sin2 FFsin2 F

r 2
12F82G .

Because we minimizedL to getF, M25M4. Note that both
F(r ) and F̃(r ) give the same value forM. This means that
the B50 state represented byF̃ does not have an energ
appropriate to the hadronic part of a final state of, say, a p
and an electron, much less to the energy of the vacuum.
assumes one wishes to describe the final meson as prod
from a quark-antiquark pair left by the action of the fou
fermion operator on the initial baryon state, rather than
evolution of the classical chiral field represented byF̃.

B. Varying the initial and final state wave functions

The Skyrmion is a classical soliton solution which min
mizes the Lagrangian, Eq.~4!. We want to allow for quantum
fluctuations in the calculation of the ‘‘tunneling’’ inhibition
factor I, and we do that by making variations ofF(r ) and
F̃(r ). We need to do this differently for the two cases, b
cause of the different boundary conditions to be satisfiedB
51 andB50, respectively. We introduce scaling factorssint
andsext, respectively, which are allowed to depend on tim
The time derivatives of eachs(t) in the modified Lagrang-
ian, Eq. ~4!, then lead to Schro¨dinger-like equations with
potential wells that can be reasonably well approximated
quadratic functions in eachs. This then lets us write the
initial and final statesCfinal* (sext) and C initial(sint) as har-
monic oscillator wave functions. In the end, we can evalu
a simple integral oversext to get the inhibition factorI.

C. The final state wave function

For purposes of presentation, it is easier to discuss
the scaling of the final stateF̃. The B50 boundary condi-
tion, that F̃ vanish at bothr 50 and r 5`, can be simply
maintained by letting

F̃~r !→sextF̃~r !, ~9!
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where the subscript ‘‘ext’’ refers to scaling external to t
functional argument. Substituting this in the Lagrangian
Eq. ~4! then gives a ‘‘potential’’Vext(sext) with a minimum at
sext50, as shown in Fig. 1.

The figure shows the calculatedVext, which exhibits
slight turnovers ats561.5, together with a quartic fit to i
~hardly distinguishable! and a quadratic fit~lacking the turn-
overs!. As eventually we shall be interested in values ofsext
between 0 and 1, the quadratic fit is adequate for our p
poses. The fitted quadratic is

Vext~sext!5
1

2
asext

2 , a563, ~10!

with the factor of 1
2 inserted to mimic the simple harmoni

oscillator potential. Herea has unitsFp /e.
If we now go on to allowsext to have a time dependence

the Lagrangian in Eq.~4! leads, in both terms~those qua-
dratic and quartic in derivatives!, to a dependence onṡext

2 ,

L→L~sext!5
1

2
I extṡext

2 1Vext~sext!

~11!

I ext5
p

e3Fp

E
0

`

dr r 2F̃2~r !

3F118
sin2@sextF̃~r !#

r 2 G .

Thesext-dependence of the ‘‘moment of inertia’’I ext is shown
in Fig. 2.

The variation ofI ext over the rangesext50 to 1 is small,
so for simplicity we take it to be a constant,I ext5135 in units
of 1/e3Fp .

The ‘‘momentum’’ canonical tosext is (I ext) ṡext. Convert-
ing L into a Hamiltonian and replacing the momentum b
2 i ]/]sext then gives a Schro¨dinger-like equation for the fina
state~vacuum! wave function,

FIG. 1. Plot of Vext(sext) in units of Fp /e ~solid curve!. The
dot-dashed curve is a quartic fit toVext(sext) and the long-dashed
curve is a quadratic fit.
1-3
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GOLDHABER, GOLDMAN, AND SILBAR PHYSICAL REVIEW D 66, 056001 ~2002!
F2
1

2I ext

]2

]sext
2

1
1

2
asext

2 GCext~sext!5ECext~sext!. ~12!

This equation has the form of the familiar harmonic oscil
tor problem. We takeCfinal to be the ground state eigenfun
tion,

Cfinal~sext!5Nextexp~2aext
2 sext

2 /2!, ~13!

where aext
4 5 ‘‘ mK’’ 5Ia/e4. For ANW’s e55.45, we get

aext
2 53.105 and the normalization constantNext

2 5aext/Ap
50.994. The ground state eigenvalue is

E05
1

2
A~a/I )50.342 ~14!

in units ofFpe, i.e.,'240 MeV, using ANW’s fitted values
for these coupling constants.

D. The initial state wave function

For the initial state, in making variations of theF we need
to maintain theB51 boundary conditions mentioned belo
Eq. ~6!. We therefore have chosen simply to introduce a
other scaling parametersint so that

F~r !→F~sintr !, ~15!

where the subscript ‘‘int’’ refers to scaling internal to th
function F(r ). It will turn out that the scaling variable here
sint , is not quite what is needed for the integration overs in
Eq. ~1!, which we choose in Eq.~3! to be thesext defined in
the last sub-section. The relation between the two sca
variables will be dealt with below.

Using F(sintr ) we can define a ‘‘potential’’ for the initial
state wave function from the expression for the nucle
mass, Eq.~8!:

Vint~sint!5M @F~sintr !#5M2 /sint1M4sint . ~16!

FIG. 2. Plot ofI ext(sext) in units of 1/e3Fp . The horizontal line
has ay-axis value of 135, which we will take as a constant appro
mation for I ext .
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This simplesint-dependence can be understood by replac
r, the variable of integration in Eq.~8!, by r 85sintr . Figure 3
shows thatV(sint) has a shallow minimum atsint51, as it
should.

Again, we letsint have a time dependence and find t
modified Lagrangian to be

L→L~sint!5
1

2
I int~sint!ṡint

2 1Vint~sint!, ~17!

I int~sint!5I int,2~sint!1I int,4~sint!, ~18!

I int,2~sint!5
p

e3Fp

E
0

`

dr r 4F̃82~sintr !, ~19!

I int,4~sint!5
4p

e3Fp

E
0

`

dr r 2F̃82~sintr !

3sin2@ F̃~sintr !#

3$112 sin2@ F̃~sintr !#%. ~20!

Note that I int,2’s integrand has a slow fall-off inr, which
necessitates some care in calculating the contribution of
asymptotic tail. By the same change of integration varia
as forVint we see that

I int~sint!5I int,2~1!/s int
5 1I int,4~1!/sint

3 . ~21!

Evaluating the integrals in Eq.~18!, we find I int,2(1)
5110.46 andI int,4(1)546.86.

One might worry thatI int is a steeply falling function of
sint . However, as already mentioned, we shall be doing
final integration in Eq.~3! over sext. Thus we need the rela
tion between the two scaling variables, which is

sext5
2

p
F~sintR!. ~22!

This relation also defines, implicitly,sint as a function ofsext.
Note that assint runs from 0 to 1 tò , sext falls from 2 to 1
to 0. From Eq.~22! we also have

dsext

dt
5

2R

p FdF~r !

dr G
r 5sintR

dsint

dt
. ~23!

-

FIG. 3. Plot ofVint(sint) aroundsint51 in units ofFp /e.
1-4
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We need this last relation, Eq.~23!, for converting the
‘‘kinetic energy’’ term in Eq.~17!. With it, the moment of
inertia term as a function ofsext becomes

1

2
I int~sint!ṡint

2 5
1

2
X~sint!S dsext

dt D 2

, ~24!

X~sext!5S p

2RD 2F 1

dF~sintR!/drG
2

I int~sint!, ~25!

where Eq.~22! is used to convert the variablesint to sext.
Since F8(sintR) falls off like 1/sint

3 at largesint , the 1/F82

factor more than compensates the 1/sint
3 falloff of I int(sint)

seen in Eq.~21!. Thus X(sext) is a steep-sided, somewh
flat-bottomed well~shown in Fig. 4! instead of a steeply
falling function.

Below we shall replaceX(sext) by a constant,X0, which
we take as its value over the flat bottom.X0'300 in units of
1/e3Fp . This is a reasonable approximation in that the wa
function we are trying to find,C initial , will be exponentially
small in the regions whereX(sext) is large.

In addition to the kinetic energy term, we also need
convert the potential term into a function ofsext. This also
undergoes a dramatic change of form from that in Fig. 3
shown in Fig. 5.

FIG. 4. Plot ofX as a function ofsext in units of 1/e3Fp .

FIG. 5. Plot of Vint(sint) as a function ofsext in units of
Fp /e.
05600
e
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Vint(sint) still has its minimum atsext5sint51, as it must.
The steep rise nearsext52 reflects the 1/sint falloff near sint

50. The rise nearsext50 results fromsext;sint
22 assint gets

large. That is, for smallsext, the linear growth ofVint in
sint for largesint turns intosext

21/2 behavior nearsext50.
As in the last section, we can now convert the modifi

Lagrangian in Eq.~17! into a Hamiltonian and thence into
Schrödinger-like equation for the initial-state wave functio
C initial ,

F2
1

2X~sext!

]2

]sext
2

1Vint~sext!GC int~sext!

5EC int~sext!. ~26!

We can recast Eq.~26! into an ~approximate! harmonic
oscillator equation on multiplying up theX(sext) and ap-
proximatingX(sext)EC int(sext) by X0EC int(sext). The prod-
uct of X(sext)Vint(sext) is shown as the solid curve in Fig. 6
It looks a little lopsided, but we can find an approxima
quadratic fit toXV as

X~sext!Vint~sext!'Fb1
1

2
c~sext2 s̄!2G ~27!

with b58000,c5200 000 in units of 1/e4 ands̄50.55. The
quality of this fit is shown in Fig. 6.

The constant termb just represents a shift in energy, s
we want the solution to

F2
1

2

]2

]sext
2

1
1

2
c~sext2 s̄!2GC int~sext!

5X0EC int~sext!. ~28!

As before, we takeC initial to be the ground state eigenfun
tion,

C initial~sext!5Nint exp„2a int
2 ~sext2 s̄!2/2…, ~29!

FIG. 6. Plot ofXV as a function ofsext ~solid curve!, compared
with the quadratic fit~dashed curve! described in the text.
1-5
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where a int
4 5 ‘‘ mK’’ 5c/e4. For ANW’s e55.45, we get

a int
2 515.06 and the normalization constantNint

2 5a int /Ap
52.189.

E. Calculating the overlap integral

With the wave functions given in Eqs.~13! and ~29!, the
integral overs5sext in the definition of the inhibition factor
I, Eq. ~3!, can be readily evaluated to give

I5A 2aexta int

aext
2 1a int

2
expF2

aext
2 a int

2

2~aext
2 1a int

2 !
s̄2G . ~30!

With the values ofaext, a int , and s̄ obtained above for the
ANW choices ofFp ande, this evaluates to

I50.588. ~31!

F. The initial state wave function, reconsidered

When we first saw the result forI given in the last sec-
tion, it was a major surprise. We had expected the value to
quite a bit smaller, even if not so small as indicated in R
@3#. Thus, we felt compelled to calculate the initial sta
wave functionC initial in a second, more systematic way.

Let us convert the first term of Eq.~17! to something
more tractable by defining a new variables8 so that

I 2S ds8

dt D 2

5I intS dsint

dt D 2

[I 2 g~sint!S dsint

dt D 2

, ~32!

where

g~s!5@11ls2#/s5, l5I int,4 /I int,250.4242. ~33!

As a function ofsint , s8 is then given by

s8~sint!5E
1

sintAg~s! ds, ~34!

with s851 when sint51. A plot of s8(sint) is shown in
Fig. 7.

FIG. 7. Plot ofs8 as a function ofs5sint , compared with its
hyperbolic fit ~dashed curve!.
05600
e
f.

Note thats8 asymptotes to 2.55. It can be fit well with
hyperbola,

s8~sint!5a1b/~sint2c!, ~35!

where a52.167, b521.093, andc50.06351. This fit is
easily inverted to findsint as a function ofs8,

sint~s8!5c1b/~s82a!. ~36!

The fits in Eqs.~35! and~36! are, because of the singularitie
at s85a andsint5c, only valid over a limited range betwee
the singularities. This is not a serious problem as we are o
interested in variations ofF(r ) arounds85sint51. As s8
runs, say, from 0 to 2,sint varies from 0.5678 to 6.612
steeply rising nears852.

We are now in a position to write a Schro¨dinger-like equa-
tion for C int in terms of thes8 variable,

H 2
1

2I 2

d2

ds82
1Vint@sint~s8!#J C int~s8!5EC int~s8!.

~37!

The function Vint@sint(s8)# has a shallow nonsymmetrica
minimum ats851, as shown in Fig. 8.

Let us once again fitV(s8) to a quadratic@by evaluating
the second derivative of 1/sint(s8)1sint(s8) with respect to
s8#, finding

Vint@sint~s8!#5V~1!1
1

2
K int~s821!2, ~38!

whereK int5230.644M2523.44, in units ofFp /e, about a
third of the ‘‘spring constant’’ for the final state. This fit i
shown as the dashed curve in Fig. 8. We then approxim
the ground state solution to Eq.~37! as

C int~s8!5Ninte
2a82(s821)2/2 for 0<s8<2, ~39!

and we takeC int(s8) equal to 0 outside that range. He
a845I 2K int /e

4 so a8251.721 for ANW’s value ofe. This
value is about half that foraext found in Sec. III C, meaning

FIG. 8. Plot ofV@sint(s8)#2V@s851# arounds851. Units are
in Fp /e. The dashed curve is a quadratic fit.
1-6



e
t

nt

8
nc

e

i

c

r-
ri-
s
ge

o
be-

our
e-

c-
the
the

m-

iral
he

mes
rix

sed
hat
ge,
tor
ity
ion

EFFECT OF HADRON DYNAMICS ON THE PROTON LIFETIME PHYSICAL REVIEW D66, 056001 ~2002!
that the initial state is ‘‘softer’’ than the final state. Th
Gaussian in Eq.~39! has fallen to 42% of its peak value a
the ‘‘end points’’ s850 and 2. The normalization consta
Nint is determined by integrating the square ofC int(s8) over
the range where it is nonzero, and it turns out to be 0.8
The ground state eigenvalue for this initial state wave fu
tion is

E05
1

2
AK int /I 250.230, ~40!

again in units ofFpe. Thus,E0'160 MeV, using ANW’s
fitted values for these coupling constants.

G. Calculating the overlap integral, part II

With the wave functions given in Eqs.~13! and ~39!, the
integral oversext in the definition of the inhibition factorI is
a bit trickier to evaluate. We shall do the integration this tim
using thes8 variable, which requires knowing howsext varies
as a function ofs8.

From Eq. ~22! we show in Fig. 9 howsext varies as a
function of sint .

One sees thatsext falls from 2 at sint50 to 0 ~as sint
22!

whensint gets large. Thus a reasonable fit~the dashed curve
in Fig. 9! is given by

sext51.9065/~11sint
2 !. ~41!

Using the fits in Eqs.~35! and~41!, we can now evaluate
the overlap integral numerically over the range whereC initial
is defined,

I5E
0

2

Cfinal* $sext@sint~s8!#%C initial~s8! ds850.4975.

~42!

We consider this result to be in substantial agreement w
~and corroborating! the value forI found in Sec. III E.

IV. THE HYPOWEAK MATRIX ELEMENT

The hypoweak interaction matrix element is the first fa
tor in the second line of Eq.~1!, the matrix element of the

FIG. 9. Plot ofsext as a function ofsint , compared with the fit
described in the text~dashed curve!.
05600
9.
-

th

-

operator in Eq.~2!. This has been evaluated for chiral vecto
axial combinations in terms of the wave function at the o
gin, providing a flux factor for the two quark to lepton plu
antiquark scattering amplitude. As such, the only chan
needed from previous work@9# is the change in value due t
the change in the standing wave for the quark interior
tween the MIT bag models used earlier~with zero chiral
angle! and the constant wave functions appropriate to
new chiral boundary condition. The wave-function factor b
comes

j 0
2~0!1 j 1

2~0!

N2
5

3

4pR3
~43!

whereN is the normalization and the spherical Bessel fun
tions of the MIT bag are replaced by a constant from
fermion upper wave-function component and zero from
lower.

Scaling from the result in Ref.@9#, where uc(0)u251.1
31023 GeV2 was used, to the value here withR50.6 fm,
we find an enhancement factor of 7.7, which more than co
pensates for the overlap suppression fromI.

For the intermediate case of a boundary condition ch
angle of p/4, we need the appropriate frequency for t
quark wave-function solution. We need to solve

2 j 0~vR! j 1~vR!tan~uc!5@ j 0~vR!#22@ j 1~vR!#2,
~44!

which gives the valuevR51.7446 for

uc5p2u~R!1
sin@2u~R!#

2
. ~45!

Evaluating the usual normalization integral, we find

v3N~v!254pE
0

vR

dx x2$@ j 0~x!#21@ j 1~x!#2%

514.935. ~46!

Equation~43! then becomes

j 0
2~0!1 j 1

2~0!

N2~v!
5

5.3096

14.935R3
. ~47!

This produces an enhancement factor almost three ti
smaller than above, but still implies that for the net mat
element including the tunneling overlap factorI there is no
major change from the original MIT bag calculation.

V. CONCLUSIONS

The fact that hadronic suppression of baryon decaycould
be much less significant than suggested in Ref.@3# had be-
come clear to us some time ago, but we still were surpri
to find virtually no suppression. It should be emphasized t
Ref. @3# did not assert that the suppression would be lar
only noting that an exponential amplitude suppression fac
exhibiting a negative exponent with order of magnitude un
could easily account for two orders of magnitude reduct
1-7
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in the decay rate. What has developed in our much m
detailed calculation above is that several effects serve
weaken this potential suppression. First, the size of
vacuum fluctuations, when examined more carefully, tu
out to be larger than simple dimensional counting sugges
Secondly, the initial nucleon wave function as well as t
final vacuum wave function allow substantial local fluctu
tions in baryon density, so that the overlap between
former ~once acted on by the four-fermion operator! and the
latter can be rather large. Thirdly, the four-fermion mat
element becomes larger when one considers the initial qu
as confined in a smaller bag than the MIT bag.

The net effect, within the remaining uncertainties in t
calculations, is that the present more elaborate analysis
here produces virtually the same prediction as that in
MIT bag model. This might be one more example of t
‘‘Cheshire-cat’’ phenomenon@10,6#, that many properties o
the nucleon are quite insensitive to the choice of demarca
radius between a chiral field description~used outside tha
radius! and a description in terms of quarks~inside!, subject
to an appropriate chiral boundary condition. If so, then ev
the decay of the proton may not reveal what lies inside
instead quite directly measuring the microscopic operator
hind the decay.

In this work we have not focused on the matrix eleme
for production of the final meson from the remaining qua
et

c

05600
re
to
e
s
d.

e
-
e

ks

ed
e

n

n
t,
e-

t

and the produced antiquark. Independently of the hybrid
picture, this might be a worthwhile subject for addition
study, and probably is the largest source of remaining un
tainty in the lifetime calculation. Assuming this also does n
produce a large effect, then the latest quoted limits on b
the old e1p0 and new n̄K1 favored channels for proton
decay already provide ominous constraints on grand uni
models@11#.

Note added in proof. It is worth recalling that a very dif-
ferent approach from that in this paper, namely, lattice Q
with fermions treated in quenched approximation as stud
by the JLQCD Collaboration@12#, also gives large decay
rates—further supporting extension of the ‘‘Cheshire-ca
concept to baryon decay.
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