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Chiral perturbation theory for the Wilson lattice action
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We extend chiral perturbation theory to include linear dependence on the lattice spacinga for the Wilson
action. The perturbation theory is written as a double expansion in the small quark massmq and lattice spacing
a. We present formulas for the mass and decay constant of a flavor-nonsinglet meson in this scheme to order
a andmq

2 . The extension to the partially quenched theory is also described.
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I. INTRODUCTION

Chiral perturbation theory (xPT) is an important tool for
extracting quantitative information from lattice simulatio
of QCD. The reason for this is that it is impractical to ha
dynamical quarks in simulations that are as light as the
and down quarks, andxPT is needed for a controlled, sys
tematic extrapolation in the quark masses. SincexPT de-
scribescontinuumQCD at low energies, its application i
numerical simulations is possible only after extrapolating
tice data to the continuum limit where the lattice spacinga
vanishes. In this paper, we study the behavior of the Wil
lattice action close to the continuum by incorporatingO(a)
effects in a reformulation ofxPT. A similar approach was
first taken in Ref.@1# to investigate the phase diagram f
Wilson fermions in two-flavor QCD.

The quark mass matrix~considering only the 2 or 3 light
est quarks! has a special role in QCD—it parametrizes t
explicit breaking of the axial symmetries. As a result, t
light quark masses appear explicitly in the low-energy eff
tive theory. In this paper, we exploit the fact that for t
Wilson lattice action there is another independent symm
breaking parameter, linear ina @1,2#. To O(a) this is the only
discretization effect, and thus a generalization of the ch
Lagrangian can be written which includes all terms linear
a.

II. EFFECTIVE LAGRANGIAN

The Wilson action for fermions is given by@3#

S F
(W)5(

x
@c̄~x!gmDmc~x!1c̄~x!mqc~x!

1arc̄~x!D2c~x!#, ~2.1!
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where

Dmc~x!5
1

2a
@Um~x!c~x1am̂ !2Um

† ~x2am̂ !c~x2am̂ !#.

~2.2!

Um(x) is the gauge group valued field defined on the links
the lattice. In typical lattice simulations,r 51 but we will
keep it more general for now. Since we are interested i
perturbative study of discretization effects, we follow Re
@4# and consider an effective action in the continuum wh
describes the same physics as the discrete lattice action~in-
cluding the gauge action!, well below the cutoff 1/a. The
effective action is expanded in powers ofa:

Seff5S01aS11a2S21•••. ~2.3!

By construction,S0 is the QCD action. Symmetry conside
ations restrict the number of mass-dimension 5 operators
appear inS1. The equations of motion can be used to furth
reduce the list of operators. One then identifies the opera
that already appear inS0, which give rise to the renormal
ization of the quark masses and the coupling constant.
nally, one is left with a single new term atO(a), the Pauli
term @2#:

aS15acSWc̄smnFmnc. ~2.4!

cSW is a constant ofO(1) which is a complicated function o
the gauge coupling andr.

ConsideringS01aS1 as an underlying theory, it has a
SU(Nf)L ^ SU(Nf)R flavor symmetry which is broken down
to the vector part by the mass and Pauli terms with coe
cientsmq andacSW respectively.c̄c and c̄smnFmnc break
the axial symmetry in the same way and therefore, from
spurion analysis point of view,mq and acSW are on equal
footing, as noted in Ref.@1#. In particular,acSW is treated as
a non-trivial matrix in flavor space, just likemq . It is pos-
sible to giveacSW a flavor structure in simulations by pro
moting the constantr to a matrix. This can supply extra
‘‘knobs’’ which can aid the continuum extrapolations. Th
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squares of the Goldstone boson~GB! masses are linear in th
symmetry breaking matrices of parameters@1#, conveniently
written as

x[2B0mq , r[2W0acSW. ~2.5!

B0 and W0 are unknown dimensionful parameters that a
pear in the effective Lagrangian at leading order~LO! which
is defined below.

The effective Lagrangian is constructed from all operat
that respect the symmetries of the underlying action. E
operator appears with an unknown coefficient that canno
determined from symmetry considerations. It is also nec
sary to specify a ‘‘power counting scheme’’—a prescripti
for selecting terms in the Lagrangian that need to be inclu
in a calculation to achieve a desired accuracy. For QCD (S0)
the result of this procedure isxPT, which was defined and
constructed to next-to-leading order~NLO! by Gasser and
Leutwyler @5#. When more terms fromSeff in Eq. ~2.3! are
added, the result isxPT for the Wilson action (WxPT)
which contains additional operators involvingr. This intro-
duces new unknown couplings into the theory.

WxPT is an expansion in the squares of the small m
mentap and the small pseudo-Goldstone boson masses
formally consider the expansion to be in two independ
small parameters:

e;
p2

Lx
2

;
x

Lx
2

and d;
r

Lx
2

. ~2.6!

Lx is the scale where new high-energy physics enters
the effective field theory~EFT! no longer describes the co
rect physics. This happens around the mass of the rho me
ce
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or roughlyLx;1 GeV. From dimensional analysis, and th
fact thatB0 andW0 depend only on the high-energy detail
one can check that the expansion is in fact inmq /Lx and in
aLx .

Since Eq.~2.3! is truncated atO(a) it makes no sense to
go beyondO(d) in WxPT @we remark onO(a2) corrections
in the next section#. For convenience, we choose to collect
terms in the LO and NLO Lagrangians as follows:

LO: L2;O~e,d!, ~2.7!

NLO: L4;O~e2,ed!. ~2.8!

The underlying hierarchy consistent with this ordering
$e,d%@$e2,ed%@d2, and the last inequality also impliese
@d. This choice is somewhat arbitrary. In practice, the p
turbative expansion should be organized according to the
tual sizes of the expansion parameters, which are determ
by the quark masses in the simulation and the size of
lattice spacing. For example, if the simulations are done
close to the continuum thatd is very small, it might make
more sense to have the LO Lagrangian beO(e), and at NLO
O(e2,d). With our convention,

L25
f 2

4
tr~]S]S†!2

f 2

4
tr„~x1r!S†1S~x†1r†!…,

~2.9!

is the LO Lagrangian, whereS5exp(2iP/f) contains the ma-
trix of meson fields,P. It is useful to note that Eq.~2.9! can
be ‘‘produced’’ from the LO Lagrangian of ordinaryxPT by
the substitutionx→x1r.

The NLO Lagrangian is
L45L1^]S]S†&21L2^]mS]nS†&^]mS]nS†&1L3^~]S]S†!2&1L4^]S]S†&^x†S1S†x&1W4^]S]S†&^r†S1S†r&

1L5^]S]S†~x†S1S†x!&1W5^]S]S†~r†S1S†r!&1L6^x
†S1S†x&21W6^x

†S1S†x&^r†S1S†r&

1L7^x
†S2S†x&21W7^x

†S2S†x&^r†S2S†r&1L8^x
†Sx†S1S†xS†x&1W8^r

†Sx†S1S†rS†x&. ~2.10!
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The angled brackets stand for traces over the flavor indi
In the limit a→0, Eqs.~2.9!, ~2.10! become the chiral La-
grangian of Ref.@5#. WxPT contains ordinaryxPT as it re-
duces toxPT in this limit. Since the low-energy constan
are independent ofa ~and mq) by construction, theLi ’s in
WxPT are the GL coefficients of ordinaryxPT.

A word about certain log(aL) corrections is appropriate
here. In the EFT formulation, the Lagrangian is written
terms of the most general set of operators constructed ou
the relevant degrees of freedom that respect the symme
of the theory. The high-energy physics that was integra
out enters through the unknown couplings that multiply th
operators. Thus the low-energy constants or couplings
entirely determined by the high-energy scales. InxPT, the
operators contain only the light meson and photon fields,
the low-energy constantsB0 , f ,Li , etc., are functions of the
s.
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QCD scaleLQCD. In particular, theLi ’s are independent o
the pion massesmp;Amq which are associated with th
long-distance physics. All themq dependence ofxPT is ex-
plicitly written in the operators. This still holds for themq

dependence of the WxPT Lagrangian written above, but th
same cannot be said about the lattice spacinga. It is true that
anO(a) term breaks the chiral symmetry in the same way
mq , andaL2 is a soft scale associated with the pseudo G
mass, but 1/a is not a soft scale—it acts as the ultraviol
cutoff for the discrete lattice. Thus, while the low-ener
constants of WxPT are expected to be independent ofmq

andacSW, they could in principal have a complicated depe
dence on the gauge couplingg, which itself depends ona.
However, the running of the coupling constant is determin
in simulations by requiring that as one approaches the c
3-2
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tinuum, some chosen physical quantity remains fixed. Eff
tively, this means that the couplingg and the cutoff 1/a com-
bine to give the only real scale in the theory—LQCD—and
the continuum limit is approached smoothly. We therefo
expect theLi ’s and Wi ’s to depend onLQCD , and only
weakly ona, the latter dependence coming from higher
ders in perturbation theory, or involving higher powers oa
which can always be expanded.1 The parametercSW in the
action S1 will still depend on log(aLQCD), and it might be
possible to calculate these dependences explicitly in pe
bation close to the continuum@6,7#.

A related form of implicit a dependence exists in th
quark masses. The quark masses that appear in the WxPT
Lagrangian@Eqs.~2.9!, ~2.10!# are not the same as those th
appear in the Wilson action@Eq. ~2.1!#. Because of the ex
plicit breaking of chiral symmetry due to the Wilson term
the quark masses are not protected from additive renorm
ization of the order of the lattice cutoff 1/a. In practice one
finds in simulations a ‘‘critical’’ linemq

c(a) on which the
meson masses approximately vanish. The quark mass is
defined as the distance from this line:

m̃q5mq2mq
c~a!, ~2.11!

and it is m̃q that should be used in Eqs.~2.9!, ~2.10!. m̃q
compensates for the largeO(1/a) shift in the quark masses
but it also contains positive powers ofa. This is not a
problem—redefinitions of the mass parameter of this s
only lead to changes in theWi ’s. The GL coefficientsLi ’s are
not affected because the operators with which they are a
ciated do not containa. The re-shuffling of theWi ’s does
mean, however, that their actual numerical values depen
the prescription that is used to determinemq

c(a) and to define
m̃q .

Note that the chiral limit cannot be taken by simply s
ting m̃q→0. While mq

c satisfiesMp
2 (mq

c(a),a)50, there is
no reason that other quantities will attain their chiral limit f
this value ofmq . This is a reflection of the fact that ther
really are two different operators that break the symmetr

III. APPLICATIONS

In the following two subsections we calculate the expr
sions for the mass and decay constant of a flavor-cha
meson, with the flavor indicesAB (AÞB), having the same
quantum numbers asc̄Bg5cA . We take the number of fla
vorsNf53. In the calculations that follow we takex to be a
diagonal matrix with entries (x) i i 5x i , and use the notation
xAB5(xA1xB)/2. Note that this notation coincides with th
standard way of denoting matrix elements only for the di
onal entries. The same convention is used forr. It is conve-
nient to define another matrix,m5x1r, which is the com-
bination that appears inL2. The subscript notation form
follows that ofx andr, except for the quantitiesmp andmh
which are defined below.

1We thank Paulo Bedaque and Andrew Cohen for helping us
derstand this issue.
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A. Masses

The mass of a flavor-charged meson in WxPT with three
quark flavors is given through NLO by

MAB
2 5~MAB

2 !LO1~MAB
2 !NLO,loop1~MAB

2 !NLO,tree,
~3.1!

with

~MAB
2 !LO5mAB , ~3.2!

~MAB
2 !NLO,loop5

1

48f 2p2
mAB (

x5p,h
Rx

ABmx logmx , ~3.3!

~MAB
2 !NLO,tree52

24

f 2
L4~xAB1rAB!x̄2

24

f 2
W4xABr̄

2
8

f 2
L5~xAB1rAB!xAB2

8

f 2
W5xABrAB

1
24

f 2
2L6xABx̄1

24

f 2
W6~xABr̄1rABx̄ !

1
8

f 2
2L8xAB

2 1
8

f 2
2W8xABrAB , ~3.4!

wheremp and mh are the squares of the LO masses of t
two light flavor-neutral mesons, given implicitly by

mp1mh52m̄, ~3.5!

mpmh5~m1m21m1m31m2m3!/3. ~3.6!

Here x̄5tr(x)/3 and similarly forr andm. Also, if we de-
note byC the flavor that is different from bothA andB, we
have

Rp
AB5

mC2mp

mh2mp
, Rh

AB5
mC2mh

mp2mh
. ~3.7!

In deriving the expressions for the mass in WxPT one
could use a very convenient ‘‘trick’’ relating these expre
sions to the corresponding expressions in ordinaryxPT. As
mentioned earlier, the LO Wilson chiral LagrangianL2, Eq.
~2.9!, can be obtained fromxPT LO Lagrangian by the
simple substitutionx→x1r ~or x→m). Thus any quantity
h(x) in xPT that depends only on the LO Lagrangian can
trivially reproduced in WxPT according toh(x)→h(x
1r). This is true for the LO and NLO loop diagrams th
contribute to the mass. Similar results also hold for the de
constant. We provide the expressions for the mass in o
nary xPT in Appendix A for comparison.

n-
3-3
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B. Decay constants

The decay constant is given through NLO by

f AB5~ f AB!LO1~ f AB!NLO,loop1~ f AB!NLO,tree, ~3.8!

with

~ f AB!LO5 f , ~3.9!

~ f AB!NLO,loop52
1

64p2f
(

i 51,2,3

j 5A,B

m i j logm i j

1
1

192p2f
~mA2mB!H logS mA

mB
D

1 (
x5p,h

Rx
ABmxF log~mA /mx!

mA2mx

2
log~mB /mx!

mB2mx
G J , ~3.10!

~ f AB!NLO,tree5
12

f
~L4x̄1W4r̄ !1

4

f
~L5xAB1W5rAB!.

~3.11!

C. WxPT, O„a2
…, and improvement

In the simplest sense, the expressions for the mass
decay constant in WxPT can be used to aid in taking th
continuum limit. These forms provide all the lineara depen-
dence, as well as non-trivial logarithms that involvea and
mq . A test of these formulas would be to check whether th
describe thea dependence better than naive extrapolatio
Perhaps a more useful way to think about it is that with th
expressions one can determine the GL coefficients dire
from lattice data at finitea.

What about higher orders ina? At ordera2 the picture
changes qualitatively. There are operators inS2, such as
c̄D” DmDmc, that do not break the chiral symmetry. Th
means thata can no longer be associated only with symm
try breaking effects, and spurion analysis cannot be use
constrain thea2 operators. Nevertheless, we might still e
pand ine andd simultaneously. The LO,O(e,d) Lagrang-
ian, and consequently the LO mass and decay constan
unchanged. At NLO,O(e2,ed,d2), there are severalO(a2)
operators that are added to the Lagrangian, but they ar
independent of the quark masses and do not contain de
tives. Consequently, the only correction to the meson ma
at this order is an additional term of the formva2, wherev
is an unknown constant of mass-dimension 4. The expres
for the decay constant does not receiveanycorrections at this
order. This is because tree level contributions to the de
constant can only come from operators that contain der
tives.

Improvement schemes~first suggested by Symanzik i
Ref. @4#!—using an improved action and improve
operators—are another important tool for studying and
ducing discretization effects@2,8#. Using improved action in-
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volves adding a discretized version of the Pauli term in E
~2.4! to the Wilson action in Eq.~2.1! which exactly cancels
the S1 term in the continuum action, Eq.~2.3!. This means
that up toO(a2) the lattice theory is just QCD, and at low
energies we expectxPT to be a good description. From th
perspective of WxPT this is equivalent to saying that usin
an improved action sets allWi50. This is of course not
surprising: the use of improved action is meant to elimin
all O(a) dependence from observables, and theWi coeffi-
cients parametrize exactly this dependence. One should
conclude from this that improving the action is enough
completeO(a) improvement. As mentioned above, som
dimension-5 operators that are allowed by the symmetr
and can therefore appear inS1, are implicitly absorbed inS0

by replacing the bare parameters ofS0 with renormalized
ones. This is a necessary step, and it is compatible with
fact that in improvement schemes, in addition to using
improved action, one must use improved operators.

IV. PARTIALLY QUENCHED THEORIES

WxPT is appropriate for the type of lattice simulation
which are called ‘‘unquenched.’’ These are simulations
which there are 2 or 3 dynamical fermions~also called ‘‘sea
quarks’’!, and expectation values are calculated of opera
which are constructed from a different type of fermio
~‘‘valence quarks’’! which have the same masses as the
quarks. In most lattice simulations, however, the masse
the valence quarks are not taken to be the same as tho
the sea quarks. Simulations that are done this way are ca
partially quenched~PQ!. Theoretically this can be describe
by a QCD-like construction which includes ghosts@9,10#.
The low-energy behavior of these theories is described
PQxPT @10#, which has the same unknown low-energy co
stants asxPT for ordinary QCD@11#. Thus, PQ simulations
provide additional mass parameters that can be used to p
the theory in a larger parameter space, and gain better st
tics in determining the GL coefficients@12,13#. It is of clear
practical value to consider the generalization of WxPT to the
PQ case.

PQ QCD contains three different types of spin-h
particles—valence quarks, sea quarks, and ghosts w
obey Bose-Einstein statistics. There is a single ghost fla
for every valence quark, and they both have the same m
The quark mass matrix for a theory with 2 valence quarks
sea quarks, and 2 ghosts is

~4.1!

xPT for PQ QCD is constructed in terms of this matrix, or
terms ofx which is still defined through Eq.~2.5!, and the
result is a Lagrangian identical to the one for ordinaryxPT,
but with an extended flavor structure and with super-tra
replacing the traces. Because of the great formal simila
between QCD and PQ QCD, the extension of PQxPT to PQ
WxPT is a simple generalization of the discussion in t
previous section. In particular, the LO and NLO Lagrangia
3-4
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for PQ WxPT have forms just like in Eqs.~2.9!, ~2.10!, with
traces replaced by super-traces. Further, as in the continu
the low-energy constantsLi ’s andWi ’s are exactly the same
in the PQ and unquenched WxPT. It follows that one can
use the Wilson chiral expressions for PQ theories to ext
the GL coefficients.

For completeness, we provide the expressions for
mass and decay constant for PQ WxPT in Appendix B.
Again, as in unquenched theories, the LO and NLO lo
results in PQ WxPT are trivially related to the correspondin
results in PQxPT which have been calculated in@12#.

V. SUMMARY

We constructed a low-energy EFT, WxPT, of the Wilson
lattice action close to the continuum. The theory exten
xPT, and the perturbative framework is described in term
two small parameters—the quark massmq and the lattice
spacinga. The Gasser-Leutwyler chiral Lagrangian~through
O(p4) in xPT) was modified to incorporate all linear depe
dence ona. We applied this theory to calculate light meso
masses and decay constants. The resulting expressions
ture all the linear dependence ona as well as non-trivial
logarithms that entanglea and mq . A useful application of
this theory is the determination of the Gasser-Leutwyler
efficients of ordinaryxPT from lattice simulations at sma
but finite a.
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APPENDIX A: xPT RESULTS

We present the expressions for the mass of a flav
charged light meson inxPT for comparison with WxPT re-
sults. As explained in the text, one can see that the LO
NLO loop expressions in WxPT can be obtained from th
correspondingxPT results with the substitutionx→x1r
(x→m). Using the same notation as in Eqs.~3.2!–~3.7!, the
masses through NLO with three quark flavors are@12#:

MAB
2 5~MAB

2 !LO1~MAB
2 !NLO,loop1~MAB

2 !NLO,tree,
~A1!

with
~MAB

2 !LO5xAB , ~A2!

~MAB
2 !NLO,loop5

1

48f 2p2
xAB (

x5p,h
Rx

ABxxlogxx , ~A3!

~MAB
2 !NLO,tree5

24

f 2
~2L62L4!xABx̄1

8

f 2
~2L82L5!xAB

2 ,

~A4!
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where

xp1xh52x̄, ~A5!

xpxh5~x1x21x1x31x2x3!/3, ~A6!

Rp
AB5

xC2xp

xh2xp
, Rh

AB5
xC2xh

xp2xh
. ~A7!

~Here, again,C is the flavor that is different from bothA and
B.!

APPENDIX B: PQ W xPT RESULTS

The forms of the Lagrangians in unquenched and
theory are the same, with an implicit difference in the stru
ture of the matrices in flavor space and the replacemen
traces with super-traces. Thus all tree contributions in b
theories have the same dependence onx andr. In particular,
the LO and NLO tree results are still given by Eqs.~3.2!,
~3.4! and Eqs.~3.9!, ~3.11! for the mass and the decay co
stant respectively, with appropriatex andr matrices for PQ
simulations.~The structure ofr in PQ WxPT is determined
by r in the PQ version of the Wilson action. The latter mu
have a structure similar tomq , Eq. ~4.1!, that is needed to
guarantee the exact cancellation between valence and g
loops.! We give here only the NLO loop results, which a
different from the unquenched expressions.

~MAB
2 !NLO,loop5

1

48f 2p2
mAB (

x5A,B,p,h
Rxmxlog~mx!,

~B1!

~ f AB!NLO,loop52
1

64p2f
(

i 51,2,3

j 5A,B

m i j logm i j 1
1

192p2f

3H 2DA2DB1
log~mA /mB!

mA2mB

3@mADA1mBDB1~mA2mB!2#

1 (
x5p,h

Rxmx~mA2mB!F log~mA /mx!

mA2mx

2
log~mB /mx!

mB2mx
G J , ~B2!

where

Rx5

)
i 51,2,3

~m i2mx!

) ~my2mx!

, y5A,B,p,h,yÞx

Dx5

)
i 51,2,3

~m i2mx!

~mp2mx!~mh2mx!
. ~B3!
3-5
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