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Chiral perturbation theory for the Wilson lattice action
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We extend chiral perturbation theory to include linear dependence on the lattice spéointhe Wilson
action. The perturbation theory is written as a double expansion in the small quarknass lattice spacing
a. We present formulas for the mass and decay constant of a flavor-nonsinglet meson in this scheme to order
a and mé. The extension to the partially quenched theory is also described.
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I. INTRODUCTION where

Chiral perturbation theoryxPT) is an important tool for 1 N N N
extractingpquantitative info?lrr);(atign from Ialztice simulations 2#¥(X)= 551U.(X) pixtaj) = U (x=ai)p(x=a)].
of QCD. The reason for this is that it is impractical to have (2.2
dynamical quarks in simulations that are as light as the up
and down quarks, angPT is needed for a controlled, sys- U .(X) is the gauge group valued field defined on the links of
tematic extrapolation in the quark masses. Sig&T de- the lattice. In typical lattice simulations,=1 but we will
scribescontinuumQCD at low energies, its application in keep it more general for now. Since we are interested in a
numerical simulations is possible only after extrapolating laterturbative study of discretization effects, we follow Ref.
tice data to the continuum limit where the lattice spacing [4] and consider an effective action in the continuum which
vanishes. In this paper, we study the behavior of the Wilsorflescribes the same physics as the discrete lattice a@tion
lattice action close to the continuum by incorporatiige) ~ cluding the gauge actignwell below the cutoff 1d. The
effects in a reformulation ofPT. A similar approach was €ffective action is expanded in powers af
first taken in Ref[1] to investigate the phase diagram for )
Wilson fermions in two-flavor QCD. Seit=SptaS,+aS+ - - -. 23

The quark mass matri¢considering only the 2 or 3 light- ) _ . .
est quarks has a special role in QCD—it parametrizes theBY constructionS, is the QCD action. Symmetry consider-
explicit breaking of the axial symmetries. As a result, the@tions restrict the number of mass-dimension 5 operators that

light quark masses appear explicitly in the low-energy effec2PPear inS;. The equations of motion can be used to further
tive theory. In this paper, we exploit the fact that for the "eéduce the list of operators. One then identifies the operators
Wilson lattice action there is another independent symmetryhat already appear i6,, which give rise to the renormal-
breaking parameter, linear &[1,2]. To O(a) this is the only ~ 1zation of the quark masses and the coupling constant. Fi-
discretization effect, and thus a generalization of the chiranally, one is left with a single new term &(a), the Pauli
Lagrangian can be written which includes all terms linear int€rm[2]:

a _
aS;=acsyipo, F* . (2.9
Il EFFECTIVE LAGRANGIAN Csw IS @ constant o©(1) which is a complicated function of
The Wilson action for fermions is given 4] the gauge coupling and
ConsideringSy+a$S; as an underlying theory, it has an
w) — — SU(N¢) | ® SU(N¢) flavor symmetry which is broken down
Sk =2 [0 YA up(X) + P(X)Mgih(X) to the vector part by the mass and Pauli terms with coeffi-
o cientsm, andacg,y respectively.ysss and o, F*"y break
+ary(x)A%2y(x)], (2.1  the axial symmetry in the same way and therefore, from a

spurion analysis point of viewn, andacsy are on equal

footing, as noted in Refl]. In particular,acgy is treated as

*Permanent address: Lawrence Berkeley National Laboratong@ non-trivial matrix in flavor space, just like,. It is pos-
Berkeley, California 94720. Email address: grupak@Ibl.gov sible to giveacsgyy a flavor structure in simulations by pro-
"Permanent address: Department of Physics, Boston Universitynoting the constant to a matrix. This can supply extra
Boston, Massachusetts 02215. Email address: shoresh@bu.edu “knobs” which can aid the continuum extrapolations. The
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squares of the Goldstone bos(@B) masses are linear in the or roughly A ,~1 GeV. From dimensional analysis, and the
symmetry breaking matrices of parametgth conveniently  fact thatB, andW, depend only on the high-energy details,
written as one can check that the expansion is in factig/ A, and in
aA, .

X

Since Eq.(2.3 is truncated atd(a) it makes no sense to
B, and W, are unknown dimensionful parameters that ap-9° Peyondd(é) in WxPT[we remark onO(a”) corrections
pear in the effective Lagrangian at leading ore®) which I the next sectioh For conveniencewe choose tq collect
is defined below. terms in the LO and NLO Lagrangians as follows:

The effective Lagrangian is constructed from all operators : _
that respect the symmetries of the underlying action. Each LO: L2~ 0e,9), @7
operator appears with an unknown coefficient that cannot be . _ 2
determined from symmetry considerations. It is also neces- NLO: L4~ O(e%,€9). 2.8

sary to specify a “power counting scheme”—a prescription the ynderlying hierarchy consistent with this ordering is
for selecting terms in the Lagrangian that need to be mclude?e S>1{e2 e8)> 82, and the last inequality also implies

in a calculation to achieve a desired accuracy. For Q8 ( 5. 5 This choice is somewhat arbitrary. In practice, the per-
the result of this procedure jgPT, which was defined and ¢, ihative expansion should be organized according to the ac-
constructed to next-to-leading ord@NLO) by Gasser and ) sizes of the expansion parameters, which are determined
Leutwyler [S]. When more terms fronS in Eq. (2.3 are  py the quark masses in the simulation and the size of the
added, the result ixPT for the Wilson action (WPT) |attice spacing. For example, if the simulations are done so
which contains additional operators involvipg This intro-  ~nse to the continuum that is very small, it might make

duces new unknown couplings into the theory. more sense to have the LO Lagrangian®g), and at NLO
WyxPT is an expansion in the squares of the small MO €2, 5). With our convention

mentap and the small pseudo-Goldstone boson masses. We

XEZBqu f pEZWOaCSW (25)

formally consider the expansion to be in two independent 2 2
small parameters: ﬁzZth(ﬁzﬁzT)— th((X+P)ET+E(XT+PT)),
2.9
~p—2~1and 5~i (2.6 =9
€ A)Z( A)Z( A)Z(' ' is the LO Lagrangian, whei®= exp(aI1/f) contains the ma-

trix of meson fields]I. It is useful to note that Eq2.9) can
A, is the scale where new high-energy physics enters ande “produced” from the LO Lagrangian of ordinanPT by
the effective field theoryEFT) no longer describes the cor- the substitutiony— x+ p.

rect physics. This happens around the mass of the rho meson, The NLO Lagrangian is

|
L4=L1(0293 )2+ 13,59, )(0,29,5 T+ La((d3 0212+ Lo( a2 g3 W (xS + 2 Tx) + W, (d% a2 ") (p™S + 2 Tp)
+Ls(d3 a3 T(XTS+3 1))+ We(a2 03 T(pTS + 3 Tp)) + Le(x TS + S Tx) 2+ We(x TS + ST ) (p TS + 3 7p)
+LAXTE =22+ W (X TS = E T p S =3 Tp) + La(x TS X TS+ T2 )+ We(p xS +37p2Ty).  (2.10

The angled brackets stand for traces over the flavor indicegyCD scaleAgcp. In particular, thel;’s are independent of
In the limit a—0, Egs.(2.9), (2.10 become the chiral La- {he pion massesn_ ~ Jmy which are associated with the
grangian of R_ef[5]_. WYPT contains ordinaryPT as it re- long-distance physics. All then, dependence ofPT is ex-
duces toyPT in this limit. Since the low-energy constants plicitly written in the operators. This still holds for tha,

are independent ad (and my) by construction, the.;'s in dependence of the YWPT Lagrangian written above, but the

WyxPT are the GL coefficients of ordinagPT. . X o
A word about certain log{A) corrections is appropriate S2Me cannot be said about the lattice spaaingis true that

here. In the EFT formulation, the Lagrangian is written in@1O(a) term breaks the chiral symmetry in the same way as
terms of the most general set of operators constructed out &g, andaA? is a soft scale associated with the pseudo GB
the relevant degrees of freedom that respect the symmetri@ass, but H is not a soft scale—it acts as the ultraviolet
of the theory. The high-energy physics that was integrategutoff for the discrete lattice. Thus, while the low-energy
out enters through the unknown couplings that multiply thesegonstants of VWPT are expected to be independentnaf
operators. Thus the low-energy constants or couplings arandacs, they could in principal have a complicated depen-
entirely determined by the high-energy scalesyPT, the dence on the gauge coupling which itself depends oa.
operators contain only the light meson and photon fields, antiowever, the running of the coupling constant is determined
the low-energy constanB,,f,L;, etc., are functions of the in simulations by requiring that as one approaches the con-
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tinuum, some chosen physical quantity remains fixed. Effec- A. Masses
tively, this means that the couplirggand the cutoff 18 com- The mass of a flavor-charged meson in¢®T with three

bine to give the.or)ly_ real scale in the theorhgcp—and quark flavors is given through NLO by
the continuum limit is approached smoothly. We therefore

expect theL;'s and W;'s to depend onAgcp, and only M2s=(MZp) Lot (MAg)nLo lopT (MABINLO, trees

weakly ona, the latter dependence coming from higher or- (3.2

ders in perturbation theory, or involving higher powersaof

which can always be expandédhe parametecs, in the with

action S; will still depend on log@Aqcp), and it might be

possible to calculate these dependences explicitly in pertur- 5

bation close to the continuuf®,7]. (Mag)Lo= MaB, (3.2
A related form of implicita dependence exists in the

guark masses. The quark masses that appear in theTW 1

LagrangiarEgs.(2.9), (2.10] are not the same as those that (/2 - = AB

appear in the Wilson actiofEq. (2.1)]. Because of the ex- (MAg)ni000p 48f2 7 MABX;;” R fxl0g p (33

plicit breaking of chiral symmetry due to the Wilson term,

the quark masses are not protected from additive renormal-

ization of the order of the lattice cutoffd/ In practice one

finds in simulations a “critical” line mg(a) on which the

meson masses approximately vanish. The quark mass is then

defined as the distance from this line:

, 24 24
(MZB)NLO, tree™ — f_2L4(XAB+ PAB X — f_2W4XABp

8
_f_ZLS(XAB+ pas)Xas~ 5 WsxapPaB

My=mg—mg(a), (2.11) f

and it is M, that should be used _in _Eq$2.9), (2.10. My + 2—:12L6XABY+ 2—:1W6(XABF+ PasX)
compensates for the larg®(1/a) shift in the quark masses, f f

but it also contains positive powers @ This is not a
problem—redefinitions of the mass parameter of this sort
only lead to changes in th&;’s. The GL coefficientd;’s are

not affected because the operators with which they are asso-
ciated do not contaira. The re-shuffling of thew,’s does
mean, however, that their actual numerical values depend off€ré 4~ and p1,, are the squares of the LO masses of the
the prescription that is used to determing(a) and to define ~ ™V© light flavor-neutral mesons, given implicitly by

m

8 8
+ f—zstxiB+ 22WsXasPas, (3.9

qNote that the chiral limit cannot be taken by simply set- Mot o, =2, (3.5
ting My— 0. While m; satisfiesM i(mg(a),a)=0, there is

no reason that other quantities will attain their chiral limit for
this value ofm,. This is a reflection of the fact that there

really are two different operators that break the symmetry. o
Here y=tr(x)/3 and similarly forp and x. Also, if we de-
IIl. APPLICATIONS note byC the flavor that is different from botA and B, we
' have
In the following two subsections we calculate the expres-
sions for the mass and decay constant of a flavor-charged

Moty =(pmapot pipat pops)/3. (3.6

meson, with the flavor indice&B (A+ B), having the same Ras_£C Fr /;B:M_ 3.7
quantum numbers aggysis. We take the number of fla- Hoy™ M K= My

vorsN;=3. In the calculations that follow we taketo be a

diagonal matrix with entriesy);;= x;, and use the notation In deriving the expressions for the mass iny®AT one

xas=(xa+ xg)/2. Note that this notation coincides with the could use a very convenient “trick” relating these expres-
standard way of denoting matrix elements only for the diag-sions to the corresponding expressions in ording®l. As
onal entries. The same convention is useddolt is conve-  mentioned earlier, the LO Wilson chiral Lagrangiép, Eq.
nient to define another matriyx, = y+ p, which is the com- (2.9), can be obtained fromyPT LO Lagrangian by the
bination that appears if,. The subscript notation forz ~ Simple substitutiony— xy+p (or x— u). Thus any quantity
follows that of y andp, except for the quantities , andu,,  h(x) in xPT that depends only on the LO Lagrangian can be
which are defined below. trivially reproduced in WPT according toh(yx)—h(x

+p). This is true for the LO and NLO loop diagrams that

contribute to the mass. Similar results also hold for the decay

We thank Paulo Bedaque and Andrew Cohen for helping us unconstant. We provide the expressions for the mass in ordi-

derstand this issue. nary xPT in Appendix A for comparison.
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B. Decay constants volves adding a discretized version of the Pauli term in Eq.
The decay constant is given through NLO by (2.4) to the Wilson actiqn in Eq(2._1) which exactly cancels
the S; term in the continuum action, Eq2.3). This means
fas=(fas)ot (fas)nLo.oop™ (faB)NLOweer  (3.8)  that up toO(a?) the lattice theory is just QCD, and at low
energies we expegtPT to be a good description. From the

with perspective of VWWPT this is equivalent to saying that using
(fap)lo="T, (3.9 an improved action sets alV,=0. This is of course not
surprising: the use of improved action is meant to eliminate
1 all O(a) dependence from observables, and e coeffi-
(faB)NLO,Ioop= — > wij log wij cients parametrize exactly this dependence. One should not
64mf i-123 conclude from this that improving the action is enough for
j=A,B . .
complete O(a) improvement. As mentioned above, some
1 Ha dimension-5 operators that are allowed by the symmetries,
+ 19272 (ka—up))log M_> and can therefore appear 3, are implicitly absorbed i1,
by replacing the bare parameters & with renormalized
log(pal puy) ones. This is a necessary step, and it is compatible with the
+ 2 RQBI“X T . fact that in improvement schemes, in addition to using an
X=1,7 MA™ Mx ,
improved action, one must use improved operators.
_ log(ug/py) 31
B~ My (310 IV. PARTIALLY QUENCHED THEORIES

12 4 WyxPT is appropriate for the type of lattice simulations
(fAB)NLo,tree:T(L4Y+W4D+?(L5XAB+W5PAB)- which are called “unquenched.” These are simulations in
(3.11) which there are 2 or 3 dynamical fermiofeso called “sea
’ quarks”), and expectation values are calculated of operators
) ) which are constructed from a different type of fermions
C. WxPT, O(a%), and improvement (“valence quarks’) which have the same masses as the sea
In the simplest sense, the expressions for the mass amiiarks. In most lattice simulations, however, the masses of
decay constant in WPT can be used to aid in taking the the valence quarks are not taken to be the same as those of
continuum limit. These forms provide all the linemdepen- the sea quarks. Simulations that are done this way are called
dence, as well as non-trivial logarithms that involweand  partially quenchedPQ). Theoretically this can be described
m, . Atest of these formulas would be to check whether theyby a QCD-like construction which includes gho$10].
describe thea dependence better than naive extrapolationsThe low-energy behavior of these theories is described by
Perhaps a more useful way to think about it is that with theséQ xPT [10], which has the same unknown low-energy con-
expressions one can determine the GL coefficients directlgtants ag¢PT for ordinary QCD[11]. Thus, PQ simulations
from lattice data at finite. provide additional mass parameters that can be used to probe
What about higher orders ia? At ordera?® the picture the theory in a larger parameter space, and gain better statis-
changes qualitatively. There are operatorsSy such as tics in determining the GL coefficien{d2,13. It is of clear
ZIZ)DNDMJJ, that do not break the chiral symmetry. This Practical value to consider the generalization of P to the
means tha can no longer be associated only with symme-PQ case. _ _ _
try breaking effects, and spurion analysis cannot be used to PQ QCD contains three different types of spin-half
constrain thea? operators. Nevertheless, we might still ex- Particles—valence quarks, sea quarks, and ghosts which
pand ine and & simultaneously. The LOO(e, ) Lagrang-  Obey Bose-Einstein statistics. There is a single ghost flavor
ian, and consequently the LO mass and decay constant af@/ €very valence quark, and they both have the same mass.
unchanged. At NLOO(€2, €5, 5%), there are severad(a?) The quark mass matrix for.a theory with 2 valence quarks, 3
operators that are added to the Lagrangian, but they are aff@ quarks, and 2 ghosts is
independent of the quark masses and do not contain deriva-

tives. Consequently, the only correction to the meson masses my=diag (my ,mp,myma,msimy ,mp). 4.1
, , 16 ] LA s T AT (4.0
at this order is an additional term of the forra“, wherew valence sea ghost

is an unknown constant of mass-dimension 4. The expression
for the decay constant does not receawiy corrections at this  xPT for PQ QCD is constructed in terms of this matrix, or in
order. This is because tree level contributions to the decaterms of y which is still defined through Eq2.5), and the
constant can only come from operators that contain derivaresult is a Lagrangian identical to the one for ordingBT,
tives. but with an extended flavor structure and with super-traces
Improvement scheme€irst suggested by Symanzik in replacing the traces. Because of the great formal similarity
Ref. [4])—using an improved action and improved between QCD and PQ QCD, the extension of £ to PQ
operators—are another important tool for studying and reWxPT is a simple generalization of the discussion in the
ducing discretization effec{®,8]. Using improved action in- previous section. In particular, the LO and NLO Lagrangians
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for PQ WyPT have forms just like in Eq$2.9), (2.10, with ~ where
traces replaced by super-traces. Further, as in the continuum, Yoot X 0= 2; (A5)
the low-energy constants’s andW,’s are exactly the same AT '
in the PQ and unquenched Y9 T. It follows that one can
use the Wilson chiral expressions for PQ theories to extract
the GL coefficients. _ _
For completeness, we provide the expressions for the RQE’:M, R’;B=u.
mass and decay constant for PQyRT in Appendix B. Xn™ Xm Xm™ Xg
Again, as in unquenched theories, the LO and NLO loop P P
results in PQ WPT are trivially related to the corresponding |(3H)ere, againCis the flavor that is different from both and
results in PQyPT which have been calculated [ih2]. '

X=X7=(X1X2F X1X3T X2X3)/3, (A6)

(A7)

V. SUMMARY APPENDIX B: PQ W xPT RESULTS

. . The forms of the Lagrangians in unquenched and PQ
We constructed a low-energy EFT, MT, of the Wilson theory are the same, with an implicit difference in the struc-

lattice action close to the continuum. The theory extend ; .
PT, and the perturbative framework is described in terms OTure of the matrices in flavor space and the. replacer_nent of
XL races with super-traces. Thus all tree contributions in both

;Wgcisr:nguT%f%giféizgaqlgﬁrghiﬂﬁa arr;i t&irlgltjtmhe theories have the same dependencg @mdp. In particular,

P 4 ga. eutwyle grang 9 the LO and NLO tree results are still given by E@3.2),
O(p”) in xPT) was modified to incorporate all linear depen- (3.4) and Eqs.(3.9), (3.11) for the mass and the decay con-
dence oma. We applied this theory to calculate light meson T A : .

stant respectively, with appropriateand p matrices for PQ

masses and decay constants. The resulting expressions C%Pﬁ]ulations.(The structure op in PO WyPT is determined

ltgrzrﬁuntgeﬂl]g‘teggt:ﬁpgngﬁgfﬁ m;ajs\ggll ss l?g:t}g:]wg]! by r in the PQ version of the Wilson action. The latter must
9 9 a: PP have a structure similar tmg, Eq. (4.1), that is needed to

this theory is the determination of the Gasser-Leutwyler co- .
efficients of ordinaryyPT from lattice simulations at small guarantee the exact cancellation between valence and ghost

loops) We give here only the NLO loop results, which are

but finite a. different from the unquenched expressions.
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APPENDIX A: xPT RESULTS { A B UA— g

We present the expressions for the mass of a flavor- x Dt waDet )2
charged light meson iyPT for comparison with WPT re- LADA 18Dt (1a~ o))
sults. As explained in the text, one can see that the LO and log(mal pey)
NLO loop expressions in WPT can be obtained from the +X:Em7 Rasx(ka— e La— fhy
correspondingyPT results with the substitutioy— x+ p '

(x— u). Using the same notation as in E¢3.2—(3.7), the log( g/ py)
masses through NLO with three quark flavors [lr2]: e iy (B2)
M»ZAB:(M%B)LO+(MiB)NLO,Ioop+(MiB)NLO,treev where
(A1)
with M2 = A2) AL iz
(Mag)Lo= XAB: Ry=— o y=AB,m .y EX
1 IT (y= w0
(MiB)NLOJoop: > > XAB E RQBXxlogXXi (A3) Fy™ Bx
48f“r X=m,n
4 — 8 o
(MZg)nLo,ree= =5 (2Le—La)xasx+ =5 (2Lg—Ls) Xag. i:gz,s (13 1)
f f D,= . (B3)
(A4) (M= ) (= 1)
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