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Chiral symmetry restoration and the Z3 sectors of QCD
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Quenched QCD has aZ3 phase transition which is explicitly broken for dynamical calculations. Knowing
whether or not the chiral phase transition occurs at the same temperature for allZ3 sectors and whether this
critical temperature coincides with the deconfinement transition could be crucial to understand the underlying
microscopic dynamics also for the full theory. We use the existence of a gap in the Dirac spectrum as an order
parameter for the restoration of chiral symmetry. We find that the spectral gap opens up at the same critical
temperature in allZ3 sectors in contrast with earlier claims in the literature.
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One of the most widely discussed puzzles of QCD is
relationship between the deconfinement and chiral ph
transition. In the quenched approximation the Polyakov lo
is an order parameter and the theory has aZ3 @1# symmetry
the spontaneous breaking of which defines the deconfi
ment phase transition with a critical temperatureTZ3

. For

vanishing quark mass the chiral condensate^c̄c& is an order
parameter for chiral symmetry breaking which vanish
above a critical temperatureTx . In the real world quark
masses are nonzero and the center symmetryZ3 is explicitly
broken. In this case one can define some deconfinement
peratureTdec from the analysis of e.g. the energy density
the heavy quark-antiquark potential. There is much deb
about the underlying mechanisms which link these differ
transition temperatures~see e.g.@2#! which can be summa
rized by the following question: ‘‘AreTZ3

,Tx and Tdec re-
lated and, if yes, how precisely?’’ This can probably only
answered by identifying the relevant microscopic dynam
In @3# it was claimed that the restoration of chiral symme
happens at different temperatures in the real (w;0) and
complex sectors of the Polyakov loop (w;62p/3) which, if
true, suggests that there is at least no simple relation
betweenTZ3

andTx . Obviously the question of whether th
observation is correct is thus highly important for this who
discussion. Reference@3# inspired various attempts@4# to
find possible mechanisms to explain a higher transition te
perature for the complex sector or even a complete abs
of chiral symmetry restoration for the case of SU~2! configu-
rations with negative Polyakov loop. Also, there exists
large literature more generally related to this question;
@5,6# for some examples. Let us note that even if it we
irrelevant for full QCD the center symmetry could still lea
to fascinating phenomenological consequences in supers
metric Yang-Mills theories@5#. Thus the investigation of its
properties is also relevant on more general grounds.

In this paper we reexamine this problem within latti
QCD using chirally improved fermions. In contrast to@3#,
which used staggered fermions, we find that the criticalb of
the chiral phase transition does not depend on theZ3 sector,
but is coincident with theZ3 breaking transition in all three
sectors.

Instead of directly measuring the chiral condensate
analyze in detail the spectrum of the lattice Dirac opera
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The densityr(l) of the eigenvaluesl of the Dirac operator
is connected to the chiral condensate via the Banks-Ca
formula @7#,

^c̄c&52
p

V
r~0!, ~1!

wherer(0) is the eigenvalue density near the origin andV is
the volume of the box. Note that exact zero modes wh
come from isolated instantons do not contribute to the d
sity r(0) at the origin. The reason is that the number of ze
modes is believed to scale asV1/2 and thus they do not con
tribute when performing the thermodynamic limit in Eq.~1!.
At low temperatures when QCD is in the chirally broke
phase the density is nonzero at the origin, while in the h
temperature phaser is zero in a finite region around th
origin, i.e. the spectrum develops a gap~up to isolated zero
modes! and the chiral condensate vanishes~compare Fig. 1
below!. The question of whether chiral symmetry is restor
at the same critical temperature in all sectors of the Polya

FIG. 1. Three typical spectra of the chirally improved operat
Only the 50 eigenvalues closest to the origin are plotted. Left p
the chirally broken phase (63203,b58.10); central plot: the sym-
metric phase (63203,b58.60) for complex Polyakov loop; righ
plot: the symmetric phase for real Polyakov loop. The full curve
the Ginsparg-Wilson circle.
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loop can now be reformulated in terms of the spectral g
As we increase the temperature, does the gap open up a
same temperature for all three sectors of the Polyakov lo

Before the advent of chirally symmetric formulations f
the lattice Dirac operator such a study was quite awkward
particular the spectrum of the Wilson lattice Dirac opera
shows large fluctuations close to the origin@8# and the notion
of a spectral density is not well defined. The situation h
changed, since the rediscovery of the Ginsparg-Wilson eq
tion @9#. Dirac operatorsD which obey the Ginsparg-Wilson
equation have eigenvalues which lie on a circle and it
straightforward to identify a spectral density and study
emergence of the spectral gap. However, the only exact
lution of the Ginsparg-Wilson equation, the overlap opera
@10#, has the drawback of being very expensive in a num
cal implementation.

Here we work with thechirally improved operatorwhich
is a systematic expansion of a solution of the Ginspa
Wilson equation@11#. In particular we use an approximatio
which has 19 terms in the expansion and is described
detail in @12,13#. The computation of the eigenvalues of th
Dirac operator was done with the implicitly restarted Arno
method@14#.

For our quenched gauge configurations we use
Lüscher-Weisz action@15#. We work on lattices of sizeLT
3L3 with the temporal extentLT56 and two values for the
spatial extent,L516 andL520. We use periodic boundar
conditions for the gauge fields, while for the fermions t
boundary conditions are periodic only for the space dir
tions but antiperiodic for the time direction. Our statistics
800 configurations for the 63163 lattices and 400 for the 6
3203 lattices. We use 6 different values of the inverse co
pling b which gives rise to ensembles on both sides of
phase transition. In Table I we list our values ofb, the lattice
spacinga @16# and the temperatureT. We used the coeffi-
cients given by tadpole-improved perturbation theo
@15,17#. Our values for the couplingsb rt and bpg for the
rectangle and parallelogram terms in the Lu¨scher-Weisz ac-
tion can be found in@16#.

The division of the configurations into subsets with re
and complex Polyakov loop is implemented as follows: Co
figurations which have a Polyakov loop with a phaseuwu
<2p/6 are assigned to the real sector while all other c
figurations fall in the complex sector. For the high tempe
ture phase this allows for a clear separation of the three
tors of the Polyakov loop even on a finite lattice as can e
be seen from the scatter plots for the Polyakov loops sho
in @13#.

Let us begin the discussion of the spectral gap with a lo
at typical spectra of our Dirac operator. In Fig. 1 we show
distribution in the complex plane of the 50 smallest eige
valuesl for three different gauge configurations on 63203

TABLE I. Parameters for our gauge field configurations. We
the values ofb, the lattice spacinga and the temperatureT.

b 8.10 8.20 8.25 8.30 8.45 8.60

a(fm) 0.125 0.115 0.110 0.106 0.094 0.084
T(MeV) 264 287 299 311 350 391
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lattices. The symbols are our numerical results and the
curve is the so-called Ginsparg-Wilson circle, i.e. the cir
of radius 1 in the complex plane with center 1. For our a
proximate Ginsparg-Wilson operator the eigenvalues do
fall exactly on the circle but show small fluctuations arou
the circle. However, the eigenvalues are sufficiently well
dered to allow for the notion of a spectral density and a cl
identification of the spectral gap.

The plot on the left-hand side shows the spectrum fo
configuration in the low temperature, chirally broken pha
For this case the eigenvalues extend all the way to the or
and there is a nonvanishingr(0) such that the Banks-Cashe
relation ~1! gives rise to a nonvanishing chiral condensate

The central and the right-hand side plots show spectra
configurations in the high-temperature, chirally symmet
phase. The central plot is for a configuration with compl
Polyakov loopP, while the right-hand side result is for rea
Polyakov loop. Both of these plots have a well pronounc
spectral gap. The spectral density at the origin vanishes
so does the chiral condensate. For the complex sector the
is considerably smaller than for the real sector.

One can understand this difference between the sector
considering the fermion boundary conditions. In the real s
tor the boundary condition

c~xW ,t11/T!52c~xW ,t ! ~2!

gives a Matsubara frequencypT to the fermions. In the com-
plex Z3 sectors the boundary condition is effectively

c~xW ,t11/T!5e6 ip/3c~xW ,t !, ~3!

giving a Matsubara frequencypT/3. In the free-field case
~i.e. b→`) the smallest eigenvalue is equal to the Matsu
ara frequency, giving a gap 3 times larger in the case of
~2! compared with Eq.~3!. It is thus reasonable that the re
sector gap is considerably larger than the complex sector
in the interacting case too.

In quenched QCD the finite temperature phase transi
appears to be a weak first order phase transition@18#. A first
order phase transition is governed by the mixing of tw
phases and the behavior of their free energies. In our part
lar example we have a low temperature phase character
by a vanishing spectral gap and a high temperature ph
with a finite spectral gap. For temperatures sufficiently bel
or above the critical temperature the system is in only one
the two phases while near the critical temperature the sys
shows mixing of the two phases.

We demonstrate this mixing in Fig. 2 where we sho
histograms for the distribution of the spectral gap at th
different values of the temperature. We define the spec
gap gl to be the imaginary part of the smallest eigenva
which is not a topological zero-mode~as remarked above
these modes do not contribute to the spectral density!. Topo-
logical modes can be identified uniquely since for o
chirally improved operator it can be shown that they ha
exactly vanishing imaginary part and the correspond

t
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eigenstates have a nonvanishing matrix element withg5,
while this matrix element vanishes identically for nonze
modes.

We show histograms for the distribution ofgl for T
,Tc ,T;Tc and forT.Tc . The top row displays the result
for the complex sector of the Polyakov loopP, while the
bottom row is for real Polyakov loop. The data were co
puted on 63203 lattices. Since for the real sector (w;0) the
statistics is only half of the statistics for the complex sec
(w;12p/3 and 22p/3) we doubled the bin size for th
two histograms in the real sector atT;Tc andT.Tc .

At T,Tc we find for all sectors a single peak near t
origin. This peak is not located exactly at 0 since also in
chirally broken phase the Dirac operator of a finite syst
has a microscopical gap which vanishes asL23 @19#. For
temperatures nearTc the histograms show a clear doub
peak structure characteristic for the first order transition. T

FIG. 3. The expectation valuêuPu& of the modulus of the
Polyakov loop as a function ofb. The symbols indicate the numer
cal results while the curve is a fit to Eq.~4!. We display results for
63163 and 63203 lattices.

FIG. 2. Histograms for the spectral gapagl . We show our
results for lattice size 63203 at three temperaturesT,Tc(b
58.10),T;Tc(b58.30) andT.Tc(b58.60). The top row dis-
plays the results for the complex sector of the Polyakov loopP,
while the bottom row is for real Polyakov loop.
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left peak corresponds to the chirally broken phase with
vanishing gap and the right peak is from the chirally sy
metric phase with nonvanishing gap. As one increases
temperature further, only the right peak survives. As alrea
noted in the discussion of Fig. 1 the gap is larger in the r
sector, i.e. the right peak sits at larger values ofgl for the
real sector. In addition this peak is wider than the cor
sponding peak in the complex sector, i.e. the gap fluctua
more strongly around its mean value in the real sector.

In order to describe the first order transition we use
simple ansatz for the behavior of observables. Let us fi
discuss the somewhat simpler case of the Polyakov loop
an infinite system the Polyakov loopP vanishes belowbc
and has a nonvanishing modulusuPu abovebc . On a finite
lattice the Polyakov loop does not vanish exactly belowbc
but disappears likeV21/2, i.e. likecL23/2 with some constant
c. Abovebc the dependence onL is negligible and to leading
orderuPu is linear inb, i.e. described byd1k(b2bc). Fol-

FIG. 4. The spectral gap in lattice units as a function ofb. The
symbols indicate the numerical results and the full curve is a fi
formula ~5!. We display results for 63163 and 63203.

TABLE II. Values of bc and the critical temperature from th
analysis of the Polyakov loop and the spectral gap in the comp
and the real sectors for the ensembles with Lu¨scher-Weisz action
and chirally improved fermions.

Measurement : ^uPu& ^gl&complex ^gl& real

bc : 8.24~1! 8.29~2! 8.27~2!

Tc(MeV): 296~3! 308~5! 303~5!
2-3
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lowing the ideas in@20# one arrives at the conclusion th
near the transition the expectation value ofuPu should be
given by

^uPu&5
cL23/2e2D f L3(b2bc)13@d1k~b2bc!#

e2D f L3(b2bc)13
. ~4!

The term2D f V(b2bc) is the difference in the free ene
gies of the two phases. Atb5bc the two free energies ar
equal while belowbc the free energy of the chirally broke
phase is smaller than the free energy of the chirally symm
ric phase and vice versa abovebc . The factors 3 in the
second terms in the numerator and denominator come f
the three possible values for the phase of the Polyakov lo
In Fig. 3 we show a fit of Eq.~4! ~curves! to our numerical
data~symbols!. In particular we present a common fit to bo
the 63163 and 63203 ensembles. This is possible since t
parametersd andk are essentially independent ofL. The fit
result for bc is given in Table II below. The fit shows tha
both theL and theb dependence are well described by E
~4!. We use a similar ansatz for the spectral gapgl :

^gl& r ,c

5
c8L23e2D f L3(b2bc)13@dr ,c~L !1kr ,c~L !~b2bc!#

e2D f L3(b2bc)13
.

~5!
f
,
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The subscriptsr andc indicate the real and complex secto
of the Polyakov loop respectively. Note that now we use
knownL23 behavior of the microscopical spectral gap in t
chirally broken phase@19#. In the chirally symmetric phase
the gap is essentially linear inb but the coefficientsdr ,c and
kr ,c turn out to beL dependent. Thus in a common fit to th
63163 and 63203 ensembles these parameters had to
varied independently. Again the fit results forbc are given in
Table II. In Fig. 4 we plot our numerical data for the ga
together with the curves~5!. The top plot gives the results fo
the complex sector while the bottom plot shows the r
sector. As for the Polyakov loop we find that the numeric
data are reasonably well described by the simple first or
transition formula. When comparing the results for the cr
cal beta as given in Table II we find that within the accura
we achieved the spectral gap vanishes at the samebc for
both the real and the complex sectors of the Polyakov lo
Furthermore this value is compatible withbc as obtained
from the analysis of the Polyakov loop. Combining the thr
methods we find a critical temperature of 30063 MeV for
the Lüscher-Weisz action which is slightly larger than th
result for Wilson’s gauge action.

The numerical calculations were done on the Hita
SR8000 of the Leibniz Rechenzentrum in Munich. We tha
the staff of the LRZ for training and support. C.G. acknow
edges support by the Austrian Academy of Sciences~APART
654!.
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