PHYSICAL REVIEW D 66, 054502 (2002

Chiral symmetry restoration and the Z; sectors of QCD
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Quenched QCD has &; phase transition which is explicitly broken for dynamical calculations. Knowing
whether or not the chiral phase transition occurs at the same temperature Zgrsaittors and whether this
critical temperature coincides with the deconfinement transition could be crucial to understand the underlying
microscopic dynamics also for the full theory. We use the existence of a gap in the Dirac spectrum as an order
parameter for the restoration of chiral symmetry. We find that the spectral gap opens up at the same critical
temperature in alZ; sectors in contrast with earlier claims in the literature.
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One of the most widely discussed puzzles of QCD is theThe densityp(\) of the eigenvalue& of the Dirac operator
relationship between the deconfinement and chiral phasis connected to the chiral condensate via the Banks-Casher
transition. In the quenched approximation the Polyakov loogormula[7],
is an order parameter and the theory hag;d1] symmetry
the spontaneous breaking of which defines the deconfine-
ment phase transition with a critical temperatdig. For

— T
() =—1,p(0), (1)
vanishing quark mass the chiral condensaté) is an order ) ) _ o
parameter for chiral symmetry breaking which vanishesvherep(0) is the eigenvalue density near the origin ahis
above a critical temperatur€,. In the real world quark the vqume.of the b.ox. Note that exact zero modes which
masses are nonzero and the center symniggiig explicity ~ come from |solat¢d_ instantons do not contribute to the den-
broken. In this case one can define some deconfinement terify p(0) at the origin. The reason is that the number of zero
peratureT 4., from the analysis of e.g. the energy density ormodes is believed to scale ¥ and thus they do not con-
the heavy quark-antiquark potential. There is much debatfibute when performing the thermodynamic limit in Ed).
about the underlying mechanisms which link these differenfAt low temperatures when QCD is in the chirally broken
transition temperature@ee e.g[2]) which can be summa- Phase the density is nonzero at thg '0r|g|n,.wh|Ie in the high
rized by the following question: *AreT,, T, and Ty, re-  temperature phas is zero in a finite region around the

lated and, if yes, how precisely?” This can probably only beorigin, i.e. the spectrum develops a ga to isolated zero

answered by identifying the relevant microscopic dynamicsgqe(ig\(?\b3 ?_?]2 theesctr']cl)rr?lo(lionr?:tuzfitghyrzl?lssrﬁ?nn;??r'es Iiclegs.tolre q
In [3] it was claimed that the restoration of chiral symmetry ' quest w ' Y yl

happens at different temperatures in the reat-Q) and at the same critical temperature in all sectors of the Polyakov

complex sectors of the Polyakov loop { * 27/3) which, if
true, suggests that there is at least no simple relationshij 04
betweenTz3 andT, . Obviously the question of whether this

observation is correct is thus highly important for this whole
discussion. ReferenciS] inspired various attemptg4] to

find possible mechanisms to explain a higher transition tem-
perature for the complex sector or even a complete absenc
of chiral symmetry restoration for the case of @Uconfigu- <
rations with negative Polyakov loop. Also, there exists a ,§
large literature more generally related to this question; see
[5,6] for some examples. Let us note that even if it were
irrelevant for full QCD the center symmetry could still lead

to fascinating phenomenological consequences in supersymn
metric Yang-Mills theorieg5]. Thus the investigation of its

T<T,P=0 T>T,, P complex T>T, , Preal
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properties is also relevant on more general grounds.

In this paper we reexamine this problem within lattice
QCD using chirally improved fermions. In contrast [i8],
which used staggered fermions, we find that the critjgaff
the chiral phase transition does not depend onZtheector,
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FIG. 1. Three typical spectra of the chirally improved operator.
Only the 50 eigenvalues closest to the origin are plotted. Left plot:

but is coincident with th&Z; breaking transition in all three  the chirally broken phase (620% 8=8.10); central plot: the sym-

sectors. metric phase (& 20°,3=8.60) for complex Polyakov loop; right
Instead of directly measuring the chiral condensate welot: the symmetric phase for real Polyakov loop. The full curve is

analyze in detail the spectrum of the lattice Dirac operatorthe Ginsparg-Wilson circle.
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TABLE I. Parameters for our gauge field configurations. We listlattices. The symbols are our numerical results and the full

the values ofg, the lattice spacing and the temperaturé. curve is the so-called Ginsparg-Wilson circle, i.e. the circle
of radius 1 in the complex plane with center 1. For our ap-

B 810 820 825 830 845 860 proximate Ginsparg-Wilson operator the eigenvalues do not

a(fm) 0125 0115 0110 0106 0094 0084 fall exactly on the circle but show small fluctuations around

the circle. However, the eigenvalues are sufficiently well or-
dered to allow for the notion of a spectral density and a clear
identification of the spectral gap.
loop can now be reformulated in terms of the spectral gap: The plot on the left-hand side shows the spectrum for a
As we increase the temperature, does the gap open up at thenfiguration in the low temperature, chirally broken phase.
same temperature for all three sectors of the Polyakov l00pRor this case the eigenvalues extend all the way to the origin
Before the advent of chirally symmetric formulations for and there is a nonvanishing0) such that the Banks-Casher
the lattice Dirac operator such a study was quite awkward. Ie|ation (1) gives rise to a nonvanishing chiral condensate.
particular the spectrum of the Wilson I.attlce Dirac operator  The central and the right-hand side plots show spectra for
shows large fluctuqtlons close to the prlm} and th_e notion configurations in the high-temperature, chirally symmetric
of a spectral density is not well defined. The situation ha hase. The central plot is for a configuration with complex
changed, since the rediscovery of the Ginsparg-Wilson equ 'olyakov loopP, while the right-hand side result is for real

tion [9]. Dirac gperator® which obey the Ginsparg-Wilson Polyakov loop. Both of these plots have a well pronounced

equation have eigenvalues which lie on a circle and it is . o .
straightforward to identify a spectral density and study theSpeCtraI gap. The spectral density at the origin vanishes and
50 does the chiral condensate. For the complex sector the gap

emergence of the spectral gap. However, the only exact sQ .
lution of the Ginsparg-Wilson equation, the overlap operatofS considerably smaller than for the real sector.
[10], has the drawback of being very expensive in a numeri- ©One can understand this difference between the sectors by
cal implementation. considering the fermion boundary conditions. In the real sec-
Here we work with thechirally improved operatowhich ~ tor the boundary condition
is a systematic expansion of a solution of the Ginsparg-
Wilson equatior11]. In particular we use an approximation
which has 19 terms in the expansion and is described in
detail in[12,13. The computation of the eigenvalues of the
Dirac operator was done with the implicitly restarted Arnoldi gives a Matsubara frequeneyT to the fermions. In the com-
method[14]. plex Z5 sectors the boundary condition is effectively
For our quenched gauge configurations we use the
Luscher-Weisz actiof15]. We work on lattices of sizé
x L2 with the temporal extenit;=6 and two values for the
spatial extentL. =16 andL =20. We use periodic boundary
conditions for the gauge fields, while for the fermions thegiving a Matsubara frequencyT/3. In the free-field case
boundary conditions are periodic only for the space direc{i.e. B—x) the smallest eigenvalue is equal to the Matsub-
tions but antiperiodic for the time direction. Our statistics isara frequency, giving a gap 3 times larger in the case of Eq.
800 configurations for the %16° lattices and 400 for the 6 (2) compared with Eq(3). It is thus reasonable that the real
X 20° lattices. We use 6 different values of the inverse cou-sector gap is considerably larger than the complex sector gap
pling B which gives rise to ensembles on both sides of thdan the interacting case too.
phase transition. In Table | we list our values@fthe lattice In quenched QCD the finite temperature phase transition
spacinga [16] and the temperaturé. We used the coeffi- appears to be a weak first order phase trans[ti@h A first
cients given by tadpole-improved perturbation theoryorder phase transition is governed by the mixing of two
[15,17. Our values for the couplingg,; and B, for the  phases and the behavior of their free energies. In our particu-
rectangle and parallelogram terms in thésther-Weisz ac- lar example we have a low temperature phase characterized
tion can be found if16]. by a vanishing spectral gap and a high temperature phase
The division of the configurations into subsets with realwith a finite spectral gap. For temperatures sufficiently below
and complex Polyakov loop is implemented as follows: Con-or above the critical temperature the system is in only one of
figurations which have a Polyakov loop with a phdgé  the two phases while near the critical temperature the system
<2m/6 are assigned to the real sector while all other conshows mixing of the two phases.
figurations fall in the complex sector. For the high tempera- We demonstrate this mixing in Fig. 2 where we show
ture phase this allows for a clear separation of the three sedistograms for the distribution of the spectral gap at three
tors of the Polyakov loop even on a finite lattice as can e.gdifferent values of the temperature. We define the spectral
be seen from the scatter plots for the Polyakov loops showgap g, to be the imaginary part of the smallest eigenvalue
in [13]. which is not a topological zero-modas remarked above,
Let us begin the discussion of the spectral gap with a lookhese modes do not contribute to the spectral dendippo-
at typical spectra of our Dirac operator. In Fig. 1 we show thdogical modes can be identified uniquely since for our
distribution in the complex plane of the 50 smallest eigen-chirally improved operator it can be shown that they have
values\ for three different gauge configurations ox80°  exactly vanishing imaginary part and the corresponding

T(MeV) 264 287 299 311 350 391

P(X,t+1T) = — (X, 1) 2)

(X, t+1T) =" By(x,1), 3
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FIG. 2. Histograms for the spectral gam, . We show our
results for lattice size 820° at three temperature3 <T.(B
=8.10),T~T(B=8.30) andT>T(B=8.60). The top row dis-
plays the results for the complex sector of the Polyakov 18pp
while the bottom row is for real Polyakov loop.

eigenstates have a nonvanishing matrix element wih
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TABLE II. Values of 8. and the critical temperature from the
analysis of the Polyakov loop and the spectral gap in the complex
and the real sectors for the ensembles wittsdher-Weisz action
and chirally improved fermions.

Measurement : <|P|> <g)\>complex (g)\>rea|
Be: 8.241) 8.292) 8.272)
To(MeV): 296(3) 30805) 3035)

left peak corresponds to the chirally broken phase with a
vanishing gap and the right peak is from the chirally sym-
metric phase with nonvanishing gap. As one increases the
temperature further, only the right peak survives. As already
noted in the discussion of Fig. 1 the gap is larger in the real
sector, i.e. the right peak sits at larger valuegpffor the

real sector. In addition this peak is wider than the corre-
sponding peak in the complex sector, i.e. the gap fluctuates
more strongly around its mean value in the real sector.

In order to describe the first order transition we use a
simple ansatz for the behavior of observables. Let us first
discuss the somewhat simpler case of the Polyakov loop. In
an infinite system the Polyakov lodp vanishes belows3,

while this matrix element vanishes identically for nonzeroand has a nonvanishing modull3| aboveg.. On a finite

modes.
We show histograms for the distribution of, for T

lattice the Polyakov loop does not vanish exactly bel@w
but disappears lik¥ ~*2 i.e. like cL %2 with some constant

<T.,T~T.and forT>T,. The top row displays the results C. Above 3. the dependence dnis negligible and to leading

for the complex sector of the Polyakov lody while the

bottom row is for real Polyakov loop. The data were com-

puted on 6x 20° lattices. Since for the real sectap{-0) the

statistics is only half of the statistics for the complex sector

(¢~+27m/3 and —27/3) we doubled the bin size for the
two histograms in the real sector &t-T. andT>T,.

At T<T, we find for all sectors a single peak near the
origin. This peak is not located exactly at 0 since also in the?,
chirally broken phase the Dirac operator of a finite system e 0.05

has a microscopical gap which vanisheslas® [19]. For

temperatures neaf. the histograms show a clear double
peak structure characteristic for the first order transition. The
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FIG. 3. The expectation valugP|) of the modulus of the
Polyakov loop as a function g8. The symbols indicate the numeri-
cal results while the curve is a fit to E@l). We display results for
6x16° and 6x 20° lattices.

order|P| is linear ing, i.e. described by +k(8— B.). Fol-
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FIG. 4. The spectral gap in lattice units as a functiorBofThe
symbols indicate the numerical results and the full curve is a fit to
formula (5). We display results for 8 16° and 6x 20°.
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lowing the ideas iM20] one arrives at the conclusion that The subscripts andc indicate the real and complex sectors
near the transition the expectation value|B{ should be of the Polyakov loop respectively. Note that now we use the

given by known L ~3 behavior of the microscopical spectral gap in the
s chirally broken phasg19]. In the chirally symmetric phase
cL~¥%e AT A7 A+ 3[d+ k(B~ Be) ] the gap is essentially linear j but the coefficientsl, . and
(IP)= e AML3(B-B0) 4 3 - @ K; ¢ turn out to beL dependent. Thus in a common fit to the

6x16° and 6x20° ensembles these parameters had to be
The term—AfV(B8— B.) is the difference in the free ener- varied independently. Again the fit results {8¢ are given in
gies of the two phases. A8= . the two free energies are Table II. In Fig. 4 we plot our numerical data for the gap
equal while belows, the free energy of the chirally broken together with the curve). The top plot gives the results for
phase is smaller than the free energy of the chirally symmethe complex sector while the bottom plot shows the real
ric phase and vice versa aboy . The factors 3 in the sector. As for the Polyakov loop we find that the numerical
second terms in the numerator and denominator come froflata are reasonably well described by the simple first order
the three possible values for the phase of the Polyakov loogransition formula. When comparing the results for the criti-
In Fig. 3 we show a fit of Eq(4) (curve$ to our numerical cal beta as given in Table Il we find that within the accuracy
data(symbols. In particular we present a common fit to both we achieved the spectral gap vanishes at the sgmtor
the 6x 16° and 6x 20° ensembles. This is possible since theboth the real and the complex sectors of the Polyakov loop.
parametersl andk are essentially independent bf The fit ~ Furthermore this value is compatible wif, as obtained
result for B, is given in Table Il below. The fit shows that from the analysis of the Polyakov loop. Combining the three
both theL and theg dependence are well described by Eq.methods we find a critical temperature of 308 MeV for

(4). We use a similar ansatz for the spectral ggp the Lischer-Weisz action which is slightly larger than the
result for Wilson’s gauge action.
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