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Perturbative QCD analysis of B— ¢K* decays

Chuan-Hung Chen
Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China

Yong-Yeon Keum
Department of Physics, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan

Hsiang-nan Li
Institute of Physics, Academia Sinica, Taipei, Taiwan 115, Republic of China
and Department of Physics, National Cheng-Kung University, Tainan, Taiwan 701, Republic of China
(Received 17 April 2002; published 26 September 2002

We study the first observed charmléss: VV modes, thdB— ¢K* decays, in perturbative QCD formalism.
The obtained branching ratid(B— ¢K*)~15x 10 ® are larger than~9x 10 8 from QCD factorization.
The comparison of the predicted magnitudes and phases of the different helicity amplitudes, and branching
ratios with experimental data can test the power counting rules, the evaluation of annihilation contributions,
and the mechanism of dynamical penguin enhancement in perturbative QCD, respectively.
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The branching ratios of the penguin-domina®d-K=  ing a soft cloud around the heatayquark, carries momentum

decays, about 3-4 times larger than those of the treesf order A. The spectator quark on the light-meson side
dominatedB— 77 decays, indicate that penguin contribu- carries momentum oD(Mg) in order to form the fast-
tions must be enhanced. This enhancement can be achiev[;‘-l.q)ving light meson with the quark produced in thb quark
either by large Wilson coefficient§, ¢ associated with the  gecay. Note that the end-point singularities from the small
penguin operators in perturbative QGBQCD [1-3], or by  gpectator momentum on the light-meson side do not exist in
a large chiral symmetry breaking scaig associated with 5 self-consistent PQCD formalism, because of Sudakov sup-
the kaon in QCD factorizatiofQCDF) [4,5]. The latter  ,resgion fromk, and threshold resummatiofisl, 17, Based
mechanism, called chiral enhancement, corresponds t0 &, the above argument, the hard gluon is off-shell by order

characteristic scale oD(mp), at which we havemo(ms) of /TMB. This scale characterizes the corresponding quark-

~3 GeV and th_e smaller Wilson quff'C'erﬁS'ﬁ(mb)' The level hard amplitude, which involves the four-fermion decay
former mechanism, called dynamical enhancement, corre-

. — — vertex. Theoretically, the hard scaleMg is essential for
sponds to a characteristic scale@fyAm,), A=Mg—m, Y B

beina theB b K diff t which constructing a gauge invariaBtmeson wave function. This
€ing thes meson and® quark mass difference, at Wnich e, .4ve function, though being a nonlocal matrix element, is

have mo(VAm,)~1.5 GeV and the larger Wilson coeffi- gauge invariant in the presence of the path-ordered Wilson
cients C4 ¢( VAML) ~1.5C4 6(mp). Recently, we have pro- line integral. A careful investigatiofil3,14 shows that the
posed theB— ¢K decays as the appropriate modes to clarifyO(«Z) diagram with the second gluon attaching the hard
the above issupb,7]. These modes are not chirally enhancedgluon contributes to this line integral. That is, this diagram
becausep is a vector meson, and they are insensitive to thecontains the soft divergence, which is factorized into Ehe
variation of the unitarity anglep; because they are pure meson wave function. This is possible only when the hard
penguin processes. If the data of the branching ra8i®  gluon is off shell by the intermediate scaléM g rather than
— ¢K) are settled down at values aroundx100 ° [7,8] by M2.
instead of 4<107° [9,10], the dynamical enhancement of  |n this work we shall perform a PQCD analysis of the first
penguin contributions to charmless nonleptd@imeson de-  gpserved charmlesB—VV modes, theB— HK* decays,
cays will gain strong support. o . ~which are similar toB— ¢K, also appropriate for distin-
Here we argue why the characteristic scale involved inyyishing the different penguin enhancing mechanism. Be-
two-body B meson decays must be 6f( VAMg) in PQCD  sides, theB—VV modes reveal dynamics of exclusig
from two points of view. Consider a two-body nonleptonic meson decays more than tBe- PP andV P modes through
decay, in which the two final-state light mesons move backthe measurement of the magnitudes and the phases of various
to-back with large momenta. The lowest-order diagram fothelicity amplitudes. According to the power counting rules
its amplitude contains a hard gluon attaching the spectataitefined in[7], the longitudinal amplitude is leading, and the
quark. Intuitively, the spectator quark in tBemeson, form-  other two amplitudes are down by a powerlf; /Mg or of
Mg« IMg, M, andM» being the¢ andK* meson masses,
respectively. Since thB— ¢K* decays are insensitive to the

*Email address: chchen@phys.nthu.edu.tw unitarity angle, the relative phases among the helicity ampli-
"Email address: yykeum@eken.phys.nagoya-u.ac.jp tudes mainly arise from strong interaction. The annihilation
*Email address: hnli@phys.sinica.edu.tw contributions, which can be evaluated unambiguously in our

0556-2821/2002/66)/05401311)/$20.00 66 054013-1 ©2002 The American Physical Society



CHUAN-HUNG CHEN, YONG-YEON KEUM, AND HSIANG-NAN LI PHYSICAL REVIEW D66, 054013 (2002

approach, generate the strong phases. Therefore, compariwgé My=aes(T) e (T), 3
the predicted magnitudes and relative phases among the dif-

ferent helicity amplitudes, and the predicted branching ratios c

with experimental data, we test the power counting rules, the M= .

evaluation of annihilation contributions, and the mechanism M M«

of dynamical penguin enhancement in PQCD, respectively.

The idea of the PQCD factorization theorem for two-body We define the helicity amplitudes

nonleptonicB meson decays has been reviewed1i15,16, Ag=— EMEM,

which is subject to corrections @(a?2) andO(A/Mg). In

this formalism decay amplitudes are expressed as the convo- A= §\/§M éMN , (4)
lutions of the corresponding hard parts with universal meson

distribution amplitude§13,14], which are regarded as the A =EM M\ 2(r2— 1) My,

nonperturbative inputs. Because of the Sudakov effects from

kr and threshold resummations, the end-point singularitiesvith the normalization factog=GzP./(16mM3I') and
do not exist as stated above. Therefore, PQCD involves inthe ratior="P,- P3/(M4Mg+). These helicity amplitudes
puts less than in QCDF, for which form factors, meson dissatisfy the relation

tribution amplitudes, and infrared cutoffs for regulating the

end-point singularities are all independent paramdigs. |Al 2+ A2 +|AL?=1, (5
Strictly speaking, the infrared cutoffs, signifying important
soft contributions to the nonfactorizable and annihilation am
plitudes, imply that the factorization formulas in QCDF are
not self-consistent.

following the helicity summation in Eq.l). We also intro-
duce another equivalent set of helicity amplitudes,

: . . . Ho=M3aM,,
We work in the frame with th& meson at rest, i.e., with
the B meson momentur®,; = (Mg/+2)(1,10;) in the light- H::MEMN:M(;SMK* mMT, ©6)

cone coordinates. Assume that th€¢K*) meson moves in
the plus(minug z direction carrying the momentui,(P3) with the helicity summation
and the polarization vectors,(e3). The B— ¢K* decay

rates are written as
> MOTAMO = |Hg |24 |H, |2+ |H_|2. (7)
(o

— G'ZZPC E (o)t (o) . .. .
= 1onMZ oS MM, @ The B— ¢K* decays involve the emission and annihila-
B ’ tion topologies, both of which are classified into factorizable
. . diagrams, where hard gluons attach the valence quarks in the
where P¢=|Py,|=|P3/| is the momentum of either of the 36 meson, and nonfactorizable diagrams, where hard glu-

out_gging vector mesons, and the superscsptienotes _the ons attach the valence quarks in different mesons. The am-
helicity states of the two vector mesons wit(iT) standing plitudes are written as

for the longitudinal(transversg component. The amplitude

M) is decomposed into My=f VEFEQAVE M+ Vi FD+ VM, (8)
My=f VEFE+VEME +foVEFE+VE M)
M(U):GSM(U)E;(U’) agh’+ P,l,,P,l, H ¢Vt ' He t He" 'BVt MHa t Ha
oMicx —fgViFua— Vi Muya, 9
+i ¢ envafp, po | for the BS— ¢K*® and B"— ¢K* © modes, respectively,
M 4 M g @' 38 where the subscrigd =L,N, T denotes the different helicity
amplitudes,e(a) denotes the emissiofannihilation topol-
=MEM, +MEMyes (0=T) €5 (a=T) ogy, and yq=vgqub are the products of the Cabibbo-
Kobayashi-Maskaw&CKM) matrix elements. The hard parts
+iM Teaﬁwega(a)egﬁ(o)mpsp, (2 for the factorizable amplitudds and for the nonfactorizable
amplitudes M are derived by contracting the following
with the conventioh €°12°=1 and the definitions structures to the lowest-order one-gluon-exchange diagrams:
1
b -
MEML=ag (L) &L+ -l e (L)-Pagi(L) Py, o P Me)vs(x.b), (10
K*
L[M Ex(L)D 4(X)+ Ex(LYPL,DL(X)+ M 4 DS(X)]
This convention corresponds to abed) = V2N, ¢ ¢ ¢ ST '
—4ie*Pva,bge.d, . (11
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M go(T)DY(X) + &(T) P, D j(x)

1
V2N,

Mg
+—pz_n_Iewpovw’“‘eZ(T)PZn‘I@;(x) . (12
= [M s £3(L) i (X) + £3(L) Pa® i (X)

T * * (X «(X

N, T s(L)Psdy

+ Ml PR (¥)], (13)
= m E(T) D (X) + £3(T) Py (%)

A * % (X « (X

\/Z_NC K*£3 K 3 3Py
Myx e (TYPPNT B2 14

+p3.n+'€wpv7’57 e3(T)PENL Dy (X) |, (14

where n, =(1,00;) and n_=(0,10;) are dimensionless

vectors on the light cone. Equatiofikl) and (12) are asso-
ciated with the longitudinally and transversely polarizéd
mesons, respectively. The structures associated witkthe

meson are similar as shown above.

To extract the contributions to the helicity amplitudé, ,

the following parametrization for the longitudinal polariza-

tion vectors is useful:

P, M,
L=y, P "

Ps M
e3(L)= - n;, 15
(L= 19
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nonfactorizable amplitude$1 are suppressed by a power of

A/Mg. Hence, the formalism presented in this work is com-
plete at O(M,«x/Mg), and subject to corrections of
O(A/Mg). Equation(4) then implies that the helicity ampli-
tude A, is leading in the heavy-quark limit, and and A,
are next to leading. The factorizable annihilation amplitudes
Fua, being suppressed only bW, «+/Mg and almost
imaginary, are the major source of the strong phases in
PQCD. Since th®— ¢K* decays are the pure penguin pro-
cesses with a weak dependence on the unitarity aggle
these strong phases determine the relative phases among the
helicity amplitudesA,,A| andA, .

For theB meson wave function, we employ the mofig],

Npx2(1—x)?
1({xMg\2 w3b?
xXex —E w—B - 5 | (18

where the shape parameieg=0.4 GeV has been adopted
in all our previous analyses of exclusiB meson decays.
The normalization constariiz=91.784 GeV is related to
the decay constanfg=190 MeV (in the conventionf .
=130 MeV). It is known that there are tw® meson wave

functions®g anddg, which are related to the three-parton
B meson wave functions through a set of equations of motion
[17-20. Because of the unknown three-parton wave func-
tions, the equations of motion in fact do not impose any
constraint on the functional form @bz and® . Our simple
choice of the model wave functions correspond®tpin Eq.

(18) and(IDB 0. This choice is legitimate, since the contri-

bution fromCIDB is suppressed by a powerMM g [11], and

Dp(x,b)=

which satisfy the normalizatioss(L)= e5(L)=—1 and the
orthogonalltyez(L) P,=e3(L) - P3;=0 for the on-shell con-
ditions P3=M? andP3=Mg, . We first keep the full depen-
dence on the Ilght meson masdds, and Mg+ in the mo-
mentaP, and P;. After deriving the factorization formulas,
which are well defined in the limiM 4 ,Mg+—0, we drop
the terms proportional to¢ K* ~0.04, with the ratios
=My4/Mg andryg+=Mgs /Mg. Under this approximation,

the expressmns of th¢ andK* meson momenta are then as ¢t L(X) =

simple as

Mg Mg
Pfﬁ(l,oﬂﬂ, P3=$(0,1DT). (16)

For the extraction of the helicity amplitudesty and M+,
Eq. (16) and the transverse polarization vectors,

GZ(T):(OiO’]-T)’ GS(T):(O!OJ-T)I (17)

can be adopted directly. The explicit factorization formulas
are collected in the Appendix.

The power counting rules in PQC[Y] tell that the fac-
torizable amplitude=, . (corresponding to th&—K* tran-
sition form factoy is leading, and the other factorizable am-
plitudes are at least down by a power iQf or r¢s. The

054013-3

3f
(I)(/)(X) = \/m

negligible within the accuracy of the current formalism.
The ¢ andK* meson distribution amplitudes up to twist
3 are given by[21]

¢ x(1—x), (19
.
2 124
. _2NJ3(1 2x)2+1.68C541— 2x)
X
+O.6§{1+(1—2x)lnm”, (20)
t
(D?”(X):NZ_C 3(1-2x)(4.5-11.X+11.2%)
X
+1.38Inl_—x}, (22)
T
cb;(x):mx(l x)[1+0.2C3(1-2x)],
(22
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®Y(x)=

DY(x) =

Dy« (X)=

Dyeu (X)=

P (x)=

Dp,(x)=

DY, (X)=

D (x)=

s 3[1+(1 2x)2]+0.24
— —2ZX .
2\2N. (4

X[3(1-2x)2—1]+0.96CY(1-2x), (23

3 (1—2x)[1+0.9310x2— 10x+ 1)],

42N,

(24)
3fyx
\/Z_ch(l—x)[1+0.57(1—2x)
+0.07C3%(1-2x)7, (25)
frx
2\/2_M{0.3(1—2x)[3(1—2x)2
+10(1—2x)—1]+1.68CY41-2x)
+0.061—2x)%[5(1—2x)%2—3]
+0.361-2(1-2x)[1+In(1—x)]}}, (26)
s
2\/2_NC{3(1—2x)[1+0.2(1—2x)
+0.6(10x?—10x+1)]—0.12X(1—X)
+0.31—6x—2In(1—x)}, (27)

.
3fr,

V2N,

X (1-2x)],

X(1—x)[1+0.6(1—2x) +0.04C3?

(28)

i
2\2N,

+0.4CY%1—-2x)+0.88CY%(1-2x)

3
Z[1+(1—2x)2+ 0.441—2x)%]

+0.4&2x+|n(1—x)]], (29
fix

4\/2_Nc{3(1—2x)[1+0.1€{1—2x)

+0.81(10x>— 10x+1)]— 1.14x(1—x)

+0.441—6x—2In(1—x)]}, (30)

with the Gegenbauer polynomials,

1
C3A&)=5(3¢-1),
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TABLE |. Helicity amplitudes and relative phases.

Mode BR(10°°) [Ao®> [AI> [A|> ¢y (rad) ¢, (rad)
HK*O 14.86 0.750 0.135 0.115 2.55 2.54
PK* 15.96 0.748 0.133 0.111 2.55 2.54
1/2 1 4 2
Cy (§)=§(35§ —306°+3),
3/2 3 2
C3 (§)=§(5§ -1). (31

We employGg=1.1663% 10 ° GeV 2, the Wolfenstein
parameters\=0.2196,A=0.819, andR,=0.38, the unitar-
ity angle #3=90°, the massesMg=5.28 GeVM,
=1.02 GeV andMx=0.89 GeV, the decay constantg
=237 MeV, f}=220 MeV, fyx=200MeV, and fy,
=160 MeV, and the B}(B*) meson lifetime 7go
=1.55 psfg+=1.65 ps)[22]. We have confirmed that the
above distribution amplitudes and decay constants lead to the
B— K* transition form factor$23] in agreement with those
from light-cone QCD sum rule§24]. We have also con-
firmed that the averaged values of the running hard s¢ales
defined by Eqs(A20) and(A21) in the Appendix are indeed

aboutyAMg~1.6 GeV. Note that th®— ¢K* branching
ratios are insensitive to the variation @f,. The results for

the helicity amplitude#\y, Aj andA, , including their rela-
tive phasesp=Arg(A;/A) and¢, =Arg(A, /A), are dis-
played in Table I. The contributions to tle— ¢K* branch-

ing ratios mainly arise from the longitudinal polarizatiohg
because of the relatiofAo|*>|A|*~|A, |, which is ex-
pected from the power counting rules. It is easy to observe
that the ratio§H_ /Hy|2 and|H_. /H,|? obtained in PQCD
are close to those in QCD[R5]. The annihilation contribu-
tions are the major source of the strong phases, and the non-
factorizable contributions are the minor one. The values of
¢ and ¢, in the rows()—(lll) of Table Il indicate that the
phases from the former are about 4-5 times those from the
latter (but opposite in sign Without these sources, we have
&= ¢, = . Note that the relative phases among the differ-
ent helicity amplitudes cannot be predicted unambiguously

TABLE II. Helicity amplitudes and relative phases) without
annihilation and nonfactorizable contributiorid, without annihi-
lation contributions, andlll ) without nonfactorizable contributions.

Mode BR(10°°%) [Aq® [A? |A[? ¢y(rad) ¢, (rad)
HK*O(1) 14.48  0.923 0.040 0.035 = T

(n 13.25  0.860 0.072 0.063 3.30 3.33
an) 16.80  0.833 0.089 0.078 2.37 2.34
SK*T(1) 15.45  0.923 0.040 0.035 = a

(n 14.17 0.860 0.072 0.063 3.30 3.33
() 17.98  0.830 0.094 0.075 2.37 2.34
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in QCDF due to the arbitrary complex cutoffs for the evalu- BABAR [28]: (8.6 28+1.1)x10°%, (34
ation of the nonfactorizable and annihilation contributions. '

We examine the theoretical uncertainty from the variation
of the hard scales which are defined as the invariant massesand those oB(B*— ¢K* ),
of the internal particles and are required to be higher than the
factorization scales b/ b being the transverse extents of the
mesons. This examination estimates higher-order corrections CLEO[26]: (10_6jggj 1-g)>< 1076,
to the hard amplitudes, which are the most important theo- o
retical uncertainty for penguin-dominat&lmeson decays.
The light meson distribution amplitudes have been deter- BELLE [27]: <36x10°©
mined in QCD sum rules. The possible 30% variation of the '
coefficients of the Gegenbauer polynomials in these distribu-
tion amplitudes lead only to little changes of our predictions.
We consider the hard scaléslocated between 0.75-1.25
times the invariant masses of the internal particles. The pre-
dictions for theB— ¢K branching ratios from the above
range are consistent with the data with uncertajimty We
then obtain theB— ¢K* branching ratios,

BABAR [28]: (9.7"32+1.7)x10°%, (35

are not yet precise enough to distinguish the two different
approaches.

In this paper we have studied the first obsered VV
modes, theB— ¢K* decays, using the PQCD formalism. It
has been stressed that two-body heavy meson decays are

characterized by a scale @(AMg) in PQCD, for which
penguin contributions are dynamically enhanced. This en-
hancement makes penguin-dominated decay modes acquire
branching ratios larger than those in QCDF, even when the

luAr;H(LIeratTelgliat?;ntr(ﬁ t?z“ﬁg)r/ da:::g:g?ﬁes a::rﬁaﬂugewithatgle final-state particles are vector mesons. We have proposed the
Y 9 B— ¢K*) decays as the ideal modes to test the significance

0.05 rad and within 0.01, respectively. There is another MI5f this mechanism. If their branching ratios are as large as

nor source of theoretical uncertainty from the light meson, . 10-5(15x 10 %) (independent of the unitarity angle

T (M
deca_y constantsﬁf_,)) and_fK* '_If they reduce byo 5%, the ¢3), dynamical enhancement will be convincing. We have
predicted branching ratios will decrease by 10%. T 450 emphasized that the relative importance and the relative
asymmetries of th8— ¢K* modes are, as B— ¢K, van-  sirong phases among the different helicity amplitudes in the

B(B3— ¢K*)=(14.86"359)x 10",
B(B*— ¢K**)=(15.96 32 x 107, (32

The relative phaseg| and ¢, , and the magnitudes\y|?,

ishingly small(less than 2% B—VV modes can be predicted unambiguously in PQCD,
The above branching ratios are larger than those fromyphich are determined by the power counting rules and by the
QCDF[23], annihilation contributions, respectively. These predictions
0 cOn 6 are insensitive to the variation of the hard scales. Therefore,
B(By— ¢K*")=8.71x10"", the comparison of the results presented here with future ex-
perimental data will provide a stringent confrontation of the
B(B*— ¢K**)=9.30x10°, (33  PQCD approach.

due to the dynamical enhancement of penguin contributions.

We emphasize that the annihilation amplitudes, though not ACKNOWLEDGMENTS

negligible, are not responsible for the large branching ratios

in PQCD, since they are mainly imaginary. This is under- We thank H.Y. Cheng, K.C. Yang and the members in the
stood by comparing the branching ratios in Table | and inPQCD Collaboration for helpful discussions. The work was
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not shown either by the branching ratios in Table | or in thesearch(Physics ofCP Violation), and by Grant-in Aid for
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parametrized as being real, are important in QCDF in ordefnd Culture of Japan. The work of H.N.L. was supported in
to explain the largeB— ¢K branching ratios. With the al- part by the National Science Council of R.O.C. under the
most real annihilation contributions, ti&— ¢K branching ~ Grant No. NSC-90-2112-M-001-077 and by National Center
ratios obtained in QCDF can increase fronx 20 6 to 7  for Theoretical Sciences of R.O.C.

% 107 [9]. The values quoted in E¢33) do not include the

annihilation contributions. The current experimental data of

B(B°—> (;SK*O), APPENDIX: FACTORIZATION FORMULAS

(115545185 1076 In this appendix we present the explicit expressions of the
el ' factorizable and nonfactorizable amplitudes in E). The

8 6 effective Hamiltonian for the flavor-changiig— s transition

CLEO[26]:
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Ca()O (1) +Co )OS (1)

Gr
He=—= E Vq
2 g=u,.c

10

+§3 Ci()Oi(p) |, (A1)

with the CKM matrix elementd/,=VgVq;, and the opera-
tors

O =(s510))v—a(ab)v-n,

ol = (giCIi)V—A(ajbj)V_A’

03:(gibi)V—A§ (ajqj')v—A:

08:

3 _ JR—
Olo=§(5ibj)v—A% €q(ajdhi)v-a.

PHYSICAL REVIEW D66, 054013 (2002

3 _
O;= E(Sibi)vag €q(djdj)v+Aa-
3 __ _
E(Sibj)v—A% €q(djdi)v+as

3 __ _
Og= E(Sibi)V—Ag €q(djdj)v-a

(A2)

i andj being the color indices. Using the unitarity condition,
the CKM matrix elements for the penguin operat@rs-O4q

04:(§ibj)v—A§q: (EjQi)v—A,
O5=(§ibi)V_A§ (ajqj)V+A1

Og= (gibj)v—Ag (ajqi)VJrAv

Vua Vus Vb 1-\2%2
Vcd Vcs Vcb — -\
Via Vis Vi A)\g(l_ p—in)

with the parameterg29],

A
1-\?%/2
— AN

A=0.2196+0.0023,

A=0.819+0.035,

Ry,=p?+ 7°=0.41+0.07.

The factorizable amplitudeB{®) and F{®=F (@, +F® are written as

a

can also be expressed ¥s+ V.= —V;. The unitarity angle
¢ is defined via

Vb= |Vyplexp(—is). (A3)

Here we adopt the Wolfenstein parametrization for the CKM
matrix up toO(A\3),

1 o0
F(9=8mCeM3 fo dx,dxs fo bydb;bdbs®g(xy,by){[(1+X3) Py (Xg) + T gx (1= 2X5) (P} (X3)

+ (I)SK* (X3))] Et(eq)(tt(el))he(xl 1X3,01,03) + 2« (DSK* (X3) Et(aq)(t((aZ)) he(X3,X1,03,07)},

1 o
FF\?QZSWCFM%IO XmdXSJO bldblb3db3q)B(Xl,bl)r(b{[@l*(xg)+2I‘K*(I)l|)<*(X3)+ rK*Xg((Dl})(*(XS)

— @3, (x3) JED(tD) he(Xq,X3,b1,05) + Fx [ DY (Xg) + Dy (Xg) IED (1) hg(x3,%1, b3, b1)1,

1 )
F-(rqe) = 167TC|:M éfo Xmanjo bld blbgd bgq) B(Xl , bl)r ¢>{[q)1* (X3) +2r K* q)i* (X3) - I’K* X3((I)l|}<* (X3)

— D%, (x3) JED(tD) he(xq,X3,b1,05) + T x [ DY (Xg) + Dty (Xg) IED (1) ho(x3,%1, b3, b1)},

054013-6
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F(@,=87CM fdxzdxg,J bo0b,03d ba{[ — (1= X3) P 4(X) Py (X3) + 2 4T s D(X2) (X3P e (X3)

+(2—X3) Py (X)) IEQ (1) ha( X2, 1= 3,05, b3) + [ Xo® (X2) P ex (X3) + 21 4 i P (X3) (1 —X5)
X DY (Xz) = (14 X2) D) EQ (1) ha(1—X3,X5,b3,b,)}, (A9)

1 o
Fiaa= —87CeM3 fo dxadxs JO bbbdbar i {[[ (2 X5) (P (X2) Pics (Xa) + P (X2 D (X3))

+X3(PY(X2) P g (X3) + DI (Xo) P (X3)) JEL (1) Na(X2, 1= X3,02,03) = [ (14 X2) (PY(X2) P (X3)
+D%(Xg) D (X3) = (1= %) (PY(X2) D g (X3) + DG(X2) D (X)) JED (1) (1= X3,%5, b3, by) (A10)

1 o0
P =~ 167CM3 | dratxs | “adbbadbar o e ([Xa(@ 0 By (53) + @0 B (53)) + (23)

X(DY(X2) P (X3) + D (%) Pl (X)) TED () Na(X0, 1= X3, b,03) + [ (1= %) (DY(X2) P (X3)

+ D5 (%) D (X3)) — (14 X2) (DY(X2) D (X3) + PF(X2) Dy (X)) [EZ (1) ha(1—X3,%5,b3,b,)}, (A11)
1 )
F{%s=16mCM3 fodXdes fo bodbobad [k (1—X3) @ (%) (P (Xg) + P (X3)) = 21 4D (X2) Picx (X3) ]

X EQ (D) ha(X2,1-X3,b,b3) +[1 Xo (D (X2) = DF(X) )P ex (X3)
+21 D 4 (X0) P (X3) IED (1) ha(1—%3,%,,b3,b2)}, (A12)

1 o0
\s=16mC:M f JUESLES fo bydbbadba{r 4 (®Y(xp) + B(x))P Ly (Xa) EL (1) (0,1 X, b2 ,b3)
1 D LX) (D (X3) — D3 (%) ELD (1) ha(1—X3,%,, b3, by) (A13)
F{%s=32mC:M f dx,dxs f badbybadbs(r 4(Y(Xs) + DF(X2))D s (X3) ED (1) Ny X5, 1— X3, b5, b3)

e D (%) (P (X3) = PR (X3))ELD (1) Na(1—X3,%,, b3, D)} (A14)

The expression of the factorizable amplitudgs, from the C,\ 3 Cyo
tree operator®; andO, are the same a&{%, but with the a3’ =| Cs N T38| Cot )
evolution factorE(9 replaced bye(? . ¢ ¢
The factorsE(t) contain the evolution from th&/ boson Cs| 3 Co
mass to the hard scale# the Wilson coefficientsi(t), and a&q)— Cy+ N += 5€q Ciot N
from t to the factorization scale l/in the Sudakov factors ¢ ¢
SO: (@ Cs| 3 Cs
ag’=|Cs N—+2eq C7+N—

ELD(1) = ag(H)al? (1) Sa(t) Scx (1), c c

EQ (1) = as(1)al? (1) Sy(t) S« (1). al@=| Cqe+ % + zeq Co+ (N”

Cc C

(A15)

(@) = 5(@) 4 5(a@) 4 5(a)
The Wilson coefficients in the above formulas are given by aet=agttagitast.
c k+ resummation _of I_arg(_e logarithmic corrections to Bie¢
al=C,+ 1 andK* meson distribution amplitudes lead to the exponen-
¢ tials Sg, S; and Sgx, respectively,
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We have proposed the parametrization for the evolution
, function S;(x) from threshold resummatioiil,32,

t d; _
SB(t)=e><p[—S(><1P1+ ,bl)—2f — y(as(u?)

by
2172¢1(3/2+¢)

Jal(1+c¢)

where the parametec is chosen asc=0.4 for the B

— ¢K* decays. This factor modifies the end-point behavior
' of the meson distribution amplitudes, making them vanish

faster atx—0. Threshold resummation for nonfactorizable

diagrams is weaker and negligibl¢g,l4,Hy andJ, are the

Sk (1) = exr{ —S(x3P3 ,b3) —s((1—x3)P3 ,bg) Bessel functions.

Si(x)= [X(1—x)], (A19)

S¢(t)=exy{ —S(XaP3 ,by) —s((1—x,)P;5 ,by)

t d_ _
2 [ L)
1/b2M

The hard scales are chosen as the maxima of the virtu-
alities of the internal particles involved in the hard ampli-

tudes, including 1; :
, (A16)

t d; -
_Zf :y(a’s(ﬂ )
ths t=max\xsMg,1/b;, 1),

with the quark anomalous dimension= — ag/ 7. The vari- (2)_

ablesb,, b,, andb; conjugate to the parton transverse mo- te"=max VXiMg, 1o;, 1), (A20)
mentak,t, kor, andksr, and represent the transverse ex- tO = max vI—xaMa. 1b- 1/b

tents of theB, ¢, and K* mesons, respectively. The a X 3Me, 12, 1h;),
expression for the exponestis referred to in[30,31. The t)=max \x,Mg,1/0,,1/b3). (A21)

above Sudakov exponentials decrease fast in the lamge
gion[11,12, such that th&— ¢K* hard amplitudes remain When the PQCD formalism is extended(ﬁiaﬁ), the hard
sufficiently perturbative in the end-point region. scales can be determined more precisely and the scale inde-
The hard function$’s are pendence of our predictions will be improved. Before this
calculation is carried out, we consider the variation of, for
he(X1,X3,b1,b3) examplej, in the following range:

=Ko(Vx1x3Mgby) Si(X3)[ (b1~ bs)Ko mMax(0.75\xsM g, /by, 1/bs)
X (\xsMghy)lo(VXzMgbs) + O(b3—by) <t <max1.25/x3Mg,1/b;, 1),
X Ko(VxsMgbs)lo(VxsMgby)], (A17) max 0.75X; M, 1/, 1/bg) <
ha(X2,X3,b5,b3) tP<max1.25/x;Mg,1b;,1b3), (A22)
i) 2 L in order to estimate th@(aﬁ) corrections. The range fay,
= 7) HED(Vxox3Mgb) Si(x3)[ 0(b,— b3) is chosen in a similar way.
The nonfactorizable amplitudest (0= M (D, + M (@,
X HEY( VXgMghy) Jo(VxsMgbg) + 8(b3—b,) +M fﬁqgs‘FM quge and M E?QZM Eﬁqgs"'M ﬁgs , depending
) on kinematic variables of all the three mes$883], are writ-
XHED(VxsMgbs) Jo( VxsMeba) 1. (A18)  ten as

1 o
M(Lqe)?;:]'GWCFMéVZNCfO d[X] fo bldblbzdbzq)B(Xl,bl){(l)¢(X2)[_(X2+X3)¢K*(X3)+rK*XS(q):(*(X:;,)
+ 03, (x9)JED (15 h{D(x1 Xz, X3,01,05) + P 4 (Xa) [(1=Xp) D1 (X3) + T ex X (Pl (Xa)
— O (X)IED (1) (%1, Xz, X3,b1,b2)}, (A23)
() 2 ! ” . .
Mqu3:167TCFMB\/2NCfO d[x] fo b1dbyb,db,®g(Xg,b1)r G {[Xa(PY(X2) + PYH(X2)) P s (X3) = 25 kx (X2 + X3)

X (DY(X0) Pls (Xg) + Do) Pty (X)) JED (1N (X7, %0, X5, b1 Do) + (1= X0) (BY(X2)

+ D3(%))P e (X) ED (tP)NPU (%7, %5,b1 b))}, (A24)
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1 )
M (qu3=327TC,:M§\/2NCJO dx] fo b1dbyb,db,@g(Xq,by)F G{[Xa(D5(X2) + PF(X2))P s (X3) = 27 s (Xo+X3)
X (DY(X0) D s (Xg) + Do) DY (Xa)IED (LN (X3, %0, X5, b1 ,02) + (1= Xp) (PY(X2)
+D3(x0)) D (X3) ED (1) h{P(x1 X2, X3,b1,b2)1, (A25)
1 0
M (¥ =16mCeME V2N, fo d[x] fo b1dbibydb,® (X1, by)1 4{[ = Xa (@Y (Xa) = D5(X2) )P (X3) + T iex Xo (D (X,)

- (D?b(xz))(q):(*(xa) - CDSK*(X3))+ rK*x3(CI)t¢(x2) + (be(xz))(CI)L*(X3) + CDSK* (X3))]
XED" (8NP (%1 ,%g,%3,01,b5) + [ = (1= X0) (@Yy(X0) + PE(X0) )P icx (Xg) + Ficx (1= X0) (DYy(%,)

+ (I)Z;(XZ))((I)}(* (X3) = Py (X3)) + T Xg (D (%) — ‘DZ(Xz))(q’}(* (X3)

+ @i () IER ()P (%, %z X5,b1,b2)}, (A26)
1 )
M es= ~167CeM 2N, f d[x] f b1db;,db, P (X1, b1) i Xa §(X) (P (Xa) — P (X))
0 0
X{Eg%)’(tgl))hgl)(xl,xz,xg,bl,b2)+ Eé%)’(téz))hgz)(xl,X2,x3,bl,b2)}, (A27)
M{E=2M{, (A28)

1 )
M@= —167TC,:M§x/2NCf0 d[x] fo bydbybydb, P (X1, 1) P 4(X) [ Xo® ik (Xg) + T X (P (X3)
— 3, (xa)IED ()N (x1,X5,%3,b1,b2) [ — (1= Xp+ X3) Prex (Xg) + 1 ex Xg (@l (X3)
+ @3, (xo)ED ()P (x,,%,,%3,b1,b,)}, (A29)
1 0 ,
M= —16prMév2ch0 d[x] fo bydbybdb, P (X, )1 4{Xa(D(Xp) — DI(X))D L, (X3) ED
X (N ME(X1 ,Xa,X3,01, D) + [(1=X2) (@%(Xp) = DE(X2) )P g (X3) = 21 e (1= X+ X3) (DY(X2) P (X3)
— D3(%y) Pt (X)) JED (tP)NP(%1,%5,X5,b1 D)}, (A30)
1 )
M= —327C:ME 2N, fo d[x] fo b1dbybydb,®g(Xg ,by)r G {Xo(RY(Xz) = D (X)) P s (X3)
XED (8NP (xq,%,%3,b1,2) + [(1=X0) (@4(Xp) = DF(X2) )P (X3) = 2 x (1= X+ X3)
X (DY (%) D (Xg) — Do) DY (X)) IED (tP)NPU (X1 ,%,%5,b1 D)}, (A31)
1 )
M (9;=167CeMEV2N, fo d[x] fo bydbb,db,®g(Xy,by)[{(1—Xa) P 4(Xo) P icx (X3) T 4T cx[ (14X~ Xg)

X (‘D;(XZ)Q’L*(XQ,) - @;(Xz)‘bi*(xs))— (1—X2_X3)(‘Dt¢(xz)q)s|<*(x3) - ¢;(X2)®t<*(x3))]}
XED (U hE(X1, %, X3,b1,05) = [XoP 4(X2) Dicx (X3) = 21 4 e (B (X2) Dy (X3) + D5 (Xo) D« (X3))
Tyl (L+X— X3)(CI)t¢(X2)(I)f<*(X3) - @Z(XQ)CDSK*(XQ,))-F Fglx(1=Xo— Xg)((I)t(/,(Xz)q)SK*(XQ

— D% (%) D (xaDIED (tE)P(x1, X5, X5,b1,b,)] (A32)
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1 )
MG = ~32mCeMEEN [ dlx] [ budbubbso(x, by)r o1 c B0 (065)+ P06 B, (53]

X Eg%) (tl(‘z))hgz)(xl \X2,X3,01,05),

1 )
/\/lfrqgsz —647TCFM§\/2cho dix] fo bldblbzdbszB(xl,bl)r¢rK*[¢2(X2)¢>i*(x3)+(I>f;(x2)fbf<*(x3)]

XEQ (t)h{P(xy,x5,X3,01,b5),

1 )
M (Dg=16mCM3ZV2N, fo d[x] fo bydbybydb,®g(Xy,by){[Fix (1= Xa) P 4(Xp) (Prs (X5) — P (X3))

— 1 Xo(DYy(Xg) + DS (x))Prex (x3) IED (1)1, X5, X3,b1,02) +[ =T (2= X) (PYy(X2)

+ D5(X2) )P (X3) + P (14 Xa) D (%) (Pl (X3) — P (x2))JED (1) (xq ,X5,%3, b1, b))},

1 )
MZl = 167CMZVZN, | dlx] | “badbybadbya(xy o)l @) + )P s (65) =i

X (1= Xg) P 5(Xo) (P (Xg) = Pias (X)) IED (M (x3 X, X5, b1 ,05) + [ 4(2— X) (PY(X2)

+ D3(X0) )P s (X3) = Fier (1+Xg) D (Xo) (Pl (X5) = D (X)) JED (1) {2 (x1 X5, %3,b1,bo)},

M (T“:35= 2M F\?E)G .

The expressions of the nonfactorizable amplitudégs, and
Myyes are the same ast (0, and M (%, but with the evo-
lution factorsE(¥)" andE'" replaced by andE(}",
respectively.

The evolution factors are given by

ED' ()= ag(H)a® (1) S()]p,p,.
EQ" ()= as()a® (1)S()]p,p,,
(A38)

with the Sudakov factoS=SgS,S¢«. The Wilson coeffi-
cientsa appearing in the above formulas are

,_ G

=y,
(—J‘(sq)’_,\liC C3+;ech ,
a&q)'—Nic Cy+ 2eqcm),
agsq)’—NiC C5+geqC7 ,
agq)'—Nic C6+;eqC8

PHYSICAL REVIEW D66, 054013 (2002

(A33)

(A34)

(A35)

(A36)

(A37)

The hard function$’),j=1 and 2, are written as

h{)=[6(b;—b,)Ko(DMgb;)1o(DMgb,)
+ 6(by,—Db;)Ko(DMgh,)lo(DMgh,)]
X Ko(D;Mgh,) for D=0,

i 7T
X?Hgl)( VIDZ[Mgb,) for D?<0,

hi) = " [ 8(by — by) HED(F M gby) Jo( FMgby)
f 2 1 2)10 B~Y1/Y0 BY2

+0(by— by HEV(FMgb,) Jo(FMgby)]
XKo(FiMgh;)  for Ff=0,

xi;Hg”(MMBbl) for F?<0,
with the variables
D2=x;X3,
DI=(X1—X2)Xs,
D5=—(1—X;—Xp)X3,

F2=X(1-X3),
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Fi=(X1—%2)(1=X3), t@=maxDMg,|DZMpg,1b;,1b,),
ngX1+X2+(1_X1_X2)(1_X3). (A42)

, ti=maxFMg,\|F3|Mg,1b;,1/b,),
The hard scalet?) are chosen as

t=maxDMg,\|D3|Mg,1b;,1h,), t2)=max FMg,\|F3|Mg,1b;,1/,). (A43)
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