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Using the CCFR data for the Gross—Llewellyn Sm{tBLS) sum rule, we extract the strong coupling
constant via Borel resummation of the perturbative QCD calculation. The method incorporates the correct
nature of the first infrared renormalon singularity, and employs a conformal mapping to improve the conver-
gence of the QCD perturbation expansion. The important twist-four contributicaléslatedfrom resumma-
tion of the perturbation theory, which is based on the ansatz that the higher-twist contribution has a cut
singularity only along the positive real axis on the complex coupling plane. Thus obtained, the strong coupling
constant corresponding to the central GLS experimental value is in good agreement with the world average.
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[. INTRODUCTION incorporation of the first IR renormalon singularity in the
Borel transform and2) use of an optimal conformal map-
Many low-energy quantum chromodynami@QCD) ob-  ping. With the usual power expansion of the Borel transform
servables, including the Gross—Llewellyn SmiBLS) sum  about the origin the information on the renormalon singular-
rule, with a characteristic energy scale of a few GeVs, ardly is lost. To remedy this, one may explicitly incorporate the
analyzed in perturbative QCD within the framework of op- first renormalon singularity by writing a Borel transform
erator product expansiof©OPE. In this scheme usually the D(b), which behaves as 1/(1b/by)**” around the singu-
most important is the perturbative contribution from the Wil- larity atb=b,, as
son coefficient of the unit operator, and there are nonpertur-

bative, power suppressed, higher-twist contributions. Gener- _ R(b)
ally, the higher order coefficients in the perturbative D(b)= ———— 1)
contribution grow rapidly due to the asymptotic nature of the (1—Db/bo)

perturbative expansion. The uncalculated higher order cor- ~

rections are thus expected to be large, and this can causewith R(b)=D(b)(1—b/bg)***. The functiod R(b) is by
large uncertainty in data analysis that employs the unprocdefinition bounded and has a softer singularity at the first IR
essed, finite order perturbative expansion. It is therefore imrenormalon. Hence we can expect that the Borel transform in
portant to properly handle the divergent perturbation expanthe form of Eq.(1), with R(b) perturbatively expanded about
sion via resummation, since it can give a more accuratéhe origin, would give a better approximation than the direct
result with reduced theoretical uncertainty. In addition, re-expansion of)(b).

summation serves to give a well defined meaning to the Step(2) utilizes the information on the locations of the
higher-twist contributions. Without a proper resummation ofsingularities in the Borel plane. Use of conformal mapping in
the perturbative part, the higher-twist contributions are amBorel resummation has a long histofy], and its use in
biguous[1-4]. perturbative QCD was particularly emphasized in R&l.

An often used resummation technique is the Borel resumeon the Borel plane there are IR renormalon singularities on
mation. It has a sound theoretical basis since it is built on outhe positive real axis and ultraviol¢t)V) renormalons on
understanding about the singularities in the Borel planghe negative axié.By pushing the singularities away from
which cause the divergence of the perturbative expansion. Ite primary interval one can obtain a smootRen the new
use generally improves the quality of data analysis, as can Qgrimary interval on the mapped plane. This would render the
seen from the reduced dependence on the renormalizatiqserturbation ofR in the mapped plane to converge better.
scheme and scale, and from the reduced dependence on thgong the several mappings considered in the literature we
uncertainty of the uncalculated next higher order perturbativéind that the one proposed in R¢B] is particularly suited
coefficient. when used in combination with the Borel transform in the

At moderate values of the strong coupliag(Q) at afew  form of Eq.(1). This mapping moves the first IR renormalon
GeV, the Borel integral receives most of its value from thesingularity that defines the primary interval to a point within
interval between the origin and the first infrar@®) renor-  the unit circle and all other singularities to the unit circle.
malon singularity, and just beyond it, in the Borel plane. Let
us call this loosely defined interval, for convenience, the pri-
mary interval. In Borel resummation it is thus very important iThjs function was first introduced in Ref5] in a Borel resum-
to describe the Borel transform, which determines the Borehation and independently in Ré6] in a renormalon residue cal-
integral, as accurately as possible in the primary interval useulation.
ing the calculated first terms of perturbation theory. 2There are also instanton-caused singularities, which can be safely

For this purpose two steps can be takél): an explicit  ignored in our case.
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Since the effect of the first IR renormalon is softened by thdion in detail will be given in the following section. The
step (1), we expect this mapping in our case to be betterQCD correctionA(Q?) to the GLS sum rule is defined by
suited than, for example, a mapping that moves all singulari- )
ties to the unit circlg 10]. wN 2y _ _ 2
These techniques were applied to the hadronic tau decay fo dxF57(x,Q%)=3[1-A(QD)], @
width [9-11] and to the hadronic contribution to the muon
anomalous magnetic momefit2]. In this work we apply Wherng’N is the nonsinglet deep inelastic scatteriiiS)
them to the GLS sum rule. The CCFR analy4i8,14] of the  structure function irvN scattering. Here we shall ignore the
GLS sum rule was based on evaluation of the truncated petarget mass correction since it is irrelevant for our present
turbation seriegTPS in the modified minimal subtraction discussion, but it will be included in the numerical analysis
(MS) scheme. Aside from the inherent ambiguity of thepresented in the next section.
higher-twist contributions, this method gives predictions We first begin by reviewing the old but important problem
which are not stable under the inclusion of an additional ternf1,2] with the conventional QCD formulation af(Q?) in
(~0/S‘) in the TPS. As we shall see, these problems can b&®PE framework, which is widely used in data analysis. This
avoided with the use of Borel resummation. problem is not confined to the GLS sum rule, but generic to
A crucial new element of our analysis comes with theany perturbative OPE formulationd (Q?) in OPE up to
calculation of the nonperturbative contribution. Aside from twist-four operator is given by
the perturbative part, an important contribution to the GLS
sum rule comes fr.om the nonperturba’Five, hadronic me_ltrix A(QZ)=Wo[as(Q)]+W1[as(Q)]<<oz>>, 3)
element of the twist-four operator. Being nonperturbative,
this contribution is usually fitted using the QCD sum rule
calculation. Recently it was proposed by one of 1], mo- ~ Whereag(Q) is the strong coupling constant af(®)) is the
tivated by an observation that the nonperturbative amplitudegeduced nucleonic matrix element of the twist-four operator
in lower dimensional solvable models have a simple analytthat was first derived in Ref16]:
icity in complex coupling plane, that these higher-twist con- g g
tributions can in principle be calculated from the Borel re- O,=UG,,y"ysu+dG,,y"ysd,
summation of the perturbation series. The proposal was L \8
based on the conjecture that the higher-twist contributions= ,,, vaB~a _
have cuts only along the positive real axis in the complex%M - EGM EG“/J'?' (P1O.IP)spin averaget 2 P,((O))-
coupling plane, which allows to relate the real part of the
nonperturbative amplitude to its perturbatively calculableHere,A? are the usual Gell-Mann matrices and we used the
imaginary part. This scheme was shown to work well innotations of Ref[17]. Throughout the article we shall con-
model field theories. When applied to some of the solvableider only the twist-four contribution as the nonperturbative
lower dimensional theories, it allowed the associated nonpegffect, and ignore higher twist contributions since they are
turbative amplitudes to be accurately calculated from the firsbelieved to be small.
terms of the perturbation theory in the respective theories.  In conventional QCD analysis the Wilson coefficies,
From our analysis we obtain for the strong coupling pa-(i=0,1), in Eq.(3) are taken from the finite order, perturba-
rameter the central values(M;)~0.117. Compared to the tive QCD calculation in an usual renormalization scheme,
corresponding CCFR central valuey(Mz)=0.114, our sayMS scheme, and the reduced matrix elemgat)) from
value is closer to the world average(M;)=~0.118. The data fitting or QCD sum rule calculations, etc. However, this
main improvement comes from the correct incorporation ofscheme is, in principle, fundamentally flawed, since pertur-
the renormalon singularity on the Borel amplitude and thebatively the Wilson coefficients are not well defined. In per-
calculation of the nonperturbative contribution. turbative calculation of the Wilson coefficients the quantum
The paper is organized in the following way. In Sec. Il we fluctuations of all energy scale contribute, and in particular at
describe the resummation method, incorporating in it thdarge orders the contribution from the far infrared regimes,
known structure of the leading IR renormalon and the nonwhere perturbative QCD should falil, is large and gives rise to
perturbative part, as well as the conformal mapping. Sectiom same sign, factorially growing large order beha\ib8].
[ll contains the numerical application of the method to theThus, without some kind of resummation of the divergent
GLS sum rule, leading to predictions fat(M5). In Sec. IV perturbation series, the Wilson coefficients are not well de-
we compare our predictions with those of other methods. Ifined, and therefore neither is the ORB). As a conse-
Sec. V we discuss some general features of the Borel resumuence, no well-defined meaning that is independent of the
mation and the OPE approaches to understand precisetlefinition of the Wilson coefficientV,, can be assigned to
where the two methods deviate from each other. In Sec. Vthe matrix elemen{(O)) [1-3].
we summarize our results and present conclusions. One could in principle introduce an infrared cutqif
(<Q?) in the perturbative calculation &¥,, and regard the
twist-four term to contain all the low momentumk?®=K?
< u? contributions[19,20. This would remove the infrared
In this section we give an overview of our method usedrenormalon and make the perturbation expansion Vigy
for the QCD analysis of the GLS sum rule. Its implementa-convergent, and the twist-four term to p& dependenf20].

II. THE METHOD
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However, to do this in practice is impossible, because it is 1 (oxie -
impossible to compute arbitrarily complicated Feynman am- Ada(Q)xie]= ,B_J ~ dbe YEaQWy(h)  (5)
plitudes of arbitrarily high power, and in particular their 070=ie
small momentum contributions, as stressed by the authors of
Ref.[20]. with
The problem discussed so far is not of academic nature
only, but has important practical implications. One might still _ Y
think the OPE(3), with finite order perturbative Wilson co- Wo(b)= Eo n—'n(b/,Bo)“. (6)
n=o n!

efficients, is a good approximation scheme, since at any rate
the perturbative Wilson coefficients can be regarded as a
good approximation at reasonably small values of the strongnserted for normalization conveniencg, is the one-loop
coupling constant. Actually, this would be the case, providedtoefficient of the QCDB function. Equation(5) shows ex-
that the nonperturbative, higher-twist effect is far larger tharplicitly that in case of existing singularities on the line of
the ignored next higher perturbative termWy. In practice, integration, i.e., IR renormalons, the real part of the Borel
however, this condition is not supported by data analysis. Fointegral Ap is the (generalization of theCauchy principal
instance, if this were the case, we would expect little variavalue. The Borel transforn) is believed to be convergent
tion in the fitted values for the twist-four contribution over on the unit disklb|<1, and is known to have a branch cut
the order of perturbation i#,. But the variation is not small along the positive real axis beginning bt=1. Near the

at all. In the QCD sum rule calculation using the next-to-branch cut it behaves 3]

leading order(NLO) W, [17], the twist-four contribution

was found not to be small, roughly equal to the perturbative

~ C
correction atQ=1 GeV. But, it was observed in Refs. Wo(b)= 5= $7M(1-b) 1 " (1+0(1-b))
[21,22 that the twist-four contribution virtually vanishes (=v)
when fitted with the next-to-next-to-leading ord@NLO) + (analytic part 7)

W, against the parton distribution functions extracted from
experiments, and most of the twist-four contribution ex- .
tracted in the NLO fit can be accounted for by the perturbayvIth
tive NNLO contributions. This can be interpreted as a clear

manifestation of the inherent ambiguity of the OPE ap- v=(B1/Bo~v2)!Bo, ®
proach. Moreover, this tendency of strong dependence of

higher-twist contribution on the order of perturbation appearsyhere B andy, are respectively the two-loop coefficient of
not to bg special to the GLS sum rule, but gener?c._ The recenthe QCD g function and the one-loop coefficient of the
new estimate of the gluon condensg23], from fitting the  anomalous dimension of the twist-four operator appearing in
vectorial spectral function of hadronic tau decay usingihe OPE(3). In our casev is positive; for instancey
NNLO Adler function, gives a small central value of only 1/3 —32/81 when three quark flavorsi{=3) are active[16].*

that of the original QCD sum rule estimg24] which uses  Note that the Borel transform beyond the convergence disk
the leading order perturbation. These examples strongly inof the series(6) can be obtained by analytic continuation.
dicate that the inherent ambiguity of the OPE can have imThe analytic part, which is analytic around the singularity, is
portant consequences in practical applications, and demangg calculable, but the residi@ a real number, is calculable

a careful treatment. . . perturbatively[6,25].
Borel resummation resolves this problem, which proceeds gecause of the branch cut the Borel integral<5n de-
as follows[7]. The perturbation series fio, velop imaginary parts beginning &t=1. Since the QCD
o correctionA(Q?) must be real, clearlhAp alone cannot re-
_ n+1 — produce the true amplitude. There must be something else.
Wo % Wna(Q) [a(Q)=as(Q)/ 7], @ Precisely at this point, the nonperturbative amplitude, de-

noted Ao a(Q)], comes to the rescue, which cancels the
which is, being of same sign at large ord&rson-Borel re-  imaginary parts ofAp, rendering the sum of the two to be
summable at physical, positive coupliagQ). So it is first  real. ThisAye can be shown to be directly related to the
Borel resummed at negativag Q) which yields a Borel re- twist-four contribution in the OPE3) [26], with its overall
summed amplitude\[a(Q)]. Then to obtain a Borel re- form governed by the associated RG equation, and may be
summed physical amplitude one may analytically continueegarded as a refinement of the latter, now free from the
Ap to positive a(Q) in the complex coupling plane. This inherent ambiguity of the OPE. The QCD correction may
gives fora(Q)>0 [15] now be written as

Here we ignore, for the moment, the UV renormalons, which “According to Ref[16]: y,=(N.— 1/N.)/3=8/9. Our convention
give rise to sign-alternating large order behaviors. Being Borel sumfor parameterss; (andc;=p;/p,) is specified by Eq(21) in the
mable, the UV renormalons can in principle be treated separatelyext section. Fon;=3, we haveB,=9/4, B,=4. Therefore,v
and do not affect our discussion in any essential way. =32/81.
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A(Q¥)=Apa*ie)+Ayp(atie) the perturbation expansion in the respective mod&Hs.
Moreover, interestingly, the numerical estimate of the gluon
=RdAp(axie)]+RgAyp(azie)]. condensate from this scheme applied to the Adler function

(9)  gives a value virtually identical to the new estima2s].
) ) o Given the QCD correction in the forrfl2) with Ap(a
Either sign can be taken because the result is independent of; €) given by Eq.(5), our aim is now to describe the Borel

the sign chosen. transformW, as accurately as possible in the primary inter-
What can we tell about the nonperturbative amplitude 0 yasp P y

. . o S . “val using the known first terms of the perturbation series. For
Anp? Its imaginary part at a positive coupling is certainly

calculable from the perturbation theory because it is esserg]ésrér?rqgaw'rg?(é?ea:Utl'ne in the Introduction, we write the
tially the imaginary part ofAp, albeit with opposite sign, 9
which is calculable in principle from the perturbation theory.

However, as we see in E(), what we need is the real part, Afa(Q) =i dzifouedb e—b/Boa(Q)Lb)

which is certainly not directly calculable. oJo=ie (1-b)t*v
There is, however, an intriguing possibility of perturbative (13

calculation of the real part. From the perspective of Borel . i

resummation the sole reason for the introduction of the non?ith R(b) now defined by

perturbative amplitude above was to cancel the imaginary R(b)=(1—b)"* "s(b) (14

parts arising from the analytic continuation§ to physical
coupling in the complex coupling plane. With the Borel in-
tegral (5) and the singular Borel transforif7), we can see
that AJ a(Q)], which by definition can have a singularity
only along the positive real axis in the compla¢Q) plane,
has a branch cut of the forisee Appendix A

and v given in Eq.(8) (v=32/81). This step is expected to
greatly improve the perturbative description of the Borel
transform in the primary interval because it implements the
renormalon singularity correctly, and renders us to deal with
a much softer singularity. The singularity B{b) atb=1 is
—C[—a(Q)] *e YPoAQ[1+0(a)]. (10)  abranch cut and thus softer than thatgg(b).

We can obtain further improvement by use of a conformal
The nonperturbative amplitudeye should cancel the imagi- mapping that exploits the known locations of the singulari-
nary part arising from this at positive coupling. The simplest;jog of Wy(b). The latter is known to have renormalon sin-
functional form forAp that can achieve this purpose can begularities at nonzero integer values bfon the real axis
obtained by postulating that, as has, the nonperturbative 27 2g. To speed up the convergence of the perturbative
gmplitude hgve a branch cut only along the positive_ real aXi%xpansion oR(b), we may push the singularities, save the
in the coupling plane. This then leads to the following con-ynayoidable first IR renormalon, as far away from the origin
jecture forAye [15]: as possible. This way we can reduce the influence of the

P — = 1UBoa(Q) renormalon singularities and mak&b(w)] smoother
Anla(Q)]=Cl~a(Q)] " "™ [1+0O(a)]. (11) around the primary interval. One such a mapping we con-

This has a very important implication because it allows us tosider is[9]

relate the real part of the nonperturbative amplitude to the
calculable imaginary part. In this paper we will adopt this _ Vit b_vl_b/Z:b(w)= 8w
Vi+b+1-b/2 (3w2—2w+3)

conjecture, which appears very plausible, at least to us, and w(b)
as will be mentioned shortly it is supported by some lower (15)
dimensional solvable models. Now with E@8) and(11) we
can write the QCD correction with only the calculallg as  This maps the first IR renormalon tw=1/3 and all other
5 5 _ _ singularities to the unit circléw|=1. We expect this map-
AR(Q%) +Anp(Q) ={Rew cotlvm)Im{Aa(Q) =ie]}. ping combined with the implementatidii4) to provide an
(12 optimized environment for the Borel integral. In the mapped

This equation is the basis of our numerical analysis in thé®/ane the Borel integral now assumes the form

following section. In the Appendix we present, for reference, 1
some explicit formulas leading to Egd.0)—(12). Ada(Q)xie]= _J dw e bw)/Boa(Q)

The argument that led to the determination of the nonper- BoJe.
turbative amplitude above did not rely on any special prop-
erty of OPE, but only on the general property of Borel re- % db(w) — R[b(w)] (16)
summation of a same sign divergent perturbation theory. dw [1-b(w)]+"’
Thus it can be applied to any perturbation theory with a same
sign large order behavior. Application of this scheme to thewhere one of the integration contoufs is shown in Fig. 1.
lower dimensional, solvable models such as the double welh\gain, since the answer is independent of the sign chosen,
potential and the two-dimensional nonlinear model in  either contour can be taken. In the next section we perform a
large N limit, allowed an accurate calculation of the associ-numerical analysis of our implementation of the QCD cor-
ated nonperturbative amplitude using only the first terms ofection: Eqs(12) and(16).
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I1l. NUMERICAL ANALYSIS 2.
falpTicaCs --0) a’(1+cja+cra’+cgas+-- )
In this section we will apply the method described in the aln 2 = Po @2 3 ’
previous section to the Gross—Llewellyn Sm{tBLS) sum (21)

rule, deducing values of the QCD coupling parameter

aM>(M?2) from the GLS values extracted from experiments.where the parameters;=g;/B8, (j=2) characterize the
In the first subsection, we will present the resummed expreschoice of the RSch, ang, and c,=p,/8, are universal
sion for the contributions of the three massless quark flavorg:onstants. The evolution of parametex with ¢;'s (j=2) is
As a by-product of the obtained expression, we will obtaingoverned by analogous differential equations, which follow
an estimate of the next-to-next-to-next-to-leadingl(Nco- ~ from the Stevenson equatigsee Appendix A of Refl30]).
efficientwy of the perturbative expansion. In the subsequentlhe next-to-leadingNL) coefficientw; has been calculated
subsection, we will include the effects of the massive fourthin Ref.[31], and the NNL coefficientv, in Ref.[32]. At the
quark flavor € quark to the GLS observable. In the last specific RSclu?=Q? andMS RSch, and when the number
subsection, the available measured GLS values will be coref the active quark flavors is;=3, these coefficients have
fronted with our resummed expression and values othe value

MS/pp2 ;
a (M%) will be extracted.
s (M2) w{O=w, (u?=Q? =3.58333, (22)

A. GLS—the massless;=3 part

The GLS quantityM 3(Q?) is the following integralfirst
momenj of the charged-current nonpolarized DIS structure

wi=w,(u2=Q%c,MS)=20.2153-wi(LL), (23

function F3=(F3P+F3")/2 over the Bjorken parameter wiO(LI.)= — 1.23954. (24)
1/2
M 5(Q2) = E ld Fa(x: 2)5_2 142 14 4mﬁx2 In the NNL coefficient, the small “light-by-light” part was
(Q)=3 o X 3(xQ X2 Q2 : separated off. The “light-by-light” contribution should not

(17) be included in resummations af(Q?;P), as will be argued
at the end of this subsection.
where {=2x/(1+ J1+4m2x?/Q?) is the Nachtmann vari- The Borel integra16), which will be together with Eq.
able[29], andmy is the nucleon mass. The quantis is (12) the basis for our resummation, is independent of the
) . . 2 .

the first Nachtmann moment &5 which absorbs all the choice of7the RScl” and the RSchqy, ¢35, . . . ) used in the
kinematical power correctiondtarget mass corrections Integrand. Thus, we can rewrite it agee also Fig. J1
(TMC)] ~(mZ/Q?)". The quantityQ?= —q? is the virtual-
ity of the exchanged gauge bos@®? characterizes the typi- Af(Q%+ie)= tiqﬁifl db(w) B b(w)

5 *ie)=e dx expg ———-
cal process momenta of the observablg(Q“). When ex- Bolo dw Boal(u?)
panding the integrand in Eq17) in powers ofm2/Q?, we

can rewrite R(b(w); #?/Q?)
XW|W=xeﬂ¢' (25)
2 [1—Db(w)]
N L 2 mix? [ mix?
M3(Q )ZJ’O dx F3(x;Q9)|1—3 Q2 Q2 At this stage we can, as a by-product of formuias),
obtain an estimate of the yet unknowrfINcoefficient ws
mg, appearing in the perturbative expansi@®) [9,33]. If work-
Ol — | |- (18 ing with the RSclu?=Q? and in theMS scheme, the expan-
Q sion of R[b(w)] in powers ofw gives us
The above GLS moment can be written in the form R[b(w)]=1+0.526749v+ 0.709369n>
M3(Q3)=3[1-A(Q?)], (19 +(—43.2574+0.2774640v) W3+ O(W?), (26)

where the “canonical” quantityA(Q?) has the following where we excluded the “light-by-light” par24) of the NNL
power expansioW, [cf. Eq. (3)]: coefficientw(zo) (23). Looking at the coefficients appearing in
Eq. (26), it is reasonable to expect that the coefficiRgtat
A(Q?)—Wy(Q?)=a(l+wia+w,a’+wzas+---)

(20
5 ) ) 580=(11-2n/3)/4, c,=(102—38n/3)/(168,), Wheren; is the
Here,a=ay(u";C3,Cs, . .. )/m is the QCD coupling param-  number of active quark flavors.
eter with a given choice of the renormalization scdR&Sc) ®The superscript (0)” in w{® denotes the special RScl choice

wu? and the renormalization schent®Sch parametersc; ©?=Q2? andMS RSch.
(j=2). The evolution ofa with the RScl is governed by the  "The location of the renormalon pole=1 and the powerv
renormalization group equatidiRGE) =32/81(8) are independent of the choice of the RScl and RSch.
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We add here a few remarks on the question of the “light-
w—plane by-light” contributions. The power expansion of the mass-
less part of the GLS sum rule to®N order ~a3 (see Refs.

[31,32), in theMS scheme and at the RSef=Q?, is given

by
3 2 3
_ZCF Wp(Q%)=a _ZCF
w(b=1)

1 23 1

w(b=2)=1 2 . _ - -
L a? 3 ciy 1241 11 c2c
w(b=3) a ES F 576 l_2§3 FYA

5437 55 | .
+ __864+Zl§5 FCa

(1335

w(b=infinity)

FIG. 1. Integration in thev plane along the®_ ray w=Xx exp

Ll Byt _§3>C|2:nf
(—i¢) (0<x<1, $=0.67967) gives the same result as the integra- 1152 24

tion parallel to the positive real axis €0w<<1) and arcw=exp 3535 3 5
(—i¢") (0<¢'< ). If integrating in the first quadrant, the paths +(—+ {3~ —§5> CeCang
are those obtained from the presented paths by reflection across the 1728 8 12
real axis, and thé€, ray isw=xexp(+ig). 115 gabegabe
— ——Cgn?+n———
864 N.

w2 is |Rg|~1. If we assumeR;=1+1, we obtain a rather

stringent estimate/”)=159.5+ 3.6. If we adopt a more cau- 1
tious assumptiofiR;|< 10*, we obtainw{?~ 160+ 30. If we X( 192" g%
apply Padeapproximant(PA) [1/1]r(w) to the expansion
(26) and re-expand it back in powers of up to w®, we
obtain an estimate/{”)=159.3. On the other hand, if apply-
ing the [1/2]g(w) and demandingv,g.=1 (i.e., b=+2,
IR,), the prediction isw(3°)=158.5; if demandingwpge= besab
—1 (i.e.,b=—1, UV,), the prediction isv{")=157.0. Very de"d? C=§- (29)
similar estimates are obtained if we do not apply the confor-

mal transformatiorb(w) (15). Therefore, we will adopt the This group-theoretical factor is not present in the calculation
following estimate fow{Y: of the GLS sum rule up to the two-loop-@?) order, and it
appears for the first time at the three-loopd®) order. This
term is called “light-by-light,” it corresponds to diagrams
with a new topology involving exchange of three gluons. In
our calculation we will add this “light-by-light” contribution

We emphasize that this estimate excludes the “light-by-A | (Q?), given by the last term in Eq28), as a separate
light” contributions, which are assumed to be suppressed agrm not included in our resummation approach. The reason
the N’L order. The exclusion of the “light-by-light” contri-  for this is the following: Resummation approaches cannot be
butions reduces théNNL) perturbative eXpanSion of the expected to predic(and resum those h|gher order terms
(nOﬂpOlarizerGLS sum rule to that of the Bjorken pOlarized which are characterized by new h|gher order group-
sum rule (BjPSR [32]. It is interesting that the effective theoretical factors, when we have only one such term
charge methodECH) [34-36 and the(TPS principle of  (—33) explicitly available. We assume that such resummed
minimal sensitivity (PMS) [30] predict w’~130 [37],  <jight-by-light" contributions are small, comparable to the
based on the assumption thet-"~ciMS~cY'®. Further, an  quite small~a® “light-by-light” contribution in Eq. (28).
RScl- and RSch-invariant meth¢@8] that is somewhat re- Similar considerations can be found in R€¢f%9,37), in cases
lated to the PA and PMS approaches, also predj\zg@ of various observables and beta functions.

~130. This is at the lower end of our new estimée2a). We ) ) o

thus conclude that the expliciand exact structure of the B. Inclusion of the massive quark flgvor(c) contribution

leading IR renormalon of the GLS observal{BPSR ob- and nuclear corrections

servablg in the Borel plane, as given in E(L4), is respon- In the approximation of massless quarks, the calculation
sible for the somewhat higher estimatewdf’ in comparison  of the N°L (~a® QCD correction to the GLS sum rule has
with the ECH, PMS, and PA-related methods of resummabeen carried out in Ref32]. The inclusion of the heavic)

tion. quark contributions is important at the precision level at

+0O(a%), (29

where the Casimir coefficients for QCIN{=3) are C¢
=4/3, C,=3, and the group-theoretical factor appearing in
the last term in Eq(28) is

W =wy(u2=Q?%MS)] =158+ 30. (27)
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which we are working. In addition, it is important in order to This contribution, alQ?=2-3 Ge\#, turns out to be in its
estimate the scaldé®? where the(c) quarks can be treated as magnitude smaller than the heavy flavor effects by a factor of
massless or massive quarks. This point is important becauge-4, but larger than the “light-by-light” contribution by a

it indicates which number of light flavors; should be used factor of about 2.

in the (resummed “massless” part of the the perturbation

series. The calculation of the heavy flavor contribution to the C. Extraction of a values

GLS sum rule up to the second order 4?) was performed
in Ref. [40] and discussed in Ref41]. According to this
approachia) the quarksu,d,s are massless and result in the
dominantn; =3 massless QCD contribution to the GLS sum

rule A(Q?), (b) for Q?~2-4 GeV, the massive flavor is h il it iy b i
the c quark and it contributes a relatively small correction to &llC EXperimental uncertainties, primartly because of the un-
certainties in the normalization afF; and in the integration

the aforementionet;=3 massless contribution. The other ; h ; <1 andx>05. Th " i aint
heavy quark flavors are ignored due to the strong suppressidﬂ € regionx andx=>0.>. The systemalic uncertainties

by the mixing angles in the Cabibbo-Kobayashi-Maskawa®"® somewhat smaller, comparable to the statistical experi-

matrix and by the small values G2 mental uncertainties, only when the values of the exchanged

The heavy(c) flavor correction contributions ta (Q?) boson virtuality areQ?=2.00,3.16 Ge¥ (see their Table
IIl). These values, including the target mass correction terms

The values of the GLS sum rulll3(Q?), for various
specificQ?, have been obtained from the experimentally ex-
tracted values of the structure functidiy(x;Q?), by the
Fermilab CCFR Collaboratiofl3]. They have large system-

are of Egs.(17),(18), as well as the nuclear correction te(&8),
A(QH=A0+AP), (30 ar
Q?=2.00 GeV: M3(Q?)=2.49+0.13
A QYW= ! —a( 2)& i =A(Q?)=0.168+0.043 34)
In(1+ Q?=3.16 GeV:: M3(Q?)=2.55+0.12
—(1 ¢) }sinzec, (31) s
+é & A(Q?)=0.149+0.039. (35)
Here we added in quadrature the statistical and the system-
2\ (2 2 ZCFTF 1 2 16 . . R ..
A(Q%P)=—a(u?) 16 ﬁsf +I‘> In¢& atic experimental uncertainties. In addition, the values
A(Q?) in Egs. (34),(35 have the aforementioned nuclear

correction contributior{33) subtracted out; howeveh (Q?)

1/ 2 2783 67401 1375521 A .
4+ = ( — &+ + 4 l still includes the masslegperturbative and nonperturbatjve
A4\1057 315 63 & 315 g2 contribution (12), the “light-by-light” contribution w,(l.l.)
a® [see Eq(24)] and thec-quark _contribution(30),(32).
+625283 _i i§2+ ﬂ2§+4_94 For a given value ofag(Q? MS), our expression for
105 ¢3) )\5|105° 315" 63 A(Q)=Ap(Q%)+A\p(Q?) + A (Q%) +A(Q?), given in
the previous subsections, still has the freedambiguity of
15161 230241 2984321 the choice of the RSclk? and the RSch. In the following
21 E+ 63 ?Jr 315 ? analysis, we fix first the RSch to BdS, with the beta func-
tion being the PA3(x)=[2/3](x) based on the RL TPS of
102656 1 A+1) 201 ) AN+1 the Bus(X). This PA choice of the beta function has reason-
+ 05 o Il =]~ 3 52"1 =1l |’ able behavior in the region of large= a;/7 and has been

used in Refs[9,11,3§ in the analyses of low energy QCD
(32)  observables. We will comment later on how the results
change when we use®N TPS of theBys(x), and when we

where §=Q2/m§, \= [—2_1+4mc/Q2’ Ce=4/3, Te=1/2. change the RSch even more drastically.

The heavy flavor correction®1),(32) will not be included in  1he RScl dependence is yet another source of the theoret-
the resummation procedure fdr, but will be added sepa- ical ambiguity. In Figs. 2 and 3 we show the dependence of
rately. the predicted values ak(Q?) on the RSclu? at the NNL

In addition to the discussed heavy flavor contributions,2nd '\F_L level, at Q2=.2.00,3.16 Ge‘%,zrg)ectively, for
there are also nuclear corrections to the GLS sum rule, due @Vven fixed representative values @f(Q°,MS). The NNL
the nuclear effects in thE; structure functions. These ef- level means that we take f&{b(w)] in the Borel integra-

fects were calculated in Rd#2] and were found for the iron  tions in Egs.(25) and(12) the NNL TPS(quadratic polyno-

target(used by the CCFR Collaboratipto be small: mial in w), i.e., only the knowledge ofv; andw, coeffi-
%103 2
AFe(QZ)* M_ (33 8n the entries of Table Il of Ref13], the target mass corrections
Q2 are included, but the nuclear corrections neglected.
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extracted by the comparison of the results of the

applied resummation method with the measured GLS vazdg35).

Q?=2.00 GeV =M2 Q?=3.16 GeV =M3
ay(Q?) 0.348 0.1166 0.305 0.1167
Sas (>0,exp.) +? +? +0.132 +0.0128
Sas (<0,exp.) —0.093 -0.0115 -0.074 -0.0118
Sag (RSch +0.009 +0.0008 +0.005 +0.0006
Sas (RSC) +0.002 +0.0002 +0.002 +0.0003
Sas (W3) +0.001 +0.0001 +0.001 +0.0002
Sas (M) +0.002 +0.0002 +0.001 +0.0002
Sa (sin 6y +0.002 +0.0003 +0.001 +0.0002
Sas (evol) +0.0003 +0.0003

cients is used. The ! level means thaR[b(w)] is the N°L
TPS (cubic polynomial inw), i.e., we use, in addition,
w{=158 according to the estimat27). From Figs. 2,3 we

cases, respectively. The central, upper and lower experimen-
tal bounds are included as straight dotted lines.
We now return to the question of the uncertainties of our

see that the RL expressions drastically improve the stability predictions under the variation of the RScl and RSch. If we
of the predictions under the change of the RScl. In the caseary the RScl parametetjzz,uZ/Q2 around 3._3across the
Q?=2.00 GeV, the N’L values of the massless quantity interval 1.5< £2<5, the predictions forg(Q?;MS) vary by

Ap,snp(Q?) achieve minimal Inu? sensitivity at u?/Q?
~33:  dAp, p(Q)/dInu?~—1.45x10°4 At Q2
=3.16 GeV, there is unfortunately no point of minimal

at most*+0.002. On the other hand, variation of the RSch
leads to larger ambiguities. For example, if we repeat the
calculation in the 't Hooft RSch ,=c3;=0, we take

RScl sensitivity; the slope is negative and getting Weak8[2/3]ﬁ(x) for definitenesg® keeping&?= 3.3, the predictions

when u? increases. However, the RScl sensitivity is very

weak whenu?/Q?>2.5, and almost stabilizes whert/Q?
~3.3: dAp, \p(Q?)/d In u?~—1.55<10"3. Therefore, we
will take, for definiteness, the RScl choigg=3.3Q? in the
case of bothQ? values. Later on, we will comment on the
ambiguity of our results when the RScl is varied.

Having fixed the RScHMS, with [2/3] 5(x) PA} and the
RScl (x?=3.3Q?), our expressions for\(Q?)=A(Q? P
+NP+L1.4+c) become unambiguous functions of the inpu
value of a4(Q?%MS). Adjusting simply the latter value so
that the experimental valudg84),(35) are achieved, we ob-
tain

Q2=2.00 GeV: ay(Q%MS)=0.348"] ,odexp.),
(36)

a5(Q%MS)=0.305 %] exp).
(37)

Q?=3.16 Gef:

The central, upper and lower values here correspond to t

pertaining experimental values af(Q?) in Egs. (34),(35).
In the caseQ?=2.00 Ge\f, the upper bound for the cou-

for as(Q%MS) change by 0.009 @?=2.00 GeV) and
0.005 Q?=3.16 Ge\f). We will regard these values as
characteristic values for the RSch uncertainties of our results.
The replacement of the1S [2/3]4(x) by the NL TPS MS
beta function changes our predictions fag(Q%MS) by
only about 0.001.

Yet another source of the theoretical uncertainty in our

tpredictions may be the truncation in the Y TPS

R[b(w)]. We regard the uncertainty 30 in the estimated
value ofw{?), Eq.(27), as the major source of the truncation
uncertainty. This changes the prediction feg(Q?;MS) by
only =0.001.

The other sources of theoretical uncertainty come from
the massivgc) quark contributions presented in Sec. Il B,
due to the uncertaintiesm,=1.25-0.10 GeV and
SiN(Bcabibbd = |Ved = 0.224+0.016[43]. The resulting uncer-
tainties of the predictions forg(Q?;MS) are +=0.002 and
+0.002, respectively, whe®@?=2.00 GeV¥, and +0.001

and +0.001 whenQ?=3.16 GeV.

The final predictions for are presented in Table I. In the
table, we presented the central predictions dQfQ?;MS)

pling parameter cannot be obtained from the experimentalhenQ?=2.00 and 3.16 Ge¥/ and the uncertainties of the
ues of A(Q?) which are always lower than the presently fion group equatiofRGE) evolved these predictions to the

allowed experimental upper boundA(Q?)mer=0.196
[ <A(Q?)max exs=0.168+0.043. The situation in the case
Q?=3.16 Gevt

canonical scalé2 and included the results in Table I. This
RGE evolution was carried out by using tfi2/3] Padeap-

is somewhat similar, the experimental upper proximant of the four-loopMS TPS beta function, using the

bound being now slightly below the maximal value allowedvalues of the four—loop coefficiemg(n¢) [44] and the cor-
by the method. This situation is presented graphically in

Figs. 4 and 5 which show (Q?) as function ofas(Q?) as
predicted by the applied method, f@?=2.00,3.16 Ge¥

For comparisoncz“"_sz 4.47103“"_5: 20.99, forn;=3.
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FIG. 2. The (tota) A(Q?=A(Q?P+NP)+A(Q?Ll) FIG. 3. Same as in Fig. 2, this time f@2=3.16 Ge\f and

+A(Q?,cquark), as well as tha;=3 perturbative part (Q?,P) as(Q?,MS)=0.3053.

and nonperturbative paft(Q? NP), as functions of the renormal-

ization scaleu?, as given by the applied resummation method.

Given are the results at the®N level, and for comparison, at the Singularity atb=1, or equivalently, they correspond ap-

NNL level. The curves are fo2=2.00 Ge\? and ay(Q2,MS) proximately to the d=2 massless power corrections

=0.3483. (~1/Q?). For Q?=2.00,3.16 GeY, they lead to about an
11, 8% decrease of the value d{Q?), respectively. This is

responding three-loop matching conditid#s] for the flavor ~ to be contrasted with the heavig) quark contributio

thresholds® When adding in quadrature the various theoret-which is positive and leads to only about a 3.6, 3.1% in-

ical uncertainties, the predictions of Table | can be summacrease ofA(Q?), respectively. If thec-quark contribution

rized as were not included, the central predicted values in E88)—
, (41) would change toag(Q?)=0.367, 0.316[ay(M3)
Q*=2.00 GeV: =0.1183,0.118pfor Q2=2.00, 3.16 Ge¥, respectively.
- 5 The small negative “light-by-light” contribution was
ay(Q%MS)=0.348"§ oof €xp.) =0.01Q th.) separated from our resummation and then added as the term

B8 ALQY~w(ll)ad(uZc,, ...). The ‘light-by-light”

— part of A, (Q?), by the special topology of the Feynman
= ay(MZ;MS)=0.1166 § 41,4 €xp.) +0.001Gth.) diagrams representing it, is a quasiobservable in the sense
(39 that it is RScl and RSch invariant. Thus, the coefficient

wiO(LL) (24) is the leading coefficient of that quasiobserv-

d
an able and is therefore unchanged under the changes of the
Q2=3.16 GeV: RScl and RSch. The “light-by-light” part decreasagQ?)
by only about 0.4 and 0.3 %, fa@?=2.00,3.16 GeY, re-
as(Q%MS)=0.305" 3337 exp) + 0.006th.) spectively.
(40)

IV. COMPARISON WITH OTHER APPROACHES

= ay(MZ;MS)=0.1167§ 13§ exp.) +0.0008th.). One may ask how crucial is the introduction of the con-
(4D formal transformation(15) for obtaining the numerical pre-
ictions (38)—(41). If we repeat the same analysis, but this
e without the conformal transformation, and keepiffg
=3.3, we obtain

We see that the predictions of the applied method sugge
that the experimental data on the GLS should be refine
significantly in order to increase the predictive power for the
QCD coupling parameter.

Another observation, evident from Figs. 2-5, is that theQ?=2.00 Ge\#: aS(QZ;M_S)=O.346f§094exp.),
nonperturbative massless contributiofP) to A(Q?) are '
very significant, and negative. They have their origin, as ex-

plained in the previous section, in the first IR renormalon aS(M§;%)zO.llGig_ongexp),
(42)
10For details on the corresponding evolution uncertainties, we re-
fer to Ref.[9]. They include the variation when tfi2/3] Padeform The latter is, to a large degreeda 2 massive power correction

of the beta function is replaced by the TPS form. ocmﬁ/Qz, see Sec. Il B.
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FIG. 4. The (tota) A(Q?=A(Q%P+NP)+A(Q?Ll) FIG. 5. Same as in Fig. 4, but this time for tiéboson virtu-
+A(Q*cquark), and the separate parts, as functions ofality Q°=3.16 GeV’.

a(Q%,MS), as given by the applied resummation method. The 12
renormalization scale was fixed to 8=u2/Q2=3.3, and the =3,4,5° Furthermore, they used the GLS measured values

W-boson virtuality isQ?=2.00 Ge\f. The present experimental aV"’_“Iable at ,th‘f"F time[A(Q*=3 Ge\/2)=0.167i 0.027
bounds and the central value, for the taiQ?) in this case, are Which differ significantly from the presently available values
denoted as three horizontal dashed lines. (35). Their central value prediction wasg(M3)=0.115,
which is lower than our central value predictiof®9),(41).
The CCFR group13,14] carried out a numerical analysis
similar to that of the authors of Rd#6], but with the newer,
lower, experimental date4),(35) for A(Q?), and using in
the TPS partMS RSch(and RSclu?=Q?). Their central
, — 0012 value® is ay(3 GeV?)=0.278 [14] and a{(M3)=0.114,
as(MZ;MS)=0.1165 g 51if exp.). thus slightly lower than that of Ref46], and significantly
(43 lower than our central value predictiof39) and (41). The
principal reason for this difference shall be discussed in the

These results are very close to the res(®)—(41). Thus, following sectiop. Further, if they chIuded i_n their method

we see that the introduction of the conformal transformatiorfie N'LO term in the TPS, witw{” as estimated in Eq.

(15), which had the task of reducing the influence of the UV(27), the predicted value afs(M2) would decrease by about

and the nonleading IR renormalons, does not influence sig?-002.

nificantly the predictions. Therefore, we can conclude that Furthermore, the CCFR group mentioned that their central

these renormalon singularitie@t b=—1,—2,... andb  value increases tary(3 Ge\V?)~0.305 [14] and ay(M2)

=2,3,...) are in GLSwmerically much less important than =0.118[13,14 when they set the twist-fourd=2) contri-

the leading IR renormalon singularitat b=1), even when bution approximately equal to zetd Such higher-twist val-

no conformal transformation is introduced. ues for the GLS sum rule are suggested by the calculation by

We can ask how our predictions compare with those of

other, alternative, OPE based methods which, in contrast

with the method applied here, do not take into account ex- *?This is different from our approach, where we separately added

plicitly the structure of the leading IR renormalon singularity the contributiong30)—(32) of the heavy(c) quark as corrections to

in the Borel plane. the massless;=3 GLS sum rule, as recently suggested in Ref.

One such an alternative method is i@ PMS optimi-  [41].

zation of the perturbative contribution, which fixes the RScl *°The values ofay(3 GeV?) obtained from our central values of

and RSch in the TPS in a judicious manfigé]. Resumma-  EQs.(38) and(40) are 0.309 and 0.310, respectively.

tions of the GLS sum rule based on this method were theo- ' We note that the RGE evolution of; from Q? to M gives in

retically and numerically investigated in 1992 by the authors?Ur approach different resultsy(3 Ge)=0.278(0.305) gives

of Ref.[46]. They were confronting the TPS results with the ¢s(M2) =0.1124(0.1162) when using the three-loop or four-loop

measured values, paying particular attention to the RScl an{SP fun<_:t|on, 0.1123(0.1161) when using ttieur-loop) [2/3]

RSch dependence of the predicted valueSagiﬂ\/lz 'M_S). PA B f.unctlon—.v.ve use the corresponding two-loop and threg-loop
. ) T matching conditions for the flavor threshol@45]; other details

For the nonperturbative massldssist-four) d=2 contribu-

] > ’ - given in Ref.[9]. The CCFR Collaboration apparently uses an ap-
tion, they employed the positive value as obtained in Refpqyimate three-loop RGE evolutidia truncated expansion in in-

[17] [Anp(Q?)~0.1 GeVF/Q?]. Further, the authors of Ref. yerse powers of In{?/Aws)] and different matching conditions for
[46] accounted for the quark mass threshold effenf)(by  the flavor thresholds, possibly of Ré47], giving them the values
introducing a judiciously chosen weighted averagenef 0.114(0.118).

Q2=3.16 GeV: ay(Q%MS)=0.304"3%2Fexp.),
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the authors of Ref{48] based on an IR renormalon model ordinary TPS’s in the OPE approach. In all of the plots in
with dispersive approach of Re#9], and also by the calcu- Fig. 6 the NLO QCD 2 function was used in the running of
lation by the authors of Ref50] based on the bag model. It the strong coupling. We also take the RG scalwé{: QZ,
looks reasonable that the result with the aforementioned IRjince the RG scale dependence is sufficiently small for our
renormalon model method gives prediction rather close tgyresent discussion. The aforementioned stability of the Borel
our prediction, since our method also accounts for the IResummed amplitudes becomes clear when the two figures
renormalon Contribution, although in a different manner.gre Compared_ Note the variation in the Borel resummed am-
However, the calculations in Ref#18,50 apparently do not  piitudes is very small, whereas the TPS amplitudes have sig-
give us a clear handle on how to treat the perturbative parkificant order dependence. While this stability is not com-
i.e., whether to take it as a LO, NLO, or NNLO TPS, or in p|ete|y unexpected, because the |eading renormalon
any other form. This is in contrast with our method, wheresjngularity is effectively softened by the use of the function
the perturbative and nonperturbative parts are clearly cong(b) in the Borel integration, the degree of the stability is
nected with each other. We discuss this aspect in more detailill remarkable. This suggests that the renormalon-induced
in the next section. asymptotic behavior of the perturbative coefficients sets in
At this point, we would like to point out that the PMS quite early in perturbation, and that the useRfb) and
method has a signal casting doubts on its applicability in theonformal mapping in Borel resummation is very efficient in
discussed GLS cases, namely, the PMS RScl is very low ifandling the renormalon singularity. We also note in passing
this case:upys~0.2007. For Q*=2.00,3.16 Ge¥, this  that the stability of the Borel resummed amplitudes for
implies the scales upys~0.64,0.80 GeV, respectively, A (Q?)+Ans(Q?), which are not shown in the figure, is
which may be too low for the application of perturbative comparable to that of 5(Q?).
approaches such as PMS. The same problem appears whenin the previous section we have seen there is a significant
applying the effective chargéECH) method [34-3§ to  difference between the Borel resummation and the OPE ap-
these GLS cases. proach in the prediction of the strong coupling constant.
The present world average for the QCD coupling paramiwhile there are obvious differences in the two approaches, it
eter is agﬂs(mg):o.mgt 0.0020 by Ref[51] and 0.1184 was not clear what aspect of the Borel resummation is pri-
+0.0031 by Ref[52]. Comparing this with our predictions marily responsible for the difference. Is it because of the
(39) and(41), we see that the method applied in the presenperturbative partAp(Q?) or because of our specific imple-
paper gives us the central values which agree well with thenentation of the nonperturbative parfs(Q?), or both?
present world average. We wish to point out that this agree- To answer this question we plot in Fig(cp the Borel
ment suggests that the method applied in the present papessummedAs(Q?) + Ayp(Q?) against the OPE amplitudes
for the nonperturbative massless correctionAf@Q?) is at  (NLO TPS)+0.1/Q?, whose power term representing the
least consistent with the experiments. If this correction werawist—four contribution is from the sum rule calculation
zero, or had the opposite sign, the obtained central predictiof1.7],*> and (NNLO TPS)-0.02Q2. The small power term
for ag(M2) would be at the lower edge or even outside thein the latter was chosen for the amplitude to match the NLO
interval of the present world average. These consideration®PE amplitude at large values @ in the plots. In the
do not necessarily imply, but indicate, that the appliedfigure we first notice that the NLO and NNLO OPE ampli-
method gives the correct nonperturbative contributions. For &udes with a large difference in twist-four contribution agree
more definite statement in this respect, the experimental urreasonably well over the whole range@f considered. This
certainties in the GLS sum rule would have to be reducedmplies that the higher-twist term in the NLO amplitude can
significantly. be largely accounted for by the NNLO perturbative term,
which is in qualitative agreement with the observation in
Refs.[21,22. This also shows that the use of the NLO sum
rule calculation of the higher-twist contribution with a TPS
In the discussions so far, we considered the amplitudes ajf different order, which is not an uncommon practice, can
Borel resummation or OPE approach only at fixed values obe dangerous. Higher-twist contributions calculated at a
Q2. Here we mean, for convenience, by the OPE approachiven order of the leading perturbative contribution should
the usual perturbative expansion plus a power suppressegver be used with a TPS of different order.
term representing the twist-four contribution. In this section On the other hand, the Borel resummed amplitude is in a
we consider them over a continuous range€df This slight  reasonably good agreement with the OPE amplitudes at large
change of view will reveal the characteristic features of theQ?(>4 Ge\?), but deviates significantly at small momenta.
two approaches, and enable us to better understand the cau@bviously, this deviation at small momenta explains the dif-
of the significant difference in the extracted strong couplingference in the prediction of the strong coupling. Before we
constants seen in the previous section. answer the origin of this deviation, we note that the good
We first note the remarkable stability of the Borel re- agreement of the two approaches at large momenta is a non-
summed amplitudes over the order of perturbation involved
in their calculation. In Figs. @), 6(b), we plot, over the
interval 1<Q?<10, in Ge\?, the real part of the Borel re-  15ye note, however, there are some variations in the estimate of
summed amplitudes foAp(Q?) using NLO, NNLO, and the twist-four contribution. The sum rule calculation of RE§3]
N3LO perturbations and the corresponding amplitudes of th@redicts the §=2) power term 0.16 Ge¥/Q2

V. BOREL RESUMMATION VERSUS OPE APPROACH
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FIG. 6. Borel resummed and
OPE amplitudes versus Q2
(GeV?). ay(2 GeV?)=0.35 is as-
sumed.(a) Borel resummed am-
plitudes of the perturbative part
R Ap(Q?)] at NLO, NNLO, and
N3LO; (b) NLO (dot-dashey
NNLO (dashedi and NLO TPS
(solid) of W[ as(Q)]; (c) Borel
resummed  Ap(Q?)+Ay(Q?)
(solid line) against NLO(dashed
and NNLO(dot-dashedOPE am-
plitudes. Dotted line denotes the
Borel resummed with the wrong
sign; (d) Borel resummed
R AR(Q?)] (solid) versus an
NLO OPE amplitudgdashegl
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trivial result. Even though the amplitudes from the two ap- This suggests the OPE amplitude tends to overestimate at
proaches should agree at very high momeaat small low momenta. We can easily see that this tendency arises
couplings, since they have the same low order perturbationsfrom the bad functional form of the polynomial Borel trans-
the degree of agreement seen here is unlikely to be a randoform [TPS of Eq.(6)] around the renormalon singularity at
consequence. For instance, if ofgp(Q?) had the wrong b=1. In Fig. 7 (a) the N°LO Borel transforms in the two
sign or were zero, then we would see a significant differencapproaches are plotted in the variable=or b>1 the Borel
at high momenta(see the dotted plot for the wrong sign transform in our approach defined througtb) in Eq. (14)
case. Thus this good agreement of our Borel resummed amis complex, and its real part is plotted. It is obvious that the
plitude with the OPE amplitudes at high momenta may beOPE Borel transform is badly broken around and beyond the
regarded as a partial support for our prescription of the nonrenormalon singularity. When the coupling is small this is
perturbative part. not a serious problem because the dominant contribution to
Now back to the question of what causes the deviation athe Borel integral(5) comes from the region close to the
low momenta. It is not difficult to sed(Q?) must be re- origin. However, as the coupling becomes larger the relevant
sponsible for the deviation. The reason is as follows. Sincéntegration region extends to the renormalon singularity, and
the nonperturbative pat \s(Q?) essentially behaves as a beyond, and as we see in the plots, the OPE Borel transform
power suppressed terfhiandAp(Q?) + A\p(Q?) is in agree-  can grossly overestimate at large couplings. The amplitudes
ment with the OPE amplitudes at large momenta, so should btained from these Borel transforms are plotted in Fig. 7
be at low momenta, too, werks(Q?) to behave as an OPE (b). As expected, at small momerflarge coupling the OPE
amplitude. Thus the primary cause of the difference in theamplitude is larger than the Borel resummed. Note, on the
predicted strong coupling constant must be that the Borebther hand, at high momenta it is smaller than the latter. This
resummedA(Q?) at low momenta cannot be parametrizedis because the OPE Borel transform in the regienb3<1,
in the form of an OPE amplitude. We can see this explicitlyfrom which the dominant contribution comes at small cou-
by looking at the plots in Fig. @), where, as an example, the plings, is smaller than the other one, which is a characteristic
NNLO R AR(Q?)] is plotted against an OPE amplitude feature rendered automatically by the correct implementation
(NNLO TPS)+0.16/Q2. The power suppressed term in the of the renormalon singularity in the latter. This difference
latter was fixed so that the two amplitudes match at highbetween the Borel resummed and the OPE amplitude at
momenta in the plots. Clearly, they deviate significantly atsmall couplings may be regarded as the resummation of the
low momenta, with the Borel resummed growing moreunaccounted higher order terms in the same sign asymptotic
slowly than the OPE amplitude as the momentum is deseries.
creased. That the Borel resummed(Q?) cannot be approxi-
mated by an OPE amplitude of a TPS plus a power sup-
pressed term representing the renormalon effect may appear
167 \(Q2) ~ as(Q?) 2/B0/ Q2= a((Q?)328YQ2?, in accordance contradictory to the common opinion which states otherwise.
with Egs.(11),(12) and the OPE calculation of RefL6]. The latter opinion, which is based on the factorially growing

054006-12



EXTRACTION OF ag FROM THE GROSS—-LLEWELLYN SMITH SUM RULE ... PHYSICAL REVIEW D 66, 054006 (2002

large order behavior and the running coupling, would be trué ~Q?) was taken in the region of the smallgst sensitivity
in a sense, provided the strong coupling were sufficientlyof our results.
small, and a TPS of large order-(L/a) was used. In reality, We then confronted the resummed expressions with the
however, the strong couplings at the low momenta we conFermilab CCFR Collaboration dafa3] for the GLS(at Q?
sider are not so small, and there is no guarantee that the2,3.16 GeV) which already include the target mass cor-
Borel resummed\p(Q?) at those momenta can be param-rections. Our central value prediction for the QCD coupling
etrized as an OPE amplitude. The example here clearlparameter, corresponding to the central GLS values of the
shows that cannot be generally true. A Borel resummed amECFR, isag(M;)~0.117[see Eqs(38) and (41)], in good
plitude can have a much more complex functional behaviongreement with the present world average. This is different
than the sum of a TPS and a power term intended to accoufitom the central value predictions of previous analyses of the
for the renormalon effect. This consideration suggests thaBLS sum rule by the CCFR Collaboratiqd3] [ a¢(M3)
several existing analyses of low energy QCD observables-0.114] and by the authors of Ref46] [ ag(M,)~0.115
based on the OPE approach should be reexamined, since tivich are below or at the lower edge of the world average.
issues raised here are likely to be relevant there, too. We have seen that our approach to the calculation of the

To sum up this section, we have made two observationsonperturbative contribution is consistent with the OPE ap-
concerning the Borel resummation and the OPE approaclproach, and the main reason for the difference between the
First, our method of calculation of the perturbative plus non-two approaches is that at sm&f<4 Ge\?, the OPE ap-
perturbative contribution in Borel resummation is consistenfroach tends to overestimate and the Borel resummed pertur-
at largerQ?>4 Ge\? with the OPE approach using QCD bative contribution cannot be approximated by an OPE am-
sum rule calculation, and secondly, at low energies the OPRlitude.
amplitude tends to overestimate, and the Borel resummed The GLS sum rule, at the low gauge boson transfer mo-
amplitude with a proper incorporation of the leading renor-mentaQ?=2-4 GeVf, is a very important quantity to mea-
malon cannotbe approximated by an OPE amplitude of asure, because it has apparently a strong nonperturbative com-
TPS with a power suppressed term. It is the second observgonent, stronger than in some other low-energy QCD
tion that directly accounts for the differences in the extractedbservables such as the semihadronic tau decay rate. The
strong coupling constants from the two approaches. more precise experimental values of the GLS sum rule would

help determining the higher-twist contributions more accu-
rately.
VI. CONCLUSIONS

. ACKNOWLEDGMENTS
We performed a resummation of the Gross—Llewellyn

Smith sum rule by fully accounting for the correct known  The work of C.C. was supported by DG(BTFSM). The
form of the leading infrared renormalon singularitybkat 1~ work of G.C. was supported by the FONDECYThile)

in the Borel plane. As one direct consequence of this singuGrant No. 1010094. The work of T.L. and K.S.J. was sup-
arity, the resummed “perturbative” pa o[ of the  ported in part by the ore Program.

larity, th d* bative” patkJ as(Q)] of th di by the BK21 Core P

GLS has a branch cut of the formf—ag(Q?)] "

><eXF[—W/ﬁoas(Q)}[lﬂLO(as)], ie, a twist-four term APPENDIX: BRANCH CUT SINGULARITY
(—1)‘”(1/Q2)as72 Por1 + O(ag)] with the branch cut dis- AND THE NONPERTURBATIVE PART

continuity factor exptimv). Here, y,=8/9 is the known . . - .
one-loop coefficient of the anomalous dimension of the cor-Eq!Sn (T(')‘;’Q'i%e nud:i(r’]g\;v?hzh(i)(xri)i(g/l(lg)mgrfgrﬁlgalié?j?r?én?go
resp_ondlng twist-foud =2 operator appearing in the OP.,E'A renormalon singularity structur€7). The latter structure
crucial element of the analysis was the fixing of the “non- roundb=1 can be rewritten more explicitly as
perturbative” part as the negative of the aforementioned® B plicttly

branch cut term, thus making the resumntakerturbative”

plus “nonperturbative) GLS sum rule manifestly real. This Wo(b)= BT (1—b) 11+ ky(1—b)
procedure is free from the known ambiguity of separation of I'(=»)
the “perturbative” and “nonperturbative” parts. In the Borel +Kky(1—b)2+ - - -]+ (analytic part. (A1)

resummation of the “perturbative” part, we further em-

ployed a conformal transformation to minimize the numeri-The leading part is knowny), while the coefficientsc; (]

cal influence of other renormalon singularities. All this al- =1) of the subleading parts are not yet known. Inserting the
lowed us to perform the resummation of the massless part ¢fpove expansion into the Borel integration form(f and

the GLS sum rule, i.e., of the contributions of the three |ightperforming the Change of the integration variade= 1
quark flavors. The contributions of the healey quark were 4 g at, we obtain

added separately, as were the target nuclear correction con-

tributions and the “light-by-light” contributions. These three C

types of contributions turned out to be small, in contrast to |mAP[a(Q)ii6]=F(_ - e Ba(Qz(Q)~"f.[a(Q)],
the “nonperturbative” contributions which turned out to be (A2)
significant. The calculations were performed in tMS

renormalization scheme, and the renormalization sgdle where
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Now requiring the imaginary parts df, at positivea(Q) to
match those in EA2) A, for general compler(Q) can be
written as

Ada(Q)]=—Ce Y[ —a(Q)] "+ x1(— »)Bo
X[—a(Q)] "+ kp(— v)(—v+1) B

X[-a(Q)] "2+ - }+Ada(Q)], (Ad)

1.5 2 2 4

Borel resummed HRe(Q?)]
(solid line versus NLO TPS
(dashed
N | 1 | 1
6 8 10
Q%(Gev?)

whereA(a) is the part with no singularitieéno cut3 for
a>0.1" According to Ref.[15], the nonperturbative part
Ayda(Q)*ie] must cancel the imaginary part of
Ada(Q)xie], and Ayp was chosen to have the simplest,
presumably the most natural, form—i.e., just the negative of
the branch cut term of E4A4)

Aypla(Q)]=+ Ceillﬁoa(Q){[_ a(Q)] "t ki(—v)Bo
X[—a(Q)] " 1+ ko(— v)(—v+1) B3
X[—a(Q)] " 2+ ..} (A5)

Further, since a¥ie) " "=a " "exd *i(v—n)=7], ex-
pressiongA2) and (A5) immediately relate RAyp(a=*ie)
with the (calculablg ImAp(a=ie)

ReAyp(atie)=F cotlvm)ImAg(azie), (AB)

giving the result(12).

"The absolute value of the singular term in Hé4) can be
rewritten as ~(A%/Q?)a(Q)*72/f[1+O(a)], where A is a
Q-independent scale, angl, is the one-loop coefficient of the
anomalous dimension of the twist-foud<2) operator((O(Q)))
~ A?a(Q) " 2'ko appearing in the OPEB).
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