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Extraction of as from the Gross–Llewellyn Smith sum rule using Borel resummation
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Using the CCFR data for the Gross–Llewellyn Smith~GLS! sum rule, we extract the strong coupling
constant via Borel resummation of the perturbative QCD calculation. The method incorporates the correct
nature of the first infrared renormalon singularity, and employs a conformal mapping to improve the conver-
gence of the QCD perturbation expansion. The important twist-four contribution iscalculatedfrom resumma-
tion of the perturbation theory, which is based on the ansatz that the higher-twist contribution has a cut
singularity only along the positive real axis on the complex coupling plane. Thus obtained, the strong coupling
constant corresponding to the central GLS experimental value is in good agreement with the world average.
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I. INTRODUCTION

Many low-energy quantum chromodynamic~QCD! ob-
servables, including the Gross–Llewellyn Smith~GLS! sum
rule, with a characteristic energy scale of a few GeVs,
analyzed in perturbative QCD within the framework of o
erator product expansion~OPE!. In this scheme usually the
most important is the perturbative contribution from the W
son coefficient of the unit operator, and there are nonper
bative, power suppressed, higher-twist contributions. Ge
ally, the higher order coefficients in the perturbati
contribution grow rapidly due to the asymptotic nature of t
perturbative expansion. The uncalculated higher order
rections are thus expected to be large, and this can cau
large uncertainty in data analysis that employs the unp
essed, finite order perturbative expansion. It is therefore
portant to properly handle the divergent perturbation exp
sion via resummation, since it can give a more accur
result with reduced theoretical uncertainty. In addition,
summation serves to give a well defined meaning to
higher-twist contributions. Without a proper resummation
the perturbative part, the higher-twist contributions are a
biguous@1–4#.

An often used resummation technique is the Borel resu
mation. It has a sound theoretical basis since it is built on
understanding about the singularities in the Borel pla
which cause the divergence of the perturbative expansion
use generally improves the quality of data analysis, as ca
seen from the reduced dependence on the renormaliza
scheme and scale, and from the reduced dependence o
uncertainty of the uncalculated next higher order perturba
coefficient.

At moderate values of the strong couplingas(Q) at a few
GeV, the Borel integral receives most of its value from t
interval between the origin and the first infrared~IR! renor-
malon singularity, and just beyond it, in the Borel plane. L
us call this loosely defined interval, for convenience, the p
mary interval. In Borel resummation it is thus very importa
to describe the Borel transform, which determines the Bo
integral, as accurately as possible in the primary interval
ing the calculated first terms of perturbation theory.

For this purpose two steps can be taken:~1! an explicit
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incorporation of the first IR renormalon singularity in th
Borel transform and~2! use of an optimal conformal map
ping. With the usual power expansion of the Borel transfo
about the origin the information on the renormalon singul
ity is lost. To remedy this, one may explicitly incorporate t
first renormalon singularity by writing a Borel transform
D̃(b), which behaves as 1/(12b/b0)11n around the singu-
larity at b5b0, as

D̃~b!5
R~b!

~12b/b0!11n
~1!

with R(b)[D̃(b)(12b/b0)11n. The function1 R(b) is by
definition bounded and has a softer singularity at the first
renormalon. Hence we can expect that the Borel transform
the form of Eq.~1!, with R(b) perturbatively expanded abou
the origin, would give a better approximation than the dire
expansion ofD̃(b).

Step ~2! utilizes the information on the locations of th
singularities in the Borel plane. Use of conformal mapping
Borel resummation has a long history@7#, and its use in
perturbative QCD was particularly emphasized in Ref.@8#.
On the Borel plane there are IR renormalon singularities
the positive real axis and ultraviolet~UV! renormalons on
the negative axis.2 By pushing the singularities away from
the primary interval one can obtain a smootherR in the new
primary interval on the mapped plane. This would render
perturbation ofR in the mapped plane to converge bett
Among the several mappings considered in the literature
find that the one proposed in Ref.@9# is particularly suited
when used in combination with the Borel transform in t
form of Eq.~1!. This mapping moves the first IR renormalo
singularity that defines the primary interval to a point with
the unit circle and all other singularities to the unit circl

1This function was first introduced in Ref.@5# in a Borel resum-
mation and independently in Ref.@6# in a renormalon residue cal
culation.

2There are also instanton-caused singularities, which can be s
ignored in our case.
©2002 The American Physical Society06-1
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Since the effect of the first IR renormalon is softened by
step ~1!, we expect this mapping in our case to be bet
suited than, for example, a mapping that moves all singul
ties to the unit circle@10#.

These techniques were applied to the hadronic tau de
width @9–11# and to the hadronic contribution to the muo
anomalous magnetic moment@12#. In this work we apply
them to the GLS sum rule. The CCFR analysis@13,14# of the
GLS sum rule was based on evaluation of the truncated
turbation series~TPS! in the modified minimal subtraction
(MS) scheme. Aside from the inherent ambiguity of t
higher-twist contributions, this method gives predictio
which are not stable under the inclusion of an additional te
(;as

4) in the TPS. As we shall see, these problems can
avoided with the use of Borel resummation.

A crucial new element of our analysis comes with t
calculation of the nonperturbative contribution. Aside fro
the perturbative part, an important contribution to the G
sum rule comes from the nonperturbative, hadronic ma
element of the twist-four operator. Being nonperturbati
this contribution is usually fitted using the QCD sum ru
calculation. Recently it was proposed by one of us@15#, mo-
tivated by an observation that the nonperturbative amplitu
in lower dimensional solvable models have a simple ana
icity in complex coupling plane, that these higher-twist co
tributions can in principle be calculated from the Borel r
summation of the perturbation series. The proposal w
based on the conjecture that the higher-twist contributi
have cuts only along the positive real axis in the comp
coupling plane, which allows to relate the real part of t
nonperturbative amplitude to its perturbatively calcula
imaginary part. This scheme was shown to work well
model field theories. When applied to some of the solva
lower dimensional theories, it allowed the associated non
turbative amplitudes to be accurately calculated from the
terms of the perturbation theory in the respective theorie

From our analysis we obtain for the strong coupling p
rameter the central valueas(MZ)'0.117. Compared to the
corresponding CCFR central valueas(MZ)50.114, our
value is closer to the world averageas(MZ)'0.118. The
main improvement comes from the correct incorporation
the renormalon singularity on the Borel amplitude and
calculation of the nonperturbative contribution.

The paper is organized in the following way. In Sec. II w
describe the resummation method, incorporating in it
known structure of the leading IR renormalon and the n
perturbative part, as well as the conformal mapping. Sec
III contains the numerical application of the method to t
GLS sum rule, leading to predictions foras(MZ). In Sec. IV
we compare our predictions with those of other methods
Sec. V we discuss some general features of the Borel res
mation and the OPE approaches to understand prec
where the two methods deviate from each other. In Sec
we summarize our results and present conclusions.

II. THE METHOD

In this section we give an overview of our method us
for the QCD analysis of the GLS sum rule. Its implemen
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tion in detail will be given in the following section. The
QCD correctionD(Q2) to the GLS sum rule is defined by

E
0

1

dxF3
nN~x,Q2!53@12D~Q2!#, ~2!

whereF3
nN is the nonsinglet deep inelastic scattering~DIS!

structure function innN scattering. Here we shall ignore th
target mass correction since it is irrelevant for our pres
discussion, but it will be included in the numerical analys
presented in the next section.

We first begin by reviewing the old but important proble
@1,2# with the conventional QCD formulation ofD(Q2) in
OPE framework, which is widely used in data analysis. T
problem is not confined to the GLS sum rule, but generic
any perturbative OPE formulations.D(Q2) in OPE up to
twist-four operator is given by

D~Q2!5W0@as~Q!#1W1@as~Q!#
^^O&&

Q2
, ~3!

whereas(Q) is the strong coupling constant and^^O&& is the
reduced nucleonic matrix element of the twist-four opera
that was first derived in Ref.@16#:

Om5ūG̃mngng5u1d̄G̃mngng5d,

G̃mn5
1

2
emnabGab

a la

2
, ^PuOmuP&spin averaged52 pm^^O&&.

Here,la are the usual Gell-Mann matrices and we used
notations of Ref.@17#. Throughout the article we shall con
sider only the twist-four contribution as the nonperturbat
effect, and ignore higher twist contributions since they a
believed to be small.

In conventional QCD analysis the Wilson coefficientsWi ,
( i 50,1), in Eq.~3! are taken from the finite order, perturba
tive QCD calculation in an usual renormalization schem
sayMS scheme, and the reduced matrix element^^O&& from
data fitting or QCD sum rule calculations, etc. However, t
scheme is, in principle, fundamentally flawed, since pert
batively the Wilson coefficients are not well defined. In pe
turbative calculation of the Wilson coefficients the quantu
fluctuations of all energy scale contribute, and in particula
large orders the contribution from the far infrared regim
where perturbative QCD should fail, is large and gives rise
a same sign, factorially growing large order behavior@18#.
Thus, without some kind of resummation of the diverge
perturbation series, the Wilson coefficients are not well
fined, and therefore neither is the OPE~3!. As a conse-
quence, no well-defined meaning that is independent of
definition of the Wilson coefficientW0, can be assigned to
the matrix element̂^O&& @1–3#.

One could in principle introduce an infrared cutoffm2

(!Q2) in the perturbative calculation ofW0, and regard the
twist-four term to contain all the low momentum2k2[K2

,m2 contributions@19,20#. This would remove the infrared
renormalon and make the perturbation expansion forW0
convergent, and the twist-four term to bem2 dependent@20#.
6-2
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However, to do this in practice is impossible, because i
impossible to compute arbitrarily complicated Feynman a
plitudes of arbitrarily high power, and in particular the
small momentum contributions, as stressed by the autho
Ref. @20#.

The problem discussed so far is not of academic na
only, but has important practical implications. One might s
think the OPE~3!, with finite order perturbative Wilson co
efficients, is a good approximation scheme, since at any
the perturbative Wilson coefficients can be regarded a
good approximation at reasonably small values of the str
coupling constant. Actually, this would be the case, provid
that the nonperturbative, higher-twist effect is far larger th
the ignored next higher perturbative term inW0. In practice,
however, this condition is not supported by data analysis.
instance, if this were the case, we would expect little va
tion in the fitted values for the twist-four contribution ov
the order of perturbation inW0. But the variation is not smal
at all. In the QCD sum rule calculation using the next-
leading order~NLO! W0 @17#, the twist-four contribution
was found not to be small, roughly equal to the perturbat
correction at Q51 GeV. But, it was observed in Refs
@21,22# that the twist-four contribution virtually vanishe
when fitted with the next-to-next-to-leading order~NNLO!
W0 against the parton distribution functions extracted fro
experiments, and most of the twist-four contribution e
tracted in the NLO fit can be accounted for by the pertur
tive NNLO contributions. This can be interpreted as a cl
manifestation of the inherent ambiguity of the OPE a
proach. Moreover, this tendency of strong dependence
higher-twist contribution on the order of perturbation appe
not to be special to the GLS sum rule, but generic. The rec
new estimate of the gluon condensate@23#, from fitting the
vectorial spectral function of hadronic tau decay us
NNLO Adler function, gives a small central value of only 1
that of the original QCD sum rule estimate@24# which uses
the leading order perturbation. These examples strongly
dicate that the inherent ambiguity of the OPE can have
portant consequences in practical applications, and dem
a careful treatment.

Borel resummation resolves this problem, which proce
as follows@7#. The perturbation series forW0,

W05(
0

`

wna~Q!n11 @a~Q![as~Q!/p#, ~4!

which is, being of same sign at large orders,3 non-Borel re-
summable at physical, positive couplinga(Q). So it is first
Borel resummed at negativea(Q) which yields a Borel re-
summed amplitudeDP@a(Q)#. Then to obtain a Borel re
summed physical amplitude one may analytically contin
DP to positive a(Q) in the complex coupling plane. Thi
gives fora(Q).0 @15#

3Here we ignore, for the moment, the UV renormalons, wh
give rise to sign-alternating large order behaviors. Being Borel s
mable, the UV renormalons can in principle be treated separa
and do not affect our discussion in any essential way.
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DP@a~Q!6 i e#5
1

b0
E

06 i e

`6 i e

db e2b/b0a(Q)W̃0~b! ~5!

with

W̃0~b!5 (
n50

`
wn

n!
~b/b0!n. ~6!

Inserted for normalization convenience,b0 is the one-loop
coefficient of the QCDb function. Equation~5! shows ex-
plicitly that in case of existing singularities on the line
integration, i.e., IR renormalons, the real part of the Bo
integral DP is the ~generalization of the! Cauchy principal
value. The Borel transform~6! is believed to be convergen
on the unit diskubu,1, and is known to have a branch c
along the positive real axis beginning atb51. Near the
branch cut it behaves as@3#

W̃0~b!5
C

G~2n!
b0

11n~12b!212n~11O~12b!!

1~analytic part! ~7!

with

n5~b1 /b02g2!/b0 , ~8!

whereb1 andg2 are respectively the two-loop coefficient o
the QCD b function and the one-loop coefficient of th
anomalous dimension of the twist-four operator appearing
the OPE ~3!. In our casen is positive; for instance,n
532/81 when three quark flavors (nf53) are active@16#.4

Note that the Borel transform beyond the convergence d
of the series~6! can be obtained by analytic continuatio
The analytic part, which is analytic around the singularity,
not calculable, but the residueC, a real number, is calculabl
perturbatively@6,25#.

Because of the branch cut the Borel integrals in~5! de-
velop imaginary parts beginning atb51. Since the QCD
correctionD(Q2) must be real, clearlyDP alone cannot re-
produce the true amplitude. There must be something e
Precisely at this point, the nonperturbative amplitude,
noted DNP@a(Q)#, comes to the rescue, which cancels t
imaginary parts ofDP, rendering the sum of the two to b
real. This DNP can be shown to be directly related to th
twist-four contribution in the OPE~3! @26#, with its overall
form governed by the associated RG equation, and may
regarded as a refinement of the latter, now free from
inherent ambiguity of the OPE. The QCD correction m
now be written as

-
ly,

4According to Ref.@16#: g25(Nc21/Nc)/358/9. Our convention
for parametersb j ~and cj[b j /b0) is specified by Eq.~21! in the
next section. Fornf53, we haveb059/4, b154. Therefore,n
532/81.
6-3
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D~Q2!5DP~a6 i e!1DNP~a6 i e!

5Re@DP~a6 i e!#1Re@DNP~a6 i e!#.
~9!

Either sign can be taken because the result is independe
the sign chosen.

What can we tell about the nonperturbative amplitu
DNP? Its imaginary part at a positive coupling is certain
calculable from the perturbation theory because it is ess
tially the imaginary part ofDP, albeit with opposite sign
which is calculable in principle from the perturbation theo
However, as we see in Eq.~9!, what we need is the real par
which is certainly not directly calculable.

There is, however, an intriguing possibility of perturbati
calculation of the real part. From the perspective of Bo
resummation the sole reason for the introduction of the n
perturbative amplitude above was to cancel the imagin
parts arising from the analytic continuation ofDP to physical
coupling in the complex coupling plane. With the Borel i
tegral ~5! and the singular Borel transform~7!, we can see
that DP@a(Q)#, which by definition can have a singularit
only along the positive real axis in the complexa(Q) plane,
has a branch cut of the form~see Appendix A!

2C@2a~Q!#2ne21/b0a(Q)@11O~a!#. ~10!

The nonperturbative amplitudeDNP should cancel the imagi
nary part arising from this at positive coupling. The simple
functional form forDNP that can achieve this purpose can
obtained by postulating that, as hasDP, the nonperturbative
amplitude have a branch cut only along the positive real a
in the coupling plane. This then leads to the following co
jecture forDNP @15#:

DNP@a~Q!#5C@2a~Q!#2ne21/b0a(Q)@11O~a!#. ~11!

This has a very important implication because it allows us
relate the real part of the nonperturbative amplitude to
calculable imaginary part. In this paper we will adopt th
conjecture, which appears very plausible, at least to us,
as will be mentioned shortly it is supported by some low
dimensional solvable models. Now with Eqs.~9! and~11! we
can write the QCD correction with only the calculableDP as

DP~Q2!1DNP~Q2!5$Re7cot~np!Im%$DP@a~Q!6 i e#%.
~12!

This equation is the basis of our numerical analysis in
following section. In the Appendix we present, for referen
some explicit formulas leading to Eqs.~10!–~12!.

The argument that led to the determination of the nonp
turbative amplitude above did not rely on any special pr
erty of OPE, but only on the general property of Borel r
summation of a same sign divergent perturbation the
Thus it can be applied to any perturbation theory with a sa
sign large order behavior. Application of this scheme to
lower dimensional, solvable models such as the double w
potential and the two-dimensional nonlinears model in
largeN limit, allowed an accurate calculation of the asso
ated nonperturbative amplitude using only the first terms
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the perturbation expansion in the respective models@15#.
Moreover, interestingly, the numerical estimate of the glu
condensate from this scheme applied to the Adler funct
gives a value virtually identical to the new estimate@23#.

Given the QCD correction in the form~12! with DP(a
6 i e) given by Eq.~5!, our aim is now to describe the Bore
transformW̃0 as accurately as possible in the primary inte
val using the known first terms of the perturbation series.
this, following the outline in the Introduction, we write th
Borel integral~5! as

DP@a~Q!6 i e#5
1

b0
E

06 i e

`6 i e

db e2b/b0a(Q)
R~b!

~12b!11n

~13!

with R(b) now defined by

R~b![~12b!11nW̃0~b! ~14!

andn given in Eq.~8! (n532/81). This step is expected t
greatly improve the perturbative description of the Bo
transform in the primary interval because it implements
renormalon singularity correctly, and renders us to deal w
a much softer singularity. The singularity ofR(b) at b51 is
a branch cut and thus softer than that ofW̃0(b).

We can obtain further improvement by use of a conform
mapping that exploits the known locations of the singula
ties of W̃0(b). The latter is known to have renormalon si
gularities at nonzero integer values ofb on the real axis
@27,28#. To speed up the convergence of the perturbat
expansion ofR(b), we may push the singularities, save t
unavoidable first IR renormalon, as far away from the orig
as possible. This way we can reduce the influence of
renormalon singularities and makeR@b(w)# smoother
around the primary interval. One such a mapping we c
sider is@9#

w~b!5
A11b2A12b/2

A11b1A12b/2
⇒b~w!5

8w

~3w222w13!
.

~15!

This maps the first IR renormalon tow51/3 and all other
singularities to the unit circleuwu51. We expect this map-
ping combined with the implementation~14! to provide an
optimized environment for the Borel integral. In the mapp
plane the Borel integral now assumes the form

DP@a~Q!6 i e#5
1

b0
E

C6

dw e2b(w)/b0a(Q)

3
db~w!

dw

R@b~w!#

@12b~w!#11n
, ~16!

where one of the integration contoursC2 is shown in Fig. 1.
Again, since the answer is independent of the sign cho
either contour can be taken. In the next section we perfor
numerical analysis of our implementation of the QCD co
rection: Eqs.~12! and ~16!.
6-4
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III. NUMERICAL ANALYSIS

In this section we will apply the method described in t
previous section to the Gross–Llewellyn Smith~GLS! sum
rule, deducing values of the QCD coupling parame
as

MS(MZ
2) from the GLS values extracted from experimen

In the first subsection, we will present the resummed exp
sion for the contributions of the three massless quark flav
As a by-product of the obtained expression, we will obta
an estimate of the next-to-next-to-next-to-leading (N3L) co-
efficient w3 of the perturbative expansion. In the subsequ
subsection, we will include the effects of the massive fou
quark flavor (c quark! to the GLS observable. In the las
subsection, the available measured GLS values will be c
fronted with our resummed expression and values
as

MS(MZ
2) will be extracted.

A. GLS—the masslessnfÄ3 part

The GLS quantityM3(Q2) is the following integral~first
moment! of the charged-current nonpolarized DIS structu
function F3[(F3

np1F3
nn)/2 over the Bjorken parameterx:

M3~Q2!5
1

3E0

1

dx F3~x;Q2!
z2

x2 F112S 11
4mN

2 x2

Q2 D 1/2G ,

~17!

wherez[2x/(11A114mN
2 x2/Q2) is the Nachtmann vari-

able @29#, andmN is the nucleon mass. The quantityM3 is
the first Nachtmann moment ofF3 which absorbs all the
kinematical power corrections@target mass correction
~TMC!# ;(mN

2 /Q2)n. The quantityQ252q2 is the virtual-
ity of the exchanged gauge boson;Q2 characterizes the typi
cal process momenta of the observableM3(Q2). When ex-
panding the integrand in Eq.~17! in powers ofmN

2 /Q2, we
can rewrite

M3~Q2!5E
0

1

dx F3~x;Q2!F12
2

3

mN
2 x2

Q2
1S mN

2 x2

Q2 D 2

1OS mN
6

Q6 D G . ~18!

The above GLS moment can be written in the form

M3~Q2![3@12D~Q2!#, ~19!

where the ‘‘canonical’’ quantityD(Q2) has the following
power expansionW0 @cf. Eq. ~3!#:

D~Q2!°W0~Q2!5a~11w1a1w2a21w3a31••• !.
~20!

Here,a[as(m
2;c2 ,c3 , . . . )/p is the QCD coupling param

eter with a given choice of the renormalization scale~RScl!
m2 and the renormalization scheme~RSch! parameterscj
( j >2). The evolution ofa with the RScl is governed by th
renormalization group equation~RGE!
05400
r
.
s-
s.

t
h

n-
f

]a~m2;c2 ,c3 , . . . !

] ln m2
52b0a2~11c1a1c2a21c3a31••• !,

~21!

where the parameterscj[b j /b0 ( j >2) characterize the
choice of the RSch, andb0 and c1[b1 /b0 are universal
constants.5 The evolution of parametera with cj ’s ( j >2) is
governed by analogous differential equations, which follo
from the Stevenson equation~see Appendix A of Ref.@30#!.
The next-to-leading~NL! coefficientw1 has been calculated
in Ref. @31#, and the NNL coefficientw2 in Ref. @32#. At the
specific RSclm25Q2 andMS RSch, and when the numbe
of the active quark flavors isnf53, these coefficients hav
the values6

w1
(0)[w1~m25Q2!53.58333, ~22!

w2
(0)[w2~m25Q2;c

2
MS!520.21531w2

(0)~ l.l.!, ~23!

w2
(0)~ l.l.!521.23954. ~24!

In the NNL coefficient, the small ‘‘light-by-light’’ part was
separated off. The ‘‘light-by-light’’ contribution should no
be included in resummations ofD(Q2;P), as will be argued
at the end of this subsection.

The Borel integral~16!, which will be together with Eq.
~12! the basis for our resummation, is independent of
choice of the RSclm2 and the RSch (c2 ,c3 , . . . ) used in the
integrand.7 Thus, we can rewrite it as~see also Fig. 1!

DP~Q26 i e!5e6 if
1

b0
E

0

1

dx
db~w!

dw
expF2

b~w!

b0a~m2!
G

3
R~b~w!;m2/Q2!

@12b~w!#113/81
uw5xe6 if. ~25!

At this stage we can, as a by-product of formula~14!,
obtain an estimate of the yet unknown N3L coefficient w3
appearing in the perturbative expansion~20! @9,33#. If work-
ing with the RSclm25Q2 and in theMS scheme, the expan
sion of R@b(w)# in powers ofw gives us

R@b~w!#5110.526749w10.709369w2

1~243.257410.277464w3
(0)!w31O~w4!, ~26!

where we excluded the ‘‘light-by-light’’ part~24! of the NNL
coefficientw2

(0) ~23!. Looking at the coefficients appearing i
Eq. ~26!, it is reasonable to expect that the coefficientR3 at

5b05(1122nf /3)/4, c15(102238nf /3)/(16b0), wherenf is the
number of active quark flavors.

6The superscript ‘‘~0!’’ in wj
(0) denotes the special RScl choic

m25Q2 andMS RSch.
7The location of the renormalon poleb51 and the powern

532/81 ~8! are independent of the choice of the RScl and RSc
6-5
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w3 is uR3u;1. If we assumeR35161, we obtain a rather
stringent estimatew3

(0)5159.563.6. If we adopt a more cau
tious assumptionuR3u&101, we obtainw3

(0)'160630. If we
apply Pade´ approximant~PA! @1/1#R(w) to the expansion
~26! and re-expand it back in powers ofw up to w3, we
obtain an estimatew3

(0)5159.3. On the other hand, if apply
ing the @1/2#R(w) and demandingwpole51 ~i.e., b512,
IR2), the prediction isw3

(0)5158.5; if demandingwpole5

21 ~i.e., b521, UV1), the prediction isw3
(0)5157.0. Very

similar estimates are obtained if we do not apply the con
mal transformationb(w) ~15!. Therefore, we will adopt the
following estimate forw3

(0) :

w3
(0)@[w3~m25Q2;MS!#5158630. ~27!

We emphasize that this estimate excludes the ‘‘light-
light’’ contributions, which are assumed to be suppresse
the N3L order. The exclusion of the ‘‘light-by-light’’ contri-
butions reduces the~NNL! perturbative expansion of th
~nonpolarized! GLS sum rule to that of the Bjorken polarize
sum rule ~BjPSR! @32#. It is interesting that the effective
charge method~ECH! @34–36# and the~TPS! principle of
minimal sensitivity ~PMS! @30# predict w3

(0)'130 @37#,
based on the assumption thatc3

ECH'c3
PMS'c3

MS. Further, an
RScl- and RSch-invariant method@38# that is somewhat re
lated to the PA and PMS approaches, also predictsw3

(0)

'130. This is at the lower end of our new estimate~27!. We
thus conclude that the explicit~and exact! structure of the
leading IR renormalon of the GLS observable~BjPSR ob-
servable! in the Borel plane, as given in Eq.~14!, is respon-
sible for the somewhat higher estimate ofw3

(0) in comparison
with the ECH, PMS, and PA-related methods of resumm
tion.

FIG. 1. Integration in thew plane along theC2 ray w5x exp
(2if) (0,x,1, f50.67967) gives the same result as the integ
tion parallel to the positive real axis (0,w,1) and arcw5exp
(2if8) (0,f8,f). If integrating in the first quadrant, the path
are those obtained from the presented paths by reflection acros
real axis, and theC1 ray is w5x exp(1if).
05400
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We add here a few remarks on the question of the ‘‘lig
by-light’’ contributions. The power expansion of the mas
less part of the GLS sum rule to N3L order ;a3 ~see Refs.
@31,32#!, in theMS scheme and at the RSclm25Q2, is given
by

S 2
3

4
CFDW0~Q2!5aS 2

3

4
CFD

1a2CFS 21

32
CF2

23

16
CA1

1

4
nf D

1a3F2
3

128
CF

31S 1241

576
2

11

12
z3DCF

2CA

1S 2
5437

864
1

55

24
z5DCFCA

2

1S 2
133

1152
2

5

24
z3DCF

2nf

1S 3535

1728
1

3

8
z32

5

12
z5DCFCAnf

2
115

864
CFnf

21nf

dabcdabc

Nc

3S 2
11

192
1

1

8
z3D G1O~a4!, ~28!

where the Casimir coefficients for QCD (Nc53) are CF
54/3, CA53, and the group-theoretical factor appearing
the last term in Eq.~28! is

dabcdabc5
40

3
. ~29!

This group-theoretical factor is not present in the calculat
of the GLS sum rule up to the two-loop (;a2) order, and it
appears for the first time at the three-loop (;a3) order. This
term is called ‘‘light-by-light,’’ it corresponds to diagram
with a new topology involving exchange of three gluons.
our calculation we will add this ‘‘light-by-light’’ contribution
D l.l.(Q

2), given by the last term in Eq.~28!, as a separate
term not included in our resummation approach. The rea
for this is the following: Resummation approaches cannot
expected to predict~and resum! those higher order term
which are characterized by new higher order grou
theoretical factors, when we have only one such te
(;a3) explicitly available. We assume that such resumm
‘‘light-by-light’’ contributions are small, comparable to th
quite small;a3 ‘‘light-by-light’’ contribution in Eq. ~28!.
Similar considerations can be found in Refs.@39,37#, in cases
of various observables and beta functions.

B. Inclusion of the massive quark flavor„c… contribution
and nuclear corrections

In the approximation of massless quarks, the calculat
of the N3L (;a3) QCD correction to the GLS sum rule ha
been carried out in Ref.@32#. The inclusion of the heavy~c!
quark contributions is important at the precision level

-

the
6-6
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which we are working. In addition, it is important in order
estimate the scalesQ2 where the~c! quarks can be treated a
massless or massive quarks. This point is important bec
it indicates which number of light flavorsnf should be used
in the ~resummed! ‘‘massless’’ part of the the perturbatio
series. The calculation of the heavy flavor contribution to
GLS sum rule up to the second order (;a2) was performed
in Ref. @40# and discussed in Ref.@41#. According to this
approach:~a! the quarksu,d,s are massless and result in th
dominantnf53 massless QCD contribution to the GLS su
rule D(Q2), ~b! for Q2'2 –4 GeV2, the massive flavor is
thec quark and it contributes a relatively small correction
the aforementionednf53 massless contribution. The oth
heavy quark flavors are ignored due to the strong suppres
by the mixing angles in the Cabibbo-Kobayashi-Maska
matrix and by the small values ofQ2.

The heavy~c! flavor correction contributions toD(Q2)
are

Dc~Q2!5Dc
(1)1Dc

(2) , ~30!

Dc~Q2!(1)5F 1

3~11j!
2a~m2!

CF

4 H 1

11j

12
ln~11j!

11j J Gsin2uc , ~31!

Dc~Q2!(2)52a~m2!2
CFTF

16 F S 1

105
j21

16

45
j D ln j

1
1

l4 S 2

105
j1

2783

315
1

6740

63

1

j
1

137552

315

1

j2

1
62528

105

1

j3D 2
1

l5 S 1

105
j21

142

315
j1

494

63

1
1516

21

1

j
1

23024

63

1

j2
1

298432

315

1

j3

1
102656

105

1

j4D lnS l11

l21D2
20

3

1

j2
ln2S l11

l21D G ,

~32!

where j5Q2/mc
2 , l5A114mc

2/Q2, CF54/3, TF51/2.
The heavy flavor corrections~31!,~32! will not be included in
the resummation procedure forD, but will be added sepa
rately.

In addition to the discussed heavy flavor contributio
there are also nuclear corrections to the GLS sum rule, du
the nuclear effects in theF3 structure functions. These e
fects were calculated in Ref.@42# and were found for the iron
target~used by the CCFR Collaboration! to be small:

DFe~Q2!'
431023 GeV2

Q2
. ~33!
05400
se

e
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to

This contribution, atQ252 –3 GeV2, turns out to be in its
magnitude smaller than the heavy flavor effects by a facto
3–4, but larger than the ‘‘light-by-light’’ contribution by a
factor of about 2.

C. Extraction of as values

The values of the GLS sum ruleM3(Q2), for various
specificQ2, have been obtained from the experimentally e
tracted values of the structure functionF3(x;Q2), by the
Fermilab CCFR Collaboration@13#. They have large system
atic experimental uncertainties, primarily because of the
certainties in the normalization ofxF3 and in the integration
in the regionsx!1 andx.0.5. The systematic uncertaintie
are somewhat smaller, comparable to the statistical exp
mental uncertainties, only when the values of the exchan
boson virtuality areQ252.00,3.16 GeV2 ~see their Table
III !. These values, including the target mass correction te
of Eqs.~17!,~18!, as well as the nuclear correction term~33!,
are8

Q252.00 GeV2: M3~Q2!52.4960.13

⇔D~Q2!50.16860.043, ~34!

Q253.16 GeV2: M3~Q2!52.5560.12

⇔D~Q2!50.14960.039. ~35!

Here we added in quadrature the statistical and the sys
atic experimental uncertainties. In addition, the valu
D(Q2) in Eqs. ~34!,~35! have the aforementioned nucle
correction contribution~33! subtracted out; however,D(Q2)
still includes the massless~perturbative and nonperturbative!
contribution ~12!, the ‘‘light-by-light’’ contribution w2(l.l.)
a3 @see Eq.~24!# and thec-quark contribution~30!,~32!.

For a given value ofas(Q
2,MS), our expression for

D(Q2)5DP(Q
2)1DNP(Q

2)1D l.l.(Q
2)1Dc(Q

2), given in
the previous subsections, still has the freedom~ambiguity! of
the choice of the RSclm2 and the RSch. In the following
analysis, we fix first the RSch to beMS, with the beta func-
tion being the PAb(x)5@2/3#(x) based on the N3L TPS of
the bMS(x). This PA choice of the beta function has reaso
able behavior in the region of largex[as /p and has been
used in Refs.@9,11,38# in the analyses of low energy QCD
observables. We will comment later on how the resu
change when we use N3L TPS of thebMS(x), and when we
change the RSch even more drastically.

The RScl dependence is yet another source of the theo
ical ambiguity. In Figs. 2 and 3 we show the dependence
the predicted values ofD(Q2) on the RSclm2 at the NNL
and N3L level, at Q252.00,3.16 GeV2, respectively, for
given fixed representative values ofas(Q

2,MS). The NNL
level means that we take forR@b(w)# in the Borel integra-
tions in Eqs.~25! and~12! the NNL TPS~quadratic polyno-
mial in w), i.e., only the knowledge ofw1 and w2 coeffi-

8In the entries of Table III of Ref.@13#, the target mass correction
are included, but the nuclear corrections neglected.
6-7



he
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TABLE I. Predictions foras
MS(Q2) and as

MS(MZ
2), extracted by the comparison of the results of t

applied resummation method with the measured GLS values~34!,~35!.

Q252.00 GeV2 ⇒MZ
2 Q253.16 GeV2 ⇒MZ

2

as(Q
2) 0.348 0.1166 0.305 0.1167

das (.0,exp.) 1? 1? 10.132 10.0128
das (,0,exp.) 20.093 20.0115 20.074 20.0118
das ~RSch! 60.009 60.0008 60.005 60.0006
das ~RScl! 60.002 60.0002 60.002 60.0003
das (w3) 60.001 60.0001 60.001 60.0002
das (mc) 60.002 60.0002 60.001 60.0002
das (sinuc) 60.002 60.0003 60.001 60.0002
das ~evol.! 60.0003 60.0003
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cients is used. The N3L level means thatR@b(w)# is the N3L
TPS ~cubic polynomial in w), i.e., we use, in addition
w3

(0)5158 according to the estimate~27!. From Figs. 2,3 we
see that the N3L expressions drastically improve the stabili
of the predictions under the change of the RScl. In the c
Q252.00 GeV2, the N3L values of the massless quanti
DP1NP(Q

2) achieve minimal lnm2 sensitivity at m2/Q2

'3.3: dDP1NP(Q
2)/d ln m2'21.4531024. At Q2

53.16 GeV2, there is unfortunately no point of minima
RScl sensitivity; the slope is negative and getting wea
when m2 increases. However, the RScl sensitivity is ve
weak whenm2/Q2.2.5, and almost stabilizes whenm2/Q2

'3.3: dDP1NP(Q
2)/d ln m2'21.5531023. Therefore, we

will take, for definiteness, the RScl choicem253.3Q2 in the
case of bothQ2 values. Later on, we will comment on th
ambiguity of our results when the RScl is varied.

Having fixed the RSch$MS,with @2/3#b(x) PA% and the
RScl (m253.3Q2), our expressions forD(Q2)5D(Q2,P
1NP1 l.l.1c) become unambiguous functions of the inp
value of as(Q

2;MS). Adjusting simply the latter value s
that the experimental values~34!,~35! are achieved, we ob
tain

Q252.00 GeV2: as~Q2;MS!50.34820.093
1? ~exp.!,

~36!

Q253.16 GeV2: as~Q2;MS!50.30520.074
10.132~exp.!.

~37!

The central, upper and lower values here correspond to
pertaining experimental values ofD(Q2) in Eqs. ~34!,~35!.
In the caseQ252.00 GeV2, the upper bound for the cou
pling parameter cannot be obtained from the experime
data because the applied resummation method predicts
ues of D(Q2) which are always lower than the presen
allowed experimental upper bound:D(Q2)meth<0.196
@,D(Q2)max exp50.16810.043#. The situation in the case
Q253.16 GeV2 is somewhat similar, the experimental upp
bound being now slightly below the maximal value allow
by the method. This situation is presented graphically
Figs. 4 and 5 which showD(Q2) as function ofas(Q

2) as
predicted by the applied method, forQ252.00,3.16 GeV2
05400
se

r

t

he

al
al-

r

n

cases, respectively. The central, upper and lower experim
tal bounds are included as straight dotted lines.

We now return to the question of the uncertainties of o
predictions under the variation of the RScl and RSch. If
vary the RScl parameterj2[m2/Q2 around 3.3 across the
interval 1.5<j2<5, the predictions foras(Q

2;MS) vary by
at most60.002. On the other hand, variation of the RS
leads to larger ambiguities. For example, if we repeat
calculation in the ’t Hooft RSch (c25c350, we take
@2/3#b(x) for definiteness!,9 keepingj253.3, the predictions
for as(Q

2;MS) change by 0.009 (Q252.00 GeV2) and
0.005 (Q253.16 GeV2). We will regard these values a
characteristic values for the RSch uncertainties of our resu
The replacement of theMS @2/3#b(x) by the N3L TPS MS
beta function changes our predictions foras(Q

2;MS) by
only about 0.001.

Yet another source of the theoretical uncertainty in o
predictions may be the truncation in the (N3L) TPS
R@b(w)#. We regard the uncertainty630 in the estimated
value ofw3

(0) , Eq. ~27!, as the major source of the truncatio
uncertainty. This changes the prediction foras(Q

2;MS) by
only 60.001.

The other sources of theoretical uncertainty come fr
the massive~c! quark contributions presented in Sec. III B
due to the uncertainties mc51.2560.10 GeV and
sin(uCabibbo)5uVcdu50.22460.016@43#. The resulting uncer-
tainties of the predictions foras(Q

2;MS) are 60.002 and
60.002, respectively, whenQ252.00 GeV2, and 60.001
and60.001 whenQ253.16 GeV2.

The final predictions foras are presented in Table I. In th
table, we presented the central predictions foras(Q

2;MS)
whenQ252.00 and 3.16 GeV2, and the uncertainties of th
predictions due to various sources. Further, we renormal
tion group equation~RGE! evolved these predictions to th
canonical scaleMZ

2 and included the results in Table I. Th
RGE evolution was carried out by using the@2/3# Padéap-
proximant of the four-loopMS TPS beta function, using th
values of the four–loop coefficientc3(nf) @44# and the cor-

9For comparison,c
2

MS54.471c
3

MS520.99, fornf53.
6-8
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responding three-loop matching conditions@45# for the flavor
thresholds.10 When adding in quadrature the various theor
ical uncertainties, the predictions of Table I can be summ
rized as

Q252.00 GeV2:

as~Q2;MS!50.34820.093
1? ~exp.!60.010~ th.!

~38!

⇒ as~MZ
2 ;MS!50.116620.0115

1? ~exp.!60.0010~ th.!
~39!

and

Q253.16 GeV2:

as~Q2;MS!50.30520.074
10.132~exp.!60.006~ th.!

~40!

⇒ as~MZ
2 ;MS!50.116720.0118

10.0128~exp.!60.0008~ th.!.
~41!

We see that the predictions of the applied method sug
that the experimental data on the GLS should be refi
significantly in order to increase the predictive power for t
QCD coupling parameter.

Another observation, evident from Figs. 2–5, is that t
nonperturbative massless contributions~NP! to D(Q2) are
very significant, and negative. They have their origin, as
plained in the previous section, in the first IR renormal

10For details on the corresponding evolution uncertainties, we
fer to Ref.@9#. They include the variation when the@2/3# Padéform
of the beta function is replaced by the TPS form.

FIG. 2. The ~total! D(Q2)5D(Q2,P1NP)1D(Q2,l.l.)
1D(Q2,c quark), as well as thenf53 perturbative partD(Q2,P)
and nonperturbative partD(Q2,NP), as functions of the renorma
ization scalem2, as given by the applied resummation metho
Given are the results at the N3L level, and for comparison, at th
NNL level. The curves are forQ252.00 GeV2 and as(Q

2,MS)
50.3483.
05400
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singularity at b51, or equivalently, they correspond ap
proximately to the d52 massless power correction
(;1/Q2). For Q252.00,3.16 GeV2, they lead to about an
11, 8% decrease of the value ofD(Q2), respectively. This is
to be contrasted with the heavy~c! quark contribution11

which is positive and leads to only about a 3.6, 3.1 %
crease ofD(Q2), respectively. If thec-quark contribution
were not included, the central predicted values in Eqs.~38!–
~41! would change toas(Q

2)50.367, 0.316 @as(MZ
2)

50.1183,0.1180# for Q252.00, 3.16 GeV2, respectively.
The small negative ‘‘light-by-light’’ contribution was

separated from our resummation and then added as the
D l.l.(Q

2)'w2
(0)(l.l.)a3(m2;c2 , . . . ). The ‘‘light-by-light’’

part of D l.l.(Q
2), by the special topology of the Feynma

diagrams representing it, is a quasiobservable in the se
that it is RScl and RSch invariant. Thus, the coefficie
w2

(0)(l.l.) ~24! is the leading coefficient of that quasiobser
able and is therefore unchanged under the changes o
RScl and RSch. The ‘‘light-by-light’’ part decreasesD(Q2)
by only about 0.4 and 0.3 %, forQ252.00,3.16 GeV2, re-
spectively.

IV. COMPARISON WITH OTHER APPROACHES

One may ask how crucial is the introduction of the co
formal transformation~15! for obtaining the numerical pre
dictions ~38!–~41!. If we repeat the same analysis, but th
time without the conformal transformation, and keepingj2

53.3, we obtain

Q252.00 GeV2: as~Q2;MS!50.34620.092
1? ~exp.!,

as~MZ
2 ;MS!50.116320.0113

1? ~exp.!,
~42!

-
11The latter is, to a large degree, ad52 massive power correction

}mc
2/Q2, see Sec. III B.

.

FIG. 3. Same as in Fig. 2, this time forQ253.16 GeV2 and
as(Q

2,MS)50.3053.
6-9
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CONTRERAS, CVETIČ, JEONG, AND LEE PHYSICAL REVIEW D66, 054006 ~2002!
Q253.16 GeV2: as~Q2;MS!50.30420.073
10.125~exp.!,

as~MZ
2 ;MS!50.116520.0117

10.0124~exp.!.
~43!

These results are very close to the results~38!–~41!. Thus,
we see that the introduction of the conformal transformat
~15!, which had the task of reducing the influence of the U
and the nonleading IR renormalons, does not influence
nificantly the predictions. Therefore, we can conclude t
these renormalon singularities~at b521,22, . . . and b
52,3, . . . ) are in GLSnumerically much less important tha
the leading IR renormalon singularity~at b51), even when
no conformal transformation is introduced.

We can ask how our predictions compare with those
other, alternative, OPE based methods which, in cont
with the method applied here, do not take into account
plicitly the structure of the leading IR renormalon singular
in the Borel plane.

One such an alternative method is the~TPS! PMS optimi-
zation of the perturbative contribution, which fixes the RS
and RSch in the TPS in a judicious manner@30#. Resumma-
tions of the GLS sum rule based on this method were th
retically and numerically investigated in 1992 by the auth
of Ref. @46#. They were confronting the TPS results with th
measured values, paying particular attention to the RScl
RSch dependence of the predicted values ofas(MZ

2 ;MS).
For the nonperturbative massless~twist-four! d52 contribu-
tion, they employed the positive value as obtained in R
@17# @DNP(Q

2)'0.1 GeV2/Q2#. Further, the authors of Ref
@46# accounted for the quark mass threshold effects (nf

eff) by
introducing a judiciously chosen weighted average ofnf

FIG. 4. The ~total! D(Q2)5D(Q2,P1NP)1D(Q2,l.l.)
1D(Q2,c quark), and the separate parts, as functions
as(Q

2,MS), as given by the applied resummation method. T
renormalization scale was fixed to bej2[m2/Q253.3, and the
W-boson virtuality isQ252.00 GeV2. The present experimenta
bounds and the central value, for the totalD(Q2) in this case, are
denoted as three horizontal dashed lines.
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53,4,5.12 Furthermore, they used the GLS measured val
available at that time@D(Q253 GeV2)50.16760.027#
which differ significantly from the presently available valu
~35!. Their central value prediction wasas(MZ

2)50.115,
which is lower than our central value predictions~39!,~41!.

The CCFR group@13,14# carried out a numerical analysi
similar to that of the authors of Ref.@46#, but with the newer,
lower, experimental data~34!,~35! for D(Q2), and using in
the TPS partMS RSch~and RSclm25Q2). Their central
value13 is as(3 GeV2)50.278 @14# and as(MZ

2)50.114,
thus slightly lower than that of Ref.@46#, and significantly
lower than our central value predictions~39! and ~41!. The
principal reason for this difference shall be discussed in
following section. Further, if they included in their metho
the N3LO term in the TPS, withw3

(0) as estimated in Eq
~27!, the predicted value ofas(MZ

2) would decrease by abou
0.002.

Furthermore, the CCFR group mentioned that their cen
value increases toas(3 GeV2)'0.305 @14# and as(MZ

2)
50.118@13,14# when they set the twist-four (d52) contri-
bution approximately equal to zero.14 Such higher-twist val-
ues for the GLS sum rule are suggested by the calculation

12This is different from our approach, where we separately ad
the contributions~30!–~32! of the heavy~c! quark as corrections to
the masslessnf53 GLS sum rule, as recently suggested in R
@41#.

13The values ofas(3 GeV2) obtained from our central values o
Eqs.~38! and ~40! are 0.309 and 0.310, respectively.

14We note that the RGE evolution ofas from Q2 to MZ
2 gives in

our approach different results:as(3 GeV2)50.278(0.305) gives
as(MZ

2)50.1124(0.1162) when using the three-loop or four-lo
TPS b function, 0.1123(0.1161) when using the~four-loop! @2/3#
PA b function—we use the corresponding two-loop and three-lo
matching conditions for the flavor thresholds@45#; other details
given in Ref.@9#. The CCFR Collaboration apparently uses an a
proximate three-loop RGE evolution@a truncated expansion in in
verse powers of ln(m2/LMS)] and different matching conditions fo
the flavor thresholds, possibly of Ref.@47#, giving them the values
0.114(0.118).

f
e

FIG. 5. Same as in Fig. 4, but this time for theW-boson virtu-
ality Q253.16 GeV2.
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the authors of Ref.@48# based on an IR renormalon mod
with dispersive approach of Ref.@49#, and also by the calcu
lation by the authors of Ref.@50# based on the bag model.
looks reasonable that the result with the aforementioned
renormalon model method gives prediction rather close
our prediction, since our method also accounts for the
renormalon contribution, although in a different mann
However, the calculations in Refs.@48,50# apparently do not
give us a clear handle on how to treat the perturbative p
i.e., whether to take it as a LO, NLO, or NNLO TPS, or
any other form. This is in contrast with our method, whe
the perturbative and nonperturbative parts are clearly c
nected with each other. We discuss this aspect in more d
in the next section.

At this point, we would like to point out that the PM
method has a signal casting doubts on its applicability in
discussed GLS cases, namely, the PMS RScl is very low
this case:mPMS

2 '0.203Q2. For Q252.00,3.16 GeV2, this
implies the scalesmPMS'0.64,0.80 GeV, respectively
which may be too low for the application of perturbativ
approaches such as PMS. The same problem appears
applying the effective charge~ECH! method @34–36# to
these GLS cases.

The present world average for the QCD coupling para
eter isas

MS(M z
2)50.117360.0020 by Ref.@51# and 0.1184

60.0031 by Ref.@52#. Comparing this with our prediction
~39! and ~41!, we see that the method applied in the pres
paper gives us the central values which agree well with
present world average. We wish to point out that this agr
ment suggests that the method applied in the present p
for the nonperturbative massless correction toD(Q2) is at
least consistent with the experiments. If this correction w
zero, or had the opposite sign, the obtained central predic
for as(MZ

2) would be at the lower edge or even outside t
interval of the present world average. These considerat
do not necessarily imply, but indicate, that the appl
method gives the correct nonperturbative contributions. F
more definite statement in this respect, the experimental
certainties in the GLS sum rule would have to be redu
significantly.

V. BOREL RESUMMATION VERSUS OPE APPROACH

In the discussions so far, we considered the amplitude
Borel resummation or OPE approach only at fixed values
Q2. Here we mean, for convenience, by the OPE appro
the usual perturbative expansion plus a power suppre
term representing the twist-four contribution. In this secti
we consider them over a continuous range ofQ2. This slight
change of view will reveal the characteristic features of
two approaches, and enable us to better understand the c
of the significant difference in the extracted strong coupl
constants seen in the previous section.

We first note the remarkable stability of the Borel r
summed amplitudes over the order of perturbation involv
in their calculation. In Figs. 6~a!, 6~b!, we plot, over the
interval 1,Q2,10, in GeV2, the real part of the Borel re
summed amplitudes forDP(Q

2) using NLO, NNLO, and
N3LO perturbations and the corresponding amplitudes of
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ordinary TPS’s in the OPE approach. In all of the plots
Fig. 6 the N3LO QCD b function was used in the running o
the strong coupling. We also take the RG scale atm25Q2,
since the RG scale dependence is sufficiently small for
present discussion. The aforementioned stability of the Bo
resummed amplitudes becomes clear when the two fig
are compared. Note the variation in the Borel resummed
plitudes is very small, whereas the TPS amplitudes have
nificant order dependence. While this stability is not co
pletely unexpected, because the leading renorma
singularity is effectively softened by the use of the functi
R(b) in the Borel integration, the degree of the stability
still remarkable. This suggests that the renormalon-indu
asymptotic behavior of the perturbative coefficients sets
quite early in perturbation, and that the use ofR(b) and
conformal mapping in Borel resummation is very efficient
handling the renormalon singularity. We also note in pass
that the stability of the Borel resummed amplitudes
DP(Q

2)1DNP(Q
2), which are not shown in the figure, i

comparable to that ofDP(Q
2).

In the previous section we have seen there is a signific
difference between the Borel resummation and the OPE
proach in the prediction of the strong coupling consta
While there are obvious differences in the two approache
was not clear what aspect of the Borel resummation is
marily responsible for the difference. Is it because of t
perturbative partDP(Q

2) or because of our specific imple
mentation of the nonperturbative partDNP(Q

2), or both?
To answer this question we plot in Fig. 6~c! the Borel

resummedDP(Q
2)1DNP(Q

2) against the OPE amplitude
(NLO TPS)10.1/Q2, whose power term representing th
twist–four contribution is from the sum rule calculatio
@17#,15 and (NNLO TPS)10.02/Q2. The small power term
in the latter was chosen for the amplitude to match the N
OPE amplitude at large values ofQ2 in the plots. In the
figure we first notice that the NLO and NNLO OPE amp
tudes with a large difference in twist-four contribution agr
reasonably well over the whole range ofQ2 considered. This
implies that the higher-twist term in the NLO amplitude c
be largely accounted for by the NNLO perturbative ter
which is in qualitative agreement with the observation
Refs.@21,22#. This also shows that the use of the NLO su
rule calculation of the higher-twist contribution with a TP
of different order, which is not an uncommon practice, c
be dangerous. Higher-twist contributions calculated a
given order of the leading perturbative contribution shou
never be used with a TPS of different order.

On the other hand, the Borel resummed amplitude is i
reasonably good agreement with the OPE amplitudes at l
Q2(.4 GeV2), but deviates significantly at small moment
Obviously, this deviation at small momenta explains the d
ference in the prediction of the strong coupling. Before
answer the origin of this deviation, we note that the go
agreement of the two approaches at large momenta is a

15We note, however, there are some variations in the estimat
the twist-four contribution. The sum rule calculation of Ref.@53#
predicts the (d52) power term 0.16 GeV2/Q2.
6-11
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FIG. 6. Borel resummed and
OPE amplitudes versus Q2

(GeV2). as(2 GeV2)50.35 is as-
sumed.~a! Borel resummed am-
plitudes of the perturbative par
Re@DP(Q

2)# at NLO, NNLO, and
N3LO; ~b! NLO ~dot-dashed!,
NNLO ~dashed!, and N3LO TPS
~solid! of W0@as(Q)#; ~c! Borel
resummed DP(Q

2)1DNP(Q
2)

~solid line! against NLO~dashed!
and NNLO~dot-dashed! OPE am-
plitudes. Dotted line denotes th
Borel resummed with the wrong
sign; ~d! Borel resummed
Re@DP(Q

2)# ~solid! versus an
NLO OPE amplitude~dashed!.
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trivial result. Even though the amplitudes from the two a
proaches should agree at very high momenta~or at small
couplings!, since they have the same low order perturbatio
the degree of agreement seen here is unlikely to be a ran
consequence. For instance, if ourDNP(Q

2) had the wrong
sign or were zero, then we would see a significant differe
at high momenta~see the dotted plot for the wrong sig
case!. Thus this good agreement of our Borel resummed a
plitude with the OPE amplitudes at high momenta may
regarded as a partial support for our prescription of the n
perturbative part.

Now back to the question of what causes the deviation
low momenta. It is not difficult to seeDP(Q

2) must be re-
sponsible for the deviation. The reason is as follows. Si
the nonperturbative partDNP(Q

2) essentially behaves as
power suppressed term,16 andDP(Q

2)1DNP(Q
2) is in agree-

ment with the OPE amplitudes at large momenta, so shou
be at low momenta, too, wereDP(Q

2) to behave as an OPE
amplitude. Thus the primary cause of the difference in
predicted strong coupling constant must be that the B
resummedDP(Q

2) at low momenta cannot be parametriz
in the form of an OPE amplitude. We can see this explic
by looking at the plots in Fig. 6~d!, where, as an example, th
NNLO Re@DP(Q

2)# is plotted against an OPE amplitud
(NNLO TPS)10.16/Q2. The power suppressed term in th
latter was fixed so that the two amplitudes match at h
momenta in the plots. Clearly, they deviate significantly
low momenta, with the Borel resummed growing mo
slowly than the OPE amplitude as the momentum is
creased.

16DNP(Q
2);as(Q

2)g2 /b0/Q25as(Q
2)32/81/Q2, in accordance

with Eqs.~11!,~12! and the OPE calculation of Ref.@16#.
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This suggests the OPE amplitude tends to overestima
low momenta. We can easily see that this tendency ar
from the bad functional form of the polynomial Borel tran
form @TPS of Eq.~6!# around the renormalon singularity a
b51. In Fig. 7 ~a! the N3LO Borel transforms in the two
approaches are plotted in the variableb. For b.1 the Borel
transform in our approach defined throughR(b) in Eq. ~14!
is complex, and its real part is plotted. It is obvious that t
OPE Borel transform is badly broken around and beyond
renormalon singularity. When the coupling is small this
not a serious problem because the dominant contributio
the Borel integral~5! comes from the region close to th
origin. However, as the coupling becomes larger the relev
integration region extends to the renormalon singularity, a
beyond, and as we see in the plots, the OPE Borel transf
can grossly overestimate at large couplings. The amplitu
obtained from these Borel transforms are plotted in Fig
~b!. As expected, at small momenta~large coupling! the OPE
amplitude is larger than the Borel resummed. Note, on
other hand, at high momenta it is smaller than the latter. T
is because the OPE Borel transform in the region 0,b,1,
from which the dominant contribution comes at small co
plings, is smaller than the other one, which is a characteri
feature rendered automatically by the correct implementa
of the renormalon singularity in the latter. This differen
between the Borel resummed and the OPE amplitude
small couplings may be regarded as the resummation of
unaccounted higher order terms in the same sign asymp
series.

That the Borel resummedDP(Q
2) cannot be approxi-

mated by an OPE amplitude of a TPS plus a power s
pressed term representing the renormalon effect may ap
contradictory to the common opinion which states otherwi
The latter opinion, which is based on the factorially growi
6-12
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EXTRACTION OF as FROM THE GROSS–LLEWELLYN SMITH SUM RULE . . . PHYSICAL REVIEW D 66, 054006 ~2002!
large order behavior and the running coupling, would be t
in a sense, provided the strong coupling were sufficien
small, and a TPS of large order (;1/as) was used. In reality,
however, the strong couplings at the low momenta we c
sider are not so small, and there is no guarantee that
Borel resummedDP(Q

2) at those momenta can be param
etrized as an OPE amplitude. The example here cle
shows that cannot be generally true. A Borel resummed
plitude can have a much more complex functional behav
than the sum of a TPS and a power term intended to acc
for the renormalon effect. This consideration suggests
several existing analyses of low energy QCD observab
based on the OPE approach should be reexamined, sinc
issues raised here are likely to be relevant there, too.

To sum up this section, we have made two observati
concerning the Borel resummation and the OPE appro
First, our method of calculation of the perturbative plus no
perturbative contribution in Borel resummation is consist
at largerQ2.4 GeV2 with the OPE approach using QC
sum rule calculation, and secondly, at low energies the O
amplitude tends to overestimate, and the Borel resumm
amplitude with a proper incorporation of the leading ren
malon cannot be approximated by an OPE amplitude of
TPS with a power suppressed term. It is the second obse
tion that directly accounts for the differences in the extrac
strong coupling constants from the two approaches.

VI. CONCLUSIONS

We performed a resummation of the Gross–Llewel
Smith sum rule by fully accounting for the correct know
form of the leading infrared renormalon singularity atb51
in the Borel plane. As one direct consequence of this sin
larity, the resummed ‘‘perturbative’’ partDP@as(Q)# of the
GLS has a branch cut of the form@2as(Q

2)#2n

3exp@2p/b0as(Q)#@11O(as)#, i.e., a twist-four term
(21)2n(1/Q2)as

g2 /b0@11O(as)# with the branch cut dis-
continuity factor exp(6ipn). Here, g258/9 is the known
one-loop coefficient of the anomalous dimension of the c
responding twist-fourd52 operator appearing in the OPE.
crucial element of the analysis was the fixing of the ‘‘no
perturbative’’ part as the negative of the aforemention
branch cut term, thus making the resummed~‘‘perturbative’’
plus ‘‘nonperturbative’’! GLS sum rule manifestly real. Thi
procedure is free from the known ambiguity of separation
the ‘‘perturbative’’ and ‘‘nonperturbative’’ parts. In the Bore
resummation of the ‘‘perturbative’’ part, we further em
ployed a conformal transformation to minimize the nume
cal influence of other renormalon singularities. All this a
lowed us to perform the resummation of the massless pa
the GLS sum rule, i.e., of the contributions of the three lig
quark flavors. The contributions of the heavy~c! quark were
added separately, as were the target nuclear correction
tributions and the ‘‘light-by-light’’ contributions. These thre
types of contributions turned out to be small, in contrast
the ‘‘nonperturbative’’ contributions which turned out to b
significant. The calculations were performed in theMS
renormalization scheme, and the renormalization scalem2
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(;Q2) was taken in the region of the smallestm2 sensitivity
of our results.

We then confronted the resummed expressions with
Fermilab CCFR Collaboration data@13# for the GLS~at Q2

52,3.16 GeV2) which already include the target mass co
rections. Our central value prediction for the QCD coupli
parameter, corresponding to the central GLS values of
CCFR, isas(MZ)'0.117 @see Eqs.~38! and ~41!#, in good
agreement with the present world average. This is differ
from the central value predictions of previous analyses of
GLS sum rule by the CCFR Collaboration@13# @as(MZ)
'0.114# and by the authors of Ref.@46# @as(MZ)'0.115#
which are below or at the lower edge of the world avera
We have seen that our approach to the calculation of
nonperturbative contribution is consistent with the OPE
proach, and the main reason for the difference between
two approaches is that at smallQ2,4 GeV2, the OPE ap-
proach tends to overestimate and the Borel resummed pe
bative contribution cannot be approximated by an OPE a
plitude.

The GLS sum rule, at the low gauge boson transfer m
mentaQ252 –4 GeV2, is a very important quantity to mea
sure, because it has apparently a strong nonperturbative c
ponent, stronger than in some other low-energy QC
observables such as the semihadronic tau decay rate.
more precise experimental values of the GLS sum rule wo
help determining the higher-twist contributions more acc
rately.
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APPENDIX: BRANCH CUT SINGULARITY
AND THE NONPERTURBATIVE PART

In this Appendix, we show explicitly formulas leading t
Eqs. ~10!–~12!, using the identity~5! and the leading IR
renormalon singularity structure~7!. The latter structure
aroundb51 can be rewritten more explicitly as

W̃0~b!5
C

G~2n!
b0

11n~12b!212n@11k1~12b!

1k2~12b!21•••#1~analytic part!. ~A1!

The leading part is known (n), while the coefficientsk j ( j
>1) of the subleading parts are not yet known. Inserting
above expansion into the Borel integration formula~5! and
performing the change of the integration variableb51
1b0at, we obtain

ImDP@a~Q!6 i e#5
C

G~2n!
e21/b0a(Q)a~Q!2n f 6@a~Q!#,

~A2!

where
6-13
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FIG. 7. ~a! N3LO Borel trans-
forms. The solid line represent
the real part of the Borel trans
form with the renormalon atb
51 properly taken into account
and the dashed line represents t
TPS Borel transform.~b! N3LO
Borel resummed Re@DP(Q

2)#
~solid line! versus N3LO TPS
~dashed!.
t
f
t,
of
f 6~a!5ImE
06 ie

`6 ie

dt e2t~2t !212n@11k1~b0a!~2t !

1k2~b0a!2~2t !21•••#

57 sin~pn!E
0

`

dt e2tt212n@11k1~b0a!~2t !

1k2~b0a!2~2t !21•••#

57G~2n!sin~pn!@11k1~b0a!n

1k2~b0a!2n~n21!1•••#. ~A3!

Now requiring the imaginary parts ofDP at positivea(Q) to
match those in Eq.~A2! DP for general complexa(Q) can be
written as

DP@a~Q!#52Ce21/b0a(Q)$@2a~Q!#2n1k1~2n!b0

3@2a~Q!#2n111k2~2n!~2n11!b0
2

3@2a~Q!#2n121•••%1D̃P@a~Q!#, ~A4!
at
o

05400
where D̃P(a) is the part with no singularities~no cuts! for
a.0.17 According to Ref. @15#, the nonperturbative par
DNP@a(Q)6 i e# must cancel the imaginary part o
DP@a(Q)6 i e#, and DNP was chosen to have the simples
presumably the most natural, form—i.e., just the negative
the branch cut term of Eq.~A4!

DNP@a~Q!#51Ce21/b0a(Q)$@2a~Q!#2n1k1~2n!b0

3@2a~Q!#2n111k2~2n!~2n11!b0
2

3@2a~Q!#2n121•••%. ~A5!

Further, since (2a7 i e)2n1n5a2n1nexp@6i(n2n)p#, ex-
pressions~A2! and ~A5! immediately relate ReDNP(a6 i e)
with the ~calculable! Im DP(a6 i e)

ReDNP~a6 i e!57 cot~np!Im DP~a6 i e!, ~A6!

giving the result~12!.

17The absolute value of the singular term in Eq.~A4! can be
rewritten as ;(L2/Q2)a(Q)1g2 /b0@11O(a)#, where L is a
Q-independent scale, andg2 is the one-loop coefficient of the
anomalous dimension of the twist-four (d52) operator̂ ^O(Q)&&
;L2a(Q)1g2 /b0 appearing in the OPE~3!.
@1# F. David, Nucl. Phys.B234, 237 ~1984!.
@2# F. David, Nucl. Phys.B263, 637 ~1986!.
@3# A.H. Mueller, Phys. Lett. B308, 355 ~1993!.
@4# G. Grunberg, Phys. Lett. B325, 441 ~1994!.
@5# D.E. Soper and L.R. Surguladze, Phys. Rev. D54, 4566

~1996!.
@6# T. Lee, Phys. Rev. D56, 1091~1997!.
@7# J.C. Le Guillou and J. Zinn-Justin,Large Order Behavior of

Perturbation Theory~North-Holland, Amsterdam, 1990!, and
references therein.

@8# A.H. Mueller, The QCD Perturbation Series. Talk Given
Workshop on QCD: 20 Years Later, Aachen, Germany, Rep
No. QCD161:W586:1992, pp. 162–171.
rt
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