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Deviation from standard QED at large distances: Influence of transverse dimensions of colliding
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The radiation at the collision of high-energy particles is formed over a rather long distance and therefore is
sensitive to the environment. In particular, the smallness of the transverse dimensions of the colliding beams
leads to suppression of the bremsstrahlung cross section for soft photons. This beam-size effect was discovered
and investigated at INP, Novosibirsk. At that time an incomplete expression for the bremsstrahlung spectrum
was calculated and used. This is because a subtraction associated with the extraction of the pure fluctuation
process was not performed. Here this procedure is done. The complete expression for the spectral-angular
distribution of incoherent bremsstrahlung probability is obtained. The case of the Gaussian colliding beams is
investigated in detail. In the case of flat beams the expressions for the bremsstrahlung spectrum are essentially
simplified. The comparison shows quite reasonable agreement between the theory and the VEPP-4 and DESY
HERA data. The possible application to the tuning of beams in a lieéar collider is discussed.
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I. INTRODUCTION lung spectrum at the TeV rang®r heavy elemenjswhile it
turns out that the action on the recoil particle can be impor-
The bremsstrahlung process at high energy involves gnt for contemporary colliding beam facilities at the GeV
very small momentum transfer. In the space-time picture thisange[2].
means that the process occurs over a rather largero- There are a few factors which could act on the recoil
scopig distance. The corresponding longitudinal lengthelectron. One of them is the presence of an external magnetic
(with respect to the direction of the initial momentuis  fie|d in the region of particle collisiof2—4]. If the formation
known as thecoherenceformation) lengthl. For the emis-  |ength of the virtual photoi, turns out to be larger than the
sion of a photon vgith the energy the coherence length is t5rmation lengtH ,4() of a photon with energw in a mag-
l{(w)~e(e—w)/m°w, wheree andm are the energy and pggic fieldH then the magnetic field will limit the region of
the mass of the emitting particlbere the systeh=c=11iS  inimal momentum transfers. This will lead to a decrease of
used. If the particle experiences some action over thisy,o premsstrahiung cross section and a change of its spec-

l:cr':%r:],i;hterz\erarﬂﬁllgope F;acgftgiﬁha;ggﬁz tg;if[:t?nse V;?ﬁg;hoenetrum. Another effect can appear due to the smallness of the
P 9 9p linear intervall where the collision occurs in comparison

observes the famous Landau-Pomeranchuk effggt gvith L, () [see Eq(1.2)]. This was pointed out if5].

A different situation arises in the bremsstrahlung proces A - . tal studv of b trahl
in the electron-electrofrpositron collision. The point is that special experimental study of bremsstrahiung was per-
formed at the electron-positron colliding beam facility

the external factors act differently on the radiating particle ; X .
and on the recoil particle. For the radiating particle the cri-VEPP-4 of the Institute of Nuclear Physics, Novosibifgk

terion of influence of external factors is the same both at d he deviation of the bremsstrahlung spectrum from the stan-
electron scattering from a nucleus and at a collision of pardard QED spectrum was observed at the electron energy
ticles. For the recoil particle the effect turns out to be en-= 1.84 GeV. The effect was attributed to the smallness of the
hanced by the factot?/m?. This is due to the fact that the transverse size of the colliding beams. In theory the problem
main contribution to the bremsstrahlung cross section give#as investigated ifi7], where the bremsstrahlung spectrum
the emission of a virtual photon with very low energy by at the collision of eIectron—electro{’%positror) beams with
the recoil particle small transverse size was calculated to within the power ac-
curacy (the neglected terms are of the orderyZ/m/e).
mlw Later the problem was analyzed[i8—10] where the brems-
(1.7 strahlung spectra found coincide with those obtainef7in
It should be noted that ifi7] (as well as in all the other
papers mentioned abovan incomplete expression for the
bremsstrahlung spectrum was calculated. One has to perform
3 the subtraction associated with the extraction of the pure
4e™(e— o) fluctuati Let us di this item i detail
Ly(0)=l¢(do)= ————. (1.2 uctuation process. Let us discuss this item in some detail.
The momentum transfeg at collision is an important char-
acteristic of the radiation proce¢the cross section contains
This means that the effect for the recoil particles appearthe factorg? at g><m?). At the beam collision the momen-
much earlier than for the radiating particles. For example, théum transfer may arise due to the interaction of the emitting
Landau-Pomeranchuk effect distorted the whole bremsstralparticle with the opposite beam as a whaikie to the co-

Qo~

g(le—w)’

so that the formation length of the virtual photon is
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herent interaction with the averaged field of the bpamd  One can set the particle density in the target beam to a con-
due to the interaction with an individual particle of the op- stant, so that the standard QED formulas are valid. Note that
posite beam. Here we are considering itheoherentprocess  the valueg 4y is the relativistic invariant, which is defined
only (connected with the incoherent fluctuation of density by the minimal value of the square of the invariant mass of
and so we have to subtract the coherent contribution. Théne intermediate photojg?|. In the case when the character-
expression for the bremsstrahlung spectrum fouridjcon-  istic size of the beams is smaller than the vafyg,,, the
tains the mean valuég?), while the coherent contribution lower value of|g?| is defined by this size.
contains(q)? and this term has to be subtracted. We encoun- In the target rest frame the scattering length of the emit-
tered an analogous problem in the analysis of incohererting particle is of the order of the impact paramegerThis
processes in oriented crystdlsl] where it was pointed out length is much smaller than the longitudinal dimension of the
(see p. 40ythat the subtraction has to be done in the spectargety.l (I is the length of the target beam in the laboratory
trum calculated irf7]. Without the subtraction the results for frame. So one can neglect the variation of the configuration
the incoherent processes in oriented crystals would be qualdf the beam during the scattering time. Possible variation of
tatively erroneous. the particle configuration in the beam during a long time can
In Sec. Il a qualitative analysis of the incoherent radiationbe taken into account in the adiabatic approximation.
process is given. In Sec. Il the general formulas for the Another limitation is connected with the influence of the
spectral-angular distributions of incoherent bremsstrahlungalue of the transverse momentum arising from the electro-
are derived. The incoherent bremsstrahlung spectrum famnagnetic fieldE=|E| of the colliding (targe} beam over the
Gaussian beams is calculated in Sec. IV in the form ofphoton formation length. This value should be smaller than

double integrals. In the specific case of narrow bediie  the characteristic transverse momentum transfel in the
size of the beam is much smaller than the characteristic imphoton emission process:

pact parametérthe formulas are simplified essentiallgec.

V). Experimental studies of the effect were performed with eEl aN, 1 4de'vyee,
flat beams(the beam vertical size is much smaller than the
horizontal ong This specific case is analyzed in Sec. VI, my¢ (ot olye mys wim?
while comparison with the VEPP-4 and the DE®Y col-
lider HERA data is given in Sec. VII. In Sec. VIl the pos- _2aNc 1 2e'e,
sible application to the tuning of beams in a linexire™ (ot o)l Mz wem?
collider is discussed.
AaNgy\2e'
Il. GENERAL ANALYSIS OF PROBABILITY OF = —<I; (2.2

3/2 !

INCOHERENT RADIATION (o7t o)1 {0

In this section we discuss in detail the conditions undefere «=1/137, N is the number of particles in the target
which we consider the incoherent radiation. One can calcub€am, andr, and o, are the vertical and horizontal trans-
late the photon emission probability in the target rest frameVerse dimensions of the target beam. Note that the rafio
since the entering combinatioms's and y9 (1 is the Lor- !s Fhe rglativistic invariant. This condition can be presented
entz factory=e/m, and¥ is the angle of photon emissipn in invariant form as
are invariantwithin a relativistic accuragyand a transfer to
any frame is elementary. We use the operator quasiclassical 2x <1 23
method[12,13. Within this method the photon formation ud? 2.3
length (time) is

where y=(y/Eo)|E, +VXH|, u=wle’, Eg=m?/e=1.32

|f:8_:8—zlﬂ’ X 10 V/cm. Since the main contribution to the spectral
gkv ew(l—nv) { probability of radiation gives angle$~ 1/y ({~1) this con-
dition takes the formy/u<1. For the casg/u>1 the con-
lo— 1 2ee’  4de'vyce, dition (2.3) can be satisfied for large photon emission angles
0 Gmin - om? om? {=7*9%>(x/u)?*>>1. Under these conditions the forma-
tion lengthl;=1:¢/{ decreases asy(u)-*. The same inhi-
(=1+9292 &'=e—w, (2.1  bition factor acquires the bremsstrahlung probablitg].

Now let us consider the spectral distribution of radiation
wherep,=sv, [v,=(1v)] is the four-momentum of the probability in the casey<1 (this condition is satisfied in all
radiating particle;y.=e./m., . is the energy of the target existing installations so
particle in the laboratory framem, is its mass,s, is the 5
energy of the radiating particle in the laboratory frarkg; A¢
= (w,wn) is the photon four-momentum, artlis the angle XNaN°7(02+ o)l <
between vectors andv.

In the case when the transverse dimension of the beam, Only the soft photons¢ < ye<<g) contribute to theoherent
is o>1o, the impact parameterg<p,ax=Io contribute. radiation (the “beamstrahlung} while the hard photon re-

1, (2.4
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gion w> ye is suppressed exponentially as is known fromwhere

classical radiation theory. As mentioned, in the soft photon

region (w=<ye<ze), the spectral probability of bremsstrah- > e * -

lung is suppressed by the factas/e y)?° only. On the con- M(e)= ZW\/ZJxR(t)eXF['k x(t)]dt,

trary, the spectral probability of the bremsstrahlung is negli-

gible compared with the beamstrahlung, taking into

consideration that the mean square of the multiple scattering Kk’ :ik_ (3.2
angle during the whole time of beam collisions is small com- e’

pared with the value 3

Herew,(r,)d?r, is the probability of finding the emitting
(9?)  8a®N\2 particle with the impact parametgr=r, —x in the interval
=———L<1, (29 d2p=d%,, R(t)=R(p(t)), kx(t)=wt—kr(t) (for details
see[13], Sec. 7.1 Integrating by parts in the last equation
whereL is the characteristic logarithm of the scattering prob-and taking into account tha¢|, (¢)|<1/eo<m, we find
lem (in typical experimental conditions~ 10).
It was supposed in the above estimations of beamstrahl- M()=
ung probability that the radiation formation length is shorter @ 2wt —=

2/ 92\ _
7 <1‘9$> m2 O-Z(Ty

ie [« _ d R(t)
exp(ik’vt)==

dt k'u(t)
than the target beam length:
_ ie - d R(p))
e 1 x| PN ~—m(g)— —, 3.3
T”G( G) =t 2.6 2o O B K ©9
In addition, it was supposed that one can neglect the varia\’—vhere
tion of the impact parameter and therefore of the trans- p,=p—n(np)=s(v—n)
verse electric fieldE, (@) during the beam collision. This is + ’
true when the disruption parameter is small: . w R
m(g)=J' exp(ik'vt)q(e,t)dt
2aN\ | ) -
i=———— <1 (i=z2y). (2.7
'}’ro'l(o'z'l'o'y) g (= it
=—— ex;{ —) V(ye?+t%)dt
So we consider incoherent bremsstrahlung under the fol- doJ — I
lowing conditions:
2a @ e
X “ T el
x<1, 7<1, Di<l (2.9 f @ f
=2a0ninlK1(Q0mi s’)é (3.9
lll. SPECTRAL-ANGULAR DISTRIBUTION OF THE mins T EHAmIn® 7o '

INCOHERENT BREMSSTRAHLUNG PROBABILITY . . .
for the Coulomb potentialK,(z) is the modified Bessel

In this section we derive the basic expression for the infunction (the Macdonald function R(p,) has the form of a
coherent bremsstrahlung probability in the collision of twomatrix element for the free particles:
beams with bounded transverse dimensions.
We consider first the photon emission in the collision of N ) m(e+e’)
an electron with one particle with the transverse coordinate ~ R(P.)= ¢ (A+ioB)es, AZT(G* u),
X. We select an impact parametep=|0,| which is small ee
compared with the typical transverse beam dimensidsut

which is large compared with the electron Compton length B= Mo [e* X (n—u)]

Ne (A\c<00<€0). In the interval of the impact parameter 2ee’ '

=|r, —x|=p,, wherer, is the transverse coordinate of the

emitting electron, the probability of radiation summed over P, 5 ,

the momenta of the final particle can be calculated using the u=-.. {=14un Ko=dnind, (3.9

classical trajectory of the particle. Indeed, one can neglect

the value of the commutatofisp, ; ,0i1|= &;; compared with  where the vectoe describes the photon polarization and the
the valuep, ¢ in this interval o, o=mpy>1). In this case spinorses andeg: describe the polarization of the initial and
the expression for the probability has the fdsee[13], Eqs.  final electrons, respectively.

(7.3 and(7.4)] In the interval of impact parametegs<\. the expecta-
) tion value(g|M*M|@) cannot be written in the forn(3.1)
dw=|M(o)|?w,(r,)d?r d°k, (3.1  since the entering operators become noncommutative inside
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the expectation value. However, because of the condition After the summation in Eq3.8) over the polarization of
A¢<0o in this interval w,(r,)=w,(x)+O(\./o) and one the emitted photon we have
can neglect the effect of the inhomogeneous distribution. For
the same reason in the calculation of the correction to the I 8
probability of photon emission, which is defined as the dif- Tij= oe’ Vo~ Uil |,
ference betweedw(o) and the probability of photon emis- ee ¢
sion in an inhomogeneous medium, one can extend the inte-
gration interval into the regiog <. _& & _ 292

In this paper we consider incoherent bremsstrahlung, v T RN 3.9
which can be treated as the photon emission due to fluctua-
tions of the potentialV connected with the uncertainty of a  Finally, averaging the last expression over the azimuthal
particle position in the plane transverse to its momentumangle of the emitted photon, we obtain
Because of this we have to calculate the dispersion of the
vectorm(é) with respect to the transverse coordinéte ¢ 4({—-1)

Tij= Uaé;, UQ)=v— Z (3.10

!

e’

m;m;)—{m;){m; =f mi(r, —x)m:(r, —x)wq(x)d?x
e n e ¢ Substituting the expression obtained into E8.7), we

find the correction to the probability of photon emission con-
—J mi(r, —X)we(x)d?x nected with the restricted transverse dimensions of colliding
beams of charged particles:
xf m;(r, —X)We(x)d?x, (3.6) &2 & do
dwy=—— ——U()F(0,0dl, (31D
mms € @

wherew,(x) is the distribution function of the target par-
ticles normalized to unity. W

Finally, we obtain the following expression for the correc-
tion to the probability of photon emission connected with the Flw,0)=FY0,0)—F®(w,),
restricted transverse dimensions of colliding beams of
charged particles:

here

27° -
F“)(w,z):g—z f K2(m0)[ Wy (x-+ @)~ Wy (x)]

q o dskT ( N
W= — bjj el 1515 i s
! (2’77)2 w b P ! XWC(X)dZXdZQ,
d R*(p)|| ¢ R*(p) 277 ( o i 2
Tij= : ) _=7 € e SNd2
Yolapli ko ML Ko Fw,0) ng JKl(ﬂQ)QWc(X o)d-g
X W, (X)d?x; (3.12

Lij=f mi(@)m;(@)[W,(x+2)—w,(x)]
hereﬂ:qming-

- - Using the integral
XWC(X)dzdeQ—(J mi(e)wc(x—e)d29>

2
| Kimerede=-S1Kime)-Kolno)Kae)]

X (0 —0)d? 2y, .
f m;(@)We(x—e)d Q)Wr(x)d X (3.7 (3.13
Averaging over the polarization of the initial electrons andand integrating by parts we obtain
summing over the polarization of the final electrons, we find
Flw,{)
- ¢ 26u( N ) 5 da( *)
ij=—| e~ ——(eujtug 7 o
Deer O =—2“ [Ko(7@)Ka(n0)—Ki(ne)le—5, —d’e
4 e
4(eu)? w? - 2
+—2Uin+—,5ij . (38) Y > 2
¢ dee -2 Kl(ne)gwc(x—e)d 0| wi(x)d*x|,
Note that one can choose the real ve@aince the linear (3.19
polarization can arise only in the case of unpolarized elec-
trons. where
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P(g)= f W, (X+ @) We(X)d?x. (3.15
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Below we consider the general situation when the axes of
colliding beams are separated from each other in the trans-
verse plane by the vecto, with componentsz,,y,. This

In the general case the axes of colliding beams are sepgeparation has an essential influence on the luminosity. For
rated from each other in the transverse plane by the vegtor processes where only short distances are essef#igl,

with componentgg,y,. In this case we have to consider
W (X) =W, (X+Xo),

F(lvz)(w’g)_)F(l,Z)(wlg,Xo),

D(0)—D(@+X). (3.16

The first term in the expression féi{w,{) in Eq. (3.14
coincides with the functiofr(w,{) defined in[7], Eq. (13).
The secondsubtraction term in Eq.(3.14) which naturally
arises in this derivation was missed in E§3) of [7] as it

was said above. The expressi@ll) is consistent with Eq.

(21.6 in the book[13] [see also Eq(2.2) in [11]] where

another physical problem was analyzed. It is the incoheren

bremsstrahlung in oriented crystals.

Below we restrict ourselves to the case of unpolarize
electrons and photons. The influence of bounded transver
size on the probability of a process with polarized particles

will be considered elsewhere.

IV. GAUSSIAN BEAMS

double bremsstrahlun@]) the probability of the process is
the product of the cross section and the luminosity. The geo-
metrical luminosity per bunch, not taking into account the
disruption effects, is given by
L=NN,D(Xp), 4.3
where as abovdl, andN. are the number of particles in the
radiating and target beams, respectively. We will use the
same definition for our case. Then we have
dW.y:(D(Xo)dO',y, d01:®71(X0)dWl, (44)
wheredw; is defined in Eq(3.1J).
We calculate first the functioR®(w,¢) in Eq.(3.12) for
the case of coaxial beams whep=0. Passing on to the

Jnomentum representation with the help of the formdld)
e find

FO(w,0)=—

f Wr(q)wc(q)Fz(%)qdqdq:,

For calculation of the explicit expression for the brems-where »=q,;,{ is introduced in Eq(3.12),
strahlung cross section we have to specify the distributions

of particles in the colliding beams. Here we consider the
actual case of Gaussian beams. Using the Fourier transform

we have

1
(2m)?

W(X)= fdzq exp(—igx)w(q),
1 242 242
w; () =ex _E(quz+quy )

, 4.1

1
we(Q)= exp{ - 5(aGoz+ajoy)

2m?
(4.9
a| 7 ;
Fz(z_n):?f Ki(no)[1—-exp —ige)]d%e,
2x2+1
Fo(X)= ——=In(x+ J1+x%)—1,
SN )
Amin=M w/4e’e’; (4.6

here the valug,;, is defined in the c.m. frame of the col-
liding particles. The functior,(x) is encountered in radia-
tion theory. To calculate the corresponding contribution in
the radiation spectrum we have to substitute &q5) into
Eqg. (3.11) and take the integrals. After substitution of vari-

where as above the indexelates to the radiating beam and ables in Eq(4.5),

the indexc relates to the target beam, aidandA, (o, and

ay) are the vertical and horizontal transverse dimensions of a

the radiating(targe} beam. Substituting Eq4.1) into Eq.
(3.15 we find

) . a q
B(5)= fdz . I I '
(e) (2m)? aexp( Iqe)exr{ VEERS:
ZEY 2% 2 2y 2
= p eXF[_QzEZ_QyEy]:
1 1
=~ 3= 4.2
“ 2(02+A? Y 2(02+A2) “2

W= 2qming’ (47)
we obtain the integral ovef in Eq. (3.11):
o 4 4
L ( v- 7 +E> exp(—s?%)d{
=f(s)= 2—\/§(v—832)Erfc(s)+4e‘52+ 2Ei(—s?),
4.8

where
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S=WIQmin, r2=3;°code+3, ?sife. (4.9
Making use of Eq(4.4) we find for the spectrum
3 .7
do(V= zizs_d_wf(l)(w)'
m € w
1 27 de
FO(w)=— f
() T2y )0 3, %code+3, sy
xf F.(z)f(s)sds
0
s? 1
7°= (4.10

A, 3, 2codp+3 sirte

This formula is quite convenient for numerical calculations.

In the casexy#0 we will use Egs.(3.12 and (4.4)

straightforwardly. Taking into account E(t.2) we have for

the difference

AB(xg)= %[‘D_l(xo)F(l)(Xo) ~d~Y(0)FM(0)]

2
Y
= 7] Kinerext - eixi-exiixtens

[—20,2,52-20,y,85]1-1}d%,  (4.1))

where the functiorF (Y)(x,) is defined in Eqs(3.12, (3.16).
Using Macdonald’s formuldsee, e.g.[15], p. 53

7?\ dt
2t) t

and taking the Gaussian integrals oggrand e, we get

772

ZKf(ng)zf:ex;{—gzt—z}Kl (4.12

1 (=exp(— p22t)K(7%/2t) 7534
AD(x0)= — 2 2 2
2lo 432 t+3] t+32
y32§‘ 7dt
— 4.1
t+37 2t (413

For the correction to the cross sectipsee Eqs(4.4) and
(4.10] we have, correspondingly,

2a% &' d
dof="2 2 2210 (0)+ 000 )], (4.1
m
where
o) [U0APd @19

Now we pass over to the calculation of the sec¢sub-
traction term F®(w,¢) in Eq. (3.12. Using Eq.(4.1) we
get

PHYSICAL REVIEW D 66, 053009 (2002

>

0 N
| = nJ K ( UQ)EWC(X_ 0)d%

7 f q . )
= S(q)—exp —igx)w d<q,
2] SWGEHipow()d
(4.16
where
Q@ . -
S(q)=f Kl(ne)q—eexp(lqe)dze
:2wif Ki(ne)Jdi(gqe)ede
1
—omid . (4.17
7%+ 7
Using the exponential parametrization
! —1fw S 24 2-d 4.1
q2+7’2—zoex 2 77)_ s (418

and taking the Gaussian integrals oggrandg, we obtain

o 7°s 72 v2 [ ze
sz eXp — 4~ 2 2 2
0 4 s+207 s+200||s+207
yey ds
+ , (4.19
S+20'§ \/S+20'§\/S+20'§

where e, and g, are unit vectors along the axesandy.
Substituting Eq(4.19 into Eq. (3.12), taking the Gaussian
integrals overz andy, and using Eq(4.4) we get the correc-
tion to the cross section

20° &' dw
dof)=—— ——3F(w.x),
m

(4.20

where

vab
I (w,%0)= %exp{zgngrygzi)
22y

X fo dslfo dszg(@)e(sl,sz,xo),

aja,bib,\ Y aja, (1 z5a?
6(811321)(0)_ AB A §+ A
bib, (1 y3b? z2a
T(i*? e~ p (At )
2
yob
—%(bﬁ—bz) . (4.20)

Here the functiorg appears as a result of integration over
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g(q)=f
4

2 % 2
_ —q2)—2q2 -
v B)exr( q°)—2¢q L(U §+3§2)

xexp(—q*¢?)d¢

4 4 d¢
v— Z+E) exq—ngz)?

2
ow-or el

4 _ A2 . 2 }
X Erfc(q) + 3€ T+EI(—qg9)|. (4.22

In Eq. (4.21) we introduced the following notation:

a1 o= 1,2

51’2+ 20'5 , ' Sl'z"_ 20')2, '

A:al+a2+a, B:bl+b2+b,

S= Sl+52'

(4.23

V. NARROW BEAMS

This is the case when the ratig,i,/(Z,+2,)<1, so that
the main contribution to the integréd.10 gives the region
s~{~1, z>1. Using the asymptotics of the functiéi}(z)
atz>1

Fo(z)=In(22)?>—1 (5.1

and the following integrals:

1 2m de
[
2m22yJo 3, %code+3, ity

1 fZ# de
222y Jo 3 2code+3, ity

4

X1In
3, 2codp+3 *sirte

=In(3,+3,)%,
fwdsz(a—ﬂlnsz)
1
[ 4 4
X Jl (U— Z+E

_< 2
=[o-3

exp(—s?¢%)d¢

(5.2

[a+ B(2+C)] g B,

PHYSICAL REVIEW D 66, 053009 (2002

where C is Euler’s constanC=0.577 ..., we get for the
function f)(w) [Eq. (4.14)] the following expression:

2 Ami 2
(1) =~lp—— min —
f S (w) (U 3>(2lnm+3+c +9,

qmin<(zz+2y)- (5.3
This expression agrees with E@4) of [7].

Under the assumption used in E§.3) and the additional
conditionq,in(zo+Yo) <1 the main contribution to the inte-
gral in Eq.(4.13 gives the region> 7. In this case one can
use the asymptotic expansitty(z)=1/z (z<1). Then we

have for the functiolV)(w,X,) in Eq. (4.14 the following
expression:

2
J(l)(w,xo)z( —§)J,
- 2224 224
J=f exp( 0=z , Yo VZ)—l
0 t+3; t+3§

dt
X
VSIS0

The expressiol5.4) is consistent with Eq(26) of [7].

In the case X5+ o5+ 05)q,<1 the main contribution
to the integral in Eq.(4.21) gives the intervals o ,~ (X3
+0%+07)min<1. Keeping the main term of the expansion
overg? in Eq. (4.22 we get

qmin\/g) 2
g

2 = —5. (55)

(5.9

The same result can be obtained if one neglects the term
containingz? in the exponent of the integrand in Ed.19.

Summing the cross sectiotlo=do{V+da{? with the
standard QED bremsstrahlung cross section

) _2a3£’dw 2 Im2 1 £ g
UQ—F:?U § nﬁ s ()

we get the cross section for the case of interaction of narrow
beams:

2a% ¢’ dw 2
da'),zda'o-i-da'l:F?? U—§

m
X2 Ing———+C+2+J-J_
53,

"9

g'=e—w, (5.7

wherelJ is given in Eq.(5.4),
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J7:

ab o o
\/—exp(zgﬁi-i-ySEZ)J’ dSlJ’ ds,G(81,82,%0),
2ZEy y 0 0

(5.9
where the entering functions are defined in E¢s21) and
(4.23.

In the case of coaxial beamg=0, J=0 one can take the

integral in Eq.(5.8) over one of the variablefor definite-
ness oves,) using the formula

jw dx
0 (a,+bx)¥a,+byx)2

2

aybb,+b,aa,

After this we have the simple integral ovees,;

J(0)= 1+ 5,1+ 8,(3,+3y),

(5.9

Jy= fo D, (s)ds,

1

D,,= .
i a,y\Vbby+b, Vaa,

(5.10

where
a,,=S(1+8,,)+ 207 (2+5,,),
2

Zy
=—=. 5.1
,y Aiy ( :D

g

b

+1+6

z,y o,

FA
277,

The cross sectioii5.7) differs from Eqg.(24) of [7] be-
cause the subtraction terdn is included. Without this term,

PHYSICAL REVIEW D 66, 053009 (2002

B . ds
J_=(1+9) JO [S(1+6)+2+ 8][sé+1+ 5]

=(1+)l —(1+5)2 51
—Arolns s s ©.13
In the limiting cases the functiod_ has the form
J_(6>1 ! J (6=1)=2]I :
((621)=5, J(6=1)=2Ing,
J_(6<1)=I ! 51
_(6<1)= n2—6. (5.19

In the first case the subtraction tem is small. For beams

of the same size the subtraction tedm contributes to the
constant entering into the expression for the cross section.
The subtraction ternd_ essentially modifies the cross sec-
tion in the case when the radius of the target beam is much
smaller than the radius of the radiating beam. In this case the
cross sectiorf5.7) contains the combination

2
InN——-J_=In
4372

m2A2 A2
—In— =In(mo)2.
o2 (mo)

5 (5.195

So in all the cases considered above the cross section defines
the transverse dimension of the target beam.

When the axes of round beams are separated with respect
to each other in the transverse plane the integral in(&Ed¢)

IS
J_Jw d dx
S s BV Bt e
=Ei(d)—C—Ind,
2 2
X +y0
d=x232=—2"9 (5.16
0 T 2(A2+ ¢?)

generally speaking, the bremsstrahlung cross section would ] ) .
be qualitatively erroneous. In particular, the appearance of It is convenient in this case to calculate the functibn
the termJ_ violates, generally speaking, the symmetry of using straightforwardly Eq(4.19 where we omit the term

the radiation cross section in opposite directionseire™
(e"e™) collisions.

To elucidate the qualitative features of narrow beam
bremsstrahlung processes we consider the case of round

beams where the calculation becomes simpler:

0,=0y=0, AZ=Ay=A,
1
32=32=32———
£ 2(a?+A?)
0_2
b=a, b1,2: a;,, B=A, 5=P. (5.12

We consider first the case of coaxial beamg=<0, J=0),

with #%? in the exponent of the integrand:

I afw 02 ds
= ex —
o=@ 0 s+20?) (s+202)?

52
4
l-exp ——| |-
p( 202)

Substituting this expressidi is defined in Eq(4.16)] into
the subtraction term Eq3.12 and using the exponential
parametrization

>

= (5.17

1 » -
72=f exp(— e2s)ds,
Y 0

we obtain

053009-8



DEVIATION FROM STANDARD QED AT LARGE . ..

aef

an?

=2

%
l-exp ——
p( 202)
_aeddlfoo 1 d,a
“ 52 Jo|s+ta"MHsra

1 a
—2———exp dj————
s+at+o 22 s+a+o 22

J_ f dsf d%0 exp( — 02s)
0

X exd —a(e +%p)?]

ds

T exp
st+a+o st+a+o

aed‘dl

_22

. . 0-2
E|(dl)_2E| d102+A2

2 2
Znt+
, dlzaxg:;TZO. (5.18

I
I —_—
10'2-|-2A2

PHYSICAL REVIEW D 66, 053009 (2002

we have for the probability of bremsstrahlung of round
beams moving apart at a large distance

v— —

¢ dw
3

€ w

3
— Y Tl
dw,=4N:N, - A2 [exp( Xo> )In2
%32
+(X37)2+O[EX[X_X322)]1,

2 2
2 1 292 Zo+y0

= , X = >
2(A2+¢2)" 7 2(A244?)
Omin(Zo+Yg)<L. (5.23
According to Eq.(5.23 when xS increases so that one can
neglect the first term in square brackets, the probability of
bremsstrahlung of the round beams diminishes as a power of
the distance between the beamsn(zlxg). The cross section
Eq. (5.7) in this case grows exponentially @8/d?. Let us
note that without the subtraction term one has erroneous

qualitative behavior of the probabilitym(l/xﬁ). These cir-
cumstances also explain E&.15 for the coaxial beams: on

In the limit d;—0 the last expression goes over to EQ.jntegration overd?e the region contributes wher@?(¢))

(5.13.

—(q(e))?=1/g?, so thate<o.

When the separation of the axes of the colliding beams is Now |et us consider the general case# 3, for enough
2 .
large enoughxg>o?+A?) one can use the asymptotic ex- |arge separation of beamg>3,7. In this case the main

pansion of the function Ex) in Eq. (5.18:

z

. e 1
Ei(z)= ;( 1+E , =1,

(5.19

In this case the main terms in the differente J_ in Eq.
(5.7) are canceled:

— . (5.20

The compensation of the main terms in E§.19 is due to

contribution to the integrall(x) (for ?=0) in Egs.
(4.16,(4.19 at large|x|=|x,| [see Eq.(3.12] are given by
large valuess~x§> o7, . Expanding the integrand over the
powers aiy/s and keeping after integration the two main
terms of the decomposition overnd/we get

1+ —— (=) (oj—0d)|.

(5.29

|2(X)zi
X2 (X2)2

Expanding the function 1%+ £)2 over the powerg/x, dur-
ing integration ove&=x—Xg in Eq. (3.12 we find

the fact that the incoherent scattering originates from the
fluctuations of the targeiscattering beam potential. Corre-
spondingly we have for the mean square of the momentum

| v+ pwi oo

transfer dispersion at large distance from the target beam 1 4 A2
L = | 1+ =5 (ZAZHYEA) — — + —5 (V6 2)
, - - 1 1 4(x00)? 072 Xol  (Xp) Xg (X

(dP(@)y—(a@)?x| ——=5-5)={—6 =

(Xot0)= Xp Xo Xo s 5

. X(oy—03)|,

(0% 20°

:—42—4. (52])
oo AZ=A2+A2 (5.29
s TAY. .

Substituting Eq.(5.20 into Eq. (5.7) and multiplying the
result by the luminosity4.3) In this case the regiotr~ 1/x§<2§,y contributes to the inte-
gral J Eq. (5.4). Expanding the integrand over the powers

tE;yz and keeping the two main terms of decomposition over
1/x3 we have

2

£=NCNr2?exp(—x§22), (5.22
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o2+ A2 4 gives the regiors~ 05 and to the integral, the regions
JZE s SEXNZGRIHYEE) 1 ———+— ~o5. Performing in the integrald, the substitutions
z%yXo X (X —207%s and in the integral, the substitutiors— 207/s, one
gets
x[zg(a§+A§)+yg(a§+A§)]],
I oy o ds
P 024 o2 (5.26 © 2+ 68,0,)0 [(s+1)8,+1]Vs(1+ 6, +2+ 5,
;tay. :
For the differencel—J_ we obtain finally _ 2 &arcta 1
L V2+6, oy V6,(2+6,)
J-J_= exp(z33 2+ 2 . 5.2
Ezzy Fx 0 yO )( 8)2 ( 7) Az - ds

I I 1)(6,+1)+s]\(s+1)5,+s

VI. NARROW FLAT BEAMS (o,<0,,A,<A))

Let us begin with coaxial beams. We consider first the _ 2 &arctan 1
case where the size of radiating beam is much larger than the V2+ 8, 9y Véy(2+6)) '
size of the target beams{ ,<1). In this case one can ne-
glect the terms proportlonal tézy, a’z, Ay 2 in the func- =V1+0,y1+6,(J,+Jy)
tionsa,, andb, in the integral in Eq(5. 10) Within this
accuracy 2V1+6,y1+6, AZ( ¢ 1
= —— —| arctah——
s V2+ 46, Oy V6,24 6,)
a,~s, a,~s+4¢;, b,~——+1, by=1 (6.1
282 +arct ! ) (6.5
arctar———|. .
After substitution in the integraly in Eq. (5.10 s—4a7s NOy(2+dy)

one gets

o ds
Iy(r) = fo Js+1(y/s+ s+ 11+ 2ks)’
2
g
K=A—g. (6.2

After substitution in the integral, in Eq. (5.10 s—2A%/s
one gets),=J, so that

I (1) =21+ 5,1+ 8,3,( k) =23y(x),

8 2
J_(k<1l)=In—, J_(K>1)=7T\/:.
K K

It is seen from the last equation thatXt< o, the contribu-

tion of the termJ_ to the cross section E¢5.7) is relatively

small. In the opposite cask,> o this contribution leads to
a change of the logarithm argument in E§.7):

(6.3

In the cases, <1, A,<o, this formula is consistent with
Eq. (6.3.

Now we go over to the case of separated beams. For large
enough separation of the beams the form(#a® and(5.27)
are valid. So the intermediate case is of interest. As an ex-
ample we consider the casg>zj>o2+AZ, yg<os. In
this case the contribution to the integral in &ﬁ 4) gives the
interval E <t~z, <22. Keeplng the main terms of de-
composmon ovets, 2<1 andtX, ’>1 we have

1 (= dt
=— | expzd32-zt)—
Ezfo F( 0 0 ) \/E

(6.6)

Under these conditions§<o7) the contribution to the in-
tegral for J_ in Eq. (5.8 of the term in the function
G(s1,S,,Xg) of EqQ. (4.21) containingb,b,/B in the square
brackets is defined by the functidy in Eq. (6.5) to within
the terms~z,/0, . In the term containing,a,/A (which

2 In— | In(\/—mAz) In( 22 ” we denote by](z)) the main contr|but|on gives the summand
(2z12y) z2a?/A? in the |ntervalay>sllz~ 72> o2 where
mO'
=2In—— n—= (6.9 1 1
a == - — ]
L2 S1,2 L2 20)2,
This is a new qualitative result.
In the opposite case when the size of the radiating beam is 1 1
smaller than or of the order of the size of the target beam A=a, B=— A2 (6.7)
g

(6,,=1) the contribution to the integral, in Eq. (5.10
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As a result we obtain g 70F
B B
2 2 F
z b
IO (xg) = ———— [ =e% L
ZEZEyUy §50-
& SO
=d ® 1 1\|d 2 I
xf Ts/; exp{—zg(—Jr—) TS; g 40f
0sy°Jo S1 S2/]s; ¥
30F
_ A TF5IES, : | | |
- - [ 20 TEEE N ET] I R ET] [ EEET] T
Ty N2+ 10~ 10° 107 107 1
photon energy x=0/€
T
J-J_= \/d:eth(zo), d,=2z332, FIG. 1. The bremsstrahlung intensity spectruiio/dw in units
z

of 2ar§ versus the photon energy in units of the initial electron
energy k= w/e) for the VEPP-4 experiment. The top curve is the
Vm(1l+6y) zo 2 1 standard QED spectrum; the three close curves below are calculated
J2(2+6y) oo Larc a'm : for different vertical dimensions of the colliding beartesjual for
y Y y 4 (6.8 o colliding beams c=0,=4,): ¢=20um (bottom, o
' =24 um (middle), c=27 um (top). The data measured [i6] are
It should be noted that for flat beams the probability of ra-presented as circleshe experiment in 1980and as trianglesthe
diation as a function of the distance between beémsthe  experiment in 198lwith 6% systematic error as obtained[#l.
considered intervaldecreases more slowlyproportional to

1//d,) than for the round beams given in E§.23: =450 um, so this is the case of flat beams. The estimate for
. 5 o this case[Eq. (6.5)] gives J_=(4/3\3)mo,/ay<1. This
e dow (

h(Zo): 1-

v— =l e n— term is much smaller than other terms in H§.7). This
3 %, means that for this case the correction to the spectrum cal-
culated in[7] is very small.

' (6.9 The results of calculation and the VEPRAIP, Novosi-
birsk) data are presented in Fig. 1 where the bremsstrahlung
intensity spectrunwdo/dw is given in units of Zxrﬁ versus

the photon energy in units of the initial electron energy (
=wle). The upper curve is the standard QED spectrum,; the

3
AW = 4NN, Z\ZS S,
y ctr o feszEy

1\/?h
*3 d—Z(Zo)

Compensation in the differenck-J_ begins in the region
zp~0y+Ay where Eq.(6.8) is not valid and one has to use

the more accurat_e _Eq5'8)' In the reglonzo>a_y+Ay e three close curves below are calculated using E40 and
probability of radiation decreases agglaccording t0 EGS. (450 for different vertical dimensions of the colliding
(4.4), (5.7), (5.27) provided that one can neglect the expo-paams (equal for both colliding beamsr=o0,=A,): o
nential term in the square brackets in HG.9 [compare _ g um (bottom), =24 um (middle), o=27 um (top)
with Eg. (5.23]: (this is just the Ir dispersion for the beams used in the
experiment We want to emphasize that all the theoretical

E

a® N0l & 2\dw o S
del(zo):ZNch_ Ty _(v_ _)_, curves are calculated to within the relatlylst|c accuréte
7 T 75 € 3/ w discarded terms are of the ordeve). It is seen that the
effect of the small transverse dimensions is essential in the
Z>Yg.- (6.10  soft part of the spectrurtat w/e =10 * the spectral curve is
diminished by 25%), while forw/s>10"1 the effect be-
VIl. OBSERVATION OF BEAM-SIZE EFFECT comes negligible. The data measured6hare presented as

circles (experiment in 198Dand as trianglegexperiment in

Above we calculated the incoherent bremsstrahlung sped981) with 6% systematic error as obtained[B1 (while the
trum in the collision of electron and positron beams withstatistical errors are negligibleThis presentation is some-
finite transverse dimensions. This spectrum differs from thevhat different from that irj6]. It is seen that the data points
spectrum found previously if¥—9] because her@n contrast  are situated systematically below the theory curves but the
to previous papejsve subtract the coherent contribution. In difference does not exceed therdevel [6]. It should be
the general expression for the correction to the probability ohoted that this is true also in the hard part of the spectrum
photon emission[Eqg. (3.11)] the subtraction term is where the beam-size effect is very small.
F®)(w,?). For numerical calculation in the case of coaxial The last remark is connected with the radiative correc-
beams it is convenient to use E@4.10), (4.20, and(4.21).  tions (RC). The RC to the spectrum of double bremsstrah-
In the last equation one has to py=2z,=0. In the case of lung [16] (this was the normalization procesare essential
collision of narrow beams the subtraction term in the brems{of the order of 10%) and were taken into account. The RC
strahlung spectrurtb.7) is J_ . The dimensions of the beams to the bremsstrahlung spectrit] are very smallless than
in the experiment[6] were o,=A,=24um, o,=A, 0.4%) and may be neglected. It should be noted that the RC
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FIG. 2. The bremsstrahlung intensity spectruoio/dw in units FIG. 3. The bremsstrahlung intensity spectrardo/dw nor-
of 2ar§ versus the vertical sizes of the beamgs(in um). The data  malized to luminosityZ in units of 2ar§ versus the vertical sepa-
are taken fronj6]. ration of the beamg, (in © m). The data are taken fropg].

to the bremsstrahlung spectrum are insensitive to the effedd [6]. This shows that the contribution of tde term, which

of small transverse dimensions. is calculated only in the present paper, is relatively small.
The dependence of the bremsstrahlung spectrum on beam One more measurement of beam-size effect was per-

characteristics was measured specialljeh The first effect formed at the HERA electron-proton collidéDESY, Ger-

is the dependence of the bremsstrahlung spectrum on tHgany [18]. The electron beam energy was-27.5 GeV;

vertical sizes of the beams,. It is calculated using Egs. the proton beam energy was,=820 GeV. The standard

(4.10 and (4.20 for w/e=10"3. The result is shown in bremsstrahlung spectrum for this case is given by (&)

units of 2ar2 in Fig. 2. The data are taken from Fig. 7[6]. ~ Wherédmin should be substituted by

The second is the measurement of the dependence of the

bremsstrahlung spectrum on the vertical separation of the Qin— A2, :“’mzmp. (7.2
beamsz,. It is calculated using Eqs(5.4) and (5.8) for T 4eee '
wle=10"3. Because of the separation it is necessary to nor-

malize the spectrum to the luminosity herem, is the proton mass. In this situation the formation

length is12,=1/q°;, and at the photon energy=1 GeV
s S one hag{,~2 mm. Since the beam sizes at HERA are much
L=NN, Y exp —2232) smaller than this formation length, the beam-size effect can
™ be observed at HERA. The parameters of the beam in this
experiment wergin our notation o,=A,=50-58um, o,
[see Eq(4.3)]. This means that when we compare the brems= Ay=250-290um. In some runs separated beams were
strahlung proces$where the beam-size effect is essential used withzy=20 um andy,=100 um. The bremsstrahlung
with some other process like the double bremsstrahlung usegtensity spectrunwdo/dw in units of ZarS versus the pho-
in [6] (which is insensitive to the effecwe have to multiply  ton energy in units of the initial electron energy={ w/e)
the cross section of the last process by the luminaSityhis  for the HERA experiment is given in Fig. 4. The upper curve
is seen in the estimate E@.9): after taking out the exponent s the standard QED spectrum. We calculated the spectrum
e~ % we have the luminosity as the external factor and in thewith beam-size effect taken into account for three sets of
expression for the ratibl, /N,,, (which was observed if6])  beam parameters: set 10,=A,=50 um, o,=4,
the cross section of double bremsstrahlung will be multiplied=250 um, z,=y,=0; set 2, o,=A,=50 um, oy=4,
by the luminosity. After this operation the second term in=250 um, z,=20 um, y,=0; set 3,0,=A,=54 um, oy
square brackets will contain the combinatiefth(z,)/\/d, =Ay=250 um, zy=Yyo=0. The result of the calculation is
which grows exponentially with increase in the separationseen as the two close lower curves, the top curve being for
Z,. The normalized bremsstrahlung spectrum is shown iset 3, while the bottom curve is actually two merged curves
units of 2ar3 in Fig. 3. So the very fastexponentigl in-  for sets 1 and 2. Since the ratio of the vertical and horizontal
crease withz, is due to the fast decrease wily of the  dimensions is not very small, the general formulas were used
double bremsstrahlung probability for the separated beam#n the calculation: for coaxial beams Edd.11) and(4.20),
The data are taken from Fig. 8 [i6]. It should be noted that and for separated beams E@.14) and(4.20. It should be
in the soft part of the spectrum the dependence on photonoted that the contribution of the subtraction tefiq.
energyw is very weak. It is seen in these figures that there i94.20] is quite essentialmore than 10%) for the beam pa-
quite reasonable agreement between theory and data just @sneters used at HERA. The data are taken from Fig. 5c in
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FIG. 5. The spectral intensity probabilitydw,, /dw normalized
to one particle in the beam in units ofaZéEZEy/w versus the
vertical separation of the bearag (in nm).

35

30 Lol Lo investigated. Previouslysee paper$7—10]) an incomplete
0.01 0.1 1 expression for the bremsstrahlung intensity spectrum was

used for analysis of this effect because a subtraction was not

carried out. It is necessary to carry out this subtraction to

FIG. 4. The bremsstrahlung intensity spectruho/dw in units extract the pure fluctuation_ process Whic_h is just the inpoher-
of 2arZ versus the photon energy in units of the initial electron €Nt Premsstrahlung. We implement this procedure in the
energy k=w/e) for the HERA experiment. The top curve is the Present paper. The cases are indicated where the results with-
standard QED spectrum. The two close curves below are calculate@Ut the subtraction term are qualitatively erroneous. The first
with the beam-size effect taken into account, The bottom curve i¢S the case when the transverse sizes of the scattering beam
actually two merged curves for sets 1 and(set 1 iso,=A, are much smaller than the corresponding sizes of the radiat-
=50 um, o,=A,=250pum, z,=y,=0, set 2 is o,=A, ing beam. For coaxial round beams, see, e.g.(&45 and
=50 um, oy=A,=250 um, z,=20 um, yo=0), while the top  for flat beams Eq(6.4). In contrast to previous papers here
curve is for set 3 ¢,=A,=54 um, o,=A,=250um, 5=y, we draw the conclusion that the bremsstrahlung cross section
=0). The data are taken from Fig. 5c[ih8]. is determined by the transverse sizes of the scattering beam.

A new qualitative result is deduced for the case when the
[18]. The errors are the recalculated overall systematic errorseparation of beams is large enough. Then the dispersior of
given in [18]. It is seen that there is a quite satisfactorythe square of the momentum transfer, which determines the
agreement of theory and data. The data are givéth8halso  bremsstrahlung cross section, decreases with increasing
as the averaged relative differenced=(dogep  separation distance faster than the mean square of the mo-
—dopg)/dogep (Wheredogep is the standard QED spec- mentum transfefsee Egs.(5.21),(5.27)]. As was noted in
trum ando,s is the result of a calculation with the beam-size Sec. VII, it is necessary to normalize the spectrum to the
effect taken into accounbver the whole interval of photon luminosity for the separated beams. Then the bremsstrahlung
energies(2—8 Ge\}, e.g., for set 15.,=(3.28+0.7)%, for  cross section grows exponentially with increasing separation
set 2 6.,=(3.57£0.7)%, and for set 3,,=(3.06:0.7)%  z,. This very fast(exponentigl increase is due to fast de-
[18]. The averagedds) over the interval 0.02x=<0.28 (or  crease in the normalization process probability for the sepa-
1.95 Ge\sw=<7.7 GeV) in our calculation for set 1 is5)  rated beams.
=2.69%, for set 2 is(6)=2.65%, and for set 3 ig5) For Gaussian beams the expression for the bremsstrah-
=2.54%. So for these data there is also a satisfactory agre#ng spectrum is obtained in the form of double integrals
ment of data with theoryat the 1o level, except for set 2 convenient for numerical calculationgsee Egs.(4.10),
where the difference is slightly larger (4.20, and (4.21)]. For the soft part of the spectrum we

So the beam-size effect discovered at BifN@vosibirsk deduced a general expression which is independent of the
was confirmed at DESYGermany. Of course, more accu- minimal momentum transfef,,,;, and is defined by the trans-
rate measurement is desirable to verify that we entirely unverse sizes of the beams onlgee Egs.(5.3), (5.4), and
derstand this mechanism of deviation from standard QED. (5.7)—(5.11)].

The important feature of the considered beam-size effect
is the smooth decrease of radiation probability with growth
in the beam separation. For flat beams we see in &g9),

In this paper the influence of the finite transverse size 0f6.10 that the main(logarithmig term in the expression for
colliding beams on the incoherent bremsstrahlung process the probability decreases exponentia[lbyexp(—z§2§ as lu-

Photon energy x=w/e

VIll. CONCLUSION
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minosity], but there is a specific long-range term propor-This means that one can obtain the curve for amy mul-
tional to 1k, which results in quite appreciable radiation tiplying the ordinate in Fig. 5 by the factdi(x)/f(10"%).
probability even in the case when the separation of th&he curve in Fig. 5 reflects the main features mentioned
beams is large. This phenomenon may be helpful for tuningbove. One can see that even fge=100 (zo=200,) the
high-energy electron-positron colliders. As an example wecross section is~0.002 of the very large bremsstrahlung
consider the “typical” collider where the beam energyeis probability for head-on collision of beams. So by measuring
=500 GeV, the beam dimensions are equal, apg5 nm  the radiation from separated beams one can estimate the dis-
and o,=100 nm. The beam-size effect in this collider is tance between the beams. This information may be useful for
very strong and fox=10"2 the intensity spectrum is only the tuning of beams.

~0.3 of the standaréddoqgep(w)/dw. The dependence of
the bremsstrahlung probability on the separation distapce
(in nanometersis shown in Fig. 5. It is calculated using Egs.
(5.6—(5.8) for soft photons withx=10"2 [the asymptotic We would like to thank Professor Krzysztof Piotrzkowsky
formulas(6.9), (6.10 are not accurate enough in this chse for additional information about the HERA experiment and
Actually, the dependence on photon energy is contained witPProfessor Yu. A. Tikhonov for discussion of the VEPP-4
good accuracy in the external factdfx)=(1—x)[v(x) data. This work was supported in part by the Russian Fund of
—2/3] if the condition @5+ o2+ 05)ah,<1 is satisfied. Basic Research under Grant 00-02-18007.
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