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Deviation from standard QED at large distances: Influence of transverse dimensions of colliding
beams on bremsstrahlung

V. N. Baier and V. M. Katkov
Budker Institute of Nuclear Physics, Novosibirsk, 630090, Russia

~Received 23 April 2002; published 30 September 2002!

The radiation at the collision of high-energy particles is formed over a rather long distance and therefore is
sensitive to the environment. In particular, the smallness of the transverse dimensions of the colliding beams
leads to suppression of the bremsstrahlung cross section for soft photons. This beam-size effect was discovered
and investigated at INP, Novosibirsk. At that time an incomplete expression for the bremsstrahlung spectrum
was calculated and used. This is because a subtraction associated with the extraction of the pure fluctuation
process was not performed. Here this procedure is done. The complete expression for the spectral-angular
distribution of incoherent bremsstrahlung probability is obtained. The case of the Gaussian colliding beams is
investigated in detail. In the case of flat beams the expressions for the bremsstrahlung spectrum are essentially
simplified. The comparison shows quite reasonable agreement between the theory and the VEPP-4 and DESY
HERA data. The possible application to the tuning of beams in a lineare1e2 collider is discussed.
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I. INTRODUCTION

The bremsstrahlung process at high energy involve
very small momentum transfer. In the space-time picture
means that the process occurs over a rather large~macro-
scopic! distance. The corresponding longitudinal leng
~with respect to the direction of the initial momentum! is
known as thecoherence~formation! length l f . For the emis-
sion of a photon with the energyv the coherence length i
l f(v);«(«2v)/m2v, where« and m are the energy and
the mass of the emitting particle~here the system\5c51 is
used!. If the particle experiences some action over t
length, the radiation pattern changes~in the case when the
action is the multiple scattering of the emitting particle o
observes the famous Landau-Pomeranchuk effect@1#!.

A different situation arises in the bremsstrahlung proc
in the electron-electron~-positron! collision. The point is that
the external factors act differently on the radiating parti
and on the recoil particle. For the radiating particle the c
terion of influence of external factors is the same both a
electron scattering from a nucleus and at a collision of p
ticles. For the recoil particle the effect turns out to be e
hanced by the factor«2/m2. This is due to the fact that th
main contribution to the bremsstrahlung cross section g
the emission of a virtual photon with very low energyq0 by
the recoil particle

q0;
m2v

«~«2v!
, ~1.1!

so that the formation length of the virtual photon is

Lv~v!5 l f~q0!5
4«3~«2v!

m4v
. ~1.2!

This means that the effect for the recoil particles appe
much earlier than for the radiating particles. For example,
Landau-Pomeranchuk effect distorted the whole bremsst
0556-2821/2002/66~5!/053009~14!/$20.00 66 0530
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lung spectrum at the TeV range~for heavy elements! while it
turns out that the action on the recoil particle can be imp
tant for contemporary colliding beam facilities at the Ge
range@2#.

There are a few factors which could act on the rec
electron. One of them is the presence of an external magn
field in the region of particle collision@2–4#. If the formation
length of the virtual photonLv turns out to be larger than th
formation lengthl H(v) of a photon with energyv in a mag-
netic fieldH then the magnetic field will limit the region o
minimal momentum transfers. This will lead to a decrease
the bremsstrahlung cross section and a change of its s
trum. Another effect can appear due to the smallness of
linear interval l where the collision occurs in compariso
with Lv(v) @see Eq.~1.2!#. This was pointed out in@5#.

A special experimental study of bremsstrahlung was p
formed at the electron-positron colliding beam facili
VEPP-4 of the Institute of Nuclear Physics, Novosibirsk@6#.
The deviation of the bremsstrahlung spectrum from the s
dard QED spectrum was observed at the electron energ«
51.84 GeV. The effect was attributed to the smallness of
transverse size of the colliding beams. In theory the prob
was investigated in@7#, where the bremsstrahlung spectru
at the collision of electron-electron~-positron! beams with
small transverse size was calculated to within the power
curacy ~the neglected terms are of the order 1/g5m/«).
Later the problem was analyzed in@8–10# where the brems-
strahlung spectra found coincide with those obtained in@7#.

It should be noted that in@7# ~as well as in all the other
papers mentioned above! an incomplete expression for th
bremsstrahlung spectrum was calculated. One has to per
the subtraction associated with the extraction of the p
fluctuation process. Let us discuss this item in some de
The momentum transferq at collision is an important char
acteristic of the radiation process~the cross section contain
the factorq2 at q2!m2). At the beam collision the momen
tum transfer may arise due to the interaction of the emitt
particle with the opposite beam as a whole~due to the co-
©2002 The American Physical Society09-1
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herent interaction with the averaged field of the beam! and
due to the interaction with an individual particle of the o
posite beam. Here we are considering theincoherentprocess
only ~connected with the incoherent fluctuation of densi!
and so we have to subtract the coherent contribution.
expression for the bremsstrahlung spectrum found in@7# con-
tains the mean valuêq2&, while the coherent contribution
containŝ q&2 and this term has to be subtracted. We enco
tered an analogous problem in the analysis of incohe
processes in oriented crystals@11# where it was pointed ou
~see p. 407! that the subtraction has to be done in the sp
trum calculated in@7#. Without the subtraction the results fo
the incoherent processes in oriented crystals would be q
tatively erroneous.

In Sec. II a qualitative analysis of the incoherent radiat
process is given. In Sec. III the general formulas for
spectral-angular distributions of incoherent bremsstrahl
are derived. The incoherent bremsstrahlung spectrum
Gaussian beams is calculated in Sec. IV in the form
double integrals. In the specific case of narrow beams~the
size of the beam is much smaller than the characteristic
pact parameter! the formulas are simplified essentially~Sec.
V!. Experimental studies of the effect were performed w
flat beams~the beam vertical size is much smaller than t
horizontal one!. This specific case is analyzed in Sec. V
while comparison with the VEPP-4 and the DESYep col-
lider HERA data is given in Sec. VII. In Sec. VIII the pos
sible application to the tuning of beams in a lineare1e2

collider is discussed.

II. GENERAL ANALYSIS OF PROBABILITY OF
INCOHERENT RADIATION

In this section we discuss in detail the conditions un
which we consider the incoherent radiation. One can ca
late the photon emission probability in the target rest fram
since the entering combinationsv/« andgq (g is the Lor-
entz factorg5«/m, andq is the angle of photon emission!
are invariant~within a relativistic accuracy! and a transfer to
any frame is elementary. We use the operator quasiclas
method @12,13#. Within this method the photon formatio
length ~time! is

l f5
«8

«kv
5

«8

«v~12nv!
.

l f 0

z
,

l f 05
1

qmin
5

2««8

vm2
5

4«8gc« r

vm2
,

z511g2q2, «85«2v, ~2.1!

where pm5«vm @vm5(1,v)# is the four-momentum of the
radiating particle,gc5«c /mc , «c is the energy of the targe
particle in the laboratory frame,mc is its mass,« r is the
energy of the radiating particle in the laboratory frame;km
5(v,vn) is the photon four-momentum, andq is the angle
between vectorsn andv.

In the case when the transverse dimension of the beams,
is s@ l f 0, the impact parameters%<%max5 l f 0 contribute.
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One can set the particle density in the target beam to a c
stant, so that the standard QED formulas are valid. Note
the value%max is the relativistic invariant, which is define
by the minimal value of the square of the invariant mass
the intermediate photonuq2u. In the case when the characte
istic size of the beams is smaller than the value%max, the
lower value ofuq2u is defined by this size.

In the target rest frame the scattering length of the em
ting particle is of the order of the impact parameter%. This
length is much smaller than the longitudinal dimension of
targetgcl ( l is the length of the target beam in the laborato
frame!. So one can neglect the variation of the configurat
of the beam during the scattering time. Possible variation
the particle configuration in the beam during a long time c
be taken into account in the adiabatic approximation.

Another limitation is connected with the influence of th
value of the transverse momentum arising from the elec
magnetic fieldE5uEu of the colliding~target! beam over the
photon formation length. This value should be smaller th
the characteristic transverse momentum transfermAz in the
photon emission process:

eElf

mAz
;

aNc

~sz1sy!lgc

1

mAz

4«8gc« r

vzm2

;
2aNc

~sz1sy!l

1

mAz

2«8« r

vzm2

5
4aNcg rlc

2«8

~sz1sy!l z3/2v
!1; ~2.2!

herea51/137, Nc is the number of particles in the targe
beam, andsz and sy are the vertical and horizontal trans
verse dimensions of the target beam. Note that the ratiog/ l
is the relativistic invariant. This condition can be presen
in invariant form as

2x

uz3/2
!1, ~2.3!

where x5(g/E0)uE'1v3Hu, u5v/«8, E05m2/e51.32
31016 V/cm. Since the main contribution to the spectr
probability of radiation gives anglesq;1/g (z;1) this con-
dition takes the formx/u!1. For the casex/u@1 the con-
dition ~2.3! can be satisfied for large photon emission ang
z.g2q2.(x/u)2/3@1. Under these conditions the forma
tion length l f5 l f 0 /z decreases as (x/u)2/3. The same inhi-
bition factor acquires the bremsstrahlung probability@14#.

Now let us consider the spectral distribution of radiati
probability in the casex!1 ~this condition is satisfied in al
existing installations!, so

x;aNcg
lc

2

~sz1sy!l
!1. ~2.4!

Only the soft photons (v<x«!«) contribute to thecoherent
radiation ~the ‘‘beamstrahlung’’! while the hard photon re-
9-2
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gion v@x« is suppressed exponentially as is known fro
classical radiation theory. As mentioned, in the soft pho
region (v<x«!«), the spectral probability of bremsstrah
lung is suppressed by the factor (v/«x)2/3 only. On the con-
trary, the spectral probability of the bremsstrahlung is ne
gible compared with the beamstrahlung, taking in
consideration that the mean square of the multiple scatte
angle during the whole time of beam collisions is small co
pared with the value 1/g2:

g2^qs
2&5

^qs
2&

m2
.

8a2Nclc
2

szsy
L!1, ~2.5!

whereL is the characteristic logarithm of the scattering pro
lem ~in typical experimental conditionsL;10).

It was supposed in the above estimations of beamstr
ung probability that the radiation formation length is shor
than the target beam length:

l f

l
;

1

u S 11
x

uD 22/3glc

l
,1. ~2.6!

In addition, it was supposed that one can neglect the va
tion of the impact parameter% and therefore of the trans
verse electric fieldE'(%) during the beam collision. This is
true when the disruption parameter is small:

Di5
2aNclcl

g rs i~sz1sy!
!1 ~ i 5z,y!. ~2.7!

So we consider incoherent bremsstrahlung under the
lowing conditions:

x!1,
x

u
!1, Di!1. ~2.8!

III. SPECTRAL-ANGULAR DISTRIBUTION OF THE
INCOHERENT BREMSSTRAHLUNG PROBABILITY

In this section we derive the basic expression for the
coherent bremsstrahlung probability in the collision of tw
beams with bounded transverse dimensions.

We consider first the photon emission in the collision
an electron with one particle with the transverse coordin
x. We select an impact parameter%05u%0u which is small
compared with the typical transverse beam dimensions but
which is large compared with the electron Compton len
lc (lc!%0!s). In the interval of the impact parameter%
5ur'2xu>%0, wherer' is the transverse coordinate of th
emitting electron, the probability of radiation summed ov
the momenta of the final particle can be calculated using
classical trajectory of the particle. Indeed, one can neg
the value of the commutatorsu@ p̂' i ,% j #u5d i j compared with
the valuep'% in this interval (p'%>m%0@1). In this case
the expression for the probability has the form@see@13#, Eqs.
~7.3! and ~7.4!#

dw5uM ~%W !u2wr~r'!d2r'd3k, ~3.1!
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where

M ~%W !5
e

2pAv
E

2`

`

R~ t !exp@ ik8x~ t !#dt,

k85
«

«8
k. ~3.2!

Here wr(r')d2r' is the probability of finding the emitting
particle with the impact parameter%W 5r'2x in the interval
d2%5d2r' , R(t)5R„p(t)…, kx(t)5vt2kr (t) ~for details
see@13#, Sec. 7.1!. Integrating by parts in the last equatio
and taking into account thatuq'(%W )u<1/%0!m, we find

M ~%W !.
ie

2pAv
E

2`

`

exp~ ik8vt !
d

dt

R~ t !

k8v~ t !
dt

.
ie

2pAv
m~%W !

]

]p'

R~p�!

k8v
, ~3.3!

where

p'5p2n~np!.«~v2n!,

m~%W !5E
2`

`

exp~ ik8vt !q̇~%W ,t !dt

52
]

]%W
E

2`

`

expS i t

l f
DV~A%21t2!dt

5
2a

l f

%W

%
K1S %

l f
D

52aqminzK1~%qminz!
%W

%
~3.4!

for the Coulomb potential,K1(z) is the modified Besse
function ~the Macdonald function!, R(p�) has the form of a
matrix element for the free particles:

R~p'!5ws8
1

~A1 i sB!ws , A.
m~«1«8!

2««8
~e* u!,

B.
mv

2««8
@e* 3~n2u!#,

u5
p'

m
, z511u2, k8v5qminz, ~3.5!

where the vectore describes the photon polarization and t
spinorsws andws8 describe the polarization of the initial an
final electrons, respectively.

In the interval of impact parameters%<lc the expecta-
tion value^%W uM 1M u%W & cannot be written in the form~3.1!
since the entering operators become noncommutative in
9-3
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the expectation value. However, because of the condi
lc!s in this interval wr(r').wr(x)1O(lc /s) and one
can neglect the effect of the inhomogeneous distribution.
the same reason in the calculation of the correction to
probability of photon emission, which is defined as the d
ference betweendw(s) and the probability of photon emis
sion in an inhomogeneous medium, one can extend the
gration interval into the region%<%0.

In this paper we consider incoherent bremsstrahlu
which can be treated as the photon emission due to fluc
tions of the potentialV connected with the uncertainty of
particle position in the plane transverse to its momentu
Because of this we have to calculate the dispersion of
vectorm(%W ) with respect to the transverse coordinate%W :

^mimj&2^mi&^mj&5E mi~r'2x!mj~r'2x!wc~x!d2x

2E mi~r'2x!wc~x!d2x

3E mj~r'2x!wc~x!d2x, ~3.6!

where wc(x) is the distribution function of the target pa
ticles normalized to unity.

Finally, we obtain the following expression for the corre
tion to the probability of photon emission connected with t
restricted transverse dimensions of colliding beams
charged particles:

dw15
a

~2p!2

d3k

v
Ti j ~e,p' ,s,s8!Li j ,

Ti j 5F ]

]p' i

R* ~p'!

k8v
GF ]

]p' j

R* ~p'!

k8v
G ,

Li j 5E mi~%W !mj~%W !@wr~x1%W !2wr~x!#

3wc~x!d2xd2%2S E mi~%W !wc~x2%W !d2% D
3S E mj~%W !wc~x2%W !d2% Dwr~x!d2x. ~3.7!

Averaging over the polarization of the initial electrons a
summing over the polarization of the final electrons, we fi

Ti j 5
l f

««8
Feiej2

2eu

z
~eiuj1uiej !

1
4~eu!2

z2
uiuj1

v2

4««8
d i j G . ~3.8!

Note that one can choose the real vectore since the linear
polarization can arise only in the case of unpolarized e
trons.
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After the summation in Eq.~3.8! over the polarization of
the emitted photon we have

Ti j 5
l f

2««8
S vd i j 2

8

z2
uiuj D ,

v5
«

«8
1

«8

«
, z511g2q2. ~3.9!

Finally, averaging the last expression over the azimut
angle of the emitted photon, we obtain

Ti j 5
l f

2««8
U~z!d i j , U~z!5v2

4~z21!

z2
. ~3.10!

Substituting the expression obtained into Eq.~3.7!, we
find the correction to the probability of photon emission co
nected with the restricted transverse dimensions of collid
beams of charged particles:

dw15
a3

pm2

«8

«

dv

v
U~z!F~v,z!dz, ~3.11!

where

F~v,z!5F (1)~v,z!2F (2)~v,z!,

F (1)~v,z!5
2h2

z2 E K1
2~h% !@wr~x1%W !2wr~x!#

3wc~x!d2xd2%,

F (2)~v,z!5
2h2

z2 E S E K1~h% !
%W

%
wc~x2%W !d2% D 2

3wr~x!d2x; ~3.12!

hereh5qminz.
Using the integral

E K1
2~h% !%d%5

%2

2
@K1

2~h% !2K0~h% !K2~h% !#

~3.13!

and integrating by parts we obtain

F~v,z!

5
h2

z2 F E @K0~h% !K2~h% !2K1
2~h% !#%

dF~%W !

d%
d2%

22E S E K1~h% !
%W

%
wc~x2%W !d2% D 2

wr~x!d2xG ,

~3.14!

where
9-4
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F~%W !5E wr~x1%W !wc~x!d2x. ~3.15!

In the general case the axes of colliding beams are s
rated from each other in the transverse plane by the vectox0
with componentsz0 ,y0. In this case we have to consider

wr~x!→wr~x1x0!,

F (1,2)~v,z!→F (1,2)~v,z,x0!,

F~%W !→F~%W 1x0!. ~3.16!

The first term in the expression forF(v,z) in Eq. ~3.14!
coincides with the functionF(v,z) defined in@7#, Eq. ~13!.
The second~subtraction! term in Eq.~3.14! which naturally
arises in this derivation was missed in Eq.~13! of @7# as it
was said above. The expression~3.11! is consistent with Eq.
~21.6! in the book @13# @see also Eq.~2.2! in @11## where
another physical problem was analyzed. It is the incohe
bremsstrahlung in oriented crystals.

Below we restrict ourselves to the case of unpolariz
electrons and photons. The influence of bounded transv
size on the probability of a process with polarized partic
will be considered elsewhere.

IV. GAUSSIAN BEAMS

For calculation of the explicit expression for the brem
strahlung cross section we have to specify the distributi
of particles in the colliding beams. Here we consider
actual case of Gaussian beams. Using the Fourier trans
we have

w~x!5
1

~2p!2E d2q exp~2 iqx!w~q!,

wr~q!5expF2
1

2
~qz

2Dz
21qy

2Dy
2!G ,

wc~q!5expF2
1

2
~qz

2sz
21qy

2sy
2!G , ~4.1!

where as above the indexr relates to the radiating beam an
the indexc relates to the target beam, andDz andDy (sz and
sy) are the vertical and horizontal transverse dimension
the radiating~target! beam. Substituting Eq.~4.1! into Eq.
~3.15! we find

F~%W !5
1

~2p!2E d2qexp~2 iq%W !expF2
qz

2

4Sz
2

2
qy

2

4Sy
2G

5
SzSy

p
exp@2%z

2Sz
22%y

2Sy
2#,

Sz
25

1

2~sz
21Dz

2!
, Sy

25
1

2~sy
21Dy

2!
. ~4.2!
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Below we consider the general situation when the axe
colliding beams are separated from each other in the tra
verse plane by the vectorx0 with componentsz0 ,y0. This
separation has an essential influence on the luminosity.
processes where only short distances are essential~e.g.,
double bremsstrahlung@2#! the probability of the process i
the product of the cross section and the luminosity. The g
metrical luminosity per bunch, not taking into account t
disruption effects, is given by

L5NcNrF~x0!, ~4.3!

where as aboveNr andNc are the number of particles in th
radiating and target beams, respectively. We will use
same definition for our case. Then we have

dwg5F~x0!dsg , ds15F21~x0!dw1 , ~4.4!

wheredw1 is defined in Eq.~3.11!.
We calculate first the functionF (1)(v,z) in Eq. ~3.12! for

the case of coaxial beams whenx050. Passing on to the
momentum representation with the help of the formula~4.1!
we find

F (1)~v,z!52
1

2pz2E wr~q!wc~q!F2S q

2h Dqdqdw,

~4.5!

whereh5qminz is introduced in Eq.~3.12!,

F2S q

2h D5
h2

p E K1
2~h% !@12exp~2 iq%W !#d2%,

F2~x!5
2x211

xA11x2
ln~x1A11x2!21,

qmin5m3v/4«2«8; ~4.6!

here the valueqmin is defined in the c.m. frame of the co
liding particles. The functionF2(x) is encountered in radia
tion theory. To calculate the corresponding contribution
the radiation spectrum we have to substitute Eq.~4.5! into
Eq. ~3.11! and take the integrals. After substitution of var
ables in Eq.~4.5!,

w5
q

2qminz
, ~4.7!

we obtain the integral overz in Eq. ~3.11!:

E
1

`S v2
4

z
1

4

z2D exp~2s2z2!dz

[ f ~s!5
Ap

2s
~v28s2!Erfc~s!14e2s2

12Ei~2s2!,

~4.8!

where
9-5
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s5wrqmin , r 25Sz
22cos2w1Sy

22sin2w. ~4.9!

Making use of Eq.~4.4! we find for the spectrum

ds1
(1)5

2a3

m2

«8

«

dv

v
f (1)~v!,

f (1)~v!52
1

pSzSy
E

0

2p dw

Sz
22cos2w1Sy

22sin2w

3E
0

`

F2~z! f ~s!sds,

z25
s2

qmin
2

1

Sz
22cos2w1Sy

22sin2w
. ~4.10!

This formula is quite convenient for numerical calculation
In the casex0Þ0 we will use Eqs.~3.12! and ~4.4!

straightforwardly. Taking into account Eq.~4.2! we have for
the difference

D (1)~x0![
1

2p
@F21~x0!F (1)~x0!2F21~0!F (1)~0!#

5
h2

pz2E K1
2~h% !exp@2%z

2Sz
22%y

2Sy
2#3$exp

@22%zz0Sz
222%yy0Sy

2#21%d2%, ~4.11!

where the functionF (1)(x0) is defined in Eqs.~3.12!, ~3.16!.
Using Macdonald’s formula~see, e.g.,@15#, p. 53!

2K1
2~h% !5E

0

`

expF2%2t2
h2

2t GK1S h2

2t D dt

t
~4.12!

and taking the Gaussian integrals over%z and%y we get

D (1)~x0!5
1

z2E0

`exp~2h2/2t !K1~h2/2t !

At1Sz
2At1Sy

2 H expF z0
2Sz

4

t1Sz
2

1
y0

2Sy
4

t1Sy
2G21J h2dt

2t
. ~4.13!

For the correction to the cross section@see Eqs.~4.4! and
~4.10!# we have, correspondingly,

ds1
(1)5

2a3

m2

«8

«

dv

v
@ f (1)~v!1J(1)~v,x0!#, ~4.14!

where

J(1)~v,x0!5E
1

`

U~z!D (1)~x0!dz. ~4.15!

Now we pass over to the calculation of the second~sub-
traction! term F (2)(v,z) in Eq. ~3.12!. Using Eq.~4.1! we
get
05300
.

I5hE K1~h% !
%W

%
wc~x2%W !d2%

5
h

~2p!2E S~q!
q

q
exp~2 iqx!wc~q!d2q,

~4.16!

where

S~q!5E K1~h% !
q%W

q%
exp~ iq%W !d2%

52p i E K1~h% !J1~q% !%d%

52p i
q

h

1

q21h2
. ~4.17!

Using the exponential parametrization

1

q21h2
5

1

4E0

`

expF2
s

4
~q21h2!Gds ~4.18!

and taking the Gaussian integrals overqz andqy we obtain

I5E
0

`

expF2
h2s

4
2

z2

s12sz
2

2
y2

s12sy
2GF zez

s12sz
2

1
yey

s12sy
2G ds

As12sz
2As12sy

2
, ~4.19!

where ez and ey are unit vectors along the axesz and y.
Substituting Eq.~4.19! into Eq. ~3.12!, taking the Gaussian
integrals overz andy, and using Eq.~4.4! we get the correc-
tion to the cross section

ds1
(2)52

2a3

m2

«8

«

dv

v
J(2)~v,x0!, ~4.20!

where

J(2)~v,x0!5
Aab

SzSy
exp~z0

2Sz
21y0

2Sy
2!

3E
0

`

ds1E
0

`

ds2gS qminAs

2 DG~s1 ,s2 ,x0!,

G~s1 ,s2 ,x0!5S a1a2b1b2

AB D 1/2Fa1a2

A S 1

2
1

z0
2a2

A D
1

b1b2

B S 1

2
1

y0
2b2

B D GexpF2
z0

2a

A
~a11a2!

2
y0

2b

B
~b11b2!G . ~4.21!

Here the functiong appears as a result of integration overz:
9-6
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g~q!5E
1

`S v2
4

z
1

4

z2D exp~2q2z2!
dz

z2

5S v2
2

3Dexp~2q2!22q2E
1

`S v2
2

z
1

4

3z2D
3exp~2q2z2!dz

5S v2
2

3Dexp~2q2!22q2FAp

2q S v2
8

3
q2D

3Erfc~q!1
4

3
e2q2

1Ei~2q2!G . ~4.22!

In Eq. ~4.21! we introduced the following notation:

a5
1

2Dz
2

, b5
1

2Dy
2

,

a1,25
1

s1,212sz
2

, b1,25
1

s1,212sy
2

,

A5a11a21a, B5b11b21b,

s5s11s2 . ~4.23!

V. NARROW BEAMS

This is the case when the ratioqmin /(Sz1Sy)!1, so that
the main contribution to the integral~4.10! gives the region
s;z;1, z@1. Using the asymptotics of the functionF2(z)
at z@1

F2~z!. ln~2z!221 ~5.1!

and the following integrals:

1

2pSzSy
E

0

2p dw

Sz
22cos2w1Sy

22sin2w
51,

1

2pSzSy
E

0

2p dw

Sz
22cos2w1Sy

22sin2w

3 ln
4

Sz
22cos2w1Sy

22sin2w
5 ln~Sz1Sy!2,

E
1

`

ds2~a2b ln s2!

3E
1

`S v2
4

z
1

4

z2D exp~2s2z2!dz

5S v2
2

3D @a1b~21C!#1
2

9
b, ~5.2!
05300
where C is Euler’s constantC50.577 . . . , we get for the
function f (1)(v) @Eq. ~4.14!# the following expression:

f (1)~v!.S v2
2

3D S 2 ln
qmin

Sz1Sy
131CD1

2

9
,

qmin!~Sz1Sy!. ~5.3!

This expression agrees with Eq.~24! of @7#.
Under the assumption used in Eq.~5.3! and the additional

conditionqmin(z01y0)!1 the main contribution to the inte
gral in Eq.~4.13! gives the regiont@h2. In this case one can
use the asymptotic expansionK1(z).1/z (z!1). Then we
have for the functionJ(1)(v,x0) in Eq. ~4.14! the following
expression:

J(1)~v,x0!.S v2
2

3D J,

J5E
0

`FexpS z0
2Sz

4

t1Sz
2

1
y0

2Sy
4

t1Sy
2D 21G

3
dt

At1Sz
2At1Sy

2
. ~5.4!

The expression~5.4! is consistent with Eq.~26! of @7#.
In the case (x0

21sz
21sy

2)qmin
2 !1 the main contribution

to the integral in Eq.~4.21! gives the intervalsqmin
2 ;(x0

2

1sz
21sy

2)qmin
2 !1. Keeping the main term of the expansio

over q2 in Eq. ~4.22! we get

gS qminAs

2 D .v2
2

3
. ~5.5!

The same result can be obtained if one neglects the t
containingh2 in the exponent of the integrand in Eq.~4.19!.

Summing the cross sectionds5ds1
(1)1ds1

(2) with the
standard QED bremsstrahlung cross section

ds05
2a3

m2

«8

«

dv

v S v2
2

3D S ln
m2

qmin
2

21D , ~5.6!

we get the cross section for the case of interaction of nar
beams:

dsg5ds01ds15
2a3

m2

«8

«

dv

v H S v2
2

3D
3F2 ln

m

Sz1Sy
1C121J2J2G1

2

9J ,

v5
«

«8
1

«8

«
, «85«2v, ~5.7!

whereJ is given in Eq.~5.4!,
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J25
Aab

SzSy
exp~z0

2Sz
21y0

2Sy
2!E

0

`

ds1E
0

`

ds2G~s1 ,s2 ,x0!,

~5.8!

where the entering functions are defined in Eqs.~4.21! and
~4.23!.

In the case of coaxial beamsx050, J50 one can take the
integral in Eq.~5.8! over one of the variables~for definite-
ness overs2) using the formula

E
0

` dx

~az1bzx!3/2~ay1byx!1/2

5
2

azAbzby1bzAazay

. ~5.9!

After this we have the simple integral overs[s1

J2~0!5A11dzA11dy~Jz1Jy!,

Jz,y5E
0

`

Dz,y~s!ds,

Dz,y5
1

az,yAbzby1bz,yAazay

, ~5.10!

where

az,y5s~11dz,y!12sz,y
2 ~21dz,y!,

bz,y5
s

2Dz,y
2

111dz,y , dz,y5
sz,y

2

Dz,y
2

. ~5.11!

The cross section~5.7! differs from Eq. ~24! of @7# be-
cause the subtraction termJ2 is included. Without this term
generally speaking, the bremsstrahlung cross section w
be qualitatively erroneous. In particular, the appearance
the termJ2 violates, generally speaking, the symmetry
the radiation cross section in opposite directions ine2e2

(e2e1) collisions.
To elucidate the qualitative features of narrow be

bremsstrahlung processes we consider the case of r
beams where the calculation becomes simpler:

sz5sy5s, Dz5Dy5D,

Sz
25Sy

25S25
1

2~s21D2!
,

b5a, b1,25a1,2, B5A, d5
s2

D2
. ~5.12!

We consider first the case of coaxial beams (x050, J50),
05300
ld
of
f

nd

J25~11d!E
0

` ds

@s~11d!121d#@sd111d#

5~11d!ln
~11d!2

d~21d!
. ~5.13!

In the limiting cases the functionJ2 has the form

J2~d@1!.
1

d
, J2~d51!52 ln

4

3
,

J2~d!1!. ln
1

2d
. ~5.14!

In the first case the subtraction termJ2 is small. For beams
of the same size the subtraction termJ2 contributes to the
constant entering into the expression for the cross sect
The subtraction termJ2 essentially modifies the cross se
tion in the case when the radius of the target beam is m
smaller than the radius of the radiating beam. In this case
cross section~5.7! contains the combination

ln
m2

4S2
2J2. ln

m2D2

2
2 ln

D2

2s2
5 ln~ms!2. ~5.15!

So in all the cases considered above the cross section de
the transverse dimension of the target beam.

When the axes of round beams are separated with res
to each other in the transverse plane the integral in Eq.~5.4!
is

J5E
0

`FexpS d

x11D21G dx

x11

5Ei~d!2C2 ln d,

d5x0
2S25

x0
21y0

2

2~D21s2!
. ~5.16!

It is convenient in this case to calculate the functionJ2

using straightforwardly Eq.~4.19! where we omit the term
with h2 in the exponent of the integrand:

I cr5%W E
0

`

expS 2
%W 2

s12s2D ds

~s12s2!2

5
%W

%2 F12expS 2
%W 2

2s2D G . ~5.17!

Substituting this expression@ I is defined in Eq.~4.16!# into
the subtraction term Eq.~3.12! and using the exponentia
parametrization

1

%W 2
5E

0

`

exp~2%W 2s!ds,

we obtain
9-8
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J25
aed

pS2E0

`

dsE d2% exp~2%W 2s!

3F12expS 2
%W 2

2s2D Gexp@2a~%W 1x0!2#

5
aed2d1

S2 E
0

`F 1

s1a
expS d1a

s1aD
22

1

s1a1s22/2
expS d1

a

s1a1s22/2
D

1
1

s1a1s22
expS d1

a

s1a1s22D Gds

5
aed2d1

S2 FEi~d1!22EiS d1

s2

s21D2D
1EiS d1

s2

s212D2D G , d15ax0
25

z0
21y0

2

2D2
. ~5.18!

In the limit d1→0 the last expression goes over to E
~5.13!.

When the separation of the axes of the colliding beam
large enough (x0

2@s21D2) one can use the asymptotic e
pansion of the function Ei(z) in Eq. ~5.18!:

Ei~z!.
ez

z S 11
1

zD , z@1. ~5.19!

In this case the main terms in the differenceJ2J2 in Eq.
~5.7! are canceled:

J2J2.
ed

d S 1

d
2

1

d1
D5

2ed

d

s2

x0
2

. ~5.20!

The compensation of the main terms in Eq.~5.19! is due to
the fact that the incoherent scattering originates from
fluctuations of the target~scattering! beam potential. Corre
spondingly we have for the mean square of the momen
transfer dispersion at large distance from the target beam

^q2~%W !&2^q~%W !&2}K 1

~x01%W !2
2

1

x0
2L .K 4~x0%W !2

x0
6

2
%W 2

x0
4 L

5
^%W 2&

x0
4

5
2s2

x0
4

. ~5.21!

Substituting Eq.~5.20! into Eq. ~5.7! and multiplying the
result by the luminosity~4.3!

L5NcNr

S2

p
exp~2x0

2S2!, ~5.22!
05300
.

is

e

m

we have for the probability of bremsstrahlung of rou
beams moving apart at a large distance

dwg.4NcNr

a3

p
lc

2S2
«8

«

dv

v S v2
2

3D Fexp~2x0
2S2!ln

m

S

1
s2S2

~x0
2S2!2

1O@exp~2x0
2S2!#G ,

S25
1

2~D21s2!
, x0

2S25
z0

21y0
2

2~D21s2!
@1,

qmin
2 ~z0

21y0
2!!1. ~5.23!

According to Eq.~5.23! when x0
2 increases so that one ca

neglect the first term in square brackets, the probability
bremsstrahlung of the round beams diminishes as a powe
the distance between the beams (}s2/x0

4). The cross section
Eq. ~5.7! in this case grows exponentially ased/d2. Let us
note that without the subtraction term one has errone
qualitative behavior of the probability (}1/x0

2). These cir-
cumstances also explain Eq.~5.15! for the coaxial beams: on
integration overd2% the region contributes wherêq2(%)&
2^q(%)&2}1/%2, so that%<s.

Now let us consider the general caseSzÞSy for enough
large separation of beamsx0

2@Sz,y
22 . In this case the main

contribution to the integralI (x) ~for h250) in Eqs.
~4.16!,~4.19! at largeuxu.ux0u @see Eq.~3.12!# are given by
large valuess;x0

2@sz,y
2 . Expanding the integrand over th

powerssz,y
2 /s and keeping after integration the two ma

terms of the decomposition over 1/x2 we get

I2~x!.
1

x2 F11
2

~x2!2
~y22z2!~sy

22sz
2!G . ~5.24!

Expanding the function 1/(x01j)2 over the powersj/x0 dur-
ing integration overj5x2x0 in Eq. ~3.12! we find

E I2~x01j!wr~j!d2j

.
1

x0
2 F11

4

~x0
2!2

~z0
2Dz

21y0
2Dy

2!2
D2

x0
2

1
2

~x0
2!2

~y0
22z0

2!

3~sy
22sz

2!G ,

D25Dz
21Dy

2 . ~5.25!

In this case the regiont;1/x0
2!Sz,y

2 contributes to the inte-
gral J Eq. ~5.4!. Expanding the integrand over the powe
tSz,y

22 and keeping the two main terms of decomposition o

1/x0
2 we have
9-9
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J.
1

SzSyx0
2

exp~z0
2Sz

21y0
2Sy

2!H 12
s21D2

x0
2

1
4

~x0
2!2

3@z0
2~sz

21Dz
2!1y0

2~sy
21Dy

2!#J ,

s25sz
21sy

2 . ~5.26!

For the differenceJ2J2 we obtain finally

J2J25
1

SzSy
exp~z0

2Sz
21y0

2Sy
2!

s2

~x0
2!2

. ~5.27!

VI. NARROW FLAT BEAMS „sz™sy ,Dz™Dy…

Let us begin with coaxial beams. We consider first t
case where the size of radiating beam is much larger than
size of the target beam (dz,y!1). In this case one can ne
glect the terms proportional todz,y , sz

2 , Dy
22 in the func-

tions az,y and bz,y in the integral in Eq.~5.10!. Within this
accuracy

az.s, ay.s14sy
2 , bz.

s

2Dz
2

11, by.1. ~6.1!

After substitution in the integralJy in Eq. ~5.10! s→4sy
2s

one gets

Jy~k!5E
0

` ds

As11~As1As11A112ks!
,

k5
sy

2

Dz
2

. ~6.2!

After substitution in the integralJz in Eq. ~5.10! s→2Dz
2/s

one getsJz5Jy so that

J2~k!52A11dzA11dyJy~k!.2Jy~k!,

J2~k!1!. ln
8

k
, J2~k@1!.pA2

k
. ~6.3!

It is seen from the last equation that atDz!sy the contribu-
tion of the termJ2 to the cross section Eq.~5.7! is relatively
small. In the opposite caseDz@sy this contribution leads to
a change of the logarithm argument in Eq.~5.7!:

2 ln
m

~Sz1Sy!
2 ln

8

k
.2F ln~A2mDz!2 lnS 2A2

Dz

sy
D G

52 ln
msy

2
. ~6.4!

This is a new qualitative result.
In the opposite case when the size of the radiating bea

smaller than or of the order of the size of the target be
(dz,y>1) the contribution to the integralJz in Eq. ~5.10!
05300
e
he

is

gives the regions;sz
2 and to the integralJy the regions

;sy
2 . Performing in the integralJz the substitutions

→2sz
2s and in the integralJy the substitutions→2sy

2/s, one
gets

Jz.
sz

A21dysy
E

0

` ds

@~s11!dz11#As~11dz!121dz

5
2

A21dy

Dz

sy
arctan

1

Adz~21dz!
,

Jy.
Dz

sy
E

0

` ds

@~s11!~dy11!1s#A~s11!dy1s

5
2

A21dy

Dz

sy
arctan

1

Ady~21dy!
,

J25A11dzA11dy~Jz1Jy!

5
2A11dzA11dy

A21dy

Dz

sy
S arctan

1

Adz~21dz!

1arctan
1

Ady~21dy!
D . ~6.5!

In the casedz,y!1, Dz!sy this formula is consistent with
Eq. ~6.3!.

Now we go over to the case of separated beams. For l
enough separation of the beams the formulas~5.7! and~5.27!
are valid. So the intermediate case is of interest. As an
ample we consider the casesy

2@z0
2@sz

21Dz
2 , y0

2!sy
2 . In

this case the contribution to the integral in Eq.~5.4! gives the
interval Sy

2!t;z0
22!Sz

2 . Keeping the main terms of de
composition overtSz

22!1 andtSy
22@1 we have

J.
1

Sz
E

0

`

exp~z0
2Sz

22z0
2t !

dt

At

5
Ap

z0Sz
exp~z0

2Sz
2!. ~6.6!

Under these conditions (x0
2!sy

2) the contribution to the in-
tegral for J2 in Eq. ~5.8! of the term in the function
G(s1 ,s2 ,x0) of Eq. ~4.21! containingb1b2 /B in the square
brackets is defined by the functionJy in Eq. ~6.5! to within
the terms;z0 /sy . In the term containinga1a2 /A ~which
we denote byJ2

(z)) the main contribution gives the summan
z0

2a2/A2 in the intervalsy
2@s1,2;z0

2@sz
2 where

a1,2.
1

s1,2
, b1,2.

1

2sy
2

,

A.a, B.
1

sy
2

1
1

2Dy
2

. ~6.7!
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As a result we obtain

J2
(z)~x0!.

z0
2

2SzSysy
2
Ab

B
edz

3E
0

`ds1

s1
3/2E0

`

expF2z0
2S 1

s1
1

1

s2
D Gds2

s2
3/2

5p
Dz

sy

A11dzA11dy

A21dy

edz,

J2J2.Ap

dz
edzh~z0!, dz5z0

2Sz
2 ,

h~z0!512
Ap~11dy!

A2~21dy!

z0

sy
S 11

2

p
arctan

1

Ady~21dy!
D .

~6.8!

It should be noted that for flat beams the probability of
diation as a function of the distance between beams~for the
considered interval! decreases more slowly~proportional to
1/Adz) than for the round beams given in Eq.~5.23!:

dwg
f l.4NcNr

a3

p
lc

2SzSy

«8

«

dv

v S v2
2

3D Fe2dzln
m

Sz

1
1

2
Ap

dz
h~z0!G . ~6.9!

Compensation in the differenceJ2J2 begins in the region
z0;sy1Dy where Eq.~6.8! is not valid and one has to us
the more accurate Eq.~5.8!. In the regionz0@sy1Dy the
probability of radiation decreases as 1/z0

4 according to Eqs.
~4.4!, ~5.7!, ~5.27! provided that one can neglect the exp
nential term in the square brackets in Eq.~6.9! @compare
with Eq. ~5.23!#:

dwg
f l~z0!.2NcNr

a3

p

lc
2sy

2

z0
4

«8

« S v2
2

3Ddv

v
,

z0@y0 . ~6.10!

VII. OBSERVATION OF BEAM-SIZE EFFECT

Above we calculated the incoherent bremsstrahlung sp
trum in the collision of electron and positron beams w
finite transverse dimensions. This spectrum differs from
spectrum found previously in@7–9# because here~in contrast
to previous papers! we subtract the coherent contribution.
the general expression for the correction to the probability
photon emission @Eq. ~3.11!# the subtraction term is
F (2)(v,z). For numerical calculation in the case of coax
beams it is convenient to use Eqs.~4.10!, ~4.20!, and~4.21!.
In the last equation one has to puty05z050. In the case of
collision of narrow beams the subtraction term in the brem
strahlung spectrum~5.7! is J2 . The dimensions of the beam
in the experiment @6# were sz5Dz524 mm, sy5Dy
05300
-

c-

e

f

l

-

5450 mm, so this is the case of flat beams. The estimate
this case@Eq. ~6.5!# gives J2.(4/3A3)psz /sy!1. This
term is much smaller than other terms in Eq.~5.7!. This
means that for this case the correction to the spectrum
culated in@7# is very small.

The results of calculation and the VEPP-4~INP, Novosi-
birsk! data are presented in Fig. 1 where the bremsstrahl
intensity spectrumvds/dv is given in units of 2ar 0

2 versus
the photon energy in units of the initial electron energyx
5v/«). The upper curve is the standard QED spectrum;
three close curves below are calculated using Eqs.~4.10! and
~4.20! for different vertical dimensions of the colliding
beams ~equal for both colliding beamss5sz5Dz): s
520 mm ~bottom!, s524 mm ~middle!, s527 mm ~top!
~this is just the 1s dispersion for the beams used in th
experiment!. We want to emphasize that all the theoretic
curves are calculated to within the relativistic accuracy~the
discarded terms are of the orderm/«). It is seen that the
effect of the small transverse dimensions is essential in
soft part of the spectrum~at v/«51024 the spectral curve is
diminished by 25%), while forv/«.1021 the effect be-
comes negligible. The data measured in@6# are presented a
circles ~experiment in 1980! and as triangles~experiment in
1981! with 6% systematic error as obtained in@6# ~while the
statistical errors are negligible!. This presentation is some
what different from that in@6#. It is seen that the data point
are situated systematically below the theory curves but
difference does not exceed the 2s level @6#. It should be
noted that this is true also in the hard part of the spectr
where the beam-size effect is very small.

The last remark is connected with the radiative corr
tions ~RC!. The RC to the spectrum of double bremsstra
lung @16# ~this was the normalization process! are essential
~of the order of 10%) and were taken into account. The
to the bremsstrahlung spectrum@17# are very small~less than
0.4%) and may be neglected. It should be noted that the

FIG. 1. The bremsstrahlung intensity spectrumvds/dv in units
of 2ar 0

2 versus the photon energy in units of the initial electr
energy (x5v/«) for the VEPP-4 experiment. The top curve is th
standard QED spectrum; the three close curves below are calcu
for different vertical dimensions of the colliding beams~equal for
two colliding beams s5sz5Dz): s520 mm ~bottom!, s
524 mm ~middle!, s527 mm ~top!. The data measured in@6# are
presented as circles~the experiment in 1980! and as triangles~the
experiment in 1981! with 6% systematic error as obtained in@6#.
9-11
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V. N. BAIER AND V. M. KATKOV PHYSICAL REVIEW D 66, 053009 ~2002!
to the bremsstrahlung spectrum are insensitive to the e
of small transverse dimensions.

The dependence of the bremsstrahlung spectrum on b
characteristics was measured specially in@6#. The first effect
is the dependence of the bremsstrahlung spectrum on
vertical sizes of the beamssz . It is calculated using Eqs
~4.10! and ~4.20! for v/«51023. The result is shown in
units of 2ar 0

2 in Fig. 2. The data are taken from Fig. 7 in@6#.
The second is the measurement of the dependence o
bremsstrahlung spectrum on the vertical separation of
beamsz0. It is calculated using Eqs.~5.4! and ~5.8! for
v/«51023. Because of the separation it is necessary to n
malize the spectrum to the luminosity

L5NcNr

SzSy

p
exp~2z0

2Sz
2!

@see Eq.~4.3!#. This means that when we compare the brem
strahlung process~where the beam-size effect is essenti!
with some other process like the double bremsstrahlung u
in @6# ~which is insensitive to the effect! we have to multiply
the cross section of the last process by the luminosityL. This
is seen in the estimate Eq.~6.9!: after taking out the exponen
e2dz we have the luminosity as the external factor and in
expression for the ratioNg /N2g ~which was observed in@6#!
the cross section of double bremsstrahlung will be multipl
by the luminosity. After this operation the second term
square brackets will contain the combinationedzh(z0)/Adz
which grows exponentially with increase in the separat
z0. The normalized bremsstrahlung spectrum is shown
units of 2ar 0

2 in Fig. 3. So the very fast~exponential! in-
crease withz0 is due to the fast decrease withz0 of the
double bremsstrahlung probability for the separated bea
The data are taken from Fig. 8 in@6#. It should be noted tha
in the soft part of the spectrum the dependence on pho
energyv is very weak. It is seen in these figures that there
quite reasonable agreement between theory and data ju

FIG. 2. The bremsstrahlung intensity spectrumvds/dv in units
of 2ar 0

2 versus the vertical sizes of the beamssz ~in mm). The data
are taken from@6#.
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in @6#. This shows that the contribution of theJ2 term, which
is calculated only in the present paper, is relatively small

One more measurement of beam-size effect was
formed at the HERA electron-proton collider~DESY, Ger-
many! @18#. The electron beam energy was«527.5 GeV;
the proton beam energy was«p5820 GeV. The standard
bremsstrahlung spectrum for this case is given by Eq.~5.6!
whereqmin should be substituted by

qmin→qmin
D 5

vm2mp

4«p««8
; ~7.1!

heremp is the proton mass. In this situation the formatio
length is l f 0

D 51/qmin
D and at the photon energyv51 GeV

one hasl f 0
D ;2 mm. Since the beam sizes at HERA are mu

smaller than this formation length, the beam-size effect
be observed at HERA. The parameters of the beam in
experiment were~in our notation! sz5Dz550–58mm, sy
5Dy5250–290mm. In some runs separated beams we
used withz0520 mm andy05100 mm. The bremsstrahlung
intensity spectrumvds/dv in units of 2ar 0

2 versus the pho-
ton energy in units of the initial electron energy (x5v/«)
for the HERA experiment is given in Fig. 4. The upper cur
is the standard QED spectrum. We calculated the spect
with beam-size effect taken into account for three sets
beam parameters: set 1,sz5Dz550 mm, sy5Dy
5250 mm, z05y050; set 2, sz5Dz550 mm, sy5Dy
5250 mm, z0520 mm, y050; set 3,sz5Dz554 mm, sy
5Dy5250 mm, z05y050. The result of the calculation is
seen as the two close lower curves, the top curve being
set 3, while the bottom curve is actually two merged curv
for sets 1 and 2. Since the ratio of the vertical and horizon
dimensions is not very small, the general formulas were u
in the calculation: for coaxial beams Eqs.~4.11! and ~4.20!,
and for separated beams Eqs.~4.14! and~4.20!. It should be
noted that the contribution of the subtraction term@Eq.
~4.20!# is quite essential~more than 10%) for the beam pa
rameters used at HERA. The data are taken from Fig. 5

FIG. 3. The bremsstrahlung intensity spectrumvds/dv nor-
malized to luminosityL in units of 2ar 0

2 versus the vertical sepa
ration of the beamsz0 ~in m m). The data are taken from@6#.
9-12
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DEVIATION FROM STANDARD QED AT LARGE . . . PHYSICAL REVIEW D 66, 053009 ~2002!
@18#. The errors are the recalculated overall systematic er
given in @18#. It is seen that there is a quite satisfacto
agreement of theory and data. The data are given in@18# also
as the averaged relative differenced5(dsQED
2dsbs)/dsQED ~where dsQED is the standard QED spec
trum andsbs is the result of a calculation with the beam-si
effect taken into account! over the whole interval of photon
energies~2–8 GeV!, e.g., for set 1dex5(3.2860.7)%, for
set 2dex5(3.5760.7)%, and for set 3dex5(3.0660.7)%
@18#. The averaged̂d& over the interval 0.07<x<0.28 ~or
1.95 GeV<v<7.7 GeV) in our calculation for set 1 iŝd&
52.69%, for set 2 iŝ d&52.65%, and for set 3 iŝd&
52.54%. So for these data there is also a satisfactory ag
ment of data with theory~at the 1s level, except for set 2
where the difference is slightly larger!.

So the beam-size effect discovered at BINP~Novosibirsk!
was confirmed at DESY~Germany!. Of course, more accu
rate measurement is desirable to verify that we entirely
derstand this mechanism of deviation from standard QED

VIII. CONCLUSION

In this paper the influence of the finite transverse size
colliding beams on the incoherent bremsstrahlung proces

FIG. 4. The bremsstrahlung intensity spectrumvds/dv in units
of 2ar 0

2 versus the photon energy in units of the initial electr
energy (x5v/«) for the HERA experiment. The top curve is th
standard QED spectrum. The two close curves below are calcu
with the beam-size effect taken into account, The bottom curv
actually two merged curves for sets 1 and 2~set 1 is sz5Dz

550 mm, sy5Dy5250 mm, z05y050, set 2 is sz5Dz

550 mm, sy5Dy5250 mm, z0520 mm, y050), while the top
curve is for set 3 (sz5Dz554 mm, sy5Dy5250 mm, z05y0

50). The data are taken from Fig. 5c in@18#.
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investigated. Previously~see papers@7–10#! an incomplete
expression for the bremsstrahlung intensity spectrum
used for analysis of this effect because a subtraction was
carried out. It is necessary to carry out this subtraction
extract the pure fluctuation process which is just the incoh
ent bremsstrahlung. We implement this procedure in
present paper. The cases are indicated where the results
out the subtraction term are qualitatively erroneous. The fi
is the case when the transverse sizes of the scattering b
are much smaller than the corresponding sizes of the rad
ing beam. For coaxial round beams, see, e.g., Eq.~5.15! and
for flat beams Eq.~6.4!. In contrast to previous papers he
we draw the conclusion that the bremsstrahlung cross sec
is determined by the transverse sizes of the scattering be

A new qualitative result is deduced for the case when
separation of beams is large enough. Then the dispersio
the square of the momentum transfer, which determines
bremsstrahlung cross section, decreases with increa
separation distance faster than the mean square of the
mentum transfer@see Eqs.~5.21!,~5.27!#. As was noted in
Sec. VII, it is necessary to normalize the spectrum to
luminosity for the separated beams. Then the bremsstrah
cross section grows exponentially with increasing separa
z0. This very fast~exponential! increase is due to fast de
crease in the normalization process probability for the se
rated beams.

For Gaussian beams the expression for the bremss
lung spectrum is obtained in the form of double integr
convenient for numerical calculations@see Eqs. ~4.10!,
~4.20!, and ~4.21!#. For the soft part of the spectrum w
deduced a general expression which is independent of
minimal momentum transferqmin and is defined by the trans
verse sizes of the beams only@see Eqs.~5.3!, ~5.4!, and
~5.7!–~5.11!#.

The important feature of the considered beam-size ef
is the smooth decrease of radiation probability with grow
in the beam separation. For flat beams we see in Eqs.~6.9!,
~6.10! that the main~logarithmic! term in the expression fo
the probability decreases exponentially@}exp(2z0

2Sz
2 as lu-

FIG. 5. The spectral intensity probabilityvdwg /dv normalized
to one particle in the beam in units of 2ar 0

2SzSy /p versus the
vertical separation of the beamsz0 ~in nm!.

ed
is
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minosity#, but there is a specific long-range term prop
tional to 1/z0 which results in quite appreciable radiatio
probability even in the case when the separation of
beams is large. This phenomenon may be helpful for tun
high-energy electron-positron colliders. As an example
consider the ‘‘typical’’ collider where the beam energy is«
5500 GeV, the beam dimensions are equal, andsz55 nm
and sy5100 nm. The beam-size effect in this collider
very strong and forx51023 the intensity spectrum is only
;0.3 of the standardvdsQED(v)/dv. The dependence o
the bremsstrahlung probability on the separation distancz0
~in nanometers! is shown in Fig. 5. It is calculated using Eq
~5.6!–~5.8! for soft photons withx51023 @the asymptotic
formulas~6.9!, ~6.10! are not accurate enough in this cas#.
Actually, the dependence on photon energy is contained w
good accuracy in the external factorf (x)5(12x)@v(x)
22/3# if the condition (z0

21sz
21sy

2)qmin
2 !1 is satisfied.
SR
.

;

rt

o-

05300
-

e
g
e

th

This means that one can obtain the curve for anyx by mul-
tiplying the ordinate in Fig. 5 by the factorf (x)/ f (1023).
The curve in Fig. 5 reflects the main features mention
above. One can see that even forz05100 (z0520sz) the
cross section is;0.002 of the very large bremsstrahlun
probability for head-on collision of beams. So by measur
the radiation from separated beams one can estimate the
tance between the beams. This information may be usefu
the tuning of beams.
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