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Nonlinear QCD evolution: Saturation without unitarization
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We consider the perturbative description of saturation based on the nonlinear QCD evolution equation of
Balitsky and Kovchegov. Although the nonlinear corrections lead to saturation of the scattering amplitude
locally in impact parameter space, we show that they do not unitarize the total cross section. The total cross
section for the scattering of a strongly interacting probe on a hadronic target is found to grow exponentially
with rapidity t5 ln(s/s0), s}exp$(asNc/2p)et% wheree is a number of order unity. The origin of this violation
of unitarity is the presence of long range Coulomb fields away from the saturation region. The growth of these
fields with rapidity is not tempered by the nonlinearity of the Balitsky-Kovchegov equation.
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Understanding the growth of total scattering cross s
tions with energyAs is a long standing problem. The unita
ity, or Froissart, bound states that the total inelastic cr
section for the scattering of a hadronic projectile on a h
ronic target cannot grow faster thans,pd2t2, whered is
some typical hadronic scale andt5 ln(s/s0) is the rapidity.
While QCD is a unitary theory and therefore satisfies t
unitarity bound, there is no guarantee that perturbative
culations preserve this property. In fact, the linear pertur
tive Balitsky-Fadin-Kuraev-Lipatov~BFKL! evolution equa-
tion implies an exponential growth ofs with t, thus violating
unitarity.

Following the pioneering works of@1#, there has been
recent progress in high energy hadronic scattering in a d
vation of a nonlinear evolution equation@2–4# which tames
the BFKL-type growth. These equations resum the nonlin
corrections to the QCD evolution with rapidity~energy! to
all orders in partonic density and to first order in the QC
coupling. While previous studies of these equations appl
systems with translational invariance in the impact param
plane, here we explore for the first time their impact para
eter dependence. For the equations first derived by Bali
@2#, we show that the total cross section does not unita
but grows exponentially witht @5#.

We will use the form of the evolution equations first give
by Weigert@4#:

dU~x!

dt
5gU~x!iTaE d2z

A4p3

~x2z! i

~x2z!2

3@12Ũ†~x!Ũ~z!#abj i
b~z!

1
as

2p2
U~x!TaE d2z

1

~x2z!2

3Tr@TaŨ†~x!Ũ~z!#. ~1!

Here the eikonal scattering amplitudesU(x) and Ũ(x) are
the unitary matrices in the fundamental and adjoint repres
tations, respectively. The noise is characterized by Gaus
local correlations
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^j i
a~ t8,z8!j j

b~ t9,z9!&5dabd i j d~ t82t9!d~z82z9!. ~2!

This Langevin equation gives rise to an infinite number
equations for correlators ofU which coincide with those de
rived in @2#. In the largeNc limit Eq. ~1! reduces@3# to a
closed equation for the scattering probabilityN(x,y) of a
color singlet dipole with charges at pointsx,y @6#, N(x,y)
5(1/Nc)Tr^12U†(x)U(y)&:

d

dt
N~x,y!5

asNc

2p2 E d2z
~x2y!2

~x2z!2~y2z!2

3@N~x,z!1N~y,z!2N~x,y!

2N~x,z!N~z,y!#. ~3!

From the first numerical@7–9# and analytical@10,11# studies
of the Balitsky-Kovchegov~BK! Eqs.~1!, ~4! the following
consistent picture emerges: Suppose one starts the evol
from the initial condition of small target fields@N(x,y)!1
for all x,y]. Initially the evolution follows the BFKL equa-
tion, since the nonlinear term in Eq.~4! is negligible. As the
scattering probability approaches unity, the nonlinear te
kicks in and eventually the growth stops as the right-ha
side ~RHS! of Eq. ~4! vanishes forN(x,y)51. The larger
dipoles saturate earlier, the smaller dipoles follow at la
‘‘time’’ t. These features are contained in the simple para
etrization@12#

N~x,y!512exp@2~x2y!2Qs
2~ t !#. ~4!

The exact dependence of the saturation momentumQs(t) on
rapidity is not known, but both, the numerical results@7# and
simple theoretical estimates@13,11# are consistent with the
exponential growth of the formQs(t)5L exp@asct#, with c
of order unity. This physical picture has been anticipa
several years ago in@13#.

While the BFKL equation leads to an unphysical exp
nential growth of the scattering probabilityN(x,y) with t,
the nonlinearities of Eqs.~1!, ~4! tame this growth such tha
N(x,y),1, as required for a probability. The ‘‘saturation’’ o
the scattering probability at fixed impact parameter, howe
©2002 The American Physical Society02-1
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does not ensure that the total scattering cross section is
tary in the sense of satisfying the Froissart bound. We he
refer to it as ‘‘saturation’’ rather than ‘‘unitarization.’’

The total inelastic cross section is given by the integra
the scattering probability over the impact parameter. Thu
the saturation regime

s5pR2~ t !, ~5!

whereR(t) is the size of the region in the transverse pla
for which the scattering probability for a given projectile
unity. The Froissart bound requires the radiusR(t) to grow at
most linearly witht. We now present two simple calculation
which establish that within the BK evolution the growth
the radius with rapidity is exponential.

First consider the Langevin equation~1!. Assume that ini-
tially, at rapidityt0 the target is black within some radiusR0.
This means that foruzu,R0 the matrixU(z) fluctuates very
strongly so that it covers the whole group space. We conc
trate on a pointx which is initially outside of this black
region. The matrixU(x) then is close to unity. Thus there
no correlation betweenU(x) andU(z), and, in the random
phase approximation@4# the second term on the right-han
side of Eq.~1! can be set to zero@14#. As the target field
ensemble evolves in rapidity, the radius of the black reg
grows. As long as the pointx stays outside the black regio
we can approximate the Langevin equation by~we drop
color indices which are inessential to our argument!

d

dt
U~x!52AasNc

p2 E
uzu,R

d2z
~x2z! i

~x2z!2 j i~z!. ~6!

This equation neglects contributions tod/dtU from gluons
originating from outside the black region, and thus sligh
underestimates the rate of growth of the radius of the bl
region. The formal solution of Eq.~6! is

12U~x,t !5AasNc

p2 E
t0

t

dtE
uzu,R(t)

d2z
~x2z! i

~x2z!2 j i~z!.

~7!

Squaring it and averaging over the noise term gives

^@12U~x,t !#2&5
asNc

p2 E
t0

t

dtE
uzu,R(t)

d2z

~x2z!2 . ~8!

As long asx is outside the black region we can approxima
the integral on the right-hand side by

E
uzu,R(t)

d2z
1

~x2z!2 5p
R2~t!

x2 , ~9!

and Eq.~8! becomes

^@12U~x,t !#2&5
asNc

p

1

x2E
t0

t

dtR2~t!. ~10!

Now as the black region grows, eventually it reaches
point x. At this rapidity the matrixU(x) will start fluctuating
with the amplitude of order one. Thus whenR(t)5uxu, the
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left-hand side of Eq.~10! becomes a number of order on
which we call 1/e. We thus have an approximate equation f
R(t):

1

e
R2~ t !5

asNc

p E
t0

t

dtR2~t!. ~11!

At large rapidities therefore the radius of the black region
exponentially large

R~ t !5R~ t0!expFasNc

2p
e~ t2t0!G . ~12!

This is our main result.
We note that while the approximations leading to Eq.~11!

cease to be valid when the pointx is on the boundary of the
black region, this does not affect our main conclusion. Fi
Eq. ~9! is an underestimate of the integral, thus underestim
ing the growth ofR. Second, whenx is on the boundary of
the black region andz in the black region, although the fac
tors @12U(x)U†(z)# and U(x) in Eq. ~1! are not strictly
unity, they are still of order one for almost all pointsz. Thus,
although we cannot determine the exact numerical value
e, the functional form of the solution as well as its param
ric dependence is given correctly by Eq.~12!.

Note that Eq.~1! refers to the evolution of the matrix
U(x), which can be thought of as the scattering amplitude
a colored probe. However, since the physics of the BK eq
tion does not incorporate effects of confinement, the cr
section for a colorless dipole within the BK framework mu
grow in the same way. To establish this point, and to ma
more explicit the relation betweene and the BFKL dynam-
ics, we now present an alternative derivation of Eq.~12!.

To this end we consider the BK evolution as the evoluti
of the projectile@3#. Suppose at the initial energyt0 the pro-
jectile is a color dipole of sizex0. It scatters on a hadronic
target of some sizeR0. As is explicit in @3#, as the energy is
increased the projectile wave function evolves according
the BFKL equation. Thus at rapidityt the density of dipoles
of sizex at transverse distancer from the original dipole is
given by the BFKL expression~see, for example,@15#!

n~x0 ,x,r ,t !5
32

x2

ln
16r 2

x0x

~pa2t !3/2

3expF vt2 ln
16r 2

x0x
2

ln2
16r 2

x0x

a2t
G ~13!

with v54ln2Ncas/p and a2514z(3)Ncas /p. When the
density of dipoles at a given impact parameter is greater t
one, multiple scatterings become important. Thus the sca
ing probability is not proportional ton, but is an infinite
series containing all multiple scattering terms@3#.

For our argument, it is only important that once the de
sity of dipoles at some impact parameterr becomes larger
than some fixed critical number, the scattering amplitude
2-2
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this impact parameter saturates. The exact value of this n
ber depends on the target, but importantly it does not dep
on rapidity. Thus the total cross section is given by t
square of the largest impact parameter at which the dip
density in the projectile wave function is of order unity.
order to estimate this directly from Eq.~13!, let us choose the
dipole sizex in Eq. ~13! asx5Qs

21(t0). Recall that accord-
ing to Eq.~4!, the dipole of this size scatters with probabili
one, if it hits inside the radius of the targetR0 ~in this view of
the evolution only the projectile wave function depends
energy, while the properties of the target att are the same a
at t0). Thus if at some impact parameterR(t) the density of
dipoles of sizeQs

21(t0) is unity, the scattering probability a
this impact parameter is unity as well. Requiring the exp
nential in Eq.~13! to vanish we obtain@16#

R2~ t !5
1

16

x0

Qs~ t0!
expFasNc

p
et G , ~14!

e57z~3!@211A118 ln 2/7z~3!#. ~15!

Thus, also for a color singlet projectile, we arrive at t
exponential growth of the cross section.

The exact value ofe given in Eq.~15! should not be taken
too seriously. The explicit form of the dipole density Eq.~13!
was derived by a saddle point integration, and as suc
valid only for ln(16r 2/x0x),ast. This condition is not sat-
isfied by Eq.~14!. However, even beyond the saddle po
approximation the density has the form

n~x0 ,x,r ,t !}
1

x2 expF astF
S ln

16r 2

x0x

ast
D G . ~16!

The relevant condition isF50. Thus, while our calculation
does not specify the numerical value ofe, the correct solu-
tion parametrically is the same as Eq.~14!.

Note, that although we use the BFKL dipole density
Eq. ~13!, our argumentdoes notassume that the scatterin
probability atR(t) is dominated by one pomeron exchang
The only assumption is that parametrically the total un
rized probability is the same as the one Pomeron one
terms of the projectile wave function this translates into
condition (m51

` Pm(x0 ,x,r ,t)5c whenevern(x0 ,x,r ,t)51.
HerePm(x0 ,x,r ,t) is the probability to findm dipoles of size
x at transverse coordinater in the projectile wave function
andc is a number of order one. The only way this conditi
can be violated, is if the wave function is dominated~with
exponential accuracy! by the trivial configuration with no
dipoles, even when the average dipole number is one.
though the dipole model wave function is known to ha
relatively large fluctuations, there is nothing in its know
properties@6,15# to suggest such an extreme behavior. In f
for the explicit exponential model used in@6,15# our condi-
tion clearly holds.

Our results, Eqs.~11!, ~14!, are in apparent contradictio
with the conclusions of numerical work@7,8#. These refer-
ences solve Eq.~4! within local approximation, assumin
that important contributions come only from the dipole siz
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which are smaller than the impact parameter. Within t
approximation the dependence on the impact paramete
Eq. ~4! becomes parametric, and the growth of the total cr
section is determined entirely by the shape of the initial c
dition. The Froissart bound is then saturated for the expon
tial initial profile of N(r ). The reason the local approxima
tion leads to this behavior is that it neglects the effects of
away black regions~whereN51) on the scattering probabil
ity in the gray areas~whereN,1). As is apparent from our
analysis in Eqs.~6!–~10!, it is precisely the effect of the fa
away black regions that drives the growth of the total cro
section. This is due to the long range Coulomb fields ori
nating in the central black region. In fact, the only contrib
tions we kept on the RHS of Eq.~6! are due to dipoles with
sizes of the order of the impact parameter. In this respect
discussion is orthogonal to that of@7,8#. The local approxi-
mation is adequate for studying the behavior ofQs(t) in the
dense central region, as this is determined by local effect
is, however, not a good approximation for the total cro
section, which is dominated by the evolution of long ran
Coulomb fields.

On the other hand, our results are in agreement with th
of @15#. Reference@15# does not deal with the nonlinear BK
equations, but rather with the onium-onium scattering in
framework of the dipole model. Nevertheless at asympt
cally high energies this distinction should be irrelevant.
deed the numerical results of@15# clearly indicate that even
though the scattering amplitude is unitarized locally in t
impact parameter space, the total cross section keep
growing exponentially witht ~Figs. 9 and 10 of@15#!.

In the target rest frame, this violation of unitarity by th
BK evolution can be understood as follows: Start with
single dipole scattering on the hadronic target of transve
size R0. With increasing energy the projectile dipole em
additional dipoles strictly according to the BFKL evolutio
The density as well as the transverse size of the projec
state thus grows. The increase in density leads to increa
importance of multiple scatterings which are properly a
counted for in the BK derivation. This ensures that the sc
tering probability saturates locally. In the saturation regim
as long as the size of the projectile stateR(t) is smaller than
the target sizeR0, the cross section grows essentially on
due to surface effects:

s5pR0
212pR0x0 expFasNc

2p
et G . ~17!

Thus as long asaset, ln(R0 /x0), the cross section is practi
cally geometrical. However, once the energy is high enou
so that the projectile size is larger than that of the target,
total cross section is determined by the former and gro
exponentially with the logarithm of energy according to E
~14!.

This also illustrates that the applicability of the BK ev
lution crucially depends on the nature of the target. If t
target is thick enough, so that the multiple scatterings
come important before the growth of the projectile rad
does, and if the target is wide enough, so that satura
occurs before the projectile radius swells beyond that of
2-3
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target, then there is an intermediate regime in which the
elastic cross section remains practically constant and equ
pR0

2. Then BK applies. However, if the target is a nucleo
neither one of these conditions is satisfied. Thus the tain
infrared behavior of the BFKL evolution of the projecti
will show up right away and will invalidate the applicatio
of the BK equation.

In order to discuss the violation of unitary from the poi
of view of the evolution of target fields, we now go back
the stochastic process~1!. The RHS of Eq.~1! describes the
total Coulomb~Weizsäcker-Williams! field at pointx due to
the color charge sources at pointsz. Since the noise is sto
chastic, the color sources are completely uncorrelated bo
the transverse plane and in rapidity. For this random sou
the square of the total color charge is proportional to
area, and this is precisely the factorR2 in Eq. ~10!. The
incoming dipole thus scatters on the Coulomb field crea
by the large incoherent color charge. Because the Coulo
field is long range, the whole bulk of the region populated
the sources contributes to the evolution and leads to ra
growth ofR. If the field created by the sources was screen
by some mass, the evolution would be unitary. To illustr
this point, we substitute the Coulomb field (x2z) i /(x2z)2

in Eq. ~1! by an exponentially decaying fieldm exp$2mux
2zu%. It is straightforward to perform now the same analy
as before. Equation~9! is replaced by

E
uzu,R(t)

d2z m2exp$2mux2zu%5exp$2mux2Ru%.

~18!

This leads to the substitutionR2→exp$mR% in all subsequent
equations with the end result that

R~ t !5as

e

m
t, ~19!
o

w
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which in fact saturates the Froissart bound. Thus the rea
for the violation of unitarity is that the evolution is driven b
the emission of the long range Coulomb field from a lar
number ofincoherentcolor sources in the target.

Cutting off the Coulomb field is not the only possibility t
cure this problem. Another option is that the sources of
color charge in the high density regime cease to be inco
ent. If they have correlations ensuring that the total co
charge in a region of fixed sizeL is zero, then the incoming
dipole would feel the Coulomb field only within the fixe
distanceL from the black region. Thus the new charges p
duced by the evolution would only ‘‘split off’’ the edges o
the black region rather than from its bulk. This scenario
equivalent to exponential decay of the field, and will lead
a unitary evolution. In a confining theory like QCD, it i
likely to be materialized. We note that the desirability of su
color charge correlations was stressed in a somewhat di
ent context in@17#.

Although such charge correlations do not arise in the
evolution, it is nota priori clear that they are not present
a more complete semiperturbative framework which s
does not take into account the physics of confinement at
energies. The BK framework is incomplete inasmuch a
takes the evolution of the projectile wave function to be pu
BFKL. Once the density of gluons in this wave functio
becomes large, interactions should lead to saturation eff
on the wave function level, i.e., the density of the dipo
should grow slower than Eq.~13!. Such corrections should
still be semiperturbative, in the sense that they are prese
small as . For scattering on ‘‘small’’ targets, they becom
important at the same energy as the multiple scattering te
resummed in Eqs.~1!, ~4!. These wave function saturatio
effects may lead to charge correlations of the type neces
to unitarize the total cross section.
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