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Nonlinear QCD evolution: Saturation without unitarization
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We consider the perturbative description of saturation based on the nonlinear QCD evolution equation of
Balitsky and Kovchegov. Although the nonlinear corrections lead to saturation of the scattering amplitude
locally in impact parameter space, we show that they do not unitarize the total cross section. The total cross
section for the scattering of a strongly interacting probe on a hadronic target is found to grow exponentially
with rapidity t=In(3/sy), oxexp{(aNJ/27) et} wheree is a number of order unity. The origin of this violation
of unitarity is the presence of long range Coulomb fields away from the saturation region. The growth of these
fields with rapidity is not tempered by the nonlinearity of the Balitsky-Kovchegov equation.
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Understanding the growth of total scattering cross sec- {g?(t’,z’)g?(t”,z”)):5ab5ij5(t’—t”)6(z’—z”). 2)
tions with energyy/s is a long standing problem. The unitar-
ity, or Froissart, bound states that the total inelastic cros3his Langevin equation gives rise to an infinite number of
section for the scattering of a hadronic projectile on a hadequations for correlators & which coincide with those de-
ronic target cannot grow faster than<wd?t?, whered is  rived in [2]. In the largeN, limit Eq. (1) reduces[3] to a
some typical hadronic scale areFIn(s/sy) is the rapidity. closed equation for the scattering probabilitifx,y) of a
While QCD is a unitary theory and therefore satisfies thiscolor singlet dipole with charges at pointsy [6], N(X,y)
unitarity bound, there is no guarantee that perturbative cal=(1/N.)Tr(1—UT(x)U(y)):
culations preserve this property. In fact, the linear perturba-

tive Balitsky-Fadin-Kuraev-LipatoyBFKL) evolution equa- N _agNg o2 (x—y)?
tion implies an exponential growth of with t, thus violating dt (xy)= 22 Z(X_ 2)%(y—2)°
unitarity.
Following the pioneering works of1], there has been X[N(x,2) +N(y,z) = N(X,y)
recent progress in high energy hadronic scattering in a deri- ~N(X,2N(zY)] 3)

vation of a nonlinear evolution equati¢@—4] which tames

the BFKL-type growth. These equations resum the nonlineag om the first numericdl7—9] and analytica[10,11 studies
corrections to the QCD evolution with rapiditgnergy 10 ¢ the Balitsky-KovchegoBK) Egs. (1), (4) the following
all orders in partonic density and to first order in the QCD cqngistent picture emerges: Suppose one starts the evolution
coupling. While previous studies of these equations apply (@om the initial condition of small target fieldsN(x,y)<1
systems with translational invariance in the |_m_pact parametefy, 4| x,y]. Initially the evolution follows the BFKL equa-
plane, here we explore for the first time their impact params;jqn, since the nonlinear term in E6#) is negligible. As the
eter dependence. For the equations first derived by Balitsk¥ attering probability approaches unity, the nonlinear term
[2], we show that the totql cross section does not unitarizg; ks in and eventually the growth stops as the right-hand
but grows exponentially with [5]. . side(RHS) of Eq. (4) vanishes foN(x,y)=1. The larger

We will use the form of the evolution equations first given ginsjes saturate earlier, the smaller dipoles follow at later

by Weigert[4]: “time” t. These features are contained in the simple param-
dU(x) ST a2z (x-2) etrization[12]
ST iz (=27 N(x,Y) =1 exif — (x—y)2QA(1)]. (@)
X [1—0*(X)U(z)]ab§f’(z) The exact dependence of the saturation momer@y() on
rapidity is not known, but both, the numerical resylt$and
. s UcoTa | g2 1 simple theoretical estimatd43,11] are consistent with the
272 (X) Z(x—z)2 exponential growth of the forn@Q4(t) = A exd act], with c
of order unity. This physical picture has been anticipated
XTI T20T(x)U(2)]. 1) several years ago ir3].

While the BFKL equation leads to an unphysical expo-
Here the eikonal scattering amplitude$x) and U(x) are  nential growth of the scattering probability(x,y) with t,
the unitary matrices in the fundamental and adjoint represerthe nonlinearities of Eqg1), (4) tame this growth such that
tations, respectively. The noise is characterized by Gaussidd(x,y)<1, as required for a probability. The “saturation” of
local correlations the scattering probability at fixed impact parameter, however,
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does not ensure that the total scattering cross section is urleft-hand side of Eq(10) becomes a number of order one,
tary in the sense of satisfying the Froissart bound. We hencehich we call 1£. We thus have an approximate equation for
refer to it as “saturation” rather than “unitarization.” R(t):

The total inelastic cross section is given by the integral of

the scattering probability over the impact parameter. Thus in 1 . aNg [t )
the saturation regime RU=—+ tOdTR (7). 1Y

— 2
o=mRY), ) At large rapidities therefore the radius of the black region is

whereR(t) is the size of the region in the transverse plane®XPonentially large
for which the scattering probability for a given projectile is

unity. The Froissart bound requires the radi($) to grow at R(t)= R(to)exp{ asNe e(t— to)} ) (12)
most linearly witht. We now present two simple calculations 2w
which establish that within the BK evolution the growth of _ = .
the radius with rapidity is exponential. This is our main result. o _
First consider the Langevin equatiéh. Assume that ini- We note that while the approximations leading to Ed)

tially, at rapidityt, the target is black within some radis. ~ c€@se to be valid when the poits on the boundary of the
This means that fofz| <R, the matrixU(z) fluctuates very ~Plack region, this does not affect our main conclusion. First,

strongly so that it covers the whole group space. We concerﬁq- (9) is an underestimate of the int_egral, thus underestimat-
trate on a poinx which is initially outside of this black "9 the growth ofR. Second, whenis on the boundary of

region. The matriXxJ(x) then is close to unity. Thus there is the black regior]r and in the b'a‘%k region, although th? fac-
no correlation betweell(x) andU(z), and, in the random t0rs [1—U(X)U'(z)] and U(x) in Eq. (1) are not strictly

phase approximatiopd] the second term on the right-hand unity, they are still of order one for almost all poirgsThus,
side of Eq.(1) can be set to zerpl4]. As the target field although we cannot determine the exact numerical value of

ensemble evolves in rapidity, the radius of the black regiorf: the functionallforr.n of the solution as well as its paramet-
grows. As long as the point stays outside the black region ¢ dependence is given correctly by H42).

we can approximate the Langevin equation (oye drop Note that Eq.(1) refers to the evolution _of the matrix
color indices which are inessential to our argument U(x), which can be thought of as the scattering amplitude of
a colored probe. However, since the physics of the BK equa-
d aN, ) (X—2); tion does not incorporate effects of confinement, the cross
d—U(X) ==V =2 flzl<Rd Z(x—z)2 &i(2). (6)  section for a colorless dipole within the BK framework must

grow in the same way. To establish this point, and to make
This equation neglects contributions dédtU from gluons ~ More explicit the relation betweenand the BFKL dynam-

originating from outside the black region, and thus slightlylCS: W& now present an alternative derivation of Bp).
underestimates the rate of growth of the radius of the black 1© this end we consider the BK evolution as the evolution

region. The formal solution of EG8) is _of the projectile[3]._ SupposeT at the initial energy the pro-.
jectile is a color dipole of size,. It scatters on a hadronic
aN, [t , (x=2); target of some siz®,. As is explicit in[3], as the energy is
1I-UxH=\ > Jl deKR( )d Zx=2)? &(2). increased the projectile wave function evolves according to
0 T,

the BFKL equation. Thus at rapiditythe density of dipoles
(7) ; ; o . ;
of sizex at transverse distanaefrom the original dipole is

Squaring it and averaging over the noise term gives given by the BFKL expressiofsee, for example,15])
[1-U( t)]2> aSchtd f d?z ® | 16r2
—U(x,t)]?)= —. n—-
{ w? to T \z|<R(T)(X—Z)2 32 XoX
n(X01X1r1t): 2

. . . ] N (7-ra2t)3/2
As long asx is outside the black region we can approximate

the integral on the right-hand side by 1612
2 16r2 In® XoX
0
f d27 1 — R (27') ’ o) Xexp wt— Inﬂ -— (13
Z<r(n  (X—2) X 0 a
and Eq.(8) becomes with w=4In2Nas/7 and a®=147(3)N.a./w. When the
density of dipoles at a given impact parameter is greater than
Nc one, multiple scatterings become important. Thus the scatter-

_ 2 asNe L[t o
([(1-UGDIH=— xzftodTR (7). 10 ing probability is not proportional ta, but is an infinite

series containing all multiple scattering terp®.
Now as the black region grows, eventually it reaches the For our argument, it is only important that once the den-
point x. At this rapidity the matriXJ(x) will start fluctuating  sity of dipoles at some impact parametebecomes larger
with the amplitude of order one. Thus wh&¢t)=|x|, the  than some fixed critical number, the scattering amplitude at
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this impact parameter saturates. The exact value of this nunwhich are smaller than the impact parameter. Within this
ber depends on the target, but importantly it does not depenapproximation the dependence on the impact parameter in
on rapidity. Thus the total cross section is given by theEg. (4) becomes parametric, and the growth of the total cross
square of the largest impact parameter at which the dipolsection is determined entirely by the shape of the initial con-
density in the projectile wave function is of order unity. In dition. The Froissart bound is then saturated for the exponen-
order to estimate this directly from E(1L3), let us choose the tial initial profile of N(r). The reason the local approxima-
dipole sizex in Eq. (13) asx=Q (t,). Recall that accord- tion leads to this behavior is that it neglects the effects of far
ing to Eq.(4), the dipole of this size scatters with probability away black regionéwhereN=1) on the scattering probabil-
one, if it hits inside the radius of the targej (in this view of ity in the gray areaswhereN<1). As is apparent from our
the evolution only the projectile wave function depends onanalysis in Eqs(6)—(10), it is precisely the effect of the far
energy, while the properties of the target are the same as away black regions that drives the growth of the total cross
atty). Thus if at some impact paramet@(t) the density of section. This is due to the long range Coulomb fields origi-
dipoles of sizer‘l(to) is unity, the scattering probability at nating in the central black region. In fact, the only contribu-
this impact parameter is unity as well. Requiring the expo-tions we kept on the RHS of E¢6) are due to dipoles with
nential in Eq.(13) to vanish we obtaifi16] sizes of the order of the impact parameter. In this respect our
discussion is orthogonal to that pf,8]. The local approxi-
R2(1) 1 X asN ¢ mation is adequate for studying the behavioiQaft) in the
(H= 16 Qs(to)ex P dense central region, as this is determined by local effects. It
is, however, not a good approximation for the total cross
e=7¢(3)[—1+1+8In2/7,(3)]. (15)  section, which is dominated by the evolution of long range
Coulomb fields.
Thus, also for a color singlet projectile, we arrive at the On the other hand, our results are in agreement with those
exponential growth of the cross section. of [15]. Referencd15] does not deal with the nonlinear BK
The exact value of given in Eq.(15) should not be taken equations, but rather with the onium-onium scattering in the
too seriously. The explicit form of the dipole density Ef3) framework of the dipole model. Nevertheless at asymptoti-
was derived by a saddle point integration, and as such isally high energies this distinction should be irrelevant. In-
valid only for In(16%/xyx) < at. This condition is not sat- deed the numerical results ff5] clearly indicate that even
isfied by Eq.(14). However, even beyond the saddle pointthough the scattering amplitude is unitarized locally in the
approximation the density has the form impact parameter space, the total cross section keeps on
growing exponentially witht (Figs. 9 and 10 of15]).

: (14

In16r2 In the target rest frame, this violation of unitarity by the
XoX BK evolution can be understood as follows: Start with a
N(Xo,X,1 1) S5 €xy astk at || (16 single dipole scattering on the hadronic target of transverse

size Ry. With increasing energy the projectile dipole emits

The relevant condition i§=0. Thus, while our calculation additional dipoles strictly according to the BFKL evolution.
does not specify the numerical value afthe correct solu- The density as well as the transverse size of the projectile
tion parametrically is the same as Ha4). state thus grows. The increase in density leads to increasing

Note, that although we use the BFKL dipole density ofimportance of multiple scatterings which are properly ac-
Eq. (13), our argumentoes notassume that the scattering counted for in the BK derivation. This ensures that the scat-
probability atR(t) is dominated by one pomeron exchange.tering probability saturates locally. In the saturation regime,
The only assumption is that parametrically the total unita2s long as the size of the projectile st&) is smaller than
rized probability is the same as the one Pomeron one. Iihe target sizeR,, the cross section grows essentially only
terms of the projectile wave function this translates into thedue to surface effects:
condition =, _;Pn(Xg,X,r,t) =c whenevem(xg,X,r,t)=1.
HereP,(Xg,X,r,t) is the probability to findn dipoles of size
X at transverse coordinatein the projectile wave function
andc is a number of order one. The only way this condition
can be violated, is if the wave function is dominatedth  Thus as long as;et<<In(Ry/x%p), the cross section is practi-
exponential accuragyby the trivial configuration with no cally geometrical. However, once the energy is high enough
dipoles, even when the average dipole number is one. Also that the projectile size is larger than that of the target, the
though the dipole model wave function is known to havetotal cross section is determined by the former and grows
relatively large fluctuations, there is nothing in its known exponentially with the logarithm of energy according to Eq.
propertied6,15] to suggest such an extreme behavior. In fact(14).
for the explicit exponential model used [i,15] our condi- This also illustrates that the applicability of the BK evo-
tion clearly holds. lution crucially depends on the nature of the target. If the

Our results, Egs(11), (14), are in apparent contradiction target is thick enough, so that the multiple scatterings be-
with the conclusions of numerical wofl?,8]. These refer- come important before the growth of the projectile radius
ences solve Eq(4) within local approximation, assuming does, and if the target is wide enough, so that saturation
that important contributions come only from the dipole sizesoccurs before the projectile radius swells beyond that of the

asN¢

2

. (17)

et

o=mR3+27RyX, exp{
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target, then there is an intermediate regime in which the inwhich in fact saturates the Froissart bound. Thus the reason
elastic cross section remains practically constant and equal for the violation of unitarity is that the evolution is driven by
wRZ. Then BK applies. However, if the target is a nucleon,the emission of the long range Coulomb field from a large
neither one of these conditions is satisfied. Thus the tainteBUmber ofincoherentcolor sources in the target.
infrared behavior of the BFKL evolution of the projectile  Cutting off the Coulomb field is not the only possibility to
will show up right away and will invalidate the application C€Ure this problem. Another option is that the sources of the
of the BK equation. color charge in the high d_ensr[y regime cease to be incoher-
In order to discuss the violation of unitary from the point ent. If they have correlations ensuring that the total color

of view of the evolution of target fields, we now go back to charge in a region of fixed sieis zero, then the incoming

. . dipole would feel the Coulomb field only within the fixed
the stochastic proces$). The RHS of Eq(1) describes the . . i
total Coulomb(Weizsaker-Williams field at pointx due to distanceL from the black region. Thus the new charges pro

h | h t DOISS th se is st duced by the evolution would only “split off” the edges of
he co orhc arglge sources at pol Ilncle € n0|s|e Isdsbo-h the black region rather than from its bulk. This scenario is
chastic, the color sources are completely uncorrelated both 18,,iyalent to exponential decay of the field, and will lead to

the transverse plane and in rapidity. Fpr this ran.dom SOUrC& unitary evolution. In a confining theory like QCD, it is
the square of the total color charge is proportional to thgjye|y to be materialized. We note that the desirability of such

area, and this is precisely the factBf in Eq. (10. The oo charge correlations was stressed in a somewhat differ-
incoming dipole thus scatters on the Coulomb field createdt context in17].

by the large incoherent color charge. Because the Coulomb  ajthough such charge correlations do not arise in the BK
field is long range, the whole bulk of the region populated bye,g|ytion; it is nota priori clear that they are not present in
the sources contrll_autes to the evolution and leads to rapid ore complete semiperturbative framework which still
growth ofR. If the field created by the sources was screenegyoes not take into account the physics of confinement at low
by some mass, the evolution would be unitary. To '"“SZtrateenergies. The BK framework is incomplete inasmuch as it
this point, we substitute the Coulomb field 2); /(x—2) takes the evolution of the projectile wave function to be pure
in Eq. (1) by an exponentially decaying fielhexp{—mix  gFK| = Once the density of gluons in this wave function
—2)}. Itis straightforward to perform now the same analysispecomes large, interactions should lead to saturation effects
as before. Equatiof®) is replaced by on the wave function level, i.e., the density of the dipoles
should grow slower than Eq13). Such corrections should
j d?z mzexp{— m|x—z|} =exp{—m|x—R|}. still be semiperturbative, in the sense that they are present at
|zl<R(7) small «g. For scattering on “small” targets, they become
(18) important at the same energy as the multiple scattering terms
resummed in Eqgs(l), (4). These wave function saturation
effects may lead to charge correlations of the type necessary
to unitarize the total cross section.

This leads to the substitutidR?— exp{mR} in all subsequent
equations with the end result that

R(t)=a it (19) This work has been supported in part by PPARC. We
*m”’ thank G. Milhano and H. Weigert for helpful discussions.
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