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Violations of the equivalence principle in a dilaton-runaway scenario
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We explore a version of the cosmological dilaton-fixing and decoupling mechanism in which the dilaton
dependence of the low-energy effective action is extremized for infinitely large values of the bare string
coupling gs

25ef. We study the efficiency with which the dilatonf runs away toward its ‘‘fixed point’’ at
infinity during a primordial inflationary stage, and thereby approximately decouples from matter. The residual
dilaton couplings are found to be related to the amplitude of the density fluctuations generated during inflation.
For the simplest inflationary potentialV(x)5

1
2 mx

2(f) x2, the residual dilaton couplings are shown to predict
violations of the universality of gravitational acceleration near theDa/a;10212 level. This suggests that a
modest improvement in the precision of equivalence principle tests might be able to detect the effect of such
a runaway dilaton. Under some assumptions about the coupling of the dilaton to dark matter and/or dark
energy, the expected time variation of natural ‘‘constants’’~in particular of the fine-structure constant! might
also be large enough to be within reach of improved experimental or observational data.

DOI: 10.1103/PhysRevD.66.046007 PACS number~s!: 11.25.2w, 04.80.Cc, 98.80.Cq
la

-
nd
at

al
p

-
rg

c
ic
s

lly
a
tter

m-
f

s-
-

e

a

I. INTRODUCTION

All string theory models predict the existence of a sca
partner of the spin 2 graviton: the dilatonf, whose vacuum
expectation value~VEV! determines the string coupling con
stantgs5ef/2 @1#. At tree level, the dilaton is massless a
has gravitational-strength couplings to matter which viol
the equivalence principle@2#. This is in violent conflict with
present experimental tests of general relativity. It is gener
assumed that this conflict is avoided because, after su
symmetry breaking, the dilaton might acquire a~large
enough! mass~say mf*1023 eV so that observable devia
tions from Einstein’s gravity are quenched at distances la
than a fraction of a millimeter!. However, Ref.@3# ~see also
@4#! has proposed a mechanism which can naturally recon
a masslessdilaton with existing experimental data. The bas
idea of Ref.@3# was to exploit the string-loop modification
of the ~four-dimensional! effective low-energy action~we
use the signature2111)

S5E d4xAg̃S Bg~f!

a8
R̃1

Bf~f!

a8
@2h̃f2~¹̃f!2#

2
1

4
BF~f!F̃22V1••• D , ~1.1!

i.e., thef dependence of the various coefficientsBi(f), i
5g,f,F, . . . , given in the weak-coupling region (ef→0)
by series of the form

Bi~f!5e2f1c0
( i )1c1

( i ) ef1c2
( i ) e2f1•••, ~1.2!

coming from genus expansion of string theory:Bi

5Sn gs
2(n21)cn

( i ) , with n50,1,2, . . . . It wasshown in @3#
that, if there exists a special valuefm of f which extremizes
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all the ~relevant! coupling functionsBi
21(f), the cosmologi-

cal evolution of the graviton-dilaton-matter system natura
drivesf towardfm . This provides a mechanism for fixing
massless dilaton at a value where it decouples from ma
~‘‘least coupling principle’’!. A simple situation where the
existence of a universally extremizing dilaton valuefm is
guaranteed is that ofSduality, i.e., a symmetrygs↔1/gs , or
f→2f ~so thatfm50).

It has been recently suggested@5# that the infinite-bare-
coupling limit gs→` (f→1`) might yield smoothfinite
limits for all the coupling functions, namely,

Bi~f!5Ci1O~e2f!. ~1.3!

Under this assumption, the coupling functions are all extre
ized at infinity, i.e.,fm51`. The late-time cosmology o
models satisfying Eq.~1.3! has recently been explored@6#. In
the ‘‘large N’’–type toy model of@5# it would be natural to
expect that theO(e2f) term in Eq.~1.3! bepositive, so that
Bi(f) be minimizedat infinity. This would correspond to
couplingsl i(f);Bi

21(f)5Ci
212O(e2f) which aremaxi-

mizedat infinity. Note, however, that the most relevant co
mological coupling for this work, the coupling to the infla
ton, l(f), contained inV @see Eq.~2.11! below# is closer to
a Bi than to its inverse. Thusl(f) is naturallyminimizedat
infinity ~see further discussion of this point below!, a crucial
property for the attractor mechanism of@3,4#.

In this paper1 we shall consider in detail the early-tim
cosmology of models satisfying Eq.~1.3!. More precisely,
our main aims will be~i! to study the efficiency with which
a primordial inflationary stage drivesf toward the ‘‘fixed
point’’ at infinity fm51` ~thereby generalizing the work

1The main results of this work were recently summarized in
short work@7#.
©2002 The American Physical Society07-1
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@8# which considered the inflationary attraction toward a
cal extremumfm), and~ii ! to give quantitative estimates o
the present violations of the equivalence principle~nonuni-
versality of free fall, and variation of ‘‘constants’’!. Our most
important conclusion is that the runaway of the dilaton
ward strong coupling@under the assumption~1.3!# naturally
leads to equivalence-principle violations which are rat
large, in the sense of not being much smaller than the p
ently tested level;10212. This gives additional motivation
for the currently planned improved tests of the universa
of free fall. Within our scenario, most of the other deviatio
from general relativity~‘‘post-Einsteinian’’ effects in gravi-
tationally interacting systems: solar system, binary puls
etc.! are too small to be of phenomenological interest. Ho
ever, under some assumptions about the coupling off to
dark matter and/or dark energy, the time variation of
natural ‘‘constants’’~notably the fine-structure constant! pre-
dicted by our scenario might be large enough to be wit
reach of improved experimental and/or observational d
The phenomenologically interesting conclusion th
equivalence-principle violations are generically predicted
be rather large after inflation~in sharp contrast with the re
sults of @8#! is due to the fact that the attraction toward
extremum at infinity is much less effective than the attract
toward a~finite! local extremum as originally contemplate
in @3#. This reduced effectiveness was already pointed ou
Ref. @4# within the context of equivalence-principle
respecting tensor-scalar theories~in the manner of the
Jordan-Fierz-Brans-Dicke theories!.

II. DILATON RUNAWAY

In this section we study the dilaton’s runaway during t
various stages of cosmological evolution. We first show~Sec.
II A ! that, as in the case of a local extremum@8#, inflation is
particularly efficient in pushingf toward the fixed point. We
then argue~Sec. II B! that the order of magnitude of the ba
string couplingef.ecw does not suffer further appreciab
changes during all the subsequent evolution.

A. The inflationary period

Assuming some primordial inflationary stage driven
the potential energy of an inflaton fieldx̃, and taking into
account generic couplings to the dilatonf, we consider an
effective action of the form

S5E d4xAg̃S Bg~f!

a8
R̃1

Bf~f!

a8
@2h̃f2~¹̃f!2#

2
1

2
Bx~f!~¹̃x̃ !22Ṽ~ x̃,f!D . ~2.1!

In this string-frame action, the dilaton dependence of all
functionsBi(f),Ṽ(x̃,f) is assumed to be of the form~1.2!.
It is convenient to replace the (s-model! string metricg̃mn

by the conformally related Einstein metricgmn

5CBg(f)g̃mn , and the dilaton field by the variable
04600
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w5E dfF3

4 S Bg8

Bg
D 2

1
Bf8

Bg
1

1

2

Bf

Bg
G1/2

,

B8[]B/]f. ~2.2!

The normalization constantC is chosen so that the strin
units coincide with the Einstein units whenf→1`:
CBg(1`)51. @Note thatC51/Cg in terms of the genera
notation of Eq. ~1.3!.# Introducing the~modified! Planck
mass

m̃P
2 5

1

4pG
5

4

Ca8
, ~2.3!

and replacing also the inflaton by the dimensionless varia
x5C21/2m̃P

21x̃, we end up with an action of the form

S5E d4xAgF m̃P
2

4
R2

m̃P
2

2
~¹w!2

2
m̃P

2

2
F~w!~¹x!22m̃P

4V~x,w!G , ~2.4!

where

F~w!5Bx~f!/Bg~f!,

V~x,w!5C22m̃P
24Bg

22~f!Ṽ~ x̃,f!. ~2.5!

In view of our basic assumption~1.3!, note that, in the
strong-coupling limitf→1`, dw/df tends, according to
Eq. ~2.2!, to the constant (Cf /2Cg)1/2, while the dilaton-
dependent factorF(w) in front of the inflaton kinetic term
tends to the constantCx /Cg . The toy model of Ref.@5#
suggests that the various~positive! constantsCi in Eq. ~1.3!
are all largish and comparable to each other. We shall th
fore assume that the various ratiosCi /Cj are of order unity.
The most important such ratio for the following isc
[(2Cg /Cf)1/2 which gives the asymptotic behavior of th
bare string coupling as

gs
25ef.ecw. ~2.6!

In view of the fact that, in the strong-coupling limit we ar
interested in, the factorF(w) in Eq. ~2.4! quickly tends to a
constant, we can simplify our analysis~without modifying
the essential physics! by replacing it by a constant~which
can then be absorbed in a redefinition ofx). Henceforth, we
shall simply takeF(w)51. ~See, however, the commen
below concerning the self-regenerating inflationary regim!

Following @4,9# it is then useful to combine the Fried
mann equations for the scale factora(t) during inflation
@ds252dt21a2(t)d i j dxidxj # with the equations of motion
of the two scalar fieldsx(t),w(t), to write an autonomous
equation describing the evolution of the two scalars in ter
of the parameter
7-2
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p5E Hdt5E ȧ

a
dt5 ln a1const ~2.7!

measuring the number ofe-folds of the expansion. For an
multiplet of scalar fields,w5(wa), this yields the simple
equation@4,9#

2

32w82
w912 w852¹w lnuV~w!u, ~2.8!

wherew8[dw/dp, and where all operations onw are cova-
riantly defined in terms of thes-model metric defining the
scalar kinetic terms@ds25gab(w)dwadwb#. In our simple
model @with F(w)51#, we have a flat metricds25dw2

1dx2. @Note that, whengab(w) is curved the acceleratio
term w9 involves a covariant derivative.#

The generic solution of Eq.~2.8! is easily grasped if one
interprets it as a mechanical model: a particle with posit
w, and velocity-dependent massm(w8)52/(32w82),
moves, in the ‘‘time’’p5 ln a1cst, in the manifoldds2 un-
der the influence of an external potential lnuV(w)u and a con-
stant friction force22w8. If the curvature of the effective
potential lnuV(w)u is sufficiently small the motion ofw rap-
idly becomes slow and friction dominated:

2
dw

dp
.2¹w ln V~w!. ~2.9!

Equation~2.9! is equivalent to the usual ‘‘slow roll’’ approxi-
mation.

Consistently with our general assumption~1.3!, we con-
sider potentials allowing a strong-coupling expansion of
form

V~x,w!5V0~x!1V1~x!e2cw1O~e22cw!, ~2.10!

where V0(x) is a typical chaotic-inflation potential with
V0(0)50, while V1(0)5v1>0 can possibly provide~if v1
.0) the effective cosmological constant driving today’s a
celeration in the scenario of@6#. For the sake of simplicity
we shall discuss mainly the ‘‘factorized’’ power-law ca
V0(x);V1(x);xn for which we can conveniently writeV
in the form

V~x,w!5l~w!
xn

n
, ~2.11!

with a dilaton-dependent coupling constantl(w) of the form

l~w!5l`~11ble2cw!. ~2.12!

This example belongs to the class of the two-field inflatio
ary potentials discussed in@10#. We have checked that ou
results remain qualitatively the same for the more gen
potential~2.10! provided thatV0(x) and V1(x) are not ex-
tremely different and given the fact thatv1 is phenomeno-
logically constrained to be very small.@Note that, within the
simplified model~2.12!, the ratioV1(x)/V0(x) is equal to
the constant coefficientbl .#
04600
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The universal~positive! constantc appearing in the expo
nential e2cw is the same as in Eq.~2.6! @i.e., c
[(2Cg /Cf)1/2, which is expected to be of order unity#. The
coefficient bl in Eq. ~2.12! is such thatbl e2cw.ble2f

roughly corresponds to a combination of term
;6Ci

21O(e2f) coming from the strong-coupling asymp
totics of severalBi(f), Eq. ~1.3! @see Eq.~2.5!#. In the toy
model of @5# one would therefore expectbl to be smallish.
Anyway, we shall see that in final results only the ratios
suchbi coefficients enter. More important than the mag
tude of bl is its sign. It is crucial for the present strong
coupling attractor scenario to assume thatbl.0, i.e., that
l(w) reaches aminimumat strong coupling,w→1`. Note
again that this behavior is consistent with the simple ‘‘lar
N’’–type idea of @5# if we assimilatel(w) into one of the
inverse couplingsBi appearing in Eq.~1.1! ~for instance
BF;gF

22 , wheregF is a gauge coupling!, rather than to the
coupling itself. If the latter were the case,l(w) would reach
a maximumasf→1`, and the attractor mechanism of@3#
would drivef toward weak coupling (f→2`). However,
the Einstein-framef dependence ofV(x) gets contributions
from severalBi

6n(f), Eq. ~2.5!, which might conspire to
minimize it at strong coupling. This feature is also probab
necessary in order to solve the cosmological-constant p
lem through some argument by which the vacuum at infin
has vanishing energy density.

Substituting the potential~2.10! into the slow roll equa-
tion ~2.9! and assuming~for simplicity! that V1(x)e2cw is
significantly smaller thanV0(x) leads to a decoupled set o
evolution equations forx andw ~whereV8[]V/]x):

dx

dp
52

1

2

V08

V0
, ~2.13!

dw

dp
5

1

2
ce2cw

V1

V0
. ~2.14!

Given some ‘‘initial’’ conditionsx in ,w in ~discussed below! at
some starting point, sayp50, the solution of Eqs.~2.13!,
~2.14! is simply

p52E
x

x in
dx̄x̄S V0~ x̄ !

x̄V08~ x̄ !
D , ~2.15!

ecw5ecw in1
c2

2 E dp
V1„x~p!…

V0„x~p!…
, ~2.16!

which simply become

p5
1

n
~x in

2 2x2!,

ecw1
blc2

2n
x25const5ecw in1

blc2

2n
x in

2 , ~2.17!

in the simplified case of Eqs.~2.11!,~2.12!.
Equations~2.17! show that, in order for the string cou

pling gs
2.ecw to have reached large values at the end
7-3
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T. DAMOUR, F. PIAZZA, AND G. VENEZIANO PHYSICAL REVIEW D66, 046007 ~2002!
inflation, a large total number ofe-folds must have occurred
while the ~dimensionless! inflaton field x decreased from a
large initial value to a value of order unity~in Planck units!.
To get a quantitative estimate of the string coupling at
end of inflation we need to choose the initial conditio
x in ,w in . A physically reasonable way~which is further dis-
cussed below! of choosingx in is to start the classical evolu
tion ~2.13!–~2.17! at the exit of the era of self-regeneratin
inflation ~see@10# and references therein!. We will now show
how to relate the exit from self-regenerating inflation to t
size of density fluctuations generated by inflation.

Let us recall~see @10# and references therein! that the
density fluctuationd[dr/r on large scales~estimated in the
one-field approximation where the inflatonx is the main
contributor! is obtained by evaluating the expression

d~x!.
4

3

1

p S 2

3D 1/2V3/2

]xV
~2.18!

at the valuex5x3 , at which the physical scale we are co
sidering crossed the horizon outward during inflation. For
scale corresponding to our present horizon this usually
responds to a valuex3(H0) (xH for short! reached some 60
e-folds before the end of slow roll. From Ref.@10#, xH

.5An for the model~2.11! ~and with our modified definition
of x). The numerical value ofdH[d(xH) which is compat-
ible with cosmological data~structure formation and cosmi
microwave background! is dH.531025. In the model
~2.11! the functiond(x) defined by Eq.~2.18! scales withx
as x (n12)/2. Putting together this information we obtain
relation betweenx in andd(x in), which involves the value of
the observable horizon-size fluctuationsdH[d(xH):

d~x in!

d~xH!
5S x in

xH
D (n12)/2

, ~2.19!

i.e.,

x in.xHS d in

dH
D 2/(n12)

.5AnS d in

dH
D 2/(n12)

, ~2.20!

where we introduced the shorthand notationd in[d(x in).
Inserting Eq.~2.20! into Eq. ~2.16! we then obtain the

following estimate of the string coupling constant after infl
tion as a function ofw in andd(x in):

ecwend2ecw in.
c2

2
^V1 /V0&p;

c2

2n
^V1 /V0&x in

2

;
25c2

2
^V1 /V0&S d in

dH
D 4/(n12)

, ~2.21!

where ^V1 /V0& denotes the average value ofV1 /V0 :
^V1 /V0&[*dp(V1 /V0)/*dp @note that this average ratio i
equal tobl in the simplified model~2.12!#.

To get a quantitative estimate ofecwend we still need to
estimate the value ofd(x in) corresponding to the chose
‘‘initial’’ value of the inflaton. As we will now check, taking
for x in the value corresponding to the exit from se
04600
e

e
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-

regenerating inflation corresponds simply to takingd(x in)
;1. Indeed, let us first recall that, during inflation, ea
~canonically normalized! scalar field~of mass smaller than
the expansion rateH) undergoes typical quantum fluctua
tions of orderH/(2p), per Hubble time~see, e.g.,@10#!. This
implies ~for our dimensionless fields! that the value ofx at
the exit from self-regeneration, sayxex, is characterized by
Ĥex/(2p)'@]xV/(2V)#ex, where Ĥ[H/m̃P is the dimen-
sionless Hubble expansion rate and where the right-hand
~RHS! is the classical change ofx per Hubble time@corre-
sponding to the RHS of Eq.~2.13!#. Using Friedmann’s
equation ~in the slow-roll approximation! Ĥex

2

'(2/3)V(xex), it is easily seen that that the exit from sel
regeneration corresponds tod(xex)'4/3;1. It is, a poste-
riori , physically quite reasonable to start using the class
evolution system only when the~formal extrapolation! of the
density fluctuationd(x) becomes smaller than 1.

Within some approximation~see@10#!, one can implement
the effect of the combined quantum fluctuations of (w,x) by
adding random terms with rms valuesĤ/2p on the right-
hand side of Eqs.~2.13! and~2.14!, dx/dp anddw/dp being
precisely the shifts of the fields in a Hubble time. The syst
of equations becomes thus of the Langevin type

dx

dp
52

1

2

V08

V0
1

Ĥ

2p
j1 , ~2.22!

dw

dp
5

1

2
ce2cw

V1

V0
1

Ĥ

2p
j2 , ~2.23!

whereĤ'@(2/3)V(x,f)#1/2 ~in the slow-roll approximation!
is the dimensionless expansion rate, and wherej1 andj2 are
~independent! normalized random white noises:

^j i~p1!j j~p2!&5d i j d~p12p2!, i , j 51,2. ~2.24!

When the random force terms dominate the evolution
either Eq.~2.22! or Eq. ~2.23! the quasiclassical descriptio
~2.13!,~2.14! breaks down. The phase space of the sytem
thus be roughly divided into four regions according
whether the evolution of none, one, or both of the two fie
is dominated by quantum fluctuations. This is depicted
Fig. 1 where such regions are delimited by dashed, th
curves in the case of a power-law potential~2.11!.

Apart from factors of order 1, the evolution of the inflato
x is quasiclassical in the region under the linex
5l`

21/(n12) . In the chaotic inflationary models@10# such an
inflaton’s value corresponds to the exit from the se
regenerating regime and to the beginning of the quasicla
cal slow-roll inflation. As mentioned above it also corr
sponds to a perturbationd(x);1. Somewhat surprisingly, in
the model at hand, however, the quasiclassical region for
inflaton evolutionx&l`

21/(n12) is affected by quantum fluc
tuations that still dominate the evolution ofw in the region
above the hyperbolalike curvex5bl

2/nl`
21/ne22cw/n. We

must therefore study, in some detail, the evolution of
system in the presence of the noise term forw as in Eq.
7-4
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~2.23!, assuming a quasiclassical evolution forx. This is
done in the Appendix. The final result is that, if we start
x&l`

21/(n12) ~classical evolution forx), the average value
of ecw is multiplicatively renormalized, by a factor of order
unity, with respect to the classical trajectoryecwcl, given by
solving Eqs.~2.13!,~2.14!, i.e., ^ecw&5O(1)ecwcl. One also
finds that the dispersion ofecw around its average value i
comparable to its average value.

We shall not try to discuss here what happens in the s
regenerating regionx*x in;l`

21/(n12) . Let us recall that the
simple decoupled system~2.13!,~2.14! was obtained by ne
glecting the kinetic coupling termF(w) in Eq. ~2.4!. If we
were to consider a more general model, we would have m
coupling betweenx and w and we would expect that~con-
trary to Fig. 1 which exhibits a ‘‘classicalw region’’ above
the ‘‘quantumx line’’ ! the evolution in the self-regeneratin
region would involve a strongly coupled system of Lange
equations. Then, as discussed in@10#, solving such a system
necessitates giving boundary conditions on all the bounda
of the problem: notably forx→`, but also forw→1` and
w→2`. We leave to future work such an investigation~and
a discussion of what are reasonable boundary conditions!. In
this work we shall content ourselves with ‘‘starting’’ the ev
lution on the quantumx boundary linex in with some value
w5w in , assuming thatecw in is smaller than the driving effec
due to inflation, i.e., than the RHS of Eq.~2.21!. ~This as-
sumption is most natural in a work aimed at studying
‘‘attracting’’ effect due to primordial inflation.!

FIG. 1. The phase space of the system is represented in the
of a power-law potential~2.11! with n52, bl50.1, and l`

510210. The thick-dashed curves delimit the quantum behavio
the two fields, the horizontal curvex5l`

21/(n12) and the hyperbo-
lalike curvex5bl

2/nl`
21/ne22cw/n being the limits of the quantum

behavior forx andw, respectively. In the white region both field
have a classical behavior. The last ‘‘fully classical’’ trajectory h
been represented by a thick solid curve. The bright-gray regions
those where either thew or thex evolution is dominated by quan
tum fluctuations. The fully quantum region is the dark-gray reg
on the top right.
04600
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Going back to our result~2.21!, we can now insert, ac
cording to the preceding discussion, the valuesd in51 and
ecw in!ecwend. Finally, in the simplified model~2.11!,~2.12!,
we get the estimate

ecwend5O~1!•ecwcl, end

;O~1!•
25c2

2
bl~dH!24/(n12). ~2.25!

A more general analysis based on the potential~2.10!
leads to the same final result but withn replaced by some
average value ofxV0,x /V0, and withbl replaced by some
average of the ratioV1 /V0. Note that smaller values of th
exponentn lead to larger values ofecwend, i.e., to a more
effective attraction toward the ‘‘fixed point at infinity.’’ The
same is true if we take different exponentsn0 andn1 ~for V0
andV1, respectively! and assumeV1(x in)@V0(x in) to hold
as a result ofx in@1 andn1.n0. Also note that, numerically,
if we considern52, i.e., the simplest chaotic-inflation po
tential V5 1

2 mx
2(w)x2, Eq. ~2.25! involves the large numbe

12.53dH
21;2.53105. In the case wheren54, i.e., V

5 1
4 l(w)x4, we have instead the number 12.53dH

22/3

;0.923104. To understand the phenomenological mean
of these numbers we need to relateecwend to the present,
observable deviations from general relativity. This issue
addressed in Sec. III after having argued that the postin
tionary evolution ofw is subdominant.

B. Attraction of w by the subsequent cosmological evolution

We have discussed above the efficiency with which infl
tion drives the dilaton toward a fixed point at infinity. W
need to complete this discussion by estimating the effec
the manye-folds of expansion that took place between t
end of inflation and the present time. To address this qu
tion, we need to study in more detail the coupling of a ru
away dilaton to various types of matter, say, a multicomp
nent distribution of~relativistic or nonrelativistic! particles.
We work in the Einstein frame, with an action of the type

S5E d4xAgF m̃P
2

4
R2

m̃P
2

2
~¹w!22

1

4
BF~w!F21•••G

2(
A

E mA@w~xA!#A2gmn~xA!dxA
mdxA

n . ~2.26!

Following @2,3#, one introduces the crucial dimensionle
quantity

aA~w![
] ln mA~w!

]w
, ~2.27!

measuring the coupling ofw to a particle of typeA. ~For
consistency with previous work, we keep the notationaA but
warn the reader that this should not be confused with

ase
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various gauge coupling constants, often denoteda i

5gi
2/4p.! The quantityaA determines the effect of cosmo

logical matter on the evolution ofw through the genera
equation@4,3#

2

32w82
w91S 12

P

r Dw852(
A

aA~w!
rA23PA

r
,

~2.28!

where the primes denote derivatives with respect top5 ln a
1const and wherer5SArA and P5SAPA are the total
‘‘material’’ energy density and pressure, respectively, b
obtained as sums over the various components filling
universewith the exception ofthe kinetic energy density an
pressure ofw, rk5(m̃P

2 /2)(dw/dt)25(m̃P
2 /2)H2w82 and Pk

5rk . Accordingly, the Friedmann equation reads

3H25
2

m̃P
2

r tot5
2r

m̃P
2

1H2w82. ~2.29!

Note that r and P may also account for the potentia
energy density and pressure of the scalar field,rV5V(w),
PV52rV , and that one can formally extend Eq.~2.28! to
the ‘‘vacuum energy’’ componentV(w) by associating with
the potentialV(w) the mass scalemV(w)[V(w)1/4 which
gives aV5] ln mV(w)/]w51

4] ln V(w)/]w. Equation ~2.8! is
then recovered in the limit where the scalar field is the do
nant component.

In the simple cases~which are quite frequent, at least a
approximate cases! where one ‘‘matter’’ component, with
known ‘‘equation of state’’PA /rA5wA5const, dominates
the cosmological density and pressure, Eq.~2.28! yields an
autonomous equation for the evolution~with redshift! of w.
Using Eq.~2.29! one finds that the ‘‘equation of state param
eter’’ wtot[Ptot /r tot corresponding to thetotal energy and
pressure@including now the kinetic contributions ofw; i.e.,
r tot5r1(m̃P

2 /2)(dw/dt)2, Ptot5P1(m̃P
2 /2)(dw/dt)2# is

given in terms of the ‘‘matter’’ equation-of-state parame
w[P/r by

wtot5w1
12w

3
~w8!2. ~2.30!

The knowledge ofwtot then allows one to write explicitly the
energy-balance equationdr tot13(r tot1Ptot)d ln a50, which
is easily solved in the simple cases wherewtot is ~approxi-
mately! constant.

We see from Eq.~2.28! that, during the radiation era
~starting, say, immediately after the end of inflation!, i.e.,
when the universe is dominated by an ultrarelativistic g
(rA23PA50), the ‘‘driving force’’ on the right-hand side o
Eq. ~2.28! vanishes, so thatw is not driven further away
toward infinity. Actually, one should take into account bo
the ‘‘inertial’’ effect of the ‘‘velocity’’ w8 acquired during the
preceding inflationary driving ofw, and the integrated effec
of the many ‘‘mass thresholds’’TA;mA , when some com-
ponent becomes nonrelativistic~so thatrA23PAÞ0). Using
the results of@4,3# one sees that, in our case, both the
04600
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effects have only a small impact on the value ofw. There-
fore, to a good approximationw.wend until the end of the
radiation era.

On the other hand, when the universe gets dominated
nonrelativistic matter, one gets a nonzero driving force in E
~2.28!. In the slow-roll approximation, as the transient b
havior has died out, sincew5P/r becomes negligible, we
have simply

wm8 52am~w!, ~2.31!

wherewm8 stands for thew velocity during matter domina-
tion; andam(w) denotes the coupling~2.27! to dark matter.

The coupling to dark matter,am(w), depends on the as
sumption one makes about the asymptotic behavior, at str
bare string coupling, of the mass of the weakly interact
massive particles~WIMPs! constituting the dark matter. On
natural looking, minimal assumption is that dark matter, li
all visible types of matter, is coupled in a way which leve
off at strong bare coupling, as in Eq.~1.3!. In other words,
one generally expects thatmm(w).mm(1`)(11bme2cw)
so that am(w).2bmce2cw. It is then easy to solve Eq
~2.31!, with initial conditions w05wend, w0850 ~inherited
from the radiation era! at the beginning of the matter era. Bu
we shall not bother to write the explicit solution because i
easily seen that the smallness ofe2cwend guarantees that the
‘‘driving force’’ }am(w) always remains so small that th
O(10) e-folds of the matter era until vacuum-energy dom
nation ~or until the present! have only a fractionally negli-
gible effect onw.

A more significant evolution ofw during the matter era is
provided if, as first proposed in@11# and taken up in@12,13#,
dark matter couples much more strongly tow than ‘‘ordi-
nary’’ matter. Such a stronger coupling to dark matter, wh
is not constrained by the usual equivalence principle exp
ments, follows from assuming more general quantum corr
tions in the dark matter sector of the theory, i.e., correctio
such that the dark matter massmm(w), instead of levelling
off, either vanishes or keeps increasing at strong bare c
pling: mm(w)}ecmw, so thatam5cm is a ~negative or posi-
tive! constant. In@6# ~but see also@14#! it has been shown
that under the latter assumption~i.e., with a positive coupling
parameteram.0) the dilaton can play the role of quintes
sence, leading to a late-time cosmology of accelerated
pansion. By Eq.~2.31! we havew5wend2amp, wherep is
now counted from the end of the radiation era. Given t
about nine e-folds separate us from the end of the radia
era, we see that such an evolution might~if uamu is really of
order unity! have a significant effect on the present value
w @when compared with the value at the end of inflation, i.
cwend; ln(1/dH);10#. However, the running ofw during the
matter era changes the standard recent cosmological pic
and is therefore constrained by observations. In fact, by
~2.30!, the total matter-era equation of state parameterwtot in
the presence of the dilaton readswtot5(wm8 )2/3. Accordingly,

the matter density varies asr}a23(11wtot)5a2„31(wm8 )2
…,

possibly affecting the standard scenario of structure form
tion as well as the global temporal picture between now a
7-6



ity
a

ca
of

al
a

-
io
r-

e
of

-

th
ia

iv
-

e

e
st
r
y,

or

t

th

en
s
fic

re
nds,

e-
ting

ogi-

-
we

res-

e

e
n-

tter

cos-

-
be-
t 0.7

e

od
of
the

VIOLATIONS OF THE EQUIVALENCE PRINCIPLE IN . . . PHYSICAL REVIEW D66, 046007 ~2002!
the epoch of matter-radiation equality. The compatibil
with phenomenology therefore puts constraints on the m
nitude of wm8

25am(w)2. In @6# wtot,0.1, i.e., v[wm8
2/0.3

,1, was suggested to be the maximal deviation one
roughly tolerate during the matter era, the establishment
more precise bound being presently under study@15#. We
shall therefore assume either that we are in the ‘‘norm
case where the dilaton does not couple more strongly to d
matter than to ordinary matter@so thatam(w).2bmce2cw

!1#, or that, if it does,am
2 ,0.3. This leads to a displace

ment ofw during the matter era smaller than the dispers
wend2wcl, end;wcl, endproduced by quantum fluctuations du
ing inflation, Eq.~2.25!.

In this context one should also consider the attraction
fect of a negative pressure component, either in the form
w-dependent vacuum energy~dilatonic quintessence! or in
the form of any other,w-independent component~such as a
‘‘genuine’’ cosmological constant!. Of course, the present re
cent (z&1) accelerated expansion phase is very short~in ‘‘ p
time’’ ! and sensible changes of the dilaton value since
end of matter domination are not expected. Still, it is cruc
to estimate the present dilaton velocityw08 since it is related
to the cosmological variations of the coupling constants~see
the next section!. In the general case where both nonrelat
istic matter and~possiblyw-dependent! vacuum energy den
sity V(w) are present, the value ofw08 predicted by our
model is obtained by applying Eq.~2.28! ~in the slow-roll
approximation!:

~Vm1VV!~12w0!w085~Vm12VV!w08

52Vmam24VVaV . ~2.32!

In the above expressionVm andVV are, respectively, the
nonrelativistic~dark! matter and the vacuum fraction of th
critical energy density@rc[(3/2)m̃P

2H2#, and the already
mentioned prescriptions aV5 1

4 ] ln V(w)/]w, PV52rV
52V(w) have been used.

The value ofw08 is therefore some combination of th
values ofam andaV . We can have two classes of contra
ing situations: In the first class, the dilaton couples ‘‘no
mally’’ ~i.e., weakly! both to dark matter and to dark energ
i.e., botham.2bmce2cw!1 andaV!1 and Eq.~2.32! im-
plies w08!1. In the second class, the dilaton couples m
strongly to some type of dark matter or energy, i.e., either~or
both! am or/andaV is of order unity so thatw085O(1). The
second case is realized in the scenario of@6#. In the context
of this scenario we have an exponential dependence of
potential onw, V(w).V1e2cw so thataV.2(c/4) and

w085
c VV2amVm

2VV1Vm
&

c

3
. ~2.33!

The last inequality follows from the boundam.c/2 ~which
is a necessary condition to have positive acceleration in
model @6#! and the reasonable boundVm.0.25.

In the present work, we wish, however, to be as indep
dent as possible from specific assumptions~such as the one
used in @6#!. Therefore, rather than insisting on speci
04600
g-

n
a

’’
rk

n

f-
a

e
l

-

-
-

e

he

e

-

~model-dependent! predictions for the present value ofw08 we
wish to find the~model-independent! upper bounds on the
possible values ofw08 set by current observational data. The
are several ways of getting such phenomenological bou
because the existence of a kinetic energy~and pressure! as-
sociated withdw/dt5Hw8 has several observable cons
quences. A rather secure bound can be obtained by rela
the value ofw8 to the deceleration parameterq[2äa/ȧ2. In
the general class of models that we consider, the cosmol
cal energy density and pressure have~currently! three signifi-
cant contributions: dark matter (Vm5rm /rc), dark energy
(VV), and the kinetic effect of a scalar field@Vk5rk /rc

with rk5(m̃P
2 /2)(dw/dt)25(m̃P

2 /2)H2w82 so that Vk

5w82/3#. We assume~consistently with recent cosmic back
ground data! that the space curvature is zero. Therefore
have the first relation

Vm1VV1Vk515Vm1VV1w82/3. ~2.34!

The deceleration parameter is given by the general exp
sion 2q5SAVA(113wA). Using wm50, wV521, and
wk511, we get

2q5Vm22VV1
4

3
w82. ~2.35!

Using the relation~2.34! above to eliminateVV we get the
following expression forw82 in terms of the observable
quantitiesq andVm :

w82511q2
3

2
Vm . ~2.36!

The supernovae Ia data@16# give a strict upper bound on
the present valueq0 : q0,0. A generous lower bound on th
present value ofVm is Vm0.0.2 @17#. Inserting these two
constraints in Eq.~2.36! finally yields the safe upper bound

w08
2,0.7, i.e.,uw08u,0.84. ~2.37!

To summarize, quite different rates of evolution for th
dilaton are possible. A very slow variation is expected whe
ever dilaton couplings to both dark energy and dark ma
follow the ‘‘normal’’ behavior ~1.3!. Otherwise, dilaton
variations on the Hubble scale are expected. However,
mological observations set the strict upper bound~2.37! on
the present time variation ofw. For the purpose of the
present section~evaluating the current location of the dila
ton! these two alternatives do not make much difference
cause the vacuum-dominance era started less than abou
e-folds away@ ln(11z* ) with z* ,1#. Therefore,w did not
have enough ‘‘p time,’’ during vacuum dominance, to mov
much, even if it is coupled to vacuum energy withaV.
2(c/4);1.

Finally, we conclude from this analysis that, to a go
approximation~and using the fact that the phenomenology
the matter era constrains the dark-matter couplings of
7-7



.

se
p

ffi

is

th
nc
x

s

a

m
al

e
-

ila

,

u-

-
n

ting
e

y

at
n
-

-
the

-
e

o

est

f ra-

e
an-
m
the

T. DAMOUR, F. PIAZZA, AND G. VENEZIANO PHYSICAL REVIEW D66, 046007 ~2002!
dilaton to be rather small!, the value ofw now is essentially
given by the valuewend at the end of inflation, i.e., by Eq
~2.21!.

III. DEVIATIONS FROM GENERAL RELATIVITY
INDUCED BY A RUNAWAY DILATON

A. Composition-independent deviations from general relativity

The previous section reached the conclusion that pre
deviations from general relativity are given, to a good a
proximation, by the values of the matter-coupling coe
cientsaA(w) given by Eq.~2.27! calculated atw.wend as
given by Eq. ~2.25!. Let us now see the meaning of th
result in terms of observable quantities.

Let us first consider the~approximately! composition-
independent deviations from general relativity, i.e., those
do not essentially depend on violations of the equivale
principle. Most composition-independent gravitational e
periments~in the solar system or in binary pulsars! consider
the long-range interaction between objects whose masse
essentially baryonic~the Sun, planets, neutron stars!. As ar-
gued in @2,3# the relevant coupling coefficientaA is then
approximately universal and given by the logarithmic deriv
tive of the QCD confinement scaleLQCD(w), because the
mass of hadrons is essentially given by a pure number ti
LQCD(w). @We shall consider below the small, nonunivers
corrections tomA(w) andaA(w) linked to QED effects and
quark masses.# Remembering from Eq.~1.1! the fact that, in
the string frame@where there is a fixed cutoff linked to th
string massM̃ s;(a8)21/2# the gauge coupling is dilaton de
pendent@gF

225BF(w)#, we see that~after conformal trans-
formation! the Einstein-frame confinement scale has a d
ton dependence of the form

LQCD~w!;C21/2Bg
21/2~w!exp@28p2b3

21BF~w!#M̃ s ,
~3.1!

whereb3 denotes the one-loop~rational! coefficient entering
the renormalization group running ofgF . Here BF(w) de-
notes the coupling to the SU~3! gauge fields. For simplicity
we shall assume that~modulo rational coefficients! all gauge
fields couple~near the string cutoff! to the sameBF(w). This
yields the following approximately universal dilaton co
pling to hadronic matter:

ahad~w!.F lnS M̃ s

LQCD
D 1

1

2
G ] ln BF

21~w!

]w
. ~3.2!

We recall that the quantityahad(w), which measures the cou
pling of the dilaton to hadronic matter, should not be co
fused with any ‘‘strong’’ gauge coupling,as5gs

2/4p. Nu-
merically, the coefficient in front of the RHS of Eq.~3.2! is
of order 40. Consistently with our basic assumption~1.3!, we
parametrize thew dependence of the gauge couplinggF

2

5BF
21 as

BF
21~w!5BF

21~1`!@12bFe2cw#. ~3.3!
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Note that, likebl ~see Sec. II A!, bF is also expected to be
smallish @;BF

21(1`) or, equivalently,;CF
21 in the nota-

tion of Eq. ~1.3!# and typically the ratiobF /bl is of order
unity. We finally obtain

ahad~w!.40bFce2cw. ~3.4!

We can now insert the estimate~2.25! of the value ofw
reached because of the cosmological evolution. Neglec
the O(1) renormalization factor due to quantum noise, w
get the estimate

ahad~wend!.3.2
bF

blc
dH

4/~n12! , ~3.5!

ahad
2 ~wend!.10S bF

blcD 2

dH
8/(n12) . ~3.6!

As said above, it is plausible to expect that the quantitc
~which is a ratio! and the ratiobF /bl are both of order unity.
This then leads to the numerical estimateahad

2 ;10dH
8/(n12) ,

with dH.531025. An interesting aspect of this result is th
the expected present value ofahad

2 depends rather strongly o
the value of the exponentn @which entered the inflaton po
tential V(x)}xn#. In the casen52 @i.e., V(x)5 1

2 mx
2x2# we

have ahad
2 ;2.531028, while if n54 @V(x)5 1

4 lx4# we
haveahad

2 ;1.831025.
How do these numbers compare to present~composition-

independent! experimental limits on deviations from Ein
stein’s theory@18#? This question has been addressed in
literature. Concerning solar-system~post-Newtonian! tests it
was shown~see, e.g.,@19#! that the two main ‘‘Eddington’’
parametersg21 and b21 measuring post-Newtonian de
viations from general relativity are linked as follows to th
dilaton couplingahad(w):

g21522
ahad

2

11ahad
2

.22 ahad
2 , ~3.7!

b215
1

2

ahad8 ahad
2

~11ahad
2 !2

.
1

2
ahad8 ahad

2 , ~3.8!

whereahad8 []ahad(w)/]w.
From Eq. ~3.4! we see thatahad8 .2cahad, so that the

deviationb21 is O(ahad
3 ) and thereby predicted to be to

small to be phenomenologically interesting. This leavesg
21.22 ahad

2 as the leading observable deviation. The b
current solar-system limit ong21 comes from very long
baseline interferometry measurements of the deflection o
dio waves by the Sun and is~approximately! ug21u
&231024, corresponding toahad

2 &1024 ~see @18# for re-
views and references!. In addition to solar-system tests, w
should also consider binary-pulsar tests which provide
other high-precision window on possible deviations fro
general relativity. They have been analyzed in terms of
7-8
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two quantitiesahad ~denoteda) and ahad8 ~denotedb) in
@20#. The final conclusion is that the binary-pulsar limit o
ahad is of orderahad

2 &1023.
At this stage it seems that the runaway scenario explo

here is leading to deviations from general relativity whi
are much smaller than present experimental limits. Howe
we must turn our attention tocomposition-dependenteffects
which turn out to be much more sensitive tests.

B. Composition-dependent deviations from general relativity

Let us then consider situations where the nonunive
couplings of the dilaton induce~apparent! violations of the
equivalence principle. Let us start by considering the co
position dependence of the dilaton couplingaA , Eq. ~2.27!,
i.e., the dependence ofaA on the type of matter we conside
The definition ofaA is such that, the Newtonian approxim
tion, the interaction potential between particleA and particle
B is 2GABmAmB /r AB where@3#

GAB5G~11aAaB!. ~3.9!

Here,G is the bare gravitational coupling constant enter
the Einstein-frame action~2.4!, and aA5aA(w) is the
strength of the dilaton coupling toA particles, taken at the
present~cosmologically determined! VEV of w. The term
aAaB comes from the additional attractive effect of dilato
exchange. Two test masses, made respectively ofA- and
B-type particles, will then fall in the gravitational field gen
erated by an external massmE with accelerations differing
by

S Da

a D
AB

[2
aA2aB

aA1aB
.~aA2aB!aE . ~3.10!

We have seen above that in lowest approximationaA.ahad
does not depend on the composition ofA. We need now,
however, to retain the small composition-dependent effe
in aA linked to thew dependence of QED and quark cont
butions tomA . This has been investigated in@3# with the
result

S Da

a D
AB

5S ahad

40 D 2FCBDS B

M D1CDDS D

M D1CEDS E

M D G
AB

,

~3.11!

where (DX)AB[XA2XB , B[N1Z is the baryon number
D[N2Z the neutron excess,E[Z(Z21)/(N1Z)1/3 a
quantity linked to nuclear Coulomb effects, andM[m/u
denotes the mass in atomic mass units,u
5931.49432 MeV. It is difficult~and model dependent! to
try to estimate the coefficientsCB andCD . It was argued in
@3# that their contributions to Eq.~3.11! are generically ex-
pected to be subdominant with respect to the last contr
tion, proportional toCE , which can be better estimated b
cause it is linked to thew dependence of the fine-structu
constante2}BF

21(w). This then leads to the numerical es
mateCE.3.1431022 and a violation of the universality o
free fall approximately given by
04600
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S Da

a D
AB

.231025ahad
2 F S E

M D
A

2S E

M D
B
G . ~3.12!

The values ofB/M , D/M , and E/M were computed in
@21#. For mass pairs that have actually been used in rec
experiments~such as beryllium and copper!, as well as for
mass pairs that are planned to be used in forthcoming exp
ments ~such as platinum and titanium! one finds (E/M )Cu
2(E/M )Be52.56, (E/M )Pt2(E/M )Ti52.65. Using the av-
erage estimateD(E/M ).2.6, we get from Eqs.~3.12! and
~3.6! the estimate

S Da

a D.5.231025ahad
2

.5.231024S bF

blcD 2

dH
8/(n12) . ~3.13!

Note also@from Eq. ~3.7!# the link between composition
dependent effects and post-Newtonian ones

S Da

a D.22.631025~g21!. ~3.14!

As current tests of the universality of free fall~UFF! have
put limits in the 10212 range @e.g., (Da/a)Be Cu5(21.9
62.5)310212 from @22##, we see from Eq.~3.14! that this
corresponds to limits ong21 or ahad

2 in the 1027 range.
Therefore tests of the UFF put much more stringent limits
dilaton models than solar-system or binary-pulsar tests.

If we insert the estimatedH;531025 in Eq. ~3.13! we
obtain a level of violation of UFF due to a runaway dilato
which is

Da

a
.1.3S bF

blcD 2

310212 for n52, ~3.15!

Da

a
.0.98S bF

blcD 2

31029 for n54. ~3.16!

At face value, one is tempted to conclude that a scen
with n54 @i.e., V(x)}x4# tends to be too weak an attracto
towardw51` to be naturally compatible with equivalence
principle tests.~See, however, the discussion below.! On the
other hand, the simple scenarion52 @V(x)5 1

2 mx
2x2# is

quite appealing in that it naturally provides enough attract
toward w51` to be compatible with all existing experi
mental tests. At the same time it suggests that a modest
provement in the precision of UFF experiments might d
cover a violation caused by a runaway dilaton.

C. Cosmological variation of ‘‘constants’’

Let us now consider another possible deviation from g
eral relativity and the standard model: a possible variation
the coupling constants, most notably of the fine-struct
7-9
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constante2/\c on which the strongest limits are availabl
We will discuss first the effects due to the cosmological ti
variation of the homogeneous component ofw and, in the
next subsection, the possible spatial~and time! variations due
to quantum fluctuations ofw as they were amplified during
inflation.

Consistently with our previous assumptions we exp
e2}BF

21(w) so that, from Eq.~3.3!,

e2~w!5e2~1`!@12bFe2cw#. ~3.17!

The present logarithmic variation ofe2 ~using againdp
5H dt; w85dw/dp) is thus given by

d ln e2

H dt
5

d ln e2

dp
.bFce2cww08 , ~3.18!

where the current value ofw8,w08 , is given in general by Eq
~2.32!. Using Eq.~3.4!, we can rewrite the result~3.18! in
terms of the hadronic coupling:

d ln e2

H dt
.

1

40
ahadw08 . ~3.19!

As said in Sec. II B, we have basically two alternativ
concerning the current coupling of the dilaton to the dom
nant energy sources in the universe. These two alterna
lead to drastically different predictions for the current val
of the rate of variation of the fine-structure constant. We sh
consider these two alternatives in turn.

In the conservative case where the dilaton does not p
any special role in the present accelerated phase of the
verse (aV.0) nor does it have any stronger coupling to da
matter than to visible matter (am.2bmce2cw) the dilaton
‘‘velocity’’ w8 is exponentially suppressed@so that, from Eq.
~2.34!, VV.12Vm# and by Eq.~2.32! one obtains

d ln e2

H dt
.2

Vm

Vm12VV
bFce2cwam~w!

.
Vm

22Vm
bFbmc2e22cw. ~3.20!

An indicative value for the ratioVm /(Vm12VV).Vm /(2
2Vm), by taking, for instance,Vm50.3, is 0.18. As above
it is useful to relate Eq.~3.20! to the estimate~3.4! for ahad.
This yields

d ln e2

H dt
.

1

~40!2

Vm

22Vm

bm

bF
ahad

2 . ~3.21!

In terms of the UFF levelDa/a predicted by our model in
Eq. ~3.13! we see also that

d ln e2

H dt
.12

Vm

22Vm

bm

bF

Da

a
. ~3.22!

Even if the universe were completely dominated by d
matter (Vm51) we see, assuming thatbm /bF is of order
unity, that current experimental limits on UFF (Da/a
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&10212) imply ~within dilaton models! that ud ln e2/dtu
&10211H;10221 yr21 ~the sign ofd ln e2/dt being given by
the sign ofbm /bF). This level of variation is much smalle
than the current best limit on the time variation ofe2,
namely,ud ln e2/dtu&5310217 yr21;531027H, as obtained
from an analysis of Oklo data@23#. ~Note that the
assumption-dependent analysis of Ref.@24# gives a limit on
the variation ofe2 which is strengthened by about two orde
of magnitude.!

The situation, however, is drastically different if we co
sider the alternative case where the dilaton coupling to
current dominant energy sources does not tend to trivia
as in the case of aw-dependent vacuum energyV(w)5V0
1V1e2cw when the first term is zero or negligible. In such
case the dilaton shares a relevant part of the total ene
density and more significant~though still quite constrained
by UFF data! variations of the coupling constants are gen
ally expected. A general expression for the dilaton ‘‘velo
ity’’ is given in Eq. ~2.36! in terms of observable quantities
Using Eqs.~2.36! and ~3.19! one can relate the expecte
variation of the electromagnetic coupling constant to
hadronic coupling:

d ln e2

H dt
.6

ahad

40
A11q023Vm/2. ~3.23!

We can also use the estimate~3.5! relating ahad to the
density fluctuations generated during inflation. We obtain

d ln e2

H dt
.6831022A11q023Vm/2

bF

blc
dH

4/(n12) .

~3.24!

However, in view of the theoretical uncertainties attach
to the initial conditionsx in andw in used in the estimate~3.5!,
as well as the ones associated with the order unity r
bF /(blc), it is more interesting to rewrite our prediction i
terms of observablequantities. Using again the link Eq
~3.13! betweenahad and the observable violation of the un
versality of free fall the above result can be written in t
form

d ln e2

H dt
.63.531026A11q023Vm/2A1012

Da

a
.

~3.25!

Note that the sign of the variation ofe2 is in general
model dependent~as it depends on both the sign ofbF and
the sign ofw08). Specific classes of models might, howev
favor particular signs ofde2/dt. For instance, from the poin
of view of @5# one would expect theO(e2f) terms in Eq.
~1.3! to be positive, which would then imply thatbF is posi-
tive. If we combine this information with the prediction Eq
~2.33! of the model@6# implying thatw8 is also positive, we
reach the conclusion thate2 must be currentlyincreasing.
7-10
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Independently of this question of the sign, we see that
~3.25! predicts an interesting link between the observatio
violation of the UFF~constrained toDa/a&10212), and the
current time variation of the fine-structure constant. Contr
to the relation~3.22!, obtained above under the alternati
assumption about the dilaton dependence of the domi
cosmological energy, which predicted a relation linear
Da/a, we have here a relation involving the square root
the UFF violation~such a relation is similar to the result o
@11# which concerned the time variation of the Newton co
stant!.

The phenomenologically interesting consequence
Eq. ~3.25! is to predict a time variation of constants whic
may be large enough to be detected by high-precis
laboratory experiments. Indeed, usingH0.66 km/s/Mpc,
and the plausible estimatesVm50.3, q0520.4, Eq.
~3.25! yields the numerical estimate d ln e2/dt
;60.9310216A1012Da/a yr21. Therefore, the curren
bound on UFF violations (Da/a;10212) corresponds to the
level 10216 yr21, which is comparable to the planned sen
tivity of currently developed cold-atom clocks@25#. ~Present
laboratory bounds are at the 10214 yr21 level @26,25#.! Note
that, if we insert in Eq.~3.25! the secure boundsVm.0.2
andq0,0 @leading to the limit Eq.~2.37!#, we get as maxi-
mal estimate of the time variation of the fine-structure co
stantd ln e2/dt;62.0310216A1012Da/a yr21. We note also
that the upper limit on the variation ofe2 given by the Oklo
data, i.e.,ud ln e2/dtu&5310217yr21 @23#, ‘‘corresponds’’ to
a violation of the UFF at the level;10213.

In this respect, it is interesting to consider not only t
presentvariation ofe2 ~the only one relevant for laborator
experiments!, but also its variation over several billions o
years.~We recall that the Oklo phenomenon took place ab
two billion years ago, and that astronomical observatio
constrain the variation ofe2 over the last ten billion years o
so.! In particular, an interesting question is to see whet
our model could reconcile the Oklo limit~which corresponds
to a redshiftz.0.14) with the recent claim@27# of a varia-
tion De2/e25(20.7260.18)31025 around redshifts z
'0.5–3.5 as proposed in@12,13#. The only hope of recon-
ciling the two results would be to allow for a faster variatio
of e2 for redshiftsz.0.5. Such recent redshifts have~appar-
ently! been connected to a transition from matter domina
to vacuum dominance. Let us see whether taking into
count this transition might allow for a large enough chan
of e2 around redshiftsz'0.5–3.5. We must clearly assum
the ‘‘strong coupling’’ scenarioam5O(1). In this scenario,
the variation ofw during the matter era is given by Eq
~2.31!. Neglecting, for simplicity, the transient evolution e
fects localized around the matter-vacuum transition~and
treating bothwm8 52am andwV85w08 as constants!, the solu-
tion giving the recent cosmological evolution ofw readsw
2w052w08 ln(11z) during the vacuum era, andw2w0

52w08 ln(11z* )2wm8 ln@(11z)/(11z* )# during the matter era
~the index 0 refers to the present epoch, i.e.,z50; z* de-
notes the transition redshift!. Inserting this change in Eq
~3.17! leads to the following expression for the cosmologic
change of the fine-structure constant:
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e0
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52sgn~bF!3.531026

3Fw08 ln~11z* !1wm8 ln
11z

11z*
GA1012

Da

a
. ~3.26!

Here, we have written the result for the matter era. Dur
the vacuum era the bracket is simply@w08 ln(11z)#. Remem-
bering that the absolute value ofwm8 is ~like that of wV8 )
observationally constrained to be smaller thanA0.3.0.55
~and thatw08 is also constrained byuwV8 u,0.84), we see tha
there is no way, within our model, to explain a variation
e2 as large asDe2/e25(20.7260.18)31025 around red-
shiftsz'0.5–3.5@27#. In our model, even under the assum
tion that UFF is violated just below the currently tested lev
such a change would have to correspond to a valueuwm8 u
.2, entailing observationally unacceptable modifications
standard cosmology.@For instance, in the model@6# a value
as large asam.1 already leads to a pathological behavi
~‘‘total dragging’’! where all the components scale like radi
tion.# This difficulty of reconciling the Oklo limit with the
claim of @27# was addressed in@13,12# within a different
class of models, namely, with a fieldf which does not
couple universally to all gauge fieldsFmn , as the dilatonw is
expected to do. The fact that the fieldf in @13# ~or c in @12#!
is assumed to couple only to the electromagnetic gauge
drastically changes our Eq.~3.13! and allows one to satisfy
the UFF limit Da/a&10212 for a stronger coupling off to
electromagnetism than in our class of models, i.e.,~in our
notation! for a largerd ln BF(w)/dw. This explains why Ref.
@13# could construct some explicit~but fine-tuned! models in
which all observational limits~UFF, Oklo, etc.! could be met
and still allow for a variation ofe2 as strong as the claim
@28#. The maximal variation predicted by Eq.~3.26! for red-
shifts corresponding to the matter era~obtained whenDa/a
510212 and wm8 56A0.3; and assuming a smaller value
w08 to be compatible with the Oklo constraint! is of order
De2/e2561.931026. This is only a factor;4 below the
claim @27# and is at the level of their one sigma error ba
Therefore a modest improvement in the observational pr
sion ~accompanied by an improved control of systemati!
will start to probe a domain of variation of constants whic
according to our scenario, corresponds to an UFF violat
smaller than the 10212 level.

D. Spatiotemporal fluctuations of the ‘‘constants’’

We now turn to the second possible source of spat
temporal variations fore2 in our model, the quantum fluc
tuations of the dilaton generated during inflation. Within li
ear perturbation theory, the relevant calculation may
summarized as follows.

Consider a flat Friedmann-Robertson-Walker~FRW! uni-
verseds252dt21a(t)2S idxi

2 . The dilaton fluctuations can
be expanded in Fourier componentsdwk of given comoving
momentumk as follows:

dw~x,t !5
1

~2p!3/2E d3k dwk~ t !eikx, ~3.27!
7-11
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where t is the cosmological time. Each Fourier modedwk
‘‘leaves’’ the horizon during inflation with an amplitud
;Ĥex(k)/A2k3 @29# where, by definition,Ĥex(k) is the value
of the dimensionless Hubble expansion rate aska21 equals
H during inflation~note that we denote here byĤex what was
denoted byĤ3 above!. Well after the exit (k!aH) the am-
wo
n

o

o

04600
plitude of each mode ‘‘freezes out,’’ i.e., remains rough
constant, until it reenters the horizon during the po
inflationary epoch (kare

21.Hre). After reentry the amplitude
starts to damp out asa21. For a given Fourier modedwk(t),
the latter damping effect is described by the piecewise fu
tion
hird
suming a
f z~k![H 1 if a0
21H0

21k,~z11!1/2,

a0
2H0

2~z11!k22 if ~z11!1/2,a0
21H0

21k,102,

1022a0H0~z11!k21 if a0
21H0

21k.102.

~3.28!

Here the cosmological redshiftz5a0 /a(t)21 has been introduced in replacement of the cosmological timet. The first case
refers to Fourier modes that have not reentered yet at redshiftz and whose amplitudes are still frozen. The second and t
cases refer to modes that reenter during matter and radiation domination, respectively. Putting all together, and as
Gaussian probability distribution for the perturbations, we have

^dwk~ t !* dwk8~ t8!&5
Ĥex

2 ~k!

2k3
f z~k! f z8~k!d3~k2k8!. ~3.29!

Possible spatial/temporal variations ofe2 induced by the fluctuations of the dilaton will be given by

Dfluce2

e2 U
(x,t;x8,t8)

5
d ln e2

dw
Dflucwu(x,t;x8,t8) , ~3.30!

where the rmsDflucw between two events (x,t) and (x8,t8) is defined as follows:

Dflucwu(x,t;x8,t8)
2 [^@dw~x,t !2dw~x8,t8!#2&

5
Ĥex

2

~2p!3E d3k

2 k3
@ f z~k!21 f z8~k!222 f z~k! f z8~k!eik(x2x8)# ~3.31!

5
Ĥex

2

~2p!2E0

`dk

k H @ f z~k!2 f z8~k!#212 f z~k! f z8~k!F12
sinkx

kx G J . ~3.32!
all,
e
ng

a-
Here,x[ux2x8u is the coordinate distance between the t
events and, consistently with the slow-roll approximatio
the Hubble expansion rate at exit has been assumed t
scale invariant:Ĥex(k).Ĥex.331025.

If one considers spatial fluctuations over terrestrial
solar-system proper length scalesl 5a0k21!H0

21 at the
present timet5t85t0, the first square brackets in Eq.~3.32!
vanishes and one can expand the sine function at smallkx,
obtaining

Dflucwu l ;z50.
Ĥex

2p

H0l

A3
,

Dfluce2

e2 U
l ;z50

.1022ahadĤexH0l .

~3.33!
,
be

r

As expected, these variations are extremely sm
Dfluce2/e2u l ;z50.10233l /km. It is also interesting to compar
dilaton fluctuations at different redshifts along a comovi
observer worldline. By puttingx.0 in Eq.~3.32! the second
term in the square brackets vanishes and one has

Dflucwuz;x50.
Ĥex

2p

1

A2
F log~11z!2

z

11z
1

1028

2
z2G1/2

.
Ĥex

2p F z

2
2

z2

3
1•••G . ~3.34!

It is slightly more complicated to compare dilaton fluctu
tions between ‘‘now’’ and events at redshiftz along a null
7-12
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ray. Expanding in powers ofz aroundz50 one gets from Eq.
~3.32!, after a straightforward calculation,

Dflucwuz.
Ĥex

2p F1

2
A7

3
z2

2

A21
z21•••G . ~3.35!

Numerically, at redshiftz;1, the effects of dilatonic fluc-
tuations giveDflucwuz51;Ĥex/(2p);531026. This is to be
contrasted with the effects of the cosmic, homogeneous e
lution which yields Dwuz51.am . In the ‘‘normal’’ case
wheream;e2cw;dH

4/(n12) , the two effects, thougha priori
unrelated, are related in our scenario, whenn52. Indeed, if
n52, dH

4/(n12)5dH;531025 is linked to Ĥex/(2p) via

d(xex)5AĤex/(2p) with A5(8/3)V/]xV5(8/3)(x/n)
.40/(3An);10. On the other hand, in the case wherew is
strongly coupled to dark matter, the homogeneous evolu
Dwuz51.am;1 is parametrically larger than the fluctu
tions Dflucwuz51;Ĥex/(2p).

To conclude this subsection, we see that the inhomo
neous space-time fluctuations of the fine-structure cons
are typically too small to be observable~if the limits from
UFF are already satisfied!, being suppressed, relative to the
natural valuesH0l ,H0t, by the small factorahadĤex.

IV. SUMMARY AND CONCLUSION

We have studied the dilaton-fixing mechanism of@3#
within the context where the dilaton-dependent low-ene
couplings are extremized atw51`, i.e., for infinitely large
values of the bare string couplinggs

25ef.ecw. @The crucial
coupling to the inflaton, sayl(w) in Eq. ~2.11!, must be
minimizedat w→1`; the other couplings can be eithe
minimized or maximized there.# This possibility of a fixed
point at infinity ~in bare string coupling space! has recently
been suggested@5#, and its late cosmological consequenc
have been explored in@6#. We found that a primordial infla-
tionary stage, with inflaton potentialV(x)5l(w)xn/n, was
much less efficient in decoupling a dilaton with least co
plings at infinity than in the case where the least couplin
are reached at a finite value ofw ~as in @3,8#!. This reduced
efficiency has interesting phenomenological consequen
Indeed, it predicts much larger observable deviations fr
general relativity. In the case of the simplest chaotic poten
@10# V(x)5 1

2 mx
2(w)x2, we find that, under the simplest a

sumptions about the preinflationary state, this scenario
dicts violations of the universality of free fall of orde
Da/a;531024dH

2 wheredH is the density fluctuation gen
erated by inflation on horizon scales. The observed leve
large-scale density~and cosmic microwave background tem
perature! fluctuations fixesdH to be around 531025 which
finally leads to a prediction for a violation of the UFF ne
the Da/a;10212 level. This is naturally compatible with
present experimental tests of the equivalence principle,
suggests that a modest improvement in the precision of U
tests might be able to detect a deviation linked to dila
exchange with a coupling reduced by the attraction tow
the fixed point at infinity. Because of the presence of u
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known dimensionless ratios (c,bF /bl) in our estimates, and
of quantum noise in the evolution of the dilaton, we cann
give sharp quantitative estimates ofDa/a. However, we note
that dilaton-induced violations of the UFF have a rather p
cise signature with a composition dependence of the fo
~3.11!, with probable domination by the last~Coulomb en-
ergy! term @3#. As explored in@21# this signature is quite
distinct from UFF violations induced by other fields, such
a vector field. We note that the approved Center Natio
d’Etudes Spatiales~CNES! mission MICROSCOPE@30# ~to
fly in 2004! will explore the levelDa/a;10215, while the
planned National Aeronautics and Space Agency~NASA!
and European Space Agency~ESA! mission STEP~satellite
test of the equivalence principle! @31# could explore the
Da/a;10218 level. Our scenario gives additional motivatio
for such experiments and suggests that they might fin
rather strong violation signal, whose composition dep
dence might then be studied in detail to compare it with E
~3.11!.

In the case of inflationary potentialsV(x)}xn with n
.2 our simplest estimates predict a violation of the UFF
orderDa/a;531024dH

8/(n12) which is larger than 10212. At
face value this suggests that existing UFF experimental d
can be interpreted as favoringn<2 overn.2. However, we
must remember that our estimates have made several sim
fying assumptions. It is possible that the large quantum fl
tuations of the inflaton in the self-regenerating regimex
.x in , with x in defined by Eq.~2.18!, can give more time for
w to run away toward large values, so that the effective va
of ecw in to be used in Eq.~2.21! turn out to dominate the firs
term in the RHS that we have used for our estimates.
leave to future work a study of the system of Langevin eq
tions describing the coupled fluctuations off andx during
the self-regenerating regime.

Finally let us note some other conclusions of our work
We recover the conclusion of previous works on dilat

models that the most interesting experimental probes o
massless weakly coupled dilaton are tests of the UFF.
composition-independent gravitational tests~solar system,
binary pulsar! tend to be much less sensitive probes@as high-
lighted by the relations~3.14!, ~3.21!, and~3.22!#.

However, a possible exception concerns the time varia
of the coupling constants. Here the conclusion depends
cially on the assumptions made about the couplings of
dilaton to the cosmologically dominant forms of ener
~dark matter and/or dark energy!. If these couplings are o
order unity @and as large as is phenomenologically acce
able, i.e., so that (w08)

250.7#, the present time variation
of the fine-structure constant is linked to the violatio
of the UFF by the relation d ln e2/dt
;62.0310216A1012Da/a yr21. ~The most natural sign her
is 1, i.e., bF.0, which corresponds tosmaller e2 in the
past, just as suggested by the claim@27#.! Such a time varia-
tion might be observable~if Da/a is not very much below its
present upper bound;10212) through the comparison o
high-accuracy cold-atom clocks and/or via improved m
surements of astronomical spectra.

More theoretical work is needed to justify the basic a
7-13
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sumption~1.3! of our scenario. In particular, it is crucial t
investigate whether it is natural to expect that the sign of
crucial coefficientbl in Eq. ~2.12! be indeedpositive. @Re-
call that the general mechanism of@3# is an attraction toward
‘‘least couplings’’ while Eq.~1.3! with O(e2f).0 leads to
largest couplings at infinity.# Note in this respect that the sig
of the other bi ’s is not important as, once inflation ha
pushedecw to very large valuesecwend, the subsequent cos
mological evolutions tend to be ineffective in further displa
ing w.
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APPENDIX: THE STOCHASTIC EVOLUTION
OF THE DILATON

In this appendix we study the stochastic evolution of
dilaton w during inflation as described by the Langevin-ty
equation~2.23!. We restrict our attention to the region o
phase space where the evolution of the inflatonx is classical,
and to a power-law potential of the form~2.11!. It follows
that the inflaton evolves according to the classical slow-
equation~2.14! whose solution reads

x25x in
2 2np, ~A1!

wherep, the parameter defined in Eq.~2.7!, is shifted in such
a way thatpin[0. Equation~2.23! takes the form

dw

dp
5

1

2
blce2cw1j~p!, ~A2!

wherej(p) is a Gaussian stochastic variable~GSV!, with a
‘‘time-dependent’’ rms amplitudeĤ(p)/2p:

^j~p1!j~p2!&5
Ĥ2

~2p!2
d~p12p2! ~A3!

@the relation to the normalized random white noise term
Eq. ~2.23! is j(p)5j2(p)Ĥ/2p#. For any given source term
j(p), the formal solution of Eq.~A2! reads

ecw(p)5ecw inech(p)1
blc2

2 E
0

p

dp8ec[h(p)2h(p8)] ,

h~p![E
0

p

dp8j~p8!. ~A4!
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Note that the classical solution in Eq.~2.17!, ecwcl(p)5ecw in

1(blc2/2)p, can be easily recovered in the small noise lim
j(p)→0, h(p)→0.

It proves convenient to compare the true solution to
classical one by studying the statistical behavior of the ra
A(p)[ecw(p)/ecwcl(p). As we will show below, ^ech(p)&
5O(1). Moreover, we are also assumingecw in5O(1) or, at
least,ecw in!(blc2/2)p ~see Sec. II for details! so that the
leading contribution to the first equation in~A4! is given by
the integral, and we have

A~p![ecw(p)/ecwcl(p).
1

pE0

p

dp8ec[h(p)2h(p8)] . ~A5!

Sincej(p) is a GSV, its integralh(p) is also a~centered!
GSV. Moreover, ifx is a GSV withsx

2[^x2&2^x&25^x2&,
by Bloch’s theoremy5ex is a new stochastic variable wit

^y&5^ex&5e^x2&/2 andsy
25e2^x2&2e^x2&. The average value

of A(p) thus reads

^A~p!&.
1

pE0

p

dp8e(c2/2)^[h(p)2h(p8)] 2&. ~A6!

The exponent on the right-hand side of the above equa
can be estimated by using Eq.~A3! and the slow-roll ap-
proximation Ĥ2.2V(x,w)/352l(w)xn/3n.2l`xn/3n.
One gets

^@h~p!2h~p8!#2&5
1

~2p!2Ep8

p

Ĥ2dp9

.
n

2~n12! F S x~p8!

x in
D n12

2S x~p!

x in
D n12G ,

~A7!

wherex in is the value at exit from self-regenerating inflatio
Ĥ(x in)/2p5n/(2x in) ~see Sec. II for more details!. Since we
are interested in evaluating Eq.~A6! at the end of inflation,
p5pend.x in

2 /n, we can thus write

^@h~p!2h~p8!#2&.
n

2~n12! F12
p8

pend
G (n12)/2

. ~A8!

When evaluated atp850, the above formula gives
^h(p)2&5n/@2(n12)#. Thus the normalization factor to th
initial condition in Eq. ~A4! is of order 1, as anticipated

^ech(p)&5e(1/2)c^h(p)2&5O(1). From Eqs.~A6! and~A8! we
have

^A~pend!&.
1

pend
E

0

pend
dp8expF c2n

4~n12! S 12
p8

pend
D (n12)/2G

5E
0

1

expF c2n

4~n12!
x(n12)/2Gdx

5expS c2nu

4~n12! D5O~1!, ~A9!
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with 0,u,1.
We can estimate the dispersion of the same quantity

expanding the exponential inside the integral~A6! in powers
of j(p):

A~p!.11
c

pE0

p

dp8E
p8

p

dp9j~p9!

1
1

2

c2

p E0

p

dp8S E
p8

p

dp9j~p9! D 2

1•••. ~A10!

At lowest order inj(p) the variance of the above quanti
calculated atp5pend reads

sA(pend)
2 5K S c

pE0

p

dp8E
p8

p

dp9j~p9! D 2L
al
ta

et

tt

i-

04600
y 5
c2

p2E0

p

dp8E
0

p

dp9E
max(p8,p9)

p

dp-
Ĥ2~p-!

~2p!2

5
2c2

p2 E0

p

dp8p8E
p8

p

dp9
Ĥ2~p9!

~2p!2
. ~A11!

As in Eq. ~A7! we can use the slow-roll approximation an
obtain

sA(pend)
2 5

c2n

n12E0

1

x~12x!(n12)/2dx

5c2O~1!. ~A12!
E.
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