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Violations of the equivalence principle in a dilaton-runaway scenario
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We explore a version of the cosmological dilaton-fixing and decoupling mechanism in which the dilaton
dependence of the low-energy effective action is extremized for infinitely large values of the bare string
coupling g§=e¢. We study the efficiency with which the dilatap runs away toward its “fixed point” at
infinity during a primordial inflationary stage, and thereby approximately decouples from matter. The residual
dilaton couplings are found to be related to the amplitude of the density fluctuations generated during inflation.
For the simplest inflationary potentis y) =% m)z((¢>) x?, the residual dilaton couplings are shown to predict
violations of the universality of gravitational acceleration near Asda~10"'? level. This suggests that a
modest improvement in the precision of equivalence principle tests might be able to detect the effect of such
a runaway dilaton. Under some assumptions about the coupling of the dilaton to dark matter and/or dark
energy, the expected time variation of natural “constariis”particular of the fine-structure constamight
also be large enough to be within reach of improved experimental or observational data.
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[. INTRODUCTION all the (relevani coupling functionsB; (), the cosmologi-
cal evolution of the graviton-dilaton-matter system naturally

All string theory models predict the existence of a scalardrives ¢ toward ¢,,,. This provides a mechanism for fixing a
partner of the spin 2 graviton: the dilata@® whose vacuum massless dilaton at a value where it decouples from matter
expectation valuéVEV) determines the string coupling con- (“least coupling principle). A simple situation where the
stantgs=e?'? [1]. At tree level, the dilaton is massless and existence of a universally extremizing dilaton valgg, is
has gravitational-strength couplings to matter which violateguaranteed is that & duality, i.e., a symmetrgg«— 1/g,, or
the equivalence principlg2]. This is in violent conflict with  ¢— — ¢ (so that¢,,=0).
present experimental tests of general relativity. It is generally It has been recently suggestgs] that the infinite-bare-
assumed that this conflict is avoided because, after supegoupling limit gs— (¢— +) might yield smoothfinite
symmetry breaking, the dilaton might acquire (lrge limits for all the coupling functions, namely,
enough mass(say m,= 10 2 eV so that observable devia-
tions from Einstein’s gravity are quenched at distances larger Bi($)=C;+0O(e” ?). (1.3
than a fraction of a millimeter However, Ref[3] (see also
[4]) has proposed a mechanism which can naturally reconcile/nder this assumption, the coupling functions are all extrem-
amasslesslilaton with existing experimental data. The basicized at infinity, i.e.,¢,=+. The late-time cosmology of
idea of Ref.[3] was to exploit the string-loop modifications models satisfying Eq.1.3) has recently been explorg@l]. In
of the (four-dimensional effective low-energy actiofwe  the “large N"—type toy model of[5] it would be natural to

use the signature- + + +) expect that the&(e™ %) term in Eq.(1.3) be positivg so that
Bi(¢) be minimizedat infinity. This would correspond to
Bo(¢)~ By(dp) ~ = couplingsh;(¢)~B; *(¢)=C; *—O(e™ %) which aremaxi-
S:J' d4X\/§ " R+ " [20¢—(Ve)?] mizedat infinity. Note, however, that the most relevant cos-

mological coupling for this work, the coupling to the infla-
1 ton, \(¢), contained inV [see Eq(2.11) below] is closer to
——BF(¢)I~:2—V+ - ) , (1.7 a B, than to its inverse. Thus(¢) is naturallyminimizedat
4 infinity (see further discussion of this point belpw crucial
property for the attractor mechanism [&4].

i.e., the ¢ dependence of the various coefficie®g ¢), i In this papet we shall consider in detail the early-time
=g,¢,F, ..., given in the weak-coupling regiore(—0)  cosmology of models satisfying Eq1.3. More precisely,
by series of the form our main aims will be(i) to study the efficiency with which
_ _ _ a primordial inflationary stage driveg toward the “fixed

Bi(¢p)=e ?+ci)+cl’e?+cYe®+..., (12  point” at infinity ¢,,—+= (thereby generalizing the work

coming from genus expansion of string theorg;

=3,92 cl) with n=0,1,2 ... . It wasshown in[3] The main results of this work were recently summarized in a
that, if there exists a special valdg, of ¢ which extremizes short work[7].
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cal extremume,,), and(ii) to give quantitative estimates of
the present violations of the equivalence princifienuni-
versality of free fall, and variation of “constants"Our most ,
important conclusion is that the runaway of the dilaton to- =dBlig. (2.2
ward strong couplingunder the assumptiofi.3)] naturally o i )
leads to equivalence-principle violations which are rather’N® normalization constart is chosen so that the string
large, in the sense of not being much smaller than the prednits coincide with the Einstein units wheg— +o:
ently tested level-10"12 This gives additional motivation CBg(+%)=1. [Note thatC=1/C in terms of the general
for the currently planned improved tests of the universalitynotation of Eq.(1.3.] Introducing the(modified Planck
of free fall. Within our scenario, most of the other deviationsMass

from general relativity(“post-Einsteinian” effects in gravi-

tationally interacting systems: solar system, binary pulsars, ~y 1 4

etc) are too small to be of phenomenological interest. How- M= G~ Ca'’ 2.3
ever, under some assumptions about the coupling ab
dark matter and/or dark energy, the time variation of th
natural “constants’(notably the fine-structure constapire- B
dicted by our scenario might be large enough to be withinX ~
reach of improved experimental and/or observational data.
The phenomenologically interesting conclusion that 4
equivalence-principle violations are generically predicted to S:f d x\/§
be rather large after inflatiofin sharp contrast with the re-
sults of[8]) is due to the fact that the attraction toward an b by ~a
extremum at infinity is much less effective than the attraction —5 F(@)(V)"=mpV(x.¢)
toward a(finite) local extremum as originally contemplated

in [3]. This reduced effectiveness was already pointed out ifnere

Ref. [4] within the context of equivalence-principle-

respecting tensor-scalar theoriés the manner of the _
Jordan-Fierz-Brans-Dicke theorjes F(¢)=By(¢)/By($),

[8] which considered the inflationary attraction toward a lo- 3(Bj 2 B, 1B,
o= J do¢ Z + + E

By By By

€and replacing also the inflaton by the dimensionless variable

C~Y2m; %y, we end up with an action of the form

~2 ~2
2 R 5 (Vo)

~2
, (2.9

IIl. DILATON RUNAWAY V(x,)=C ?mp "By () V(x, ¢). (2.9
In this section we study the dilaton’s runaway during theln view of our basic assumptiofil.3), note that, in the
various stages of cosmological evolution. We first si8a&c.  strong-coupling limit¢p— +, de/d¢ tends, according to
I A) that, as in the case of a local extrem{i8j, inflation is  Eq. (2.2), to the constant(c¢/20g)l’2, while the dilaton-
particularly efficient in pushing toward the fixed point. We dependent factoF(¢) in front of the inflaton kinetic term
then arguéSec. Il B that the order of magnitude of the bare tends to the constar€, /C4. The toy model of Ref[5]
string couplinge?=e®® does not suffer further appreciable suggests that the varioggositive) constants<C; in Eq. (1.3)

changes during all the subsequent evolution. are all largish and comparable to each other. We shall there-
fore assume that the various ratids/C; are of order unity.
A. The inflationary period The most important such ratio for the following is

=(2C,4/C4)"? which gives the asymptotic behavior of the

Assuming some primordial inflationary stage driven by .o string coupling as

the potential energy of an inflaton fielg, and taking into
account generic couplings to the dilatgn we consider an ggzedzzew_ (2.6
effective action of the form

B B In view of the fact that, in the strong-coupling limit we are
S:f d4x\/§ ﬂ”R_,_M[Zﬁ b—(V$)?] interested in, the factdf(¢) in Eq. (2.4) quickly tends to a
a’ a’ constant, we can simplify our analysiwithout modifying

the essential physigsy replacing it by a constarivhich
1 S~ =~ can then be absorbed in a redefinitiom@f Henceforth, we
_Z 2_ .
5B (VX) V(X'¢))' 2D shall simply takeF(¢)=1. (See, however, the comments
below concerning the self-regenerating inflationary regime.

In this string-frame action, the dilaton dependence of all the Following [4.9] it is then useful to combine the Fried-

. ~ ~ . mann equations for the scale facta(t) during inflation
functionsB;(#).V(x.4) is assumed to be of the for(d.2). [ds?= —%It2+ a?(t)8;dx'dx'] with the (eg]uationg of motion

It is convenient to replace thertmode) string metricg,,  of the two scalar field(t),¢(t), to write an autonomous
by the conformally related Einstein metricg,,  equation describing the evolution of the two scalars in terms
=CBy(¢)g,,, and the dilaton field by the variable of the parameter
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a
p=J’ Hdt=J5dt=Ina+const (2.7

measuring the number @folds of the expansion. For any
multiplet of scalar fieldse=(¢?), this yields the simple
equation[4,9]

¢ +2¢' =-V,In|V(e), (2.8

3_¢/2

where¢’=d¢/dp, and where all operations ap are cova-
riantly defined in terms of the--model metric defining the
scalar kinetic term$da?= y,(¢)de?de®]. In our simple
model [with F(¢)=1], we have a flat metrido?=d¢?
+dy?. [Note that, wheny,,(¢) is curved the acceleration
term ¢’ involves a covariant derivativg.

The generic solution of Eq2.8) is easily grasped if one
interprets it as a mechanical model: a particle with position
¢, and velocity-dependent massn(¢')=2/(3—¢'?),
moves, in the “time”p=Ina+cst in the manifolddo? un-
der the influence of an external potentigMfy)| and a con-
stant friction force—2¢'. If the curvature of the effective
potential InV(¢)| is sufficiently small the motion of rap-
idly becomes slow and friction dominated:

d
Ao

ap= VeInV(®).

(2.9

Equation(2.9) is equivalent to the usual “slow roll” approxi-
mation.
Consistently with our general assumptith3), we con-

sider potentials allowing a strong-coupling expansion of the

form

V(x,@)=Vo(x)+Vi(x)e ¢+ 0(e 2°¢), (2.10

where Vy(x) is a typical chaotic-inflation potential with
Vo(0)=0, while V,(0)=v,=0 can possibly providéif v,

PHYSICAL REVIEW D66, 046007 (2002

The universalpositive constant appearing in the expo-
nential e ¢ is the same as in EqQ.2.6) [i.e.,
=(2C4/C4)"2 which is expected to be of order un]t)The
coefﬂment b, in Eq. (2.12 is such thatb, e ¢®=b,e” ?
roughly corresponds to a combination of terms
~iCi’1(9(e*‘/’) coming from the strong-coupling asymp-
totics of severaB;(¢), Eq. (1.3 [see Eq.(2.5]. In the toy
model of[5] one would therefore expe&t, to be smallish.
Anyway, we shall see that in final results only the ratios of
suchb; coefficients enter. More important than the magni-
tude of b, is its sign. It is crucial for the present strong-
coupling attractor scenario to assume that-0, i.e., that
N(¢) reaches aninimumat strong couplingg— +. Note
again that this behavior is consistent with the simple “large
N”"—type idea of[5] if we assimilate\(¢) into one of the
inverse couplingsB; appearing in Eq.(1.1) (for instance
B~ g;z, wheregg is a gauge coupling rather than to the

coupling itself. If the latter were the case(¢) would reach
a maximumas ¢— +, and the attractor mechanism [&]
would drive ¢ toward Weak coupling ¢— —). However,
the Einstein-frameb dependence 0¥ () gets contributions
from severalB; "(¢), Eq. (2.5, which might conspire to
minimize it at strong coupling. This feature is also probably
necessary in order to solve the cosmological-constant prob-
lem through some argument by which the vacuum at infinity
has vanishing energy density.

Substituting the potential2.10 into the slow roll equa-
tion (2.9 and assumindfor simplicity) that V,(x)e ¢ is
significantly smaller thaVy(x) leads to a decoupled set of

evolution equations fox and ¢ (WhereV’'=dV/dy):
dy 1V}
dp- 2V’ 213
d(P 1 c Vl
— —Co_—
dp_ 2 Vo (2.149

Given some “initial” conditionsy;, , @i, (discussed beloyat

>0) the effective cosmological constant driving today’s ac-some starting point, sag=0, the solution of Eqs(2.13,

celeration in the scenario ¢6]. For the sake of simplicity

we shall discuss mainly the “factorized” power-law case

Vo(x)~Vi(x)~x" for which we can conveniently writ¥/

in the form

n

Vo) =M (e) (2.1

with a dilaton-dependent coupling constartp) of the form

MN@)=N,(1+bye %), (2.12

This example belongs to the class of the two-field inflation-

ary potentials discussed {10]. We have checked that our

results remain qualitatively the same for the more general

potential (2.10 provided thatVy(x) andV;(x) are not ex-
tremely different and given the fact that is phenomeno-
logically constrained to be very smalNote that, within the
simplified model(2.12), the ratioV,(x)/Vo(x) is equal to
the constant coefficiert, . ]

(2.14) is simply

Xin V
p=2 f ‘( o) 2.15
xVo(x))’
c? Vi(x(p))
e"‘*’:ec‘/’in+—fd T 2.1
2] “PYolx(p) (219
which simply become
1
p=—(xn—x%.
b,c? b, c?
Co 2_ Cony N~ 2
%+ — - x"=const=e"n+ — - xi,, (2.1

in the simplified case of Eq$2.11),(2.12).
Equations(2.17) show that, in order for the string cou-
pling gﬁzeC‘P to have reached large values at the end of
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inflation, a large total number @folds must have occurred regenerating inflation corresponds simply to takifi@y;,)
while the (dimensionlessinflaton field y decreased from a ~1. Indeed, let us first recall that, during inflation, each
large initial value to a value of order unijn Planck unitg.  (canonically normalizedscalar field(of mass smaller than

To get a quantitative estimate of the string coupling at thehe expansion ratél) undergoes typical quantum fluctua-
end of inflation we need to choose the initial conditionstions of ordet/(2), per Hubble timdsee, e.g[10]). This
Xin»®in- A physically reasonable wafwhich is further dis-  implies (for our dimensionless fieldighat the value ofy at
cussed beloyof choosingy;, is to start the classical evolu- the exit from self-regeneration, say,, is characterized by
.tion (2.13—(2.17) at the exit of the era of se_lf-regenerating ﬂex/(ZW)w[ﬁxV/(ZV)]ex, where A=H/mp is the dimen-
inflation (se€[10] andi references there)lrWQ W'". now show sionless Hubble expansion rate and where the right-hand side
how to relate the exit from self-regenerating inflation to the(RHS) is the classical change of per Hubble time[corre-

size of density fluctuations generated by inflation. sponding to the RHS of Ea(2.1 Usina FEriedmann’s
Let us recall(see[10] and references thergirthat the poncing fo 42.13]. Usi g+ o
equation (in the slow-roll  approximation Hg,

density fluctuations= 5p/p on large scalegestimated in the o ) )
one-field approximation where the inflatop is the main ~ (2/3)V(Xed, it is easily seen that that the exit from self-
regeneration corresponds & y.,)~4/3~1. It is, a poste-

contributoy is obtained by evaluating the expression o9 _ ; . .
riori, physically quite reasonable to start using the classical
2\ 112\/312 evolution system only when thérmal extrapolationof the
) TV (2.189  density fluctuations(x) becomes smaller than 1.
X Within some approximatiofse€] 10]), one can implement
at the valuey= y» , at which the physical scale we are con- the effect of the combined quantum fllfctuations ofx) by
sidering crossed the horizon outward during inflation. For theadding random terms with rms valué§27 on the right-
scale corresponding to our present horizon this usually cohand side of Eqg2.13 and(2.14), dx/dp andd¢/dp being
responds to a valugy (Hg) (xy for shor) reached some 60 precisely the shifts of the fields in a Hubble time. The system
e-folds before the end of slow roll. From Ref10], x  Of equations becomes thus of the Langevin type
~5./n for the model2.11) (and with our modified definition

5 41
(X)—g;

3

of x). The numerical value ob,= () which is compat- dy 1Vy H

ible with cosmological datéstructure formation and cosmic d_p: 2V, + ﬂgl’ (2.22

microwave backgroundis 8,=5x10"°. In the model

(2.11) the functiond(y) defined by Eq(2.18 scales withy d 1 v 0

as x(""22 putting together this information we obtain a d—g;: Ece*C‘PV—lJr 56, (2.23
0 o

relation betweery;, and 8( xi,), which involves the value of

the observable horizon-size fluctuatiofis= 6(xn): N
whereH~[(2/3)V(x, #)]*? (in the slow-roll approximation

8(xin) [ xin) ("2 is the dimensionless expansion rate, and wiigrand &, are
S(xn) = E , (2.19 (independentnormalized random white noises:
ie., (&i(p)&j(p2))=68ij8(p1—P2),  1,i=12. (2.29
5| 2012 5| 2012 When the random force terms dominate the evolution in
Xin=X| 5. =5yn o (220 ejther Eq.(2.22 or Eq. (2.23 the quasiclassical description

(2.13,(2.14 breaks down. The phase space of the sytem can

where we introduced the shorthand notatm‘z 5(X|n) thus be roughly divided into four regions aCCOI’ding to
Inserting Eq.(2.20 into Eq. (2.16 we then obtain the Whether the evolution of none, one, or both of the two fields

following estimate of the string coupling constant after infla-iS dominated by quantum fluctuations. This is depicted in

tion as a function ofp;, and 8(x;,): Fig. 1 where such regions are delimited by dashed, thick
curves in the case of a power-law potentialll).
c? c? Apart from factors of order 1, the evolution of the inflaton
ef¥end—e¥in=—-(V1/Vo)p~ E<V1/VO>X% x is quasiclassical in the region under the line
=\, Y"*2) |n the chaotic inflationary mode[4.0] such an
25c? S| #0012 inflaton’s value corresponds to the exit from the self-
~T<V1/V0>(5_H> ' (2.23) regenerating regime and to the beginning of the quasiclassi-
cal slow-roll inflation. As mentioned above it also corre-
where (V1/V,) denotes the average value of;/Vy: sponds to a perturbatiof( y) ~1. Somewhat surprisingly, in
(V1/Vgy=[dp(V1/Vy)/[dp [note that this average ratio is the model at hand, however, the quasiclassical region for the
equal tob, in the simplified mode(2.12]. inflaton evolutiony=\,, Y"*?) s affected by quantum fluc-

To get a quantitative estimate ef¢end we still need to  tuations that still dominate the evolution @fin the region
estimate the value ob(y;,) corresponding to the chosen above the hyperbolalike curvq=bf’“)\;1/”e‘2°“”“. We
“initial” value of the inflaton. As we will now check, taking must therefore study, in some detail, the evolution of the
for xi» the value corresponding to the exit from self- system in the presence of the noise term goms in Eq.
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Going back to our resulf2.21), we can now insert, ac-

©0.%0) cording to the preceding discussion, the valdgs=1 and

\ et¥in<eC¢end Finally, in the simplified mode(2.11),(2.12),
we get the estimate

\ Quantum  line

et¥end= O( 1) . @%%cl, end
5 19c, XQ / )
< 25¢c
(9, xe) ~0O(1) by (8y)~#(+2), (2.29

©

‘ Quantum @ line

<

2

\\ A more general analysis based on the potenial0

—— leads to the same final result but withreplaced by some
— .
average value okV,,/V,, and withb, replaced by some
average of the rati&/,/V,. Note that smaller values of the
exponentn lead to larger values o€®¢end i.e., to a more
effective attraction toward the “fixed point at infinity.” The
2 . . . ] same is true if we take different exponentsandn; (for V,
0 > 100 Y0 ey 220 300 andV,, respectively and assum&/;(xin)>Vo(xin) to hold
as a result ofy;;>1 andn;>n,. Also note that, numerically,
FIG. 1. The phase space of the system is represented in the cageye considern=2, i.e., the simplest chaotic-inflation po-

cflg,ﬂ,ov_l\fﬁr'lmy kpgter;:ie:jl(z.lb wghl_n:tzh, bA:Ot'l' ‘Zn?])‘? ftentialv=%m)z((qo))(z, Eg. (2.25 involves the large number
oo e fhickuashed cuives Gelimp; e duanim DEnavionol o sx s, 1~2.5x 10°. In the case wheren=4, ie. V

the two fields, the horizontal curve=\_Y""2 and the hyperbo- ) .
e yp =iN(¢)x*, we have instead the number 125,

lalike curve y=bZ"\,"e~2¢¢" peing the limits of the quantum , ,
behavior fory and ¢, respectively. In the white region both fields ~ 0-92X 10*. To understand the phenomenological meaning

have a classical behavior. The last “fully classical” trajectory hasOf these numbers we need to rela&end to the present,
been represented by a thick solid curve. The bright-gray regions ar@bservable deviations from general relativity. This issue is
those where either the or the y evolution is dominated by quan- addressed in Sec. Ill after having argued that the postinfla-
tum fluctuations. The fully quantum region is the dark-gray regiontionary evolution ofe is subdominant.

on the top right.

Log(x)

'S

w

(Qc, Xe)

(2.23, assuming a quasiclassical evolution fpr This is B. Attraction of ¢ by the subsequent cosmological evolution

done in the Appendix. The final result is that, if we start at  \\ie have discussed above the efficiency with which infla-

x=\"0""? (classical evolution foy), the average value tion drives the dilaton toward a fixed point at infinity. We

of e°¢ is multiplicatively renormalizedby a factor of order need to complete this discussion by estimating the effect of

unity, with respect to the classical trajecta@y’, given by  the manye-folds of expansion that took place between the

solving Egs.(2.13,(2.14, i.e., (€°?)=0(1)e°¢e. One also end of inflation and the present time. To address this ques-

finds that the dispersion @ around its average value is tion, we need to study in more detail the coupling of a run-

comparable to its average value. away dilaton to various types of matter, say, a multicompo-
We shall not try to discuss here what happens in the selfnent distribution of(relativistic or nonrelativistig particles.

regenerating regio= xin~ X, "*2). Let us recall that the We work in the Einstein frame, with an action of the type

simple decoupled systefi2.13,(2.14) was obtained by ne-

glecting the kinetic coupling terrf () in Eq. (2.4). If we 4

were to consider a more general model, we would have more— f d x\/§

coupling betweery and ¢ and we would expect thdton-

trary to Fig. 1 which exhibits a “classicap region” above >

the “quantumy line”) the evolution in the self-regenerating B EA: f ML (Xp) 1 - 9pur(Xa)AX3 0. (2.29

region would involve a strongly coupled system of Langevin

equations. Then, as discussed 1], solving such a system ] ) ] . .

necessitates giving boundary conditions on all the boundarigsollowing [2,3], one introduces the crucial dimensionless

of the problem: notably foy—c, but also forp— +w and ~ duantity

¢— —, We leave to future work such an investigati@md

a discussion of what are reasonable boundary condjtibms alnma(e)

this work we shall content ourselves with “starting” the evo- aplp)=——"

lution on the quantuny boundary liney;, with some value

©= @iy, assuming that®¢in is smaller than the driving effect

due to inflation, i.e., than the RHS of E(R.21). (This as- measuring the coupling of to a particle of typeA. (For

sumption is most natural in a work aimed at studying theconsistency with previous work, we keep the notatignbut

“attracting” effect due to primordial inflation. warn the reader that this should not be confused with the

~2 ~2
ms Mg , 1 5
2 R 5 (Vo) 4BF(‘P)F o

PP (2.2
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various gauge coupling constants, often denotaed effects have only a small impact on the valuegf There-
=gi2/47r.) The quantitya, determines the effect of cosmo- fore, to a good approximatiop=¢,q until the end of the
logical matter on the evolution of through the general radiation era.

equation[4,3] On the other hand, when the universe gets dominated by
nonrelativistic matter, one gets a nonzero driving force in Eq.
pa—3Pa (2.28. In the slow-roll approximation, as the transient be-
- ¢+ 1= ;)W: —EA: aA(‘P)Tv havior has died out, since=P/p becomes negligible, we

(2.28 have simply

where the primes denote derivatives with respegbtdn a o= —am(e), (2.3)
+const and wherep=3,ps and P=3,P, are the total

“material” energy density and pressure, respectively, both,ere ¢! stands for thep velocity during matter domina-
obtained as sums over the various components filling th%on; anda,(¢) denotes the coupling?.27) to dark matter.
universewith the eerption ahe kineti~c energy density and The coupling to dark matter,(¢), depends on the as-
pressure ofp, p=(M3/2)(de/dt)2=(mZ/2)H?¢'? and P,  sumption one makes about the asymptotic behavior, at strong
= px . Accordingly, the Friedmann equation reads bare string coupling, of the mass of the weakly interacting
massive particle§WIMPs) constituting the dark matter. One

3H2=i :2_p+H2 )2 (2.29 natural looking, minimal assumption is that dark matter, like
~'23pt0t ﬁ1§, ¢ ' all visible types of matter, is coupled in a way which levels

off at strong bare coupling, as in E(L.3). In other words,

Note thatp and P may also account for the potential one generally expects tha,(e)=mm(+=)(1+bye )
energy density and pressure of the scalar fiplg=V(p), SO thatamn(¢)=—byce . It is then easy to solve Eq.
Py=—py, and that one can formally extend E@.28 to  (2.3D, with initial conditions ¢o= ¢eng, o=0 (inherited
the “vacuum energy” componen¥(¢) by associating with from the radiation enaat the beginning of the matter era. But
the potentialV(¢) the mass scaleny(¢)=V(¢)¥* which ~ we shall not bother to write the explicit solution because it is
gives ay=23Inmy(e)ldp=2InV(¢)lde. Equation (2.8) is  easily seen that the smallnessef®¥end guarantees that the
then recovered in the limit where the scalar field is the domi-‘driving force” «an(¢) always remains so small that the
nant component. O(10) e-folds of the matter era until vacuum-energy domi-

In the simple caseéwhich are quite frequent, at least as nation (or until the presenthave only a fractionally negli-
approximate casgswvhere one “matter” component, with gible effect one.
known “equation of state”P,/py=W,=const, dominates A more significant evolution o during the matter era is
the cosmological density and pressure, E4j28 yields an  provided if, as first proposed {11] and taken up if12,13,
autonomous equation for the evolutionith redshify of ¢. ~ dark matter couples much more strongly ¢gothan “ordi-
Using Eq.(2.29 one finds that the “equation of state param- hary” matter. Such a stronger coupling to dark matter, which
eter” Wy =Pt/ pror COrresponding to théotal energy and is not constrained by the usual equivalence principle experi-
pressurgincluding now the kinetic contributions af; i.e., ~ ments, fOr:|0V(;/S tom assuming m?rﬁ gehneral quantum correc-

_ ~2 2 _ ~2 2 ; tions In the dark matter sector of the theory, I.e., corrections
po=p + (Mp/2)(de/d), Po=P+ (M5/2) (dg/d)7) 'S such that the dark matter mass,(¢), instead of levelling
off, either vanishes or keeps increasing at strong bare cou-
pling: my(¢)<e’™?, so thata,,=c,, is a(negative or posi-
—w tive) constant. In[6] (but see alsd14]) it has been shown
Wior= W+ T(@')z- (2.30 that under the latter assumptiéire., with a positive coupling

parametera,,>0) the dilaton can play the role of quintes-

The knowledge ofv,.; then allows one to write explicitly the S€Nce, leading to a late-time cosmology of accelerated ex-

energy-balance equatiatp,+ 3(p+ P)d INa=0, which ~ Pansion. By Eq(2.31) we havee= geng— amp, Wherep is
is easily solved in the simple cases wherg, is (approxi- "W counted from the end of the radiation era. Given that

mately constant. about nine e-folds separate us from the end of the radiation

We see from Eq(2.28 that, during the radiation era ©fa We see that such an evolution might ay| is really of
(starting, say, immediately after the end of inflajione., order unity have a S|gn|flcant effect on the pres_ent \_/alue_ of
when the universe is dominated by an ultrarelativistic gas? [When compared with the value at the end of inflation, i.e.,
(pa—3P,=0), the “driving force” on the right-hand side of C®end™ IN(1/811) ~10]. However, the running o during the
Eq. (2.28 vanishes, so thap is not driven further away matter era changes the _standard recent _cosmologlcal picture
toward infinity. Actually, one should take into account both @nd is therefore constrained by observations. In fact, by Eg.
the “inertial” effect of the “velocity” ¢’ acquired during the (2-30, the total matter-era equation of Istgte parametgn
preceding inflationary driving o, and the integrated effect the presence of the dilaton reagg,= (¢p,)/3. Accordingly,
of the many “mass thresholdsT,~m,, when some com- the matter density varies agxa 3(1Wod =g~ G+ (¢p)?)
ponent becomes nonrelativistigo thatp,—3P,#0). Using  possibly affecting the standard scenario of structure forma-
the results of[4,3] one sees that, in our case, both thesetion as well as the global temporal picture between now and

given in terms of the “matter” equation-of-state parameter
w=P/p by
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the epoch of matter-radiation equality. The compatibility (model-dependehpredictions for the present value @f we
with phenomenology therefore puts constraints on the magwish to find the(model-independehtupper bounds on the
nitude of p2=an(¢)?. In [6] w<0.1, i.e,v=¢/2/0.3  possible values b}, set by current observational data. There
<1, was suggested to be the maximal deviation one caare several ways of getting such phenomenological bounds,
roughly tolerate during the matter era, the establishment of Because the existence of a kinetic enefayd pressujeas-
more precise bound being presently under st{itfy]. We  sociated withde/dt=H¢’ has several observable conse-
shall therefore assume either that we are in the “normal’quences. A rather secure bound can be obtained by relating
case where the dilaton does not couple more strongly to dare value ofe’ to the deceleration parametge= — aa/a2. In
matter than to ordinary matt¢so thatan(¢)=—bnCe™*  the general class of models that we consider, the cosmologi-
<1], or that, if it does,a;,<0.3. This leads to a displace- cq| energy density and pressure hémarrently three signifi-
ment of ¢ during the matter era smaller than the dispersiorcant contributions: dark matte€),,= p,/pc), dark energy
.‘Pend__f?octll, endNE‘Pcl,(En%%rOduced by quantum fluctuations dur- ((),)), and the kinetic effect of a scalar fie[d),=py/p.
ing inflation, Eq.(2.25. ; (=2 2_ (2 2 12

In this context one should also consider the attraction efyzv Itq?, 2 /g]k. V\Sem gl.c,zs)é::g/c%trzsist(emnflilz\)nl/-i'th@recezg Colhmaitc (b);ck—

fect of a negative pressure component, either in the form of 6round datathat the space curvature is zero. Therefore we
¢-dependent vacuum enerddlilatonic quintessengeor in have the first relation

the form of any othergp-independent componefguch as a
“genuine” cosmological constantOf course, the present re-
cent (z=1) accelerated expansion phase is very stiort p
time”) and sensible changes of the dilaton value since th
end of matter domination are not expected. Still, it is crucia
to estimate the present dilaton velocity since it is related
to the cosmological variations of the coupling constaaee
the next section In the general case where both nonrelativ-
is_tic matter ano[possiblycp-depender)t\{acuum energy den- 2q=0,— 20+ iquZI (2.39
sity V(¢) are present, the value af, predicted by our 3
model is obtained by applying E@2.28 (in the slow-roll
approximation: Using the relation(2.34) above to eliminate«),, we get the
following expression fore’? in terms of the observable
(Qn+ Q) (1—=Wo) po= (2t 2Qy) @ quantitiesq and Q,:

_Qmam_4ﬂvav. (232

Qr+ QO+ 0, =1=0,,+Qy+¢'%3. (2.39

ﬁ' he deceleration parameter is given by the general expres-
sion 20=3,04,(1+3w,). Using w,=0, wy=-1, and
w,=+1, we get

3
. . 2=14+9—- s Qn. 2.3
In the above expressian ,, and(), are, respectively, the ¢ 4= 3%m (239

nonrelativistic(dark) matter and the vacuum fraction of the

critical energy density p.=(3/2)m3H?], and the already = The supernovae la dafa6] give a strict upper bound on

mentioned  prescriptions ay =3 InV(@)ldg, Py=—py the present valugy: q,<0. A generous lower bound on the

=—V(¢) have been used. present value of), is Q,0>0.2[17]. Inserting these two
The value ofg} is therefore some combination of the constraints in Eq(2.36 finally yields the safe upper bound

values ofa,, and @y, . We can have two classes of contrast-

ing situations: In the first class, the dilaton couples “nor- 94?<0.7, i.e.,|@)|<0.84. (2.37
mally” (i.e., weakly both to dark matter and to dark energy,
i.e., bothap,=—b,ce <1 anday<1 and Eq.(2.32 im- To summarize, quite different rates of evolution for the

plies ¢(<1. In the second class, the dilaton couples moreilaton are possible. A very slow variation is expected when-
strongly to some type of dark matter or energy, i.e., eitber ever dilaton couplings to both dark energy and dark matter
both) a,, or/andey, is of order unity so thap,=O(1). The follow the “normal” behavior (1.3). Otherwise, dilaton
second case is realized in the scenarig@df In the context Variations on the Hubble scale are expected. However, cos-
of this scenario we have an exponential dependence of th&ological observations set the strict upper bo¢2®7) on

potential ong, V(¢)=V,e°¢ so thata,~ — (c/4) and the present time variation op. For the purpose of the
present sectiorievaluating the current location of the dila-
, CQy—an)y, c ton) these two alternatives do not make much difference be-
%Zm“‘ 3" (233 cause the vacuum-dominance era started less than about 0.7

e-folds away[In(1+z,) with z, <1]. Therefore,¢ did not
The last inequality follows from the bound,,>c/2 (which  have enough f time,” during vacuum dominance, to move
is a necessary condition to have positive acceleration in thenuch, even if it is coupled to vacuum energy witk=
model[6]) and the reasonable boufit,,>0.25. —(c/a)~1.
In the present work, we wish, however, to be as indepen- Finally, we conclude from this analysis that, to a good
dent as possible from specific assumpti¢sisch as the ones approximationand using the fact that the phenomenology of
used in[6]). Therefore, rather than insisting on specific the matter era constrains the dark-matter couplings of the
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dilaton to be rather smallthe value ofe now is essentially Note that, likeb, (see Sec. Il A b is also expected to be

given by the valuep.,q at the end of inflation, i.e., by Eq. smallish[~B;1(+oc) or, equivalently,~C;1 in the nota-

(2.22. tion of Eq.(1.3)] and typically the ratidog /b, is of order
unity. We finally obtain

lll. DEVIATIONS FROM GENERAL RELATIVITY .
INDUCED BY A RUNAWAY DILATON apad @) =400bece 7. (3.9

A. Composition-independent deviations from general relativity We can now insert the estimat@.29 of the value ofe

The previous section reached the conclusion that presen¢ached because of the cosmological evolution. Neglecting
deviations from general relativity are given, to a good ap-the O(1) renormalization factor due to quantum noise, we
proximation, by the values of the matter-coupling coeffi-get the estimate
cientsaa(¢) given by Eq.(2.27) calculated atp= ¢q,q as
given by Eq.(2.295. Let us now see the meaning of this PE 4/ni2
result in terms of observable quantities. Ahad Pend =32, S, (3.9

. . . . A

Let us first consider thgapproximately composition-
independent deviations from general relativity, i.e., those that b
do not essentially depend on violations of the equivalence 2 ~10 —

.. . o @had Pend b
principle. Most composition-independent gravitational ex- Y
periments(in the solar system or in binary pulsansider
the long-range interaction between objects whose masses aks said above, it is plausible to expect that the quantity
essentially baryoni¢the Sun, planets, neutron stards ar-  (which is a ratig and the ratidog /b, are both of order unity.
gued in[2,3] the relevant coupling coefficient, is then  This then leads to the numerical estimatg,~106%("*2)
approximately universal and given by the logarithmic deriva-with 6,=5x10"°. An interesting aspect of this result is that
tive of the QCD _confinem_ent SQaL&QCD(qo), because tht_é the expected present value®f,,depends rather strongly on
mass of hadrons is essentially given by a pure number timee value of the exponemt [which entered the inflaton po-
AQCD(‘E)- [We shall consider bel_ow the small, nonuniversal,tential V(x) = x"]. In the casen=2 [i.e., V(x) = %m)z(XZ] we
corrections tama(¢) andaa(e) linked to QED effects and  haye a?,~2.5x1078, while if n=4 [V(x)=:\x*] we
quark massesRemembering from Eq1.1) the fact that, in L5ye42. ~1.8x10°5
the string framgwhere there is a fixed cutoff linked to the had = : "

_ g Ire ey A How do these numbers compare to pregenmposition-
string massi\z/l s~ (a') "% the gauge coupling is dilaton de- independent experimental limits on deviations from Ein-
pendenf gr “=Bg(¢)], we see thafafter conformal trans- stein’s theory{18]? This question has been addressed in the
formation the Einstein-frame confinement scale has a dilafiterature. Concerning solar-systeimost-Newtoniahtests it

2
58|i|/(n+ 2) . (36)

ton dependence of the form was shown(see, e.g.[19]) that the two main “Eddington”
Vo112 - - parametersy—1 and S—1 measuring post-Newtonian de-
Aqeple) ~C™ 7By "(¢)exd —8mb; "Be(¢) Mg, viations from general relativity are linked as follows to the

(3.D)  dilaton couplinganad @):

whereb; denotes the one-loopationa) coefficient entering o2
the renormalization group running @f-. Here Bg(¢) de- y—1=-2 hag =—2 aﬁad (3.7
notes the coupling to the $B) gauge fields. For simplicity, 1+ ajag

we shall assume thémodulo rational coefficienjsall gauge

fields coupleinear the string cutoffto the saméBr(¢). This 1 el ply 1
_ al a ~ ’

yields the following approximately universal dilaton cou- B—1=- > 2_—aha0aﬁad (3.8
pling to hadronic matter: 2 (1+apy® 2
M.\ 1]amBri(e) where ap, = danad @)/ I .
had @)=|In A t5 P . (3.2 From Eq. (3.4 we see thata|,/~—Capag, SO that the
D

deviationB—1 is O(aﬁad) and thereby predicted to be too
small to be phenomenologically interesting. This leages
—1=-2a},,as the leading observable deviation. The best
current solar-system limit ony—1 comes from very long
baseline interferometry measurements of the deflection of ra-
dio waves by the Sun and igapproximately |y—1|
<2x10"4, corresponding tarZ,;<10 * (see[18] for re-
views and referencgsin addition to solar-system tests, we
should also consider binary-pulsar tests which provide an-
. . B other high-precision window on possible deviations from
Br (¢)=Bg (+)[1—-Dbee ]. (3.3  general relativity. They have been analyzed in terms of the

We recall that the quantity,.{ ¢), which measures the cou-
pling of the dilaton to hadronic matter, should not be con-
fused with any “strong” gauge couplingys= g§/477. Nu-
merically, the coefficient in front of the RHS of E(B.2) is

of order 40. Consistently with our basic assumptibrg), we
parametrize thep dependence of the gauge coupligé
=B;'as
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two quantities denoted and «/., (denoted in Aa E E
g e | &) and hao { A (—) zleo—Saﬁaf{( ) —( (312
AB A

[20]. The final conclusion is that the binary-pulsar limit on M M)B :

M
haqiS Of ordera?, =103,
At this stage it seems that the runaway scenario explored .
here is leading to deviations from general relativity which Zlghlio\:ag;ssoilig ,th[;/tmé\vaenigﬁ '\;"Wf,reeeﬁourgggtief rler:]cent
are much smaller than present experimental limits. Howevelg " F;] bervl d y I f
we must turn our attention tcomposition-dependeeffects xperlmgnts(suc as berylium an copperas Well as for
which turn out to be much more sensitive tests. mass pairs that are planned to pe u;ed n fqrthcomlng expert-
ments(such as platinum and titaniynone finds E/M)¢,
—(E/M)ge=2.56, E/M)p— (E/M)1;=2.65. Using the av-
erage estimaté (E/M)=2.6, we get from Eqs(3.12 and
Let us then consider situations where the nonuniversal3.6) the estimate
couplings of the dilaton inducéapparent violations of the
equivalence principle. Let us start by considering the com- Aa .
position dependence of the dilaton coupliag, Eq. (2.27), (j) =5.2X10" " arjyq
i.e., the dependence af, on the type of matter we consider.
The definition ofa, is such that, the Newtonian approxima- 4 be |2 /(n+2)
tion, the interaction potential between partiélend particle =5.2x10 m 58H : 313
B |S - GABmAmB/I’AB Where[3]

B. Composition-dependent deviations from general relativity

Gap=G(1+ axag). (3.9 Note also[from Eq. (3.7)] the link between composition-
dependent effects and post-Newtonian ones

Here, G is the bare gravitational coupling constant entering
the Einstein-frame action2.4), and ax=ax(¢) is the Aa
strength of the dilaton coupling t& particles, taken at the ‘a
present(cosmologically determingdVEV of ¢. The term
apag comes from the additional attractive effect of dilaton oq cyrrent tests of the universality of free fAWFF) have
exchange. Two test masses, made respectivehA-oand put limits in the 102 range[e.g., (Aa/a)gec=(—1.9
B-type particles, will then fall in the gravitational field gen- +2.5)x 10" *2 from [22]], we see from Eq(3.14 that this
erated by an external mass: with accelerations differing corresponds to limits ory—1 or aﬁad in the 10°7 range.

=—2.6X10 3(y—1). (3.19

by Therefore tests of the UFF put much more stringent limits on
Aa a.—a dilaton models than solar-system or binary-pulsar tests.
=) =222 B (ap—ap)ac. (3.10 If we insert the estimaté,~5x10 ° in Eq. (3.13 we
a /g aatas obtain a level of violation of UFF due to a runaway dilaton
which is

We have seen above that in lowest approximatQp= an,q

does not depend on the composition A&f We need now, Aa be
however, to retain the small composition-dependent effects —= 3( X102 for n=2, (3.19
in a, linked to thee dependence of QED and quark contri- a byc
butions tom, . This has been investigated i8] with the
result Aa be\% .
?=0.9 bc X 10 for n=4. (3.1
Sl s |
— = CgA| —|+CpA| — | +CeA| — ,
ag |40 M M M/ |8 At face value, one is tempted to conclude that a scenario

(3.1)  with n=4[i.e.,V(x)xx*] tends to be too weak an attractor
) toward ¢ =+ o0 to be naturally compatible with equivalence-
where AX) g=Xa—Xg, B=N+Z is the baryon number, principle tests(See, however, the discussion belp®n the
D=N-Z the neutron excessE=Z(Z-1)/(N+2)"® a  giher hand, the simple scenarfo=2 [V(x)=im2y?] is
quantity linked to nuclear Coulomb effects, aMi=m/u  qjite appealing in that it naturally provides enough attraction
denotes the mass in atomic mMass UNISY  oward o=+ to be compatible with all existing experi-
=931.49432 MeV. It is difficultfand model dependento  entq) tests. At the same time it suggests that a modest im-

try to estimate the coefficienSg andCp . It was argued in - ,royement in the precision of UFF experiments might dis-
[3] that their contr|but.|ons to_Ec{B.l]) are generically €X-  cover a violation caused by a runaway dilaton.
pected to be subdominant with respect to the last contribu-

tion, proportional toCg, which can be better estimated be- _ o

cause it is linked to the> dependence of the fine-structure C. Cosmological variation of “constants”
constantezocBgl(go). This then leads to the numerical esti-  Let us now consider another possible deviation from gen-
mateCg=3.14x 10 2 and a violation of the universality of eral relativity and the standard model: a possible variation of
free fall approximately given by the coupling constants, most notably of the fine-structure

046007-9



T. DAMOUR, F. PIAZZA, AND G. VENEZIANO PHYSICAL REVIEW D66, 046007 (2002

constante?/#.c on which the strongest limits are available. =<10'?) imply (within dilaton models that |dIned{
We will discuss first the effects due to the cosmological time<10-114 10722 yr~1 (the sign ofd In €%/dt being given by
variation of the homogeneous component¢oland, in the  the sign ofb,,/bg). This level of variation is much smaller
next subsection, the possible spatad time variations due  than the current best limit on the time variation ef,
to quantum fluctuations af as they were amplified during namely,|d In €/dtj<5x10"17 yr 1~5x 10" "H, as obtained

inflation. - . . from an analysis of Oklo datd23]. (Note that the
2 Copfstently with our previous assumptions we expechssuymption-dependent analysis of He#] gives a limit on
e"Br (¢) so that, from Eq/(3.3), the variation ofe? which is strengthened by about two orders
ez(cp)=e2(+oo)[1—b,:e*"¢’]. (3.17 of magnitude).

The situation, however, is drastically different if we con-

The present logarithmic variation @ (using againdp sider the alternative case where the dilaton coupling to the

=Hdt; ¢'=de/dp) is thus given by current dominant energy sources does not tend to triviality,
as in the case of @-dependent vacuum enerd(¢) =V,
dine? dine? +V,e~ ¢ when the first term is zero or negligible. In such a
Cco s 1 | glig
Hdt —dp =brce ““¢o, (3.18 case the dilaton shares a relevant part of the total energy

density and more significarfthough still quite constrained
where the current value af’,¢}, is given in general by Eq. by UFF data variations of the coupling constants are gener-

(2.32. Using Eq.(3.4), we can rewrite the resu(B.18 in  ally expected. A general expression for the dilaton “veloc-
terms of the hadronic coupling: ity” is given in Eq. (2.36) in terms of observable quantities.

Using Egs.(2.36 and (3.19 one can relate the expected
dine? 1 , variation of the electromagnetic coupling constant to the
Hdt _ 40%hadPo- (319 hadronic coupling:

As said in Sec. Il B, we have basically two alternatives dine?
. . . i n e a’had

concerning the current coupling of the dilaton to the domi =+—/1+q,—30,/2. (3.23
nant energy sources in the universe. These two alternatives H dt 40
lead to drastically different predictions for the current value
of the rate of variation of the fine-structure constant. We shall \yie can also use the estimat@.5) relating ay.g to the
consider these two alternatives in turn. density fluctuations generated during inflation. We obtain

In the conservative case where the dilaton does not play
any special role in the present accelerated phase of the uni-

! ) 2
verse y=0) nor does it have any stronger coupling to dark dine ~ 8% 10°2 1+q0_39m/2% 5|41|/(n+2)_
A

matter than to visible matteraf,,=—b,,ce °¥) the dilaton H dt
“velocity” ¢’ is exponentially suppresséso that, from Eq. (3.29
(2.39, Qy=1-0Q,] and by Eq.(2.32 one obtains
dIne2 Q,, However, in view of the theoretical uncertainties attached
= — bece “Pa (@) to the initial conditionsy;, and¢;, used in the estimat.5),
Hdt QO+ 20y as well as the ones associated with the order unity ratio
QO be/(b,c), it is more interesting to rewrite our prediction in
~_— " ppb,c2e20¢, (3.20 terms of observablequantities. Using again the link Eq.

2= (3.13 betweena;,q and the observable violation of the uni-

An indicative value for the ratid€),,/(Qm+20y) =0 /(2 versality of free fall the above result can be written in the

—Q,,), by taking, for instanceQ,,=0.3, is 0.18. As above, [Orm
it is useful to relate Eq(3.20 to the estimaté3.4) for apaq.

This yields dIne? . ,Aa
Hap 85107 V1+Qgo—3Q,/21/1012—.
dine? 1 Qn by, a
Hdt (402 2—Qp be
In terms of the UFF leveha/a predicted by our model in ~ Note that the sign of the variation & is in general
Eq. (3.13 we see also that model dependen(as it depends on both the sign lof and
the sign ofpg). Specific classes of models might, however,
dine? . QOn by Aa favor particular signs ofie?/dt. For instance, from the point
H dt _1‘2_Qm be a - 322 of view of [5] one would expect th&@(e~ %) terms in Eq.

(1.3 to be positive, which would then imply that is posi-
Even if the universe were completely dominated by darktive. If we combine this information with the prediction Eq.
matter (,,=1) we see, assuming that,/br is of order (2.33 of the model6] implying thate' is also positive, we
unity, that current experimental limits on UFFA&/a  reach the conclusion thaf must be currentlyncreasing
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Independently of this question of the sign, we see that Egg2_ o2
(3.295 predicts an interesting link between the observational—20= —sgnbg)3.5x10°©

violation of the UFF(constrained ta\a/a<10"'?), and the €

current time variation of the fine-structure constant. Contrary 147 Aa

to the relation(3.22), obtained above under the alternative X| @4 |n(1+z*)+go,’nln1+ \/ 1012?. (3.26
Z*

assumption about the dilaton dependence of the dominant

cosmological energy, which predicted a relation linear inHere, we have written the result for the matter era. During
Aala, we have here a relation involving the square root ofthe vacuum era the bracket is simpky;, In(1+2)]. Remem-
the UFF violation(such a relation is similar to the result of bering that the absolute value @ff, is (like that of ¢\)
[11] which concerned the time variation of the Newton con-observationally constrained to be smaller th@.3=0.55
stany. (and thate is also constrained bip\,|<0.84), we see that
The phenomenologically interesting consequence ofhere is no way, within our model, to explain a variation of
Eq. (3.25 is to predict a time variation of constants which e? as large ashe?/e?=(—0.72+0.18)x 10 ° around red-
may be large enough to be detected by high-precisioshiftsz~0.5-3.527]. In our model, even under the assump-
|aborat0ry experiments_ Indeed, usirh-g): 66 km/S/MpC, tion that UFF is violated jUSt below the Currently tested level,
and the plausible estimate€,=0.3, g,=—0.4, Eq. Such a change would have to correspond to a valg
(3.25 vyields the numerical estimate dine¥dt 2, entailing observationally unacceptable modifications of
~+0.9x10 6/10%Aa/a yr . Therefore, the current Standard cosmologyFor instance, in the modgb] a value
bound on UFF violationsXa/a~ 10~ 1% corresponds to the &S 1arge asx,>1 already leads to a pathological behavior
level 10716 yr—1, which is comparable to the planned sensi-( total dragging”) where all the components scale like radia-

o tion.] This difficulty of reconciling the Oklo limit with the
tivity of currently developed cold-atom clock&5]. (Present . . e '
laboratory bounds are at the 18 yr—* level [26.25.) Note claim of [27] was addressed ifil3,12 within a different

: X . class of models, namely, with a fiel¢ which does not
that, if we insert in Eq(3.29 the secure bound®,>0.2 couple universally to all gauge fields,, , as the dilatorp is

andgp<0 [leading to the limit Eq(2.37], we get as maxi-  gyected to do. The fact that the fiefdin [13] (or  in [12])

mal estimate of the time variation of the fine-structure con+g a3ssumed to couple only to the electromagnetic gauge field
stantd In &/dt~+2.0x 10" **J10"”Aa/a yr~*. We note also  drastically changes our E¢3.13 and allows one to satisfy
that the upper limit on the variation @ given by the Oklo  the UFF limitAa/a<10 2 for a stronger coupling o to
data, i.e.,|d In€?/dj<5x10"*"yr ! [23], “corresponds” to  electromagnetism than in our class of models, {ie.,our

a violation of the UFF at the levet 10~ 3. notation for a largerd In B:(¢)/de. This explains why Ref.

In this respect, it is interesting to consider not only the[13] could construct some explidibut fine-tuned models in
presentvariation ofe? (the only one relevant for laboratory which all observational limit§UFF, Oklo, etc) could be met
experiments but also its variation over several billions of and still allow for a variation o? as strong as the claim
years.(We recall that the Oklo phenomenon took place about28]. The maximal variation predicted by E(.26 for red-
two billion years ago, and that astronomical observationshifts corresponding to the matter dbtained when\a/a
constrain the variation a2 over the last ten billion years or =102 and ¢;,= = /0.3; and assuming a smaller value of
so) In particular, an interesting question is to see whetherp, to be compatible with the Oklo constrairis of order
our model could reconcile the Oklo limivhich corresponds Ae?/e?=+1.9x10 °. This is only a factor~4 below the
to a redshiftz=0.14) with the recent clairfi27] of a varia- ~ claim [27] and is at the level of their one sigma error bar.
tion Ae?/e?=(—0.72:0.18)x107° around redshiftsz ~ Therefore a modest improvement in the observational preci-
~0.5-3.5 as proposed {12,13. The only hope of recon- SION (accompanied by an |mprovgd.control of systemapcs
ciling the two results would be to allow for a faster variation Will start to probe a domain of variation of constants which,
of e for redshiftsz>0.5. Such recent redshifts ha@ppar- according to our sceznarlo, corresponds to an UFF violation
ently) been connected to a transition from matter dominancgMaller than the 10 level.
to vacuum dominance. Let us see whether taking into ac-
count this transition might allow for a large enough change D. Spatiotemporal fluctuations of the “constants”

of e” around redshiftz~0.5-3.5. We must clearly assume  we now turn to the second possible source of spatial/
the “strong coupling” scenariar,= O(1). Inthis scenario, temporal variations foe? in our model, the quantum fluc-
the variation of during the matter era is given by EQq. tuations of the dilaton generated during inflation. Within lin-
(2.31). Neglecting, for simplicity, the transient evolution ef- ear perturbation theory, the relevant calculation may be
fects localized around the matter-vacuum transitiamd  summarized as follows.

treating bothe/,= — a;,, and ¢,= ¢; as constanjsthe solu- Consider a flat Friedmann-Robertson-WalkERW) uni-

tion giving the recent cosmological evolution pfreadse  verseds’= —dt?+a(t)23;dx?. The dilaton fluctuations can

— o= —4In(1+2) during the vacuum era, ang— ¢, be expanded in Fourier componedig, of given comoving

= — o) In(1+2,)— ¢} IN[(1+2)/(1+2,)] during the matter era Momentumk as follows:

(the index O refers to the present epoch, ize=0; z, de-

notes the transition redshiftinserting this change in Eq.

(3.17) leads to the following expression for the cosmological Sp(x,t)=
change of the fine-structure constant:

(277)3/2f d3k S (t)e'k, (3.27
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wheret is the cosmological time. Each Fourier mode,
“leaves” the horizon during inflation with an amplitude

~He(K)/\2k3 [29] where, by definitionH (k) is the value
of the dimensionless Hubble expansion rate&kas® equals
H during inflation(note that we denote here by, what was
denoted b)ﬂX above. Well after the exit k<aH) the am-
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plitude of each mode “freezes out,” i.e., remains roughly
constant, until it reenters the horizon during the post-
inflationary epoch Kar’elere). After reentry the amplitude
starts to damp out & 1. For a given Fourier modée,(t),

the latter damping effect is described by the piecewise func-
tion

1 it a;'Hyk<(z+1)2
agH3(z+1)k 2 if (z+1)Y?<ay*Hy k<1C?,
10 2agH(z+ 1)kt if agHy tk>10%

f(k)= (3.28

Here the cosmological redshift=ay/a(t) —1 has been introduced in replacement of the cosmological ttifike first case

refers to Fourier modes that have not reentered yet at redshiftt whose amplitudes are still frozen. The second and third
cases refer to modes that reenter during matter and radiation domination, respectively. Putting all together, and assuming a
Gaussian probability distribution for the perturbations, we have

( )
<5<pk(t>*5qokr<t'>>— Mol 0t (0 (kK. (3.29
Possible spatial/temporal variationsef induced by the fluctuations of the dilaton will be given by
Aflucg? dlne LLILNT (330
2 Pl(x,t;x" t7) .
e (x,t;x",t") d(p
where the rms\“®e between two eventsx(t) and ’,t’) is defined as follows:
AP o in=([F@(x,1) = Se(xX',')])
HZ, [ d% _
N 9;3 f Sl F0ZH (k)P =20 fr (e 0] (33D
aa
02 g )
= J f,(k)— (k) ]2+ 2f (k) f, (k)| 1— sinkx (3.32
(2 ) [ z z z' kx . .

Here,x=|x—x'| is the coordinate distance between the twoAs expected, these variations are extremely small,
events and, consistently with the slow-roll approximation,A™e?/e?|,.,_,=10"33/km. Itis also interesting to compare
the Hubble expansion rate at exit has been assumed to lalaton fluctuations at different redshifts along a comoving
scale invariantf (k) =H o= 3x 107°. observer worldline. By putting=0 in Eq.(3.32 the second

If one considers spatial fluctuations over terrestrial orterm in the square brackets vanishes and one has
solar-system proper length scalésagk <H, 1 at the

present timeé=t’=t,, the first square brackets in E®.32 1

vanishes and one can expand the sine function at dmall Aflue | z 10°
ini x= og(1+z)— ——+ z°
obtaining ¢|Z*X‘° 2 \/— 9lt2)= 7+
Afluc(p| L ZE(H_OI N
e B o2 22, 3.3
“2r2 37 (334
Aflucez .
> 2:I-(:rzahac#_lexHOI- o ) )
€ -0 It is slightly more complicated to compare dilaton fluctua-

(3.33

tions between “now” and events at redshiftalong a null
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ray. Expanding in powers afaroundz=0 one gets from Eq. known dimensionless ratiog (b /b,) in our estimates, and
(3.32, after a straightforward calculation, of quantum noise in the evolution of the dilaton, we cannot
give sharp quantitative estimates/o#/a. However, we note
1 \/7 2 that dilaton-induced violations of the UFF have a rather pre-
2 52_\/712 T (3.3 cise signature with a composition dependence of the form
Numerically, at redshifz~1, the effects of dilatonic fluc-
tuations giveA™e|,_;~He,/(27)~5x 10" 8. This is to be

(3.1, with probable domination by the lag€oulomb en-
ergy term [3]. As explored in[21] this signature is quite
Icu(iinot;a?:/i(ijc\rl]\”thietrdesiﬁef s ?_j;he C%STAZ’ Tr?cr)?%gaelpec%iz V¥ Etudes Spatiale€CNES mission MICROSCOPIE30] (to
y $le=1"%m- fly in 2004 will explore the levelAa/a~10 *° while the
_ n+2)_ o __ —5 i |i N ; . LT
n=2, & =6k 5X_1O is linked to He/(27) Via  tegt of the equivalence principld31] could explore the
O(Xew) =AHeu/(2m)  with  A=(8/3)V/9,V=(8/3)(x/n)  Aa/a~10 ®level. Our scenario gives additional motivation
Agl,-1=am~1 is parametrically larger than the fluctua- dence might then be studied in detail to compare it with Eq.
tions AMCo|,_ 1 ~He,/(27). (3.11).
are typically too small to be observab(i the limits from  grderAa/a~5x 1045202 which is larger than 102 At
UFF are already satisfigdoeing suppressed, relative to their tace value this suggests that existing UFF experimental data

Afluc ~
@|Z 277

distinct from UFF violations induced by other fields, such as
a vector field. We note that the approved Center National

a—Co__ Aln+t2) T
e e Told 11 ot oo s ajeng. Planned Natonal Actonauics and Space AerASA)

' ' ' ! and European Space AgentySA) mission STERsatellite
=40/(3\/n)~10. On the other hand, in the case wherés  for such experiments and suggests that they might find a
strongly coupled to dark matter, the homogeneous evolutiopgther strong violation signal, whose composition depen-

To conclude this subsection, we see that the inhomoge- In the case of inflationary potential( )= x" with n
neous space-time fluctuations of the fine-structure constant 2 our simplest estimates predict a violation of the UFF of

natural valued ol ,Ht, by the small factory,dex- can be interpreted as favorimgs2 overn>2. However, we
must remember that our estimates have made several simpli-
IV. SUMMARY AND CONCLUSION fying assumptions. It is possible that the large quantum fluc-

tuations of the inflaton in the self-regenerating regimpe

We have studied the dilaton-fixing mechanism [8] >y, with x;, defined by Eq(2.18, can give more time for
within the context where the dilaton-dependent low-energyy to run away toward large values, so that the effective value
couplings are extremized at=+, i.e., for infinitely large  of e°¢in to be used in Eq(2.21) turn out to dominate the first
values of the bare string couplirﬁ=e‘/’:e°“’. [The crucial  term in the RHS that we have used for our estimates. We
coupling to the inflaton, sayx(¢) in Eq. (2.11), must be leave to future work a study of the system of Langevin equa-
minimizedat ¢— +0o0; the other couplings can be either tions describing the coupled fluctuations ¢fand y during
minimized or maximized thergThis possibility of a fixed the self-regenerating regime.
point at infinity (in bare string coupling spacéas recently Finally let us note some other conclusions of our work.
been suggestefb], and its late cosmological consequences We recover the conclusion of previous works on dilaton
have been explored if6]. We found that a primordial infla- models that the most interesting experimental probes of a
tionary stage, with inflaton potenti®(x)=\(¢)x"/n, was  massless weakly coupled dilaton are tests of the UFF. The
much less efficient in decoupling a dilaton with least cou-composition-independent gravitational tegsolar system,
plings at infinity than in the case where the least couplingsinary pulsaytend to be much less sensitive prolpas high-
are reached at a finite value of(as in[3,8]). This reduced lighted by the relation$3.14), (3.21), and(3.22].
efficiency has interesting phenomenological consequences. However, a possible exception concerns the time variation
Indeed, it predicts much larger observable deviations fromof the coupling constants. Here the conclusion depends cru-
general relativity. In the case of the simplest chaotic potentiatially on the assumptions made about the couplings of the
[10] V()()=%m)2(((p))(2, we find that, under the simplest as- dilaton to the cosmologically dominant forms of energy
sumptions about the preinflationary state, this scenario prédark matter and/or dark enerngyf these couplings are of
dicts violations of the universality of free fall of order order unity[and as large as is phenomenologically accept-
Aa/a~5x 10452 where sy, is the density fluctuation gen- able, i.e., so that €;)?=0.7], the present time variation
erated by inflation on horizon scales. The observed level off the fine-structure constant is linked to the violation
large-scale densitiand cosmic microwave background tem- of the UFF by the relation  d In€?/dt
peraturg fluctuations fixess, to be around %10 ° which ~ ~+2.0x10 '%\/10"Aa/a yr . (The most natural sigh here
finally leads to a prediction for a violation of the UFF nearis +, i.e., b>0, which corresponds temaller € in the
the Aa/a~10 2 level. This is naturally compatible with past, just as suggested by the cld®].) Such a time varia-
present experimental tests of the equivalence principle, antion might be observabléf Aa/a is not very much below its
suggests that a modest improvement in the precision of UFBresent upper bound 10 1) through the comparison of
tests might be able to detect a deviation linked to dilatorhigh-accuracy cold-atom clocks and/or via improved mea-
exchange with a coupling reduced by the attraction towargurements of astronomical spectra.
the fixed point at infinity. Because of the presence of un- More theoretical work is needed to justify the basic as-
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sumption(1.3) of our scenario. In particular, it is crucial to Note that the classical solution in E.17), e®¢c(P)=gCt¢in
investigate whether it is natural to expect that the sign of thet (b, c?/2)p, can be easily recovered in the small noise limit
crucial coefficientb, in Eq. (2.12 be indeedpositive [Re-  &(p)—0, 5(p)—0.

call that the general mechanism|[@&f is an attraction toward It proves convenient to compare the true solution to the
“least couplings” while Eq.(1.3) with O(e”%)>0 leads to classical one by studying the statistical behavior of the ratio
largest couplings at infinityNote in this respect that the sign A(p)=e¢(P/ec¢c(P). As we will show below, (e7(P))

of the otherb;’s is not important as, once inflation has =®(1). Moreover, we are also assumieffin= (1) or, at
pushede® to very large valueg®end the subsequent cos- least,e®“n<(b,c?/2)p (see Sec. Il for detailsso that the
mological evolutions tend to be ineffective in further displac-leading contribution to the first equation (A4) is given by

ing o. the integral, and we have

1 (e ,
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PJo
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APPENDIX: THE STOCHASTIC EVOLUTION The exponent on the right-hand side of the above equation
OF THE DILATON can be estimated by using EGA3) and the slow-roll ap-

. . ~ 2~ _ —

In this appendix we study the stochastic evolution of theProximation  H®=2V(x,¢)/3=2\(¢)x"/3n=2\..x"/3n.
dilaton ¢ during inflation as described by the Langevin-type O 9€ts
equation(2.23. We restrict our attention to the region of 1
phase space where the evolution of the inflatan classical, _ 12\ — P f2dp”

; ([n(p)—n(p")]9) 5 p

and to a power-law potential of the for(2.11). It follows (2m)<)p’
that the inflaton evolves according to the classical slow-roll
equation(2.14) whose solution reads n

B x(p’))"”_(x(p))“”

5 5 _2(n+2) Xin Xin
X"= Xin— NP, (AL) (A7)

wherep, the parameter defined in EQ.7), is shifted in such  wherey, is the value at exit from self-regenerating inflation:

a way thatp;,=0. Equation(2.23 takes the form H(xin)/2m=n/(2xi,) (see Sec. Il for more detajlsSince we
are interested in evaluating EGA6) at the end of inflation,

1 )
3_(P = Ebkcefc‘“r &(p), (A2) b= Pend™= X2/N, We can thus write
P p’ |0+
where&(p) is a Gaussian stochastic varialf@SV), with a ([n(p)— ﬂ(p’)]2>=2(n+2) 1- DenJ . (A8)

“time-dependent” rms amplitudé (p)/27:
When evaluated atp’=0, the above formula gives

02 {n(p)?)=n/[2(n+2)]. Thus the normalization factor to the
<§(p1)§(p2))=—25(p1—p2) (A3) initial condition in Eq.(A4) is of order 1, as anticipated:
(2m) (e°7P)y = g(172)c(n(P = (1) From Eqgs(A6) and (A8) we
[the relation to the normalized random white noise term Othave
Eq.(2.23 is &(p) = &,(p)H/27]. For any given source term (A(Pard) 1 fpendd ) F{ c?n ( prd)(rwz)/z
' = ex -
£(p), the formal solution of Eq(A2) reads Pen Pena 0 p 4(n+2) Den
eC(P(p):eC‘PineC”(p)_Fb}\_ch’pd p’ec[ ”(p)fﬂ(p,)], _ flex C2n X(n+2)/2 dX
2 0 B 0 4(n+2)
()= aprepn (A%) L A9
7(p)= | "dp : =ex n+2)) " (1), (A9)
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with 0<6<1.
We can estimate the dispersion of the same quantity b
expanding the exponential inside the inted#sb) in powers

of &(p):

C p ! p 1 n
A(p>:1+—f dp f,dp £(p")
PJo p

( fpp,dp”f(p”)

At lowest order in&(p) the variance of the above quantity
calculated ap=pg,qreads

2 c(P ’ P 1 " ?
TAPord BJ'odp erp £(p")

2
+.... (A10)

+1c2 pd,
2 plo P

PHYSICAL REVIEW D66, 046007 (2002

— szpd VJ'pd /pr d Ulﬂz(p,,/)

y a p2 0 P 0 P max(p’,p”) P (277)2
2¢? (p P H3(p")

=—| dp’ f dp'—— A1l

pzopp p,|o(277)2 (A11)

As in Eqg. (A7) we can use the slow-roll approximation and
obtain

2 c*n (1 (n+2)/2
_ _ n
UA(PenJ_n+2fOX(1 X) dx

=c?0(1). (A12)
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