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Extension of boundary string field theory on disc and RP2 worldsheet geometries
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We present an extension of boundary string field theory on disc and RP2 worldsheet geometries. Finding an
appropriate Becchi-Rouet-Stora~BRS! operator in the case of the RP2 geometry, we generalize the background
independent open string field theory~or boundary string field theory! of Witten on a unit disc. The space of
two-dimensional field theories on RP2 is spanned by the scalar operator inserted at the nontrivial loop of RP2.
We discuss the off-shell extension of the crosscap states, which provides an interpolation of orientifold planes
of various dimensions.
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I. INTRODUCTION

For a long time, a number of physicists have suspec
that the ‘‘space of all two-dimensional field theories,’’ if it i
to be defined, should be a natural configuration space
strings on which string field theory is constructed with
appropriate gauge invariant action. Ultraviolet divergen
associated with irrelevant operators carrying arbitrarily h
dimensions have hampered progress toward this goal. It
shown by Witten@1#,1 however, that, modulo this difficulty, i
is possible to find a clear-cut framework based on
Batalin-Vilkovisky ~BV! formalism@3,4# in the case of open
string field theory. This framework materializes the idea
‘‘theory space’’ on a unit disc. String field theory2 of this
kind, originally called background independent open-str
field theory, provides a self-consistent framework for o
shell processes in which relevant and marginal operators
involved.

More recently, this theory has been successfully applie
the problem of open-string tachyon condensation@6,7#. It
provides an off-shell interpolation between the Neumann
the Dirichlet boundary conditions of an open string. An ex
tachyon potential@6,7# with the right normalization coeffi-
cient @8# has been obtained and this has provided a proo
Sen’s conjecture@9# that the difference between the two e
tremes just cancels the tension of the D-brane in questio
allows us to consider the decay of a higher dimensio
brane to a lower one as well. Agreement on the tension
branes of various dimensions has been obtained. See@10–16#
for some of the subsequent developments. We will refe
the background independent open-string field theory of W
ten as boundary string field theory~BSFT!, following the
current nomenclature. An extension of this framework
closed-string field theory appears to be formidable as we
not yet understand well enough the processes under w

*Email address: itoyama@het.phys.sci.osaka-u.ac.jp
†Email address: nakashin@post.kek.jp
1See also@2#.
2For a recent review on string field theory, see, for example,@5#.
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the matter central charge is changed by the presenc
Becchi-Rouet-Stora~BRS! noninvariant operators located o
the bulk of a Riemann surface.

One may note in this last regard that there are some
cesses of a closed string and geometries represented
closed string which do not involve operators living in th
entire bulk of a Riemann surface. In particular, orientifo
planes of various dimensions are characterized as cros
states on a complex plane representing the RP2 worldsheet
geometry and can be discussed in parallel to D-brane bou
ary states representing the disc worldsheet geometry. T
points have prompted us to consider an RP2 generalization of
BSFT, an extension of the idea of theory space on the
disc and hence of open-closed-string field theory from
disc and the RP2 worldsheet geometries, which share t
same Euler number. For recent discussions of other asp
of closed-string geometries and closed-string tachyons,
for example,@17–23#.

In this paper, we present an extension of BSFT on d
and RP2 worldsheet geometries for bosonic strings.3 Our
construction is based on the BV formalism applied to bo
the correlators on the boundary of the disc and the ones
the nontrivial loopC of RP2 @p1(RP2)5Z2#. The former part
is a repetition of@1# except for the insertion of Chan-Pato
space. As for the latter, let us first note that this nontriv
loop can be identified as a source of the crosscap contri
ing to the Euler number when RP2 is represented as a part o
the complex plane. We find that the scalar operators loca
on this nontrivial loop accomplish the desirable interpolati
between the orientifold planes of various dimensions
much the same way as the operators of BSFT do betw
D-branes of various dimensions. The off-shell extens
@26,27# ~see also@28#! of D-brane boundary states and that
crosscap states@29–31# provide an expedient tool for this
The latter will be given in this paper.

The family of off-shell crosscap states considered in o
paper corresponds to the background field of the dilaton.

3See @24# for a recent discussion. For earlier references on
open-closed mixed system, see, for example,@25#.
©2002 The American Physical Society06-1
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reason that this is the case is the following. It is well know
that the dilaton is the only background field which coup
directly to the worldsheet two-dimensional curvature. W
choose the worldsheet metric on RP2 to be flat everywhere
except on the nontrivial loop, that is, the upper half of a u
circle. The curvature is then concentrated on this loop
fringe as a delta function singularity. This justifies our co
struction that the background field that deforms the the
lives only on the nontrivial loop of RP2.

We find an appropriate BRS operator which acts on
operators on this loop on RP2. Finding such an operator i
mandatory for us to materialize the BV formalism on RP2.
The total action resulting from our discussion is simply
sum of two terms, one from the disc geometry and the ot
from RP2. In this sense, our construction generalizes tha
the first quantized unoriented string theory at Euler num
1. Each part of the action separately obeys a first order
ferential equation with respect to the couplings of operat
inserted. The relative normalization between the two term
fixed by appealing to the dilaton tadpole cancellation at Eu
number 1@33–35#. The work of@8# tells us that the normal
ization of the disc part is in fact the D-brane tension.

In the next section, we briefly summarize essential ing
dients of BSFT, which are the BV formalism, the action
the BRS operator on the operators located on the boun
of a disc, and the defining differential equation for the act
Sdisc. We recall the off-shell boundary states introduced
@26,27#. In Sec. III, the RP2 extension of BSFT is given. We
find an appropriate BRS operator acting properly on ope
tors on the nontrivial loop represented as half of a unit cir
in the complex plane. We compute the action of the B
operator and derive a differential equation forSRP2

. We in-
troduce off-shell crosscap states which manage to interpo
states representing orientifold planes of various dimensio
In Sec. IV, we discuss the total action. The total action c
sists of the contributions from the two geometries. We d
cuss how to fix the relative normalization.

In Appendix A, we construct a holomorphic field wit
weight p on the disc and that on RP2, using the construction
on the plane as the double of the surfaces. These are fou
be useful in the calculation in the text. In Appendix B, w
recall the tachyon vertex operator of an unoriented boso
string with intercept24.

II. BACKGROUND INDEPENDENT OPEN-STRING FIELD
THEORY OF WITTEN AND OFF-SHELL

BOUNDARY STATES

A. BV formalism

Let us first recall the BV formalism briefly. The bas
ingredients of this formalism can be summarized as a tri

~M,v,V!. ~2.1!

HereM is a supermanifold equipped with local coordinat
$$uI%%. We denote byv a nondegenerate odd~fermionic!
symplectic two-form which is closed,

dv50. ~2.2!
04600
s

t
r

-
y

e

er
f
r

if-
s
is
r

-

ry
n

-
e
S

te
s.
-
-

to

ic

t

Finally, M possesses U~1! symmetry generated by the fe
mionic vector fieldV5VI(d/duI). This U~1! symmetry is
identified with the ghost number.

The action functional~or zero-form! S in this formalism is
introduced through

dS5 i Vv, ~2.3!

wherei V is an interior contraction byV. That V generates a
symmetry ofv translates into

LVv50, ~2.4!

whereLV[diV1 i Vd is the Lie derivative. We see that Eq
~2.2! and ~2.4! ensure the existence of a scalar functionaS
obeying Eq. ~2.3! modulo global problems on ‘‘theory
space.’’ That the antibrackets

$S,S%AB ~2.5!

be constant provides the nilpotency ofV,

V250, ~2.6!

andV is naturally identified with the BRS charge. In the ne
section, we will find that this framework is realized on th
RP2 worldsheet geometry as well. Let us first review t
realization on the disc by Witten.

B. ˆQBRS ,O‰

We will first obtain the BRS transformation of a gener
operatorO with ghost number 1 located on the boundary]S
of the unit discS. Let

O~w,w̄!5
1

iw
cz~w!V~w,w̄!5cs~s!V~w,w̄!, ~2.7!

whereV is a generic scalar operator with ghost number 0 a
the last equality holds only on the unit circle. Note th
cs(s), the tangent component of the ghost field along
boundary of the disc, is the only nonvanishing component
the boundary. See Eq.~A9! in Appendix A. It is safe to
obtain the BRS transformation

dBRSO5 i e$QBRS,O%, ~2.8!

using a free open string:

QBRS5
1

2p i R dz jBRS, ~2.9!

j BRS~z!5cz~z!Tzz
m~z!1:bzz~z!cz~z!]zc

z~z!:

1
3

2
]z

2cz~z!,

Tzz
m~z!52

1

a8
:]zX

m ]zXm :. ~2.10!

We find
6-2
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$QBRS,O~w,w̄!%5cs]scs~w!S a8
]2

]Xm ]Xm

11D V~w,w̄!.

~2.11!

We confirm that an on-shell open-string tachyon with int
cept21 is represented by the vertex operatorV5exp$ik•X%
with a8M252a8kmkm521.

C. dSdiscÄ i Vv

The defining differential equation~2.3! for Sdisc is written
as

dSdisc

dla
5

K

2E E tr
ds

2p

ds8

2p
^O a~s!$QBRS,O%~s8!&V,disc

ghost ,

~2.12!

O~s!5cs~s!V~s!5(
a

lacs~s!V a~s!

5(
a

laO a~s!. ~2.13!

Here ^•••&V,disc
ghost is the unnormalized path integral with re

spect to the worldsheet matter action

I disc5I bulk1E
]S

ds

2p
V~s!, ~2.14!

I bulk5
1

4paES
Adethh i j ] iX

m ] jX
n gmn d2s. ~2.15!

Hereh i j is a worldsheet metric which is taken to be flat, a
gmn is a spacetime metric with Minkowski signature. W
denote by ‘‘tr’’ the trace over the Chan-Paton space. T
simply gives us a factorn of so(n) Lie algebra. Separating
the ghost Hilbert space, we find

dSdisc

dla
5KnE E ds

2p

ds8

2p
@12cos~s2s8!#

3^c1c0c21&disc

3K V a~s!S a8
]2

]Xm ]Xm

11D V~s8!L
V,disc

.

~2.16!

D. Off-shell boundary state

The unnormalized matter path integral^•••&V,disc can be
represented as a matrix element

^•••&V,disc5^Bu•••u0&V,disc . ~2.17!

The bra vector̂ Bu obeys
04600
-

s

^BuF 1

2pa8
S z

]

]z
1 z̄

]

] z̄
D Xm1

1

2p

]V
]XmGU

z5eis,z̄5e2 is

50.

~2.18!

We refer tô Bu as an off-shell boundary state of the disc. T
condition~2.18! is a consequence of the correspondence
tween the matrix element~2.17! and the end point of the pat
integral. The latter obeys the boundary condition deriv
from the worldsheet actionI disc on the disc. Equation~2.18!
tells us that, at the initial point of the coupling constant flo
the system obeys the Neumann boundary condition:

^Bu~an1ã2n!50. ~2.19!

The end point of the flow is described by the zero
]V/]Xm, namely, the Dirichlet boundary condition:

^Bu~an2ã2n!50. ~2.20!

An explicit interpolation between the two ends can
done in solvable cases. In the case of quadratic profiles,
proper form of the Green’s function has been given
@26,27#. For analyses which utilize the boundary sin
Gordon model and theg function5^Bu0&, see@36,37#.

III. RP 2 EXTENSION

We now proceed to construct the RP2 extension of BSFT.
RP2 is a nonorientable Riemann surface of Euler numbe
with no hole, no boundary, and one crosscap. It is a geom
swept by a closed string. The external physical states of
nonorientable closed string are represented by the vertex
erators inserted at any point on the surface. The phys
state conditions are stated as$QBRS,O closed%50. HereQBRS
is the BRS operator on RP2 andO closed is a generic vertex
operator. In the case of the ground state scalar of a clo
unoriented bosonic string, this leads us to the on-shell c
dition a8M252a8kmkm524, namely, the closed-string
tachyon with intercept24. For completeness of our discu
sion, we will include its derivation in Appendix B.

Another property of RP2, which is of vital importance to
us, isp1(RP2)5Z2. This permits us to consider a nontrivia
loop C which is represented by a path connecting any t
conjugate points~for example, 1 and21) on the complex
plane, i.e., the double of this Riemann surface. As a refere
loop, we consider half of a unit circlez5eis (0<s,p).

A. Glossary of notation

Let us first summarize our notation in the RP2 case.~See
Appendix A for more detail.! The tangential component an
the normal component of the ghost fieldcs andcr along the
loop are, respectively,

cs[
]s

]z
cz1

]s

] z̄
cz̄52

i

2 S cz~z!

z
2

c̄z̄~ z̄!

z̄
D

52 i
cz~z!2cz~2z!

2z
, ~3.1!
6-3
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cr[
]r

]z
cz1

]r

] z̄
cz̄5

1

2r
@ z̄cz~z!1zc̄z̄~ z̄!#

5
cz~z!1cz~2z!

2z
. ~3.2!

In both equations, the last equality holds only whenuzu51.
We also note that

cs]scs~w!

52 i
cz~w!2cz~2w!

2w

]zc
z~w!1~]zc

z!~2w!

2
, ~3.3!

cs~w!]sV~Xm!

5
cz~w!2cz~2w!

2
@]zX

m~w!1~]zX
m!~2w!#

]

]Xm
V.

~3.4!

Here the argument2w should be substituted after the d
rivatives are taken andV is an arbitrary function ofXm.

B. BRS chargeQ„s…

Our first objective is to obtain a BRS charge which co
responds to the vector fieldV in the BV formalism for the
RP2 case. Let us consider the following expression:

QBRS
(s) [ R dz

2p i
j z
BRS~z!,

j z
BRS~z![2ceven

z ~z!S 2
1

a8
D :~]zX

m!even~z!

3~]zXm!even~z!:

1:bzz even~z!ceven
z ~z!]zceven

z ~z!:

1total derivatives, ~3.5!

where the subscript ‘‘even’’ implies that the modes are
stricted to the even ones. For example,ceven

z (z)
04600
-

-

[(n evencnz2n115@cz(z)2cz(2z)#/2. We will now show
that ourQBRS

(s) , when acted upon the conformal fields onuzu
51, generates the BRS transformations representing the
feomorphisms in thes direction.

Let us first consider the ghost part of our BRS current

j z
(g)~z![

1

8
@bzz~z!1bzz~2z!#@cz~z!2cz~2z!#

3@]zc
z~z!1~]zc

z!~2z!#. ~3.6!

We obtain

j z
(g)~z!cs~w!;2

i

2 S 1

z2w
2

1

z1wD
3

cz~z!2cz~2z!

2w

]zc
z~z!1~]zc

z!~2z!

2
,

~3.7!

so that

dBcs~w![ i eH R dz

2p i
j z
(g)~z!,cs~w!J

5 i ecs]scs~w!. ~3.8!

One can easily show thatdBcr(w)50. These are the desir
able BRS transformation laws for thes diffeomorphisms.
~Again uwu51 is understood.!

Next, we consider the matter part of the BRS current:

j z
(m)~z![2

cz~z!2cz~2z!

2 S 2
1

a8
D

3:~]zX
m!even~z!~]zXm!even~z!:. ~3.9!

We find
j z
(m)~z!V 8„Xm~w,w̄!…;

cz~z!2cz~2z!

2 S 1

z2w
1

1

z1wD :~]zX
m!even~z!

]

]Xm
V 8~Xm!:

2
a8

8

cz~z!2cz~2z!

2 S 1

~z2w!2
1

2

~z2w!~z1w!
1

1

~z1w!2D :
]2

]Xm ]Xm

V 8~X!:, ~3.10!

so that

H R dz

2p i
j z
(m)~z!,V 8„Xm~w,w̄!…J 5cs]sV 8~Xm!2

a8

4
@]scs~w!12ics~w!#:

]2

]Xm ]Xm

V 8~Xm!:. ~3.11!
6-4
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In particular, settingV 8(Xm)5Xm, we obtain

dBXm[ i eH R dz

2p i
j z
(m)~z!,XmJ 5 i ecs]sXm~w!.

~3.12!

This is again the desirable BRS transformation. Thus,
operator

QBRS
(s) 5 R dz

2p i
@ j z

(g)~z!1 j z
(m)~z!# ~3.13!

generates the BRS transformationsdB associated with thes
diffeomorphisms onuwu51.

C. ˆQBRS
„s… ,O‰

It is now immediate to carry out the action of the BR
charge on a generic operator with ghost number 1. This
brings us an operator which is ‘‘on shell’’ with respect
QBRS

(s) , that is, invariant underdB . Let O be a scalar operato
with ghost number 1,

O~w,w̄!5cs~w!V 8s
„Xm~w,w̄!…1cr~w!V 8r

„Xm~w,w̄!….

~3.14!

We find

$QBRS
(s) ,O~w,w̄!%5cs]scsS 11

a8

4

]2

]X2D V 8s~X!

2crcsS ]sV 8r~X!2 i
a8

2

]2

]X2
V 8r~X!D

1
a8

4
cr]scs

]2

]X2
V 8r~X!. ~3.15!

The right-hand side vanishes when

V 8s~X!5bs exp$ ik•X~w,w̄!%,

a8M2[2a8k2524,

V 8r~X!5b r1. ~3.16!

Herebs andb r are constants and1 is the identity operator.
Equation~3.16! includes the case
04600
e

so

V 8s~X!5bs exp$ ik•X~w,w̄!%,

a8M2[2a8k2524,

V 8r~X!50 ~3.17!

as a special case. In what follows, we will consider an o
shell deformation of the following kind:

O5csV 91crV 8, ~3.18!

whereV 8,V 9 are generic scalar relevant operators.

D. Nilpotency of dB

The condition we need in our formalism isdB
2O50 with

O given by Eq.~3.18!. UsingdB
2cs50, we obtain

dB
2O5csdB

2V 91crdB
2V 8. ~3.19!

On the other hand, for bothV5V 8,V 9

dB
2V5 i edBH cs]sV2

a8

4
~]scs12ics!

]2

]X2
VJ

5 i eH ~dBcs!]sV2cs]s~dBV!2
a8

4
„]s~dBcs!

12idBcs
…

]2

]X2
V1

a8

4
~]scs12ics!dB

]2

]X2
VJ .

~3.20!

The terms in the right-hand side cancel with one another
we establish thatdB

2O50.

E. dSRP2

The analyses made and the properties established a
provide the ingredients necessary for us to definedS in the
framework of BV onS85RP2 as well. Following the disc
case, we introduce a defining differential equation~2.3! for
SRP2

:

dSRP2

dla
5

K8

2 E
C
E

C

ds

2p

ds8

2p
^O a~s!$QBRS

(s) ,O%~s8!&V8,RP2
ghost ~3.21!

5
K8

2 E
C
E

C

ds

2p

ds8

2p
^cr~s!~crcs!~s8!&RP2K V 8a~s!~2 !S ]s8V 8~s8!2 i

a8

2

]2

]Xm ]Xm

V 8~s8!D L
V8,RP2
6-5
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5K8E
C
E

C

ds

2p

ds8

2p
sin~s2s8!^c1c0c21&RP2K V 8a~s!S ]s8V 8~s8!2 i

a8

2

]2

]Xm ]Xm

V 8~s8!D L
V8,RP2

,

~3.22!

V 8[(
a

laV 8a. ~3.23!
-

f the
ell

ie-
e-
Here the unnormalized path integral^•••&V8 is evaluated
with respect to

I RP2
5I 8bulk1E

C

ds

p
V 8~s!, ~3.24!

I 8bulk5
1

4pa8
E

S82C
Adethh i j ] iX

m ] jX
n gmn d2s.

~3.25!

Note that, in Eq.~3.23!, the allowed form of the nonvanish
ing ghost three-point function has selectedV 8 alone andV 9
has disappeared.
h
in
th

04600
F. The off-shell crosscap states

The unnormalized path integral on RP2 geometry can be
represented as a matrix element between the ket vector o
closed-string vacuum and the bra vector of the off-sh
crosscap statêCu:

^•••&V 85^Cu•••u0&V 8 . ~3.26!

The derivation of the equation which the bra vector^Cu
obeys involves the closed and unoriented nature of the R
mann surface RP2. The fundamental domain can be repr
sented byS85$$r ,1%%øˆ$r 51,0<s,p%‰ on the complex
plane. The variation of the actionI RP2

must be carried out
consistently with the antipodal identificationP(z)521/z̄.
We find
e that the
dI RP2
5

1

2pa8
E

0

p

ds dXmH S w
d

dw
1w̄

d

dw̄
D Xm~w,w̄!1a8

]V 8„Xm~w,w̄!…

]Xm J U
w5z,w̄5 z̄

1
1

2pa8
E

0

p

ds dXmH S w
d

dw
1w̄

d

dw̄
D Xm~w,w̄!1a8

]V 8„Xm~w,w̄!…

]Xm J U
w521/z̄,w̄521/z

1the part proportional to the equation of motion. ~3.27!

Here, z5(12d)eis and d is a small but nonvanishing number. Reflecting the fact that RP2 is nonorientable, we have
nonvanishing contributions from an open cover ofC5ˆ$r 51,0<s,p%‰, namely, the edge of the fundamental domainS8
despite the fact that there is no boundary. Stokes theorem does not apply.

From the correspondence between the matrix element and the end point condition of the path integral, we conclud
bra vector̂ Cu must obey

^CuKm~z,z̄;d!50,

Km~z,z̄;d![F 1

2pa8
S w

]

]w
1w̄

]

]w̄
D Xm1

1

2p

]V 8

]XmGUw5z,w̄5 z̄1F 1

2pa8
S w

]

]w
1w̄

]

]w̄
D Xm1

1

2p

]V 8

]XmGU
w521/z̄,w̄521/z

.

~3.28!
of
Expansion of this condition ind generates conditions whic
may be referred to as off-shell crosscap conditions. The
tial point of the coupling constant flow is described as
ordinary crosscap condition:

^Cu@an1~2 !nã2n#50. ~3.29!
i-
e

The end point of the flow is described by the zero
(]V 8/]Xm)uw5z,w̄5 z̄1(]V 8/]Xm)uw521/z̄,w̄521/z , which is
nothing but the orientifold condition

^Cu@an2~2 !nã2n#50. ~3.30!

We have derived the two-point function from Eq.~3.28! in
6-6



s

o
m
ly
c
n

r-
e

gin
ifo
e

in

tw

n

te

-

ly

s
n.
o
e

an
-
b

to

th

re-

d

the

pli-
be

ed
tring
on-

by
ch

f an

w.
n-

ions

s.

this
ing
in

an.

eld

es

EXTENSION OF BOUNDARY STRING FIELD THEORY . . . PHYSICAL REVIEW D66, 046006 ~2002!
the case thatV 8 is quadratic inXm and checked that it take
the proper form on both ends of the flow.4

Let us finish this section by discussing the properties
orientifold planes in general. They are certainly nondyna
cal objects in string perturbation theory. Nonperturbative
they may become dynamical, however. It is known in fa
that the orientifold planes do become dynamical in Se
description of F theory@32# which connects F to orientifolds
and the Seiberg-Witten curve of the uv finite fou
dimensionalN52 supersymmetric gauge theory. While w
are not able to identify the nonperturbative dynamical ori
which causes the dilaton condensation and hence orient
planes to get deformed, our construction does provid
proper description once this happens.

IV. TOTAL ACTION

Our construction of the action for the open-closed str
field theory is completed by addingSdisc andSRP2

:

S5Sdisc1SRP2
. ~4.1!

The individual partsSdisc andSRP2
obey the first order dif-

ferential equations~2.16! and ~3.23!, respectively. Here we
discuss the normalization constants appearing in these
quantities. It was shown in@1,2# that Sdisc on shell~that is,
with no operator insertion! is actually the matter partition
function of a free open string up to an overall normalizatio
The same applies toSRP2

as well: on shell it is the RP2 matter
partition function up to an overall normalization. We wri
these relations as

Sdiscuon shell5Zdisc/gdisc , ~4.2!

SRP2
uon shell5ZRP2

/gRP2. ~4.3!

Here Zdisc and ZRP2
are complete partition functions ob

tained by carrying out the path integrals overXm and the
two-dimensional metric.@They are actually free~vacuum!
energies of a string as a single string can produce on
connected graph.# We denote bygdisc andgRP2 the contribu-
tions in the respective geometries from the path integral
the two-dimensional metric in the Polyakov formulatio
They are made of the ghost determinant divided by the v
ume of the conformal killing vector and the order of th
disconnected diffeomorphisms.

Equation~4.2! and Eq.~4.3! can be related by invoking
the cancellation between the dilaton tadpole of the disc
that of RP2 @33–35#. The operator insertion of a zero mo
mentum tadpole in the first quantized string can be done
taking a derivative of the partition function with respect
the tension of a fundamental stringTf und51/2pa8.

On the other hand, the BV formalism guarantees that
right-hand side of the basic equationdS5 i Vv is a total dif-

4These will appear elsewhere together with other related issu
04600
f
i-
,
t
’s

ld
a

g

o

.

a

of

l-

d

y

e

ferential at least locally. The integration constant is, the
fore, an additive one and, up to this constant,Sdisc/RP2

is
completely determined:

Sdisc5Kn fdisc~la!,

SRP2
5K8 f RP2

~la!, ~4.4!

where f disc(la) and f RP2
(la) are both scalar functions, an

can be determined by using solvable scalar profiles.5

Putting all these considerations together, we find that
cancellation of the dilaton tadpoles implies

]

]Tf und
~Kngdiscf

disc1K8gRP2f RP2
!uon shell50. ~4.5!

In @8#, K was determined by demanding that a proper am
tude of the nearly on-shell three-point open-string tachyon
obtained. There is no argument in the RP2 case which paral-
lels the disc case. We see that Eq.~4.5! determines the nor-
malizationK8 instead.

A final remark of this subsection is on the unorient
nature of our open and closed strings. The open-closed s
field theory constructed above is nonorientable as our c
struction involves the nonorientable surface RP2. On shell,
the state space of an unoriented open string is obtained
choosingO vertex operators and Chan-Paton indices su
that the product is even under the twist operationV. ~We
have nothing to say in this paper on the state space o
unoriented closed string.! Let us note, however, thatV is a
symmetry only at the two ends of the coupling constant flo
In the closed-string picture, this is easily seen in our co
struction of the off-shell boundary/crosscap states. Equat
~2.19!, ~2.20!, ~3.29!, and ~3.30! stay invariant under the
twist operation as

V~an6ã2n!V2156~a2n6ãn!,

V„an6~2 !nã2n…V
2156„a2n6~2 !nãn…. ~4.6!

At a generic value of the coupling, neither of Eq
~2.18!,~3.28! stays invariant.
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APPENDIX A

In this appendix, the mode expansion of a conformal fi
with weightp is obtained both on a unit discD2 and on RP2.

. 5We have set̂c1c0c21&disc5^c1c0c21&RP251.
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D2 and RP2 are constructed from the complex plane by t

respective identificationsz851/z̄ andz8521/z̄.
Let

be a holomorphic field with weightp2q and F̄( z̄) be an
antiholomorphic field with weightp2q. These mode expan
sions read, respectively,

F~z!5 (
nPZ

fnz2n2p1q, F̄~ z̄!5 (
nPZ

f̄n z̄2n2p1q.

~A1!

The modes ofF(z) and those ofF̄( z̄) are related to each
other on bothD2 and RP2 and this relation can be made cle
04600
by extending the domain ofF(z8) to uz8u.1 through the
respective involutionsz851/z̄ (D2) andz8521/z̄ (RP2):

F̄~ z̄!5S ]z8

] z̄
D p2q

F~z8!. ~A2!

On uzu51, this leads to the relation

~ z̄!p2qF̄~ z̄!u uzu515~7z!p2qF~6z!u uzu51 . ~A3!

The upper and lower signs refer, respectively, to theD2 and
RP2 cases. In terms of the modes, this equation reads

f̄n5H f2ne2 i (p2q)p, D2

f2ne2 i (p2q)p~2 !n, RP2.
~A4!

The radial, tangential, and mixed components are c
structed as
~A5!

~A6!
On uzu51, we obtain

~A7!

For example,
p51,q50:

az~z![ iA 2

a8
]zX~z,z̄!5(

n
anz2n21,

ā z̄~ z̄![ iA 2

a8
]̄ z̄X~z,z̄!5(

n
ãnz̄2n21,
a r~z,z̄!5
z

r
az~z!1

z̄

r
ā z̄~ z̄!,

as~z,z̄!5 izaz~z!2 i z̄ā z̄~ z̄!,

a r(z,z̄)u uzu515H 0, D2 ,

z„az(z)1az(2z)…u uzu51 , RP2,

as~z,z̄!u uzu515H 2izaz~z!u uzu51 , D2 ,

iz„az~z!2az~2z!…u uzu51 , RP2,
~A8!

p50,q51:

cz~z!5(
n

cnz2n11, c̄z̄~ z̄!5(
n

c̄nz̄2n11,

cr~z,z̄!5
1

2r
@ z̄cz~z!1zc̄z̄~ z̄!#,
6-8
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cs~z,z̄!52
i

2 S cz~z!

z
2

c̄z̄~ z̄!

z̄
D ,

cr(s)[cr(z,z̄)u uzu5155
0, D2 ,

1

2z
@cz~z!1cz~eipz!#u uzu51

5 (
nodd

cne2 ins, RP2,

cs~s![cs~z,z̄!u uzu51

55
1

iz
cz~z!u uzu5152 i(

n
cne2 ins, D2 ,

1

2iz
@cz~z!2cz~eipz!#u uzu51

52 i (
n even

cne2 ins, RP2.

~A9!

Some of these formulas are exploited in the text.

APPENDIX B

Let O(z,z̄) be a generic scalar operator with ghost nu
ber 2 on RP2 geometry. We write this as
,’

d

.
r

t

n
8

r

04600
-

O~z,z̄!5
cz~z!

z

c̄( z̄)~ z̄!

z̄
V~z,z̄!. ~B1!

Let QBRSbe the BRS charge obtained from the integration
the holomorphic BRS current. We find

@QBRS,O~z,z̄!#52@]zc
z~z!1~]zc

z!~21/z̄!#

3S 11
a8

4

]2

]Xm ]Xm
DO~z,z̄!. ~B2!

The on-shell ground state scalar is represented by the ve
operator

V~z,z̄!5eik•X(z,z̄), ~B3!

a8M252a8k2524. ~B4!

This latter condition is that of the tachyon of a closed uno
ented bosonic string with intercept24.
y
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