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Extension of boundary string field theory on disc and RB worldsheet geometries
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We present an extension of boundary string field theory on disc aRdvBfdsheet geometries. Finding an
appropriate Becchi-Rouet-Stof@BRS) operator in the case of the REeometry, we generalize the background
independent open string field theaofyr boundary string field theoyyof Witten on a unit disc. The space of
two-dimensional field theories on Ris spanned by the scalar operator inserted at the nontrivial loop of RP
We discuss the off-shell extension of the crosscap states, which provides an interpolation of orientifold planes
of various dimensions.
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[. INTRODUCTION the matter central charge is changed by the presence of
Becchi-Rouet-StoréBRS) noninvariant operators located on

For a long time, a number of physicists have suspectethe bulk of a Riemann surface.
that the “space of all two-dimensional field theories,” if itis =~ One may note in this last regard that there are some pro-
to be defined, should be a natural configuration space aofesses of a closed string and geometries represented by a
strings on which string field theory is constructed with anclosed string which do not involve operators living in the
appropriate gauge invariant action. Ultraviolet divergencesntire bulk of a Riemann surface. In particular, orientifold
associated with irrelevant operators carrying arbitrarily highplanes of various dimensions are characterized as crosscap
dimensions have hampered progress toward this goal. It wegtates on a complex plane representing thé RBrldsheet
shown by Witter{ 1],* however, that, modulo this difficulty, it geometry and can be discussed in parallel to D-brane bound-
is possible to find a clear-cut framework based on theary states representing the disc worldsheet geometry. These
Batalin-Vilkovisky (BV) formalism[3,4] in the case of open- points have prompted us to consider arf RBneralization of
string field theory. This framework materializes the idea ofBSFT, an extension of the idea of theory space on the unit
“theory space” on a unit disc. String field thedrpf this  disc and hence of open-closed-string field theory from the
kind, originally called background independent open-stringdisc and the RP worldsheet geometries, which share the
field theory, provides a self-consistent framework for off- same Euler number. For recent discussions of other aspects
shell processes in which relevant and marginal operators ai@ closed-string geometries and closed-string tachyons, see,
involved. for example [17-23.

More recently, this theory has been successfully applied to In this paper, we present an extension of BSFT on disc
the problem of open-string tachyon condensatiéiv]. It and RP worldsheet geometries for bosonic strifg€ur
provides an off-shell interpolation between the Neumann andonstruction is based on the BV formalism applied to both
the Dirichlet boundary conditions of an open string. An exactthe correlators on the boundary of the disc and the ones on
tachyon potentia[6,7] with the right normalization coeffi- the nontrivial loopC of RP? [ 7r;(RP?) =Z,]. The former part
cient[8] has been obtained and this has provided a proof ofs a repetition off 1] except for the insertion of Chan-Paton
Sen’s conjecturg9] that the difference between the two ex- space. As for the latter, let us first note that this nontrivial
tremes just cancels the tension of the D-brane in question. lbop can be identified as a source of the crosscap contribut-
allows us to consider the decay of a higher dimensionaing to the Euler number when R represented as a part of
brane to a lower one as well. Agreement on the tensions ahe complex plane. We find that the scalar operators located
branes of various dimensions has been obtained[1¥=€l§  on this nontrivial loop accomplish the desirable interpolation
for some of the subsequent developments. We will refer tdoetween the orientifold planes of various dimensions in
the background independent open-string field theory of Witmuch the same way as the operators of BSFT do between
ten as boundary string field theo8SFT), following the  D-branes of various dimensions. The off-shell extension
current nomenclature. An extension of this framework to[26,27] (see als§28]) of D-brane boundary states and that of
closed-string field theory appears to be formidable as we dorosscap statel29—31 provide an expedient tool for this.
not yet understand well enough the processes under whichhe latter will be given in this paper.

The family of off-shell crosscap states considered in our
paper corresponds to the background field of the dilaton. The
*Email address: itoyama@het.phys.sci.osaka-u.ac.jp
TEmail address: nakashin@post.kek.jp
1See alsd2]. 3See[24] for a recent discussion. For earlier references on the
2For a recent review on string field theory, see, for exanfiile,  open-closed mixed system, see, for exam[28].
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reason that this is the case is the following. It is well knownFinally, M possesses (@) symmetry generated by the fer-

that the dilaton is the only background field which couplesmionic vector fieldvV=V'(d/du'). This U1) symmetry is

directly to the worldsheet two-dimensional curvature. Weidentified with the ghost number.

choose the worldsheet metric on R® be flat everywhere The action functionafor zero-form Sin this formalism is

except on the nontrivial loop, that is, the upper half of a unitintroduced through

circle. The curvature is then concentrated on this loop or

fringe as a delta function singularity. This justifies our con- dS=iyo, 2.3

struction that the background field that deforms the theory o L .

lives only on the nontrivial loop of R whereiy, is an interior contractlon by. ThatV generates a
We find an appropriate BRS operator which acts on theYMMmetry ofw translates into

operators on this loop on RPFinding such an operator is Low=0 (2.4)

mandatory for us to materialize the BV formalism on’RP v ' '

The total action resulting from our discussion is simply awnere £,,=di, +iyd is the Lie derivative. We see that Egs.

sum of two terms, one from the disc geometry and the othey2 ) and (2.4) ensure the existence of a scalar functiogal
from RP. In this sense, our construction generalizes that Obbeying Eq. (2.3 modulo global problems on “theory

the first quantized unoriented string theory at Euler numbegpace.” That the antibrackets

1. Each part of the action separately obeys a first order dif-

ferential equation with respect to the couplings of operators {S,S}aB (2.5
inserted. The relative normalization between the two terms is

fixed by appealing to the dilaton tadpole cancellation at EulePpe constant provides the nilpotency \6f

number 1[33—-35. The work of[8] tells us that the normal- 5

ization of the disc part is in fact the D-brane tension. V=0, (2.6

In the next section, we briefly summarize essential ingre- : : - :
dients of BSFT, which are the BV formalism, the action of andV is naturally identified with the BRS charge. In the next

the BRS operator on the operators located on the boundarsectlon, we will find that this framework is realized on the

of a disc, and the defining differential equation for the actionizigzgisgﬁ ?L Sg?srgeg;yvaftevr\:e”' Let us first review the
sfisc, We recall the off-shell boundary states introduced in '

[26,27). In Sec. lIl, the RP extension of BSFT is given. We

find an appropriate BRS operator acting properly on opera- B. {Qers. O}

tors on the nontrivial loop represented as half of a unit circle  We will first obtain the BRS transformation of a generic
in the complex plane. We compute the action of the BRSoperator® with ghost number 1 located on the boundasy
operator and derive a differential equation &”. We in-  of the unit disc3. Let

troduce off-shell crosscap states which manage to interpolate

states representing orientifold planes of various dimensions. O(W,W)= iCZ(W)V(W,W):CU(G)V(W’V—V), 2.7

In Sec. IV, we discuss the total action. The total action con- Iw

sists of the contributions from the two geometries. We dis- ] ) ]
cuss how to fix the relative normalization. whereV is a generic scalar operator with ghost number 0 and

In Appendix A, we construct a holomorphic field with the last equality holds only on the unit circ_le. Note that
weightp on the disc and that on RPusing the construction €’(¢), the tangent component of the ghost field along the

on the plane as the double of the surfaces. These are found Bgundary of the disc, is the only nonvanishing component on
be useful in the calculation in the text. In Appendix B, we the boundary. See EdA9) in Appendix A. It is safe to

recall the tachyon vertex operator of an unoriented bosoni€btain the BRS transformation
string with intercept—4.

JsrV=1€{Qgrs, O}, (2.9
Il. BACKGROUND INDEPENDENT OPEN-STRING FIELD using a free open string:
THEORY OF WITTEN AND OFF-SHELL
BOUNDARY STATES 1 .
Qprs™ o % dz jgrs: 2.9
A. BV formalism ™
Let us first recall the BV formalism briefly. The basic jBrd2)=CcX(2)TYY2) +:b,A2)c*(2) 9,c%(2):
ingredients of this formalism can be summarized as a triplet ‘
3
(M,0,V). (2.1 +50:¢%(2),

Here M is a supermanifold equipped with local coordinates L

{{u'}}. We denote byw a nondegenerate oddermionic TN (2 = — 3 XM g.X . - 21

symplectic two-form which is closed, 242) o T TERT (2.19
dw=0. (2.2 We find

046006-2



EXTENSION OF BOUNDARY STRING FIELD THEORY ... PHYSICAL REVIEW [®6, 046006 (2002

V(W,w). (B| =0.

. Jd —d
Q ,O(W,W) :CUﬁUCU(W) o —+1 Z—+72—| Xt + — ——
{Qers } IXE X, 2ma’ Jz 7=ei0 7= i0

(2.1 (2.18

We confirm that an on-shell open-string tachyon with inter-We refer to(B| as an off-shell boundary state of the disc. The

cept—1 is represented by the vertex operator explik-X}  condition(2.18 is a consequence of the correspondence be-
with a’M?= —a’k*k,= — 1. tween the matrix elemeri2.17) and the end point of the path

integral. The latter obeys the boundary condition derived
o from the worldsheet actioH''s¢ on the disc. Equatiof2.18
C- d ISC:IVw - oy . .
_ tells us that, at the initial point of the coupling constant flow,
The defining differential equatiof2.3) for S¥'¢is written  the system obeys the Neumann boundary condition:

(B|(an+a_,)=0. (2.19

as

ssdise K do do’ ,\\ghost

o, :EJ ftfz§<(9 (0){Qers: O}(0))Vdisc: The end point of the flow is described by the zero of
(2.12  dVIgxX*, namely, the Dirichlet boundary condition:

<B|(an_a’—n):0- (2.20
Olo)=c(a)No) % NaC7()V"(0) An explicit interpolation between the two ends can be
done in solvable cases. In the case of quadratic profiles, the
=> N, 0%0). (2.13  proper form of the Green's function has been given in
o [26,27. For analyses which utilize the boundary sine-
Gordon model and thg function=(B|0), see[36,37.

Here (- --)3"25L is the unnormalized path integral with re-
spect to the worldsheet matter action lIl. RP 2 EXTENSION

We now proceed to construct the Réxtension of BSFT.
|disc=|bulk+J’ d_‘TV(U), (2.14 RP is a nonorientable Riemann surface of Euler number 1
532 with no hole, no boundary, and one crosscap. It is a geometry
swept by a closed string. The external physical states of this
1 ) nonorientable closed string are represented by the vertex op-
Ib“"‘z—f detny' 9,X* 9;X"g,, d?o. (2.15 erators inserted at any point on the surface. The physical
dmals state conditions are stated{@3grs, @ €'°¢4=0. HereQgrs
) is the BRS operator on RRand O ¢'°%¢4is a generic vertex
Here ' is a worldsheet metric which is taken to be flat, andoperator. In the case of the ground state scalar of a closed
g, is a spacetime metric with Minkowski signature. We unoriented bosonic string, this leads us to the on-shell con-
denote by “tr” the trace over the Chan-Paton space. Thigdition a’M2=—a'kMk'“=—4, namely, the closed-string
simply gives us a facton of so(n) Lie algebra. Separating tachyon with intercept-4. For completeness of our discus-

the ghost Hilbert space, we find sion, we will include its derivation in Appendix B.
Another property of RP which is of vital importance to
S<disc do do’ us, is7r (RP?)=Z,. This permits us to consider a nontrivial
SV nJ’ 7 ﬁ[l—COS{U—U')] loop C which is represented by a path connecting any two
“ conjugate pointgfor example, 1 and-1) on the complex
X{C1CoC—1)disc plane, i.e., the double of this Riemann surface. As a reference

loop, we consider half of a unit circle=e'” (0<o<).

(72
X{ Vo) a'——+1 | W) .
IX™ X ) A. Glossary of notation
M V,disc
(2.16 Let us first summarize our notation in the Réase.(See
Appendix A for more detai). The tangential component and
the normal component of the ghost fielfl andc" along the
D. Off-shell boundary state loop are, respectively,
The unnormalized matter path integfal - )y, 4isc can be o, —=—
represented as a matrix element o= ’9_UCZ+3_UC;= _i[cf(z) ci2)
Jz 9z 2\ z 7
(- vdisc=(Bl - [0}y, gisc- (2.17
c*(z)—ci—2)
==, (3.2
The bra vectoKB| obeys 2z
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oo o -1 — 2(7)
c'="c +a_;c =5, [26%(2)+2¢(2)]
_ c(2)+ci(—2)

57 (3.2

In both equations, the last equality holds only whejn=1.
We also note that

CU-&O.C(T(W)

— i c(w) —Z\TVZ(—W) ﬂzCZ(W)+(2f92CZ)(—W), (33

c7(W)dV(XH)

e (w)—cH(—w)

1%
> [r?zx“(W)Jr((?zX“)(—W)]ﬁV-

(3.9

Here the argument-w should be substituted after the de-

rivatives are taken ani! is an arbitrary function oK.

B. BRS chargeQ(”

Our first objective is to obtain a BRS charge which cor-
responds to the vector fieM in the BV formalism for the

RP case. Let us consider the following expression:

dz
QRs= fﬁz—wiJ?Rs(Z).

j?RS(z>52céver(z>< - i) H(0X") eved 2)
o

X((?ZX/.L)EVGF( 2):
+:0,7eved 2) Cével{ z) ‘9zcéve|{ 2):

+ total derivatives,

PHYSICAL REVIEW D 66, 046006 (2002

=3, evelfnZ ""1=[c¥2)—c*—2z)]/2. We will now show
that ourQ{Rs, when acted upon the conformal fields [ah
=1, generates the BRS transformations representing the dif-
feomorphisms in ther direction.

Let us first consider the ghost part of our BRS current:

1
i9(2)=5Ib;A2) + b, ~2)][c*(2) ~c*(~2)]

X[3,42)+(9,*)(—2)]. (3.9
We obtain
i1 1
i@ (w)~ - %(m‘ P

» CHz)—c*(—2) 9,c42)+ (9,5 (—2)

2w 2 J
(3.7
so that
dz
dgC”(W)=i e[ 3@ > 9(z),c%(w)
=iec?d,c7(w). (3.9

One can easily show thaizc"(w)=0. These are the desir-
able BRS transformation laws for the diffeomorphisms.
(Again |w|=1 is understood.

Next, we consider the matter part of the BRS current:

where the subscript “even” implies that the modes are re-

stricted to the even ones. For

iM(2) V7 (XH(w,w))~

so that

jgm)(z)Ezcz(Z)_Zﬁ< _ ;)
o
39 X (09X eued D(0X Jeved D7 (3.9
example?l .(z)  We find
cZ(Z)—cZ(—Z)< 1 - 9t ix-
2 Z—W  zZ+w -(’92 )ever{z)ax_luv ( )
a’ cz(z)—cz(—z)< 2 1 P .
8 2 (z—w)2 * (z—w)(z+w) * (z+wW)2/] " sxH axMV (X):, (310
( fﬁd—z.*m)(z) V(XMW W))] =c%9 V’(x#)—a—,[a c"(w)+2ic"(w)]:—2V’(X“):. (3.11)
’ ' 7 4" IXH X,

2mi?
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In particular, setting/’ (X*)=X*, we obtain V'7(X) =B explik - X(w v_v)}
. dz .
opXt=ie %gjgm)(z),xﬂ =i€eC?d XH(w). a'M?=—q'k?=—14,
(3.12
o : . : V'I(X)=0 (3.17
This is again the desirable BRS transformation. Thus, the
operator

as a special case. In what follows, we will consider an off-
shell deformation of the following kind:
QbAs= 35 S [19@+M@2] (313

O=c’V"+c"V’, (3.189
generates the BRS transformatiofis associated with ther
diffeomorphisms onw|=1. where)V’, V" are generic scalar relevant operators.
(o)
C.{Qgks. O} D. Nilpotency of &g

It is now immediate to carry out the action of the BRS
charge on a generic operator with ghost number 1. This als
brings us an operator which is “on shell” with respect to
Qé‘}gs, that is, invariant undefiz . Let O be a scalar operator S20=c"53V"+c" 83V, (3.19
with ghost number 1,

The condition we need in our formalism 80=0 with
& given by Eq.(3.18. Using 62c”=0, we obtain

O(W, W) = (W)Y T (XE(W.W) )+ G (W) VT (XE(W, W), On the other hand, for both=V",V"

(314} a’ {92
83V=i€dg{ c79,V— —(3,C7+2ic’)—V
We find B Bl » Tor 420 o2
Qe oW =c7ayer| 144 )v ()
,O(w,w)}=c%3,c” ——| V'’ a’
BRS 4 9x2 =ie[ (36C7)0,V—C"d,(85V) — 1 (0,( 85C°)
a9
_ I‘CO' &UV”(X)_l?EV”(X) ' . 02 ' . - &2
+2i 6gC )EV-F I(O"UC +2ic )5Bﬁv .
a/ 2 (3 2@
+—c'9,c7—V'"(X 3.1 :
7 pveidios (3.19
. ) ) The terms in the right-hand side cancel with one another and
The right-hand side vanishes when we establish thaﬁé(’)=0.
V'9(X) =BT explik - X(w,w)}, ,
E.dS®P
IM2= — o/ Ik2— _
a'M*=—a'k The analyses made and the properties established above
VI(X)=B1. (3.16 provide the ingredients necessary for us to defli&ain the

framework of BV onX’=RP as well. Following the disc
Here 8° and 8" are constants anfiis the identity operator. case, we introduce a defining differential equati@rs) for

Equation(3.16 includes the case SRP
5st2 K’ do do’
f f 5= 5 (0ROl e (3.2

o’ (92
” (@) >>sz< (a)(—)( VT xiax” <"))>V,RFQ
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’ (92
f f EESIH(G—U'X%COC1>RP2<V'Q(U)(ﬁo'V'(U')—i%MV'(U')»WRFQ,

(3.22
V/EE )\av/a" (323
|
Here the unnormalized path integrél--),, is evaluated F. The off-shell crosscap states
with respect to The unnormalized path integral on RBeometry can be

represented as a matrix element between the ket vector of the
RF 1 1bulk do_ | closed-string vacuum and the bra vector of the off-shell
| RP" = rbulkc f —V'(0), (324 crosscap statéC|:

c
(- =(Cl- [0}y (3.26

rbulk_ [ i 9w 9 xv 2 The derivation of the equation which the bra vect@|
! 47m’J' ¢ detyn’ iX* 3 X"y, A% obeys involves the closed and unoriented nature of the Rie-
(3.295 mann surface RP The fundamental domain can be repre-
sented by, ={{r<1}}U{{r =1,0<o<}} on the complex

Note that, in Eq(3.23), the allowed form of the nonvanish- plane. The variation of the actiolR” must be carried out
ing ghost three-point function has selectéd alone and)” consistently with the antipodal identificatiof(z) = —1/z.
has disappeared. We find

d —d _
W— +w—| X*(w,w)+a’

Sl RPZ_
dw dw

IXH

2ma’

w=z,w=z2

d —d LV (XE(W,W))
f do 6XH | W +w—| X*(w,w) + @' ———————=
2 ma' dw  “dw IXH R
w=—1/z,w=—-1/z
+the part proportional to the equation of motion. 3.29

Here, z=(1—6)e' and & is a small but nonvanishing number. Reflecting the fact that RPhonorientable, we have
nonvanishing contributions from an open coverCef{{r = 1,0< o< w}}, namely, the edge of the fundamental domaih
despite the fact that there is no boundary. Stokes theorem does not apply.

From the correspondence between the matrix element and the end point condition of the path integral, we conclude that the
bra vector{C| must obey

(CIK ,(2,2;8)=0,

K. (2.2,6)=

w=— 1/27,5: —1/z

(3.28

Expansion of this condition i generates conditions which The end point of the flow is described by the zero of
may be referred to as off-shell crosscap conditions. The ini{dV"/IX*)|y=zw=z+ (V' 1IX*)|w=—17w= -1z, Which is
tial point of the coupling constant flow is described as thenothing but the orientifold condition

ordinary crosscap condition: i~
<C|[an_(_) a_,]=0. (3.30

<C|[an+(—)”5_n]=0. (3.29  We have derived the two-point function from E®.28 in
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the case thay’ is quadratic inX* and checked that it takes ferential at least locally. The integration constant is, there-
the proper form on both ends of the fléw. fore, an additive one and, up to this consta8tis¥R” is

Let us finish this section by discussing the properties otompletely determined:
orientifold planes in general. They are certainly nondynami-

cal objects in string perturbation theory. Nonperturbatively, Stise=Knfdise(\ ),
they may become dynamical, however. It is known in fact
that the orientifold planes do become dynamical in Sen’s SRPZ:K’fRPZ()\“), (4.9

description of F theory32] which connects F to orientifolds
and the Seiberg-Witten curve of the uv finite four- wheref®s¢(\9) andePz()\“) are both scalar functions, and
dimensionalN=2 supersymmetric gauge theory. While we can be determined by using solvable scalar profiles.

are not able to identify the nonperturbative dynamical origin  Putting all these considerations together, we find that the
which causes the dilaton condensation and hence orientifoldancellation of the dilaton tadpoles implies

planes to get deformed, our construction does provide a
proper description once this happens.

_ J disc ’ RP?
anund(Kngdiscf +K'grpef )|0n shei=0. (4.5

IV. TOTAL ACTION
, ) . In[8], K was determined by demanding that a proper ampli-
Our construction of the action for the open-closed string,qe of the nearly on-shell three-point open-string tachyon be

field theory is completed by addirgsc and S*: obtained. There is no argument in the®Rfase which paral-
lels the disc case. We see that E4.5 determines the nor-
g= gdiscy gRP. (4.1  malizationK' instead.

A final remark of this subsection is on the unoriented

The individual partss®is¢ and RP obey the first order dif- nature of our open and closed strings. The open-closed string
field theory constructed above is nonorientable as our con-

ferential equations2.1§ and (3.23, respectively. Here we struction involves the nonorientable surface?Ren shell,

discuss the normalization constants appearing in these tWt%e state space of an unoriented open string is obtained b
quantities. It was shown ifil,2] that S%¢ on shell(that is, P P 9 y

with no operator insertionis actually the matter partition choosingO vertex operators and Chan-Paton indices such

function of a free open string up to an overall normalization.that the product IS even gnder the twist operatfon (We
o5 (57 I hell it is th " have_ nothing to say in this paper on the state space of an
The same applies as well: on shell itis the RPmatter noriented closed stringLet us note, however, thad is a

partition function up to an overall normalization. We write symmetry only at the two ends of the coupling constant flow.

these relations as In the closed-string picture, this is easily seen in our con-
o dise struction of the off-shell boundary/crosscap states. Equations
S50 shel= Z%*¥dgisc (42 (2.19, (2.20, (3.29, and (3.30 stay invariant under the

twist operation as
SRF)2|on shell™ ZRPZ/gRFQ- 4.3

Qlapta_)Q t=*(a_ xa),

Here z9is¢ and ZR® are complete partition functions ob-
tained by carrying out the path integrals ovét and the
two-dimensional metric[They are actually fredvacuum 5 o generic value of the coupling, neither of Egs.
energies of a string as a single string can produce only ?2.18) (3.28 stays invariant. '
connected graphWe denote bygyis. andggre the contribu- '
tions in the respective geometries from the path integrals of
the two-dimensional metric in the Polyakov formulation.
They are made of the ghost determinant divided by the vol- \we thank Akira Fujii, Nobuyuki Ishibashi, Koichi Mu-
ume of the conformal killing vector and the order of the rakami, and Toshio Nakatsu for useful discussions on this
disconnected diffeomorphisms. subject. We are grateful to the Santo seminar for providing
Equation(4.2) and Eq.(4.3 can be related by invoking an opportunity for collaboration. This work was supported in
the cancellation between the dilaton tadpole of the disc anglart by a Grant-in-Aid for Scientific Resear¢h2640272
that of RP [33—35. The operator insertion of a zero mo- from the Ministry of Education, Science and Culture, Japan.
mentum tadpole in the first quantized string can be done by
taking a derivative of the partition function with respect to APPENDIX A
the tension of a fundamental strifg""%=1/27a’.
On the other hand, the BV formalism guarantees that the In this appendix, the mode expansion of a conformal field
right-hand side of the basic equatidi$=iyw is a total dif-  with weightp is obtained both on a unit dig2, and on RP.

Qg (—)"a_)Q =% (a_ = (—)"a,). (4.6
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D, and RP are constructed from the complex plane by theby extending the domain ob(z’) to |z'[>1 through the
respective identifications’ = 1/z andz’ = — 1/z. respective involutiong’ = 1/z (D,) andz' = - 1/z (RP?):
Let

!

_ P—q
(I)(z)=(—_) d(2'). (A2)
9z

On|z|=1, this leads to the relation

__ \P=Ap(2) =(x7)P 0
be a holomorphic field with weighp—q and ®(z) be an (DP0(D)]|7-1=(F)PTIR(22)|pg=y. (A

antiholomorphic field with weighp—q. These mode expan-

sions read, respectively, The upper and lower signs refer, respectively, toEheand

RP cases. In terms of the modes, this equation reads

P(2)= 3 ¢z ", D(2)= D, pyz "PHO (¢ eiam D,

" (Al) $n= ¢7ne_i(p_Q)W(_)n, RP. (A4)

The modes ofb(z) and those oﬂ_b(?) are related to each The radial, tangential, and mixed components are con-
other on bottD, and RE and this relation can be made clear structed as

q1 q2

—= == [ 9z\Pu gz \P2f gr\ 1] o\ %2 oz \P 9z \P?[ or\ [ 90\ 2 - _

&L iNzz)=l=] =] |=] |=—=] @)+ = |—=] |=] |—=]| ®(z) A5
oo or do Jz Jz or do 9z oz (A5)
P P2

P

z\P Z V1 1 \%2
at <’Z’“<5) 7] oo

(AB)
|
On|z|=1, we obtain _ z 7z _
a,(Z, )=Faz(2)+FC¥E(Z),
q1 q2
O glzz) a,(2.2)=iza,(2)~iza,(2),
P p2 lz|=1 0 5
1 — _ ’ 21
=(,’)Pz—qzzzz’—q[@(z)h:‘:l (221 [Z(az(2)+az(—2))||z|=17 RP,
H(=)P2R(FPID(£2)| 2] (A7) w27 2[2i2a2(2)|2|11 Do,
0T iz(ay )~ ay( —2)| g1, RP
For example, (A8)
p=1,=0:
p=0g=1:

_-\/? X __2 -n-1 —
az(z)zl Ié’z (z,2)= = anZ , CZ(Z):E an—n+l' EZ(_):E ?n_—n+1’

_ 2 — _— _ _ —_
az(z)=i \/;(9?((2-2)22 anz "4, cr(z,z)=%[zcz(z)+zcz(z)],
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, —=— 2( 5\ (7
ci(z) c (Z)), 0(27_)2(: ;Z) ¢ _(Z)V(z,;)_ (B1)
4

0, D,
Let Qgrsbe the BRS charge obtained from the integration of

1 .
"(0)=c'(2,2)| Z[CZ(Z)“LCZ(e'”Z)]M:l the holomorphic BRS current. We find
c'(0)=c"(2.2)||g=1=

— —ino — —
2,0 " RP. [Qers O(2,2)]= —[3,642) +(3,6)(~ 1/2)]
o (27 s =

c’(0)=c"(2,2)||4-1 ><<1+a—— O(z,z). (B2)

(1 4 gxr X,

ZC@lz=1=—i2 ce™™, Dy,
1 The on-shell ground state scalar is represented by the vertex
={ 57— cH(€D)]|jz-1 (A9)  operator
k =—i ngen Cne—ino, RP. V(Z,?) = eik.X(Z,;), (B3)

Some of these formulas are exploited in the text.

a'M?=—a'k?*=—4. (B4)
APPENDIX B
Let 0(2,5 be a generic scalar operator with ghost num-This latter condition is that of the tachyon of a closed unori-
ber 2 on RP geometry. We write this as ented bosonic string with intercept4.
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