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Density perturbations in the ekpyrotic scenario
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We study the generation of density perturbations in the ekpyrotic scenario for the early universe, including
gravitational backreaction. We expose interesting subtleties that apply to both inflationary and ekpyrotic mod-
els. Our analysis includes a detailed proposal of how the perturbations generated in a contracting phase may be
matched across a ‘‘bounce’’ to those in an expanding hot big bang phase. For the physical conditions relevant
to the ekpyrotic scenario, we reobtain our earlier result of a nearly scale-invariant spectrum of energy density
perturbations. We find that the perturbation amplitude is typically small, as desired to match observation.
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We recently proposed a novel scenario for the early U
verse in which the hot big bang is created by the collis
between two M-theory branes@1#. The scenario assumes th
Universe begins in an almost static, nearly Bogomol’n
Prasad-Sommerfield~BPS! initial state consisting of empty
flat, parallel three-branes. In the effective 4D theory, the B
state is homogeneous and has zero spatial curvature be
of nonperturbative effects, however, a tiny force attracts
branes to one another. As the branes come together, qua
fluctuations create ripples in the brane surfaces that resu
spatial variations in the time of collision. Consequent
some regions heat up and begin to cool before others,
ducing a spectrum of long wavelength density perturbati
which can seed structure formation in the Universe.

We estimated the perturbation spectrum using a ‘‘time
lay’’ formalism @2#, often used in simplified treatments o
inflationary models. In that context, spatial variations in t
time when inflation ends result in long wavelength dens
inhomogeneities. We applied the same formalism to va
tions in the time of collision in the ekpyrotic scenario. Th
equation for fluctuations in the scalar fieldf describing the
interbrane separation in the ekpyrotic model is almost id
tical to that describing fluctuations in the inflaton durin
slow-roll inflation. Consequently, a nearly scale-invaria
spectrum of fluctuations is found. The result is remarka
because it shows that the Harrison-Zel’dovich spectrum
be obtained without inflation in a space-time which is ve
nearly static Minkowski space.

The time delay formalism is a crude approximation, a
only quantitatively accurate for a small class of inflationa
potentials@3#. Nevertheless, it often gives a good estimate
the spectral index for the power spectrum of perturbatio
One of the goals of this paper is to investigate whether
same statement is true for the ekpyrotic model.
0556-2821/2002/66~4!/046005~14!/$20.00 66 0460
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In the case of the ekpyrotic model, there is the ma
complication that the perturbations are produced when
effective 4D scale factor is contracting. In order to have
viable scenario, a mechanism must be found to reverse f
contraction to expansion. This issue has been addressed
recent paper we have written with Seiberg@4#, where we
argue that such a ‘‘bounce’’ may be allowed in the context
M-theory, where it corresponds to a collision and rebound
the outer boundary branes. A matching rule linking the h
mogeneous background variables of the contracting phas
those describing the expanding phase was suggested t
Assuming this proposal is valid, what remains is to apply a
extend those ideas to describe the evolution of perturbat
through the moment of reversal.

A stimulus for the present work was a paper by Lyth@5#,
which calculated the growth of the perturbation variablez
~also commonly termedR) representing the curvature pe
turbation of spatial slices which are comoving with the m
ter. Lyth correctly showed thatz was not amplified in the
contracting phase of the ekpyrotic universe. He claimed
implied that when gravitational backreaction was include
the spectrum of density perturbations became strongly sc
dependent with negligible power on large scales, making
ekpyrotic scenario incompatible with observations. H
analysis employed a certain class of analytically solva
models with exponential potentials, previously used to
scribe power law inflation@6# and simply extended to the
situation of slow contraction relevant to the ekpyrotic sc
nario. We repeat his analysis here, but also compute the
turbation in the Newtonian potentialF. We show that in the
contracting phase, gravitational backreaction actually
hances rather than suppresses long wavelength fluctuat
but these fluctuations show up purely inF and not inz.
Therefore gravitational backreaction does not spoil the ek
rotic mechanism, at least in the contracting phase.
©2002 The American Physical Society05-1
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The remaining issue regards the appropriate match
condition for tracking the perturbations across the bou
and into the expanding hot big bang. Consistent with
arguments of Ref.@4#, we seek to identify variables whic
are nonsingular at the bounce, both for the background
perturbation variables. We then match the amplitudes of
two linearly independent solutions for the perturbation va
ables across the bounce. With our prescription, we find
the long wavelength perturbations developed in the contr
ing phase do indeed survive to the expanding phase,
vided there is a change in the equation of state at the bou
such as occurs if a sub-dominant component of radiatio
produced there. Our final expression for the density per
bation spectrum agrees well with the more naive time de
estimate.

After communicating a preliminary version of this pap
to Lyth and Brandenberger, Lyth prepared a second ma
script@7# proposing that contraction be matched to expans
on a time-slice of fixed energy density@7#. With this proce-
dure, he argues that the curvature perturbationz is conserved
across the bounce. But sincez does not acquire a scale in
variant spectrum in the contracting phase, he argues thz
will not have such a spectrum in the expanding phase, wh
it represents the amplitude of growing mode adiabatic p
turbations. Lyth’s conclusion is that any growing mode de
sity perturbations developed in the contracting phase m
perfectly onto pure decaying mode perturbations in the
panding phase. Brandenberger and Finelli@8# and Hwang@9#
have recently produced papers repeating this argument.
note added, at the end of this paper, we explain why we
not believe these conclusions are valid for the ekpyrotic s
narios proposed in Refs.@1# and @4#.

Let us outline our approach to the matching problem.
want to evolve background and perturbation variables
cording to the appropriate field equations, all the way to z
scale factor in the four dimensional effective theory. W
identify a complete set of variables which are nonsingula
the bounce, and match those nonsingular variables acro
This prescription automatically excludes the variablesF and
z, both of which diverge. More generally, geometrical qua
tities such as the synchronous gauge comoving metric
turbationhi j also diverge. Indeed the meaning of the thre
geometry is unclear at zero scale factor.

Instead our approach is essentially algebraic rather t
geometrical. We focus on gauge invariant perturbation v
ables which are consistently small at all times and ma
these across the bounce att50. We argue that this matchin
would give consistent results for an infinite class of pert
bation variables so defined. Our prescription can only
fully justified by a satisfactory microscopic description of t
relevant degrees of freedom. Nevertheless, if string the
shows that the scale factor can truly pass through zero
bounce, then tracking perturbative gauge-invariant deg
of freedom which remain small and finite seems likely to
the right approach to matching fluctuations across
bounce.

Our analysis shall be performed entirely within the co
text of four dimensional effective field theory. This does n
capture all the low energy degrees of freedom relevant to
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five ~or indeed eleven! dimensional brane-world. As in Ref
@1#, we shall assume those other degrees of freedom are
zen, or at least so slowly varying that their inclusion wou
not substantially alter the result. We shall focus here
single moduli fieldf which determines the outer brane sep
ration in a brane-world Universe. In Ref.@1# we considered a
model in which the perturbations are produced by the co
sion of a bulk brane with one of the boundary branes. As
pointed out there, if the 4D effective theory is valid, the sc
factor in that theory must continue to contract until the ou
branes collide and bounce. In Ref.@4# we suggested a sim
plified model in which there is only one collision betwee
the boundary branes and no bulk brane is needed. The
turbations are produced as the outer branes approach
another. For simplicity, here we shall restrict ourselves to t
two-brane scenario, in which the same scalar fieldf is re-
sponsible both for the development of the perturbations,
for describing the outer-brane collision and bounce. Gen
alizations to bulk-boundary collisions, as in the original sc
nario of Ref.@1#, are a straightforward extension and will b
briefly mentioned when appropriate.

The outline of this paper is as follows. In Sec. I we d
cuss the properties of the inter-brane potential relevant to
ekpyrotic scenario, an issue referred to again in the n
added at the end of this paper. We then review the appl
tion of the time delay formalism to the ekpyrotic scenario,
described in Ref.@1#, showing that a scale invariant spectru
of fluctuations is naturally predicted. In Sec. II, we show th
including gravitational backreaction has, in Newtoni
gauge, only negligible effects on the fluctuations acquired
the scalar field. Section III is devoted to a discussion of
role of the curvature perturbationz ~or R) conventionally
used in the analysis of inflationary models, which is in fa
insensitive to the growing mode perturbation in the contra
ing phase of the ekpyrotic model. This is further elabora
in Sec. IV where we show thatz is canonically conjugate to
the direction of amplification, which is proportional to th
variableF. As a consequence of Liouville’s theorem,z is
‘‘squeezed’’ as the perturbations develop during the colla
ing phase of the ekpyrotic scenario.

Section V addresses the key moment of reversal, whic
when, in the four dimensional effective description, the U
verse ‘‘bounces’’ as the scale factora hits zero. Since the
four dimensional space-time geometry is singular there
four dimensional geometrical description using the Einst
frame metric is inappropriate. However, our approach is
identify a complete set of dynamical variables which rem
finite at the bounce and to match them at the transition fr
contraction to expansion. We ignore divergent quantities
unphysical, attributing their bad behavior to a singular cho
of field and metric variables. We used this approach in R
@4# to describe the homogeneous background evolution d
ing the bounce. Here we shall show that there is also a se
gauge invariant linear perturbation variables which are w
behaved at the bounce. When the theory is formulated
these variables, there is a well defined matching prescript
even in the four dimensional effective field theory, whic
seems to yield physically sensible results.
5-2
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DENSITY PERTURBATIONS IN THE EKPYROTIC SCENARIO PHYSICAL REVIEW D66, 046005 ~2002!
In order for the well-behaved variables to exist, we e
phasize that it is important to have two conditions:~i! there
must be a free scalar field~the modulusf in our case! whose
kinetic energy diverges at the bounce and~ii ! the scalar po-
tential V(f) must be sufficiently nonsingular at the bounc
The simplest case is whereV(f) approaches zero at th
bounce, as suggested by the mapping from M-theory
weakly coupled string theory@4#. If these two conditions are
fulfilled, then it is possible to follow the perturbations an
match ata50.

Our main finding, in Secs. V and VI, is that as long
radiation is produced or fields are excited at the outer-br
collision so that there is a jump in the first or second tim
derivative of the equation of state parameterw[P/r, the
scale invariant perturbation spectrum developed during
contracting phase propagates through the bounce and int
final expanding Universe. Intriguingly, the final density pe
turbation amplitude derived in Sec. VI is naturally su
pressed by a small numerical coefficient, by quantities wh
are automatically small in Horava-Witten theory, and by fa
tors involving the efficiency with which brane kinetic energ
is converted into radiation. We comment on how this su
pression may naturally explain the small perturbation am
tude ;1025 we see via observations of the cosmic micr
wave sky in the universe today.

I. TIME DELAY NEGLECTING
GRAVITY PRE-COLLISION

We first derive the ekpyrotic spectrum in a very nai
‘‘time delay’’ approach which totally neglects cosmologic
expansion, gravity and all moduli other thanf. We also ig-
nore the crucial element of reversal from contraction to
pansion, which will be a critical aspect of the discussion
Secs. V and VI. As we shall see, despite the fact that the t
delay argument ignores these very important features, it n
ertheless comes close to matching our final answer. Thu
is the case in inflation, the time delay argument turns ou
be a convenient heuristic even though it is neither physic
rigorous nor numerically accurate.

We assume that at large positivef the effective potential
governing the evolution off takes the form

V52V0e2cf, ~1!

where V0 and c are positive constants. The ekpyrotic sc
nario starts at large positivef, in a state of nearly zero
energy, and rolls towards negative values. Asf becomes
increasingly negative and the branes come close toge
V(f) must turn upwards and approach zero. As discusse
Ref. @4#, for example, this is the behavior to be expected
M-theory because the string coupling constant vanishe
the outer branes collide.~A similar constraint applies in the
bulk brane collision, as discussed in Ref.@1#.!

Generally, in brane world models, the separation of
two boundary branes can be described by a canonically
malized, minimally coupled scalar fieldf ~the ‘‘radion’’!. As
the brane separationd goes to zero, one can ignore the effe
of the bulk ‘‘warp factor’’ and one obtains the Kaluza-Kle
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result in whichd;eA2/3f/M Pl→0 asf→2`. @Here and be-
low, M Pl5(8pG)21/2 is the four dimensional reduce
Planck mass.# In standard Kaluza-Klein theory, the same d
pendence holds at largef, so the range off is 2`,f
,`. But the presence of a bulk warp factor alters this.
many models, when the outer-brane distanced tends to in-
finity, f tends to a finite value, which may be taken to
zero. For example, for a pair of positive and negative tens
boundary branes with a bulk anti–de Sitter space, the in
brane distance isd5L ln@coth(2f/A6M Pl)# whereL is the
AdS radius@1#. A suitable ekpyrotic potential would the
behave as;2(2f)N;2e(2Nd/L), at small f, and we
would be interested in starting the system in a state such
f→0 at large negative times. In models with a bulk bran
such as those considered in Ref.@1#, the location of the bulk
brane would again be described by a scalar field, but
time its range would be finite. The exponential model~1! is
useful, since it is mathematically tractable. However, o
should remember, in general it should only be expected
apply over some finite range off.

We now review how the time delay formalism can b
applied to our example. The classical solution is given
solving ḟ52A22V. For V(f) given in Eq.~1!, we obtain

2t5E
2`

f df

A2V0

ecf/25
2

cA2V0

ecf/25A 2

2V,ff
, ~2!

where the timet is large and negative at largef. We follow
the evolution to some finite, small negativet, at which point
the modes of interest are ‘‘frozen in.’’ For small fluctuation
expanding in plane wavesdf[(kWe

ikW•xWdfkW(t), one finds

df̈kW52k2dfkW2V,ffdfkW52k2dfkW1
2

t2 dfkW ~3!

@using the solution Eq.~2! above#. Curiously, even though
the background here is nearly static, this is the same equa
as that governing a massless fieldx in a de Sitter background
~with x5f/a, with a the scale factor andt conformal time!.
As in that case, starting from an initial Minkowski vacuu
one generates a long wavelength spectrum of scale inva
fluctuations.

We assume that the quantum fluctuationdfkW starts in the
Minkowski vacuum,̂ udfkWu2&}k21, so the amplitude of nor-
malized modes with wave numberk is ;k21/2. Consider a
mode where2kti@1, wheret i is the initial time. The mode
oscillates at fixed amplitudek21/2 until t increases tot1'
2k21, when the destabilizing 2/t2 term in Eq.~3! begins to
dominate over the stabilizingk2 term. One then hasdf̈kW

;(2/t2)dfkW , with growing solutiondfkW}(2t)21. Hence,
the final amplitude for the fluctuation, ast approaches zero
is dfkW;k21/2(2t1)/(2t);k23/2(2t)21. The precise result
for the long wavelength spectrum is

^udfkWu2&5
1

2k3t2 , 2kt!1, ~4!

which is scale-invariant as claimed.
5-3
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A naive estimate of the final density perturbation amp
tude runs as follows. The scalar field fluctuations give rise
a time delay in the moment of collision. Neglecting gravit
tional effects, the time delay between collisions relative
the mean collision time is2df/ḟ0. The net density pertur
bation after collision is then justdr/r;24Hdt whereH is
the Hubble parameter at the time of collision. Despite
deficiencies of this time delay approach, this answer is q
close to the result we shall eventually derive, includi
gravitational backreaction and matching across the bou
which we give in Eq.~64! below.

The first step in improving the above treatment is to
clude gravitational backreaction in the initial, contracti
phase. For this purpose, we focus on the gravitational ba
reaction corrections to Eq.~4!.

II. INCLUDING GRAVITATIONAL BACKREACTION

For exponential potentials, there exist analytic scaling
lutions to the Friedmann-Robertson-Walker equations wh
at large negativet approximate the assumed initial conditio
in the ekpyrotic setup, and which allow an analytic treatm
@6#. For the exponential potential considered as an appr
mation over some range off in the ekpyrotic scenario, on
has the background solution

a~ t !5~2t !p, f0~ t !5
2

c
ln~2Mt !, ~5!

where a(t) is the scale factor,t is proper Friedmann-
Robertson-Walker~FRW! time, taking negative values, and

p5
2

c2M Pl
2

, M25
V0

M Pl
2 p~123p!

, ~6!

andM Pl5(8pG)21/2 is the reduced Planck mass. Some u
ful quantities are

H[
ȧ

a
5

p

t
, ḟ05A2p

M Pl

t
,

V52p~123p!
M Pl

2

t2
, V,ff52

2

t2 ~123p!,

~7!

where a dot denotesd/dt. In ekpyrotic models, we are inter
ested in potentials in which the evolution is very slow
equivalently, for whichp!1. ~Parenthetically, note that th
same solution, forp.1, describes a universe undergoin
power law inflation.! The conformal time is

t52E
t

0 dt

a~ t !
52

~2t !12p

~12p!
5

t

a~12p!
, ~8!

running from2` to 0 ast does, although as mentioned w
shall have to alter the form of the potential ast and t ap-
proach zero, to avoid its diverging to minus infinity. Deriv
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tives with respect tot shall, as above, be denoted by dots a
henceforth, derivatives with respect tot shall be denoted by
primes.

Mathematically, Newtonian gauge is convenient f
studying scalar field perturbations since the linearized eq
tions reduce to a single second order differential equation
the Newtonian potentialF ~for a derivation see e.g. Ref
@10#!,

F912
A8

A
F81k2F12f08S H

f08
D 8

F50, ~9!

whereA[(ḟ0)21, andH[a8/a. Here, and below, the wave
number dependence of all perturbation quantities is
shown explicitly. ForF one should readFkW and so on.

We now eliminate the first derivative term by settingF
5u/A, obtaining

u92
A9

A
u1k2u12f08S H

ḟ0
D 8

u50. ~10!

Substituting the above scaling solution, we obtain

u952k2u1
p

~12p!2t2 u, ~11!

which is a form of Bessel’s equation, with correspondi
order n5 1

2 (11p)/(12p). Note that our notation for the
variableu, and for the variablev introduced later, matche
Mukhanov’s original notation@12#.

The initial conditions are that the scalar field fluctuatio
should be in the Minkowski vacuum state ast→2`: in
Newtonian gauge, two constraints determineF and Ḟ in
terms ofdf anddḟ:

df5
2M Pl

2

ḟ0

@Ḟ1HF#,

ḋf52
2M Pl

2

ḟ0
F2

f̈0

ḟ0

Ḟ1H k2

a2 1ḟ0 ] tS H

ḟ0
D J FG .

~12!

At large2kt, for df;e2 ikt/(aA2k), which is the incoming
Minkowski vacuum, one finds

F; iA p

2M Pl
k3/2te2 ikt ~13!

which vanishes at early times, consistent with our ekpyro
initial condition that the space is asymptotically Minkows
in the past.

Neglecting an irrelevant phase factor, the solution foru is
then

u5~2kt!1/2Ap

2
Hn

1~2kt!•A p

~2k!3/2M Pl, ~14!
5-4
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DENSITY PERTURBATIONS IN THE EKPYROTIC SCENARIO PHYSICAL REVIEW D66, 046005 ~2002!
whereHn
1 is a Hankel function andn was given above. We

follow this solution forward to conformal times at whic
2kt!1, when the modes become frozen in. Convert
back toF, and using the small argument expansion for
Hankel function, again neglecting phase factors we find

F;A p

2M Pl
k2(11n)~2t!22n@11O~p!#. ~15!

Since we are interested inp!1, we henceforth neglect cor
rections of orderp to the numerical coefficient. But we kee
thep dependence in the scaling with wavelength and time
comparison with later results.

Now we can convert back to the scalar fielddf, using the
formulas~12! given above, and obtain

df5
2M Pl

2

ḟ0

@Ḟ1HF#;221/2k2(11n)~2t !2(11p),

~16!

where we usedF}(2t)22n}(2t)2(11p). The resulting
power spectrum of fluctuations is

^udfkWu2&;
1

2
k22(11n)~2t !22(11p)

5^udfkWu2& (0)
1

k2p/(12p)~2t !2p
, ~17!

where^udfkWu2& (0) is the result obtained in Eq.~4! ignoring
gravitational backreaction. Recalling that the regime of int
est for the ekpyrotic scenario is smallp, we see that we
obtain the same answer as in Eq.~4! up to small corrections
The backreaction produces a slight reddening of the po
spectrum, presumably because long wavelength pertu
tions were generated sooner and had longer to self-gravi
However, since in the ekpyrotic scenario we havep!1,
these corrections to the spectral index are actually sma
than corrections arising from the nontrivial kinetic term f
f, which were computed in Ref.@1#. The result shows tha
backreaction and metric fluctuations have an insignificant
fect on the density perturbations developed during the init
contracting phase of the ekpyrotic universe.

III. THE CURVATURE PERTURBATION IN THE
CONTRACTING PHASE

Rather than solve for the evolution of the Newtonian p
tential in Eq.~9!, a common procedure used for inflationa
models is to track the curvature perturbation on spatial sl
which are comoving with the matter. As we shall discu
this variable is in fact insensitive to the growing mode de
sity perturbation in the contracting phase.

Following the notation of Mukhanovet al. @12#, we de-
note the curvature perturbation on comoving slices byz, de-
fined by
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2

3

H 21F81F

11w
1F5

HF81H 2F

4pGf08
2

1F, ~18!

whereH[a8/a and w is the ratio of pressure to density i
the background universe. The variablez was introduced by
Bardeen@11# in his classic paper, in which it was terme
fm . It was employed in the context of inflation by Bardee
Steinhardt, and Turner@13# and its use later elaborated upo
by many authors@6,12,14#. Mukhanovet al. @12# reexpressz
as z5v/z ~for spatially flat hypersurfaces! and thereby de-
rive the ‘‘v-equation’’:

v952k2v1
z9

z
v ~19!

wherez5af08/H. For the power law solution given in Eq
~7!, this reads

v952k2v2
p~122p!

~12p!2t2 v. ~20!

Since the last term is negative, it follows that there is
classical instability in the variablev, a point emphasized by
Ref. @3#. ~Note that Ref.@3# relabels Mukhanov’sv variable
asu; here we have kept to the original notation.!

However, this does not at all imply the absence of a gro
ing mode density perturbation: the variableF doesexhibit
an instability, as we have discussed above. Given a solu
v, the potentialF can be obtained by solving

k2F524pG
f08

2

H ~v/z!8. ~21!

The general solution to thev-equation to orderk2 is

v5C1zS 12k2E
2`

t dt8

z2 E2`

t8
z2dt9D

1C2zS E
2`

t dt8

z2
2k2E

2`

t dt8

z2 E2`

t8
z2dt9D , ~22!

where C1 and C2 are arbitrary constants. Substituting in
Eq. ~21!, we obtain

F5C̄1F0E
2`

t

z2dt81C̄2F0 ~23!

where F0[a8/a3, and C̄0 and C̄2 are constants. For the
power law solutions studied here,z}a. For an expanding
universe, the first term dominates the second ast→`. How-
ever, for a contracting universe, the second term is the pro
growing mode ast→0. The solution is the same as th
found in Eq.~15!, from which we derived the scale-invarian
spectrum.

Various subtleties are worthy of further comment. Fi
note thatF0[a8/a3 is anexactsolution of the perturbation
equation~9! for k50. In fact, fork50, the perturbationF0
just represents a coordinate transformation of the timet, and
5-5
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is therefore unphysical. However, for nonzerok the solutions
tending towardsF0 are not gauge modes and therefore re
resent a real gravitational instability.

Second, note thatz is insensitive to any component ofF
tending towardsF0, as may be seen from the expression

z5
2

3a2~11w!
S F

a8/a3D 8
. ~24!

For inflationary models, trackingz, as is done in many
analyses, is useful because the components that are proj
out in this formula are harmless decaying modes. Howe
for the ekpyrotic model, the growing mode tends toF0. One
can in fact recover the growing mode solution fromz or v,
but special care has to be taken to do so, by keeping the
order terms ink2 as we have done above.

IV. CANONICAL CONJUGATES AND ‘‘SQUEEZING’’

In this section we show that the variablesu in Eq. ~10!
andv in Eq. ~19! at the heart of the analysis of the previo
sections are in fact canonically conjugate. The importanc
this is that in the (p,q) phase space plane, the trajectories
the system are focused towards certain lines—for exam
the linep5q in the case of the upside-down harmonic osc
lator. These lines are then the classically amplified directi
in phase space, and from Liouville’s theorem the phase sp
density is necessarily squeezed in the orthogonal directi
While the calculation of Ref.@5# is indeed correct, it does no
by itself indicate the absence of a growing mode den
perturbation, because the curvature perturbation which
computed is actuallyorthogonal to the direction in which
fluctuations are amplified in the ekpyrotic setup.~We note
that Refs.@7# and @8# agree with this conclusion.!

Our starting point is the action for gravity plus a sca
field in canonical~first order! form. The relevant formulas
may be found for example in Ref.@15#. The Newtonian po-
tentialF is written in terms ofu, andz is written in terms of
v as above. One finds the quadratic action for perturbati
reduces to

S5
2M Pl

2

p E dtS vF81
b

t
vF2

1

2
F22

k2

2
v2D , ~25!

whereb5p/(12p), F[k2u, and we have written the La
placian¹2 as 2k2. The sum over all Fourier modes is im
plicit.

The action~25! is in canonical form*pq82H(p,q), with
H the Hamiltonian. Therefore, up to normalization,v andF
are canonically conjugate. The equations of motion are

F52tbS v
tbD 8

k2v5t2b~Ftb!8, ~26!

which are just the relations above: Eq.~21!, which expresses
F in terms ofz andz8, and Eq.~24!, which expressesz in
terms of F and F8. These imply the equations of motio
~11! and ~19! used in the previous sections.
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In the inflationary case, which corresponds top.1 in the
above analysis, both the variablev and its canonical conju-
gate momentumF ~or u) obey equations exhibiting a class
cal instability: both are amplified ast approaches zero. Th
system starts nearv5u50, with only small quantum fluc-
tuations. As time proceeds, the system evolves away f
the origin along a certain line,u}v in phase space. By Li-
ouville’s theorem, the phase space density is ‘‘squeezed
the direction orthogonal to this line. But in the ekpyrot
case,p!1, thev ~or z) variable is instead stable and cla
sical trajectories instead run out along theu ~or F) axis. The
v ~or z) direction must in consequence be ‘‘squeezed.’’ Th
there is no classical growth inz, consistent with the finding
of Ref. @5#.

V. REVERSAL AND A NONSINGULAR
MATCHING CONDITION

Having established that there is indeed a growing mo
scale-invariant spectrum of density perturbations in the c
lapsing phase, we now turn to the more challenging ques
of whether these perturbations survive the reversal to exp
sion. We have recently addressed the issue of reversal
paper with Seiberg@4# and we shall employ and extend th
analysis of that paper here.

As we have discussed, the variablez is not amplified in
the collapsing phase, since it is insensitive to the grow
mode perturbation. However,z doesyield the amplitude of
the growing mode perturbation in the expanding pha
Therefore, ifz was in fact the correct variable to match
t50, the growing mode perturbation which developed in t
collapsing phase would just match onto a pure decay
mode perturbation in the expanding phase. This has ind
been suggested by Lyth in a follow-up paper following o
communication of the above calculations to him@7#. The
new argument is essentially that perturbation evolution m
reverse at collision. That is,F began negligibly small, grew
to be very large at the bounce but then, after reversa
expansion,F shrank precisely back to zero.

In this section, we wish to explain why matchingz across
the bounce is not appropriate in the scenarios we cons
Instead, we claim, the scale invariant growing mode sp
trum generated in the contracting phase matches onto a li
combination of growing and decaying modes at revers
Consequently, the density perturbations survive the reve
of the scale factor to seed structure formation in the hot
bang.

In order to analyze matching at the bounce, gauge inv
ant variables must be identified which are well-behaved aa
andt approach zero. We have already seen that the grow
mode solution forF is proportional toa8/a3, which is di-
vergent ast tends to zero. Likewise, as discussed below,
the situation of interest,z is logarithmically divergent. Since
linear perturbation theory can only be valid when the pert
bation variables are small, it follows thatz is not a good
matching variable. Nevertheless, with careful treatment
exclude the logarithmic divergence,z shall be very useful in
the analysis aftert50, just because its ‘‘long wavelength
component is nearly constant in the expanding phase,
5-6
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DENSITY PERTURBATIONS IN THE EKPYROTIC SCENARIO PHYSICAL REVIEW D66, 046005 ~2002!
gives the amplitude of the growing mode linear density p
turbation.

As mentioned in the Introduction, the potentialV(f) in
Eq. ~1! cannot hold asf→2`. In the main example we
treat here, we instead assumeV(f) bends upward so tha
V(f)→0 asf→2`. In this case, just before collision th
system is completely described as a massless scalar
coupled to gravity, in a collapsing Universe. As discussed
Ref. @4#, one can in this case define regular variables,
which the evolution througha50 becomes well defined.

For the perturbation analysis, it is very important that,
a→0, the Universe is dominated by scalar field kinetic e
ergy. In this situation, a good perturbation variable is
fractional energy density perturbation on spatial slices wh
are comoving with the matter, termedem by Bardeen in his
discussion of gauge invariant cosmological perturbat
theory @11#. This variable@defined in his Eq.~3.13!# is a
linear combination of the energy density perturbationdT0

0,
and the velocity perturbationTi

0 , which is invariant under
linearized coordinate transformations. It equals the ene
density perturbation in any gauge in which the matter wor
lines are orthogonal to thet5const hypersurfaces, and a
Bardeen emphasized it is the natural choice of perturba
amplitude from the point of view of the matter.

The equations of motion for the matter,Tn;m
m 50, lead to

the following equations of motion:

~ra3em!852~r1p!a3kvs
(0)

vs
(0)81Hvs

(0)5kF1
k

~11w!
~cs

2em1wh!,

~27!

where vs
(0) is the gauge-invariant velocity perturbation d

fined by Bardeen. Here we introducew5p/r parametrizing
the equation of state for pressurep and energy densityr,
cs

25dp/dr being the sound speed, andh being the ‘‘entropy
perturbation,’’ defined as the difference between the pres
perturbation and that expected from the density perturba
and the background pressure-density relation. In most of
analysis below we shall assumeh is zero, which is to say
that the density perturbations are ‘‘adiabatic.’’ For the typ
of matter we consider~perfect fluids and scalar fields!, the
anisotropic stress is zero, and Bardeen’s potentials are re
to our potentialF by F5FA52FH . With these simplifi-
cations, and for the flat universe we consider, Eqs.~4.5! and
~4.8! of Bardeen’s paper@11# reduce to Eq.~27! above.

Remarkably, scalar field kinetic energy domination im
plies thatem is actually finite att50. This can be seen from
the Einstein constraint equation, which reads

¹2F54pGra2em , ~28!

wherer is the total background energy density. For sca
field kinetic domination,r}a26 asa tends to zero. But the
growing mode perturbationF}a8/a3}a24 and, from Eq.
~28!, em is finite asa tends to zero.

Having identified a nonsingular matching variable, w
still need to decide which time slice to match on. In t
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present situation, this is unambiguously defined as the t
slice wheref tends to2`, or, rephrased in terms of th
brane separation, the time whend}eA2/3f/M Pl→0. If we as-
sume that no radiation is present in the contracting phase
that the only energy density present is that inf, then the
surfaces of constantf are also the comoving surfaces~be-
cause the perturbation to the momentum is proportiona
df), and em is the fractional energy density perturbatio
evaluated upon these surfaces.

At the bounce, we assume that there is a change in
internal state of the branes so thatV(f) switches off and the
boundary branes no longer attract. After the bounce,f is
therefore a massless, free field. We also assume some r
tion is produced on the branes. Again the matching surfac
defined in terms off, but with radiation present it is no
obvious that the surfaces of constantf are still comoving
with the matter. However this is indeed the case for adiab
perturbations as the following calculation reveals.

We perform the calculation in the conformal Newtonia
gauge. The equation governing the evolution of the radiat
perturbation is given in this gauge by

~d r24F!85
4

3
kv r , ~29!

whered r is the fractional energy density perturbation in t
radiation andv r the velocity perturbation. We now make th
assumption of adiabaticity, equivalent to the statement
the ratio of radiation to scalar field energy density is spatia
uniform being determined locally by the microphysics
brane collision. The condition for the ‘‘entropy perturbation
h, defined above, to be zero at early times is thatd r
5 2

3 df , wheredf is the fractional density perturbation in th
scalar field. In the Newtonian gauge we have

df52S df8

f08
2F D . ~30!

The final ingredient in calculatingv r is the equation for per-
turbations in the massless scalar field,

df912Hdf854f08F82k2df. ~31!

From the adiabaticity condition and Eqs.~29!, ~30!, and~31!,
as well as the background equationf0912Hf0850, one de-
termines

v r52k
df

f08
. ~32!

This is the velocity of the radiation in the Newtonian gaug
We wish to transform to the time-orthogonal gauge in wh
df is zero. The transformation required is a shift in confo
mal time byT52df/f08 accompanied by a shift in spatia
coordinates with a potentialL such thatL852kT, to ensure
the absence of time-space components of the metric~in the
notation of Sec. III in Bardeen’s paper@11#!. The result of
these transformations is that in thedf50 gauge, the veloc-
ity potential for the radiation equalsv r1L8, which is zero.
5-7
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Therefore, for adiabatic initial conditions, the radiation flu
is actually comoving with the massless scalar field. The
fore the comoving slices correspond to constant scalar fi
slices, both before and after the bounce.

So we may therefore focus on the evolution of the ene
density perturbation on comoving slices,em , and attempt to
match it across the bounce att50. The equation of motion
for em is straightforwardly derived from Eq.~27! by elimi-
natingvs

(0) , to obtain

em9 1 f ~t!em8 1g~t!em52k2wh, ~33!

where

f ~t!5H~113cs
226w!,

g~t!5H 2~9cs
21 9

2 w2212w2 3
2 !1k2cs

2 . ~34!

As an aside, we now infer the behavior of the variablez at
small t. One has

z52
~a2Hem!8

~11w!k2a2
. ~35!

Employing the background relations

H852
1

2
~113w!H 2, w8523H~cs

22w!~11w!,

~36!

one obtains

z85
Hcs

2em

11w
. ~37!

Sincez8 is down byk2 relative toz, the rate of change ofz
is typically much smaller thanHz for the low k modes of
interest. So one might imaginez would be a good matching
variable. However, as noted above,em is finite ast tends to
zero. From Eq.~37! and the fact thatH}t21 for smallt, one
observes thatz diverges logarithmically at smallt. Hence, as
stated above, in linear perturbation theoryz is not a good
variable for establishing a matching condition att50. Nev-
ertheless,z does have some utility. If one separates out
short wavelength piece which is divergent, the remain
long wavelength component ofz is finite and nearly con-
stant. This finite piece is then very useful, since it gives
amplitude of the final growing mode linear density perturb
tion in the expanding Universe.

We now turn to an analysis of Eq.~33!. The first thing to
note is that in the setup considered here,H, w and cs

2 all
have expansions in terms of simple powers oft, for either
t,0 or t.0:

H5
1

2
t211h01h1t1•••,

w511w1t1w2t21•••,

cs
2511c1t1c2t21•••. ~38!
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This follows from computing

H5
1

2

a28

a2
,

w5

1

2
f822a2V

1

2
f821a2V

5
3M Pl

2 Q22a2U

3M Pl
2 Q21a2U

,

cs
2511

2

3

V,fa5

a8f8a2

511
2

3

a1U ,01a0U ,1

HM PlQ
, ~39!

wherea25 1
4 (a0

22a1
2), U5Va4 andQ[ 1

4 (a0a182a1a08). As
discussed in Ref.@4#, the variablesa052a cosh(f/A6M Pl),
anda1522a sinh(f/A6M Pl) are both finite att50. These
variables were introduced in Ref.@1#, with motivation from
the five dimensional geometry. In the AdS case,a0 and a1
are the scale factors on the positive and negative ten
boundary branes respectively. Although the four dimensio
Einstein frame scale factora tends to zero at an outer
boundary collision,f tends to minus infinity in just such a
manner as to leavea0 anda1 finite at collision.

The physics of bounce and reversal are discussed in
@4#, the results of which are assumed here. The key point
our analysis is that the equations of motion fora0 anda1,

3

2
M Pl

2 a095
]U

]a0
,

3

2
M Pl

2 a1952
]U

]a1
, ~40!

are actually regular att50. It follows that all the variables
in Eq. ~39! have simple power series expansions arount
50, as shown in Eq.~38!, for either positive or negativet.

It will be important below to include a component of ra
diation after the bounce. As discussed in Ref.@4#, the density
and temperature of radiation on the branes is actually finit
a50, as long as the radiation couples to the scale factorsa0
or a1, which are both finite~and equal! as f→2`. If, for
example,U is zero after the collision but there is a densityr̄ r

of radiation produced on the brane with scale factorā ~in the
simplest models, we haveā5a0 or a1 for the positive or
negative tension branes respectively!, then the expression fo
w in Eq. ~39! is replaced by

w5

3M Pl
2 Q21

1

3
~ r̄ r ā

4!a2

3M Pl
2 Q21~ r̄ r ā

4!a2
. ~41!

Before proceeding to analyze Eq.~33!, it is important to
recognize that the expansion coefficients in Eq.~38! are not
5-8
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independent, but are related by Eq.~36!. These imply, for
example, thath052 3

16 w1 and c15 2
3 w1. The coefficient

functions in Eq.~33! have the following expansions:

f ~t!52
1

t
1 f 01 f 1t1•••,

g~t!5g21t211g01g1t1•••, ~42!

with f 052 13
8 w1 , g215 3

4 w1, and g05 21
32 w1

21k2. Now the
general solution of the perturbation equation@Eq. ~33!# is a
sum of the two linearly independent solutions

em5e0D~t!1e2E~t!, ~43!

wheree0 ande2 are arbitrary constants, and

D~t!511d1t1d̂2t2ln utu

1d̂3t3ln utu1d3t31•••,

E~t!5t21e3t31•••. ~44!

The equation of motion determines all the coefficientsdn ,
n51,3,4, . . . , d̂n , n52,3, . . . anden , n53,4, . . . . One
finds d15g215 3

4 w1 , d̂252 1
2 @d1( f 01g21)1g0#52 1

2 k2,
and so on. Since the coefficientsw1 , w2 , . . . change acros
t50, the two series expansions are different fort,0 and
t.0. We denote the coefficients in Eq.~43!, for t,0 and
t.0 respectively, ase0(02), e2(02) ande0(01), e2(01).
The matching rule we seek should determine the latter
constants in terms of the former.

It seems clear that we should match the amplitude of
finite perturbation variableem acrosst50, and this fixes
e0(01)5e0(02). But how should we determinee2(01)?
The simplest prescription is just to sete2(01)5e2(02). This
amounts to matching the amplitude of the linearly indep
dent solution which vanishes att50, as well as that which is
finite at t50. This prescription is invariant under redefinin
the independent solutions, e.g. by adding an arbitrary amo
of the solutionE(t) to D(t). Matching any other nonsingu
lar perturbation variable, defined to be an arbitrary line
combination ofem andem8 , with coefficients which are non
singular background variables~defined to possess power s
ries expansions int, as above! will, with the same prescrip-
tion of matching the amplitudes of both linearly independ
solutions, also yield precisely the same result.

This prescription is simple, but it is certainly not uniqu
and we emphasize that a proper understanding of the co
matching condition must ultimately rest on a better und
standing of the singularity, either directly from string or
theory or from a well defined regularization and renorm
ization procedure.

Note that any such matching rule applied att50 cannot
match bothem andem8 , as would be appropriate at a regul
point of the differential equation. This is becauseem andem8
cannot be independently specified att50, just becauset
50 is a singular point of the differential equation. The val
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of e2 is fixed by the limit ast tends to zero of12 @em(t)
2e0D(t)#9, so one needs to knowem9 ast tends to zero, in
order to determinee2.

Recall that sincez diverges logarithmically ast→0, it is
not a good matching variable. However, this divergence o
affects the short wavelength part ofz, and the long wave-
length part is still very useful since it yields the amplitude
the growing mode perturbations in the expanding phase
we now see, the above prescription for matchingem actually
implies that the long wavelength part ofz has a jump across
t50. Using Eq.~36!, we reexpress Eq.~35! as

z52
H

~11w!k2 S em8 1
3

2
H~12w!emD . ~45!

Substituting the above expansions, one finds the leading
der behavior

z;
e0

4
~ ln utu2 1

2 !1k22~ 1
2 e22 3

16 e0w(2)!, ~46!

wherew(2)[w21 3
8 w1

2, plus terms which vanish ast tends to
zero. The first term is logarithmically divergent att50.
However, since it is down by a factor ofk2, it rapidly be-
comes irrelevant ast increases away from zero. The seco
term, the long wavelength piecez lw, is the quantity we are
actually interested in. This constant, long wavelength piec
accurately conserved after the bounce as long as the m
evolution remains adiabatic, and yields the amplitude of
growing mode adiabatic density perturbation in the late U
verse.

As we have discussed above,em is finite att50 and from
Secs. III and IV, there is no long wavelength contribution
z in the collapsing phase. It follows thate25 3

8 e0w(2) in that
phase. One situation of special interest is wherew(2)50 in
the collapsing phase, where the potential is irrelevant af
→2` and there is no radiation in the incoming state. In th
case,e2(02)50. In this case, we would obtain the sam
final result from any matching rule which sete2(01)
5Ae2(02), with any constantA.

The key point is that genericallyw(2) jumpsacrosst50,
since the background equation of state changes at the b
collision. Matchinge0 and e2 we obtain a long wavelength
contribution toz in the expanding phase,

z lw~t.0!;2
3

16
k22e0~w(2),2w(2).!, ~47!

wherew(2), andw(2). are the values ofw(2) for t,0 and
t.0 respectively. Sinceem}k2F and, as discussed earlie
F has a nearly scale invariant power spectrum, it follo
from Eq. ~47! that if w(2) undergoes a jump, thenz will
inherit a scale invariant long wavelength piece. This is o
main result. In the following sections we will study a simp
example of a situation wherew(2) is discontinuous.

We shall need explicit formulas for the jump inw(2), and
for e0. The formulas forw(2) are obtained from Eqs.~39! and
~41! above. If we assume that prior tot50 there is no ra-
5-9
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diation, so that in addition to scalar kinetic energy we ha
only the potentialU, then taking the limit ast tends to zero
from below one finds that

w(2),5

2U0
21

4

3
M Pl

2 QU1

M Pl
4 Q2

,

U15U8u05a08
]U

]a0
1a18

]U

]a1
, ~48!

where Q5 1
4 (a0a182a1a08). Likewise, for the expanding

phase, if we assumeU50 but radiation is now present, w
obtain

w(2).5
8

27

~ r̄ r ā
4!2

M Pl
4 Q2

. ~49!

Since in generalw(2),Þw(2)., we infer that generically, a
scale invariant spectrum of perturbations will, with our pr
scription above, propagate acrosst50 into the expanding
hot big bang phase.

Finally, to compute the perturbation amplitude given
Eq. ~47! we neede0. This can be read off from the expre
sion Eq. ~15! above, by translating thet dependence into
a8/a3 and employing the fact that the latter gives the ex
dependence for the long wavelength modes of interest e
when the potential breaks away from the pure exponen
form used in the first half of this paper. We find that att
50,

e05
4k12n

3M PlApa0~a082a18!
. ~50!

To summarize the results of this section, we have elabor
the conditions under which a scale invariant spectrum of p
turbations survives the passage througha50. Basically this
requires that the equation of state, as parametrized byw(t),
have a discontinuous first or second derivative with resp
to t at t50. This condition would appear to be quite gene
cally fulfilled, in any situation where entropy is generated
a brane collision. A key assumption in the calculation w
that the energy density is dominated by scalar field kine
energy as we approacha50. This assumption is natural i
the ekpyrotic scenario, where the scalar field represents
separation of the boundary branes. We shall explore one
ticular, simplified model in the next section.

VI. BACKGROUND EVOLUTION IN A NEARLY LIGHT-
LIKE BOUNCE

In this section we review and extend the description
reversal from contraction to expansion, as elaborated in
@4#. As discussed there, the background evolution is
scribed by the variablesa0 and a1, which for the simplest
brane model~i.e. branes in AdS! represent the scale facto
on the positive and negative tension boundary branes.
four dimensional effective scale factora is given by
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2 Aa0

22a1
2, and this vanishes at the bounce.

If the potentialV(f) vanishes asf runs off to2` @more
precisely, if the quantitya4V(f) vanishes#, then the Fried-
mann constraint equation implies that the trajectory in
(a0 ,a1)-plane intersects the boundary of moduli spacea0
5a1 along a light-like direction@4#. Then, if no radiation is
produced on the branes, the trajectory simply reverses,
responding to the matching conditiona0,18 (out)52a0,18 (in).
We describe this as anelastic collision, since the interna
states of the two branes are unchanged by the collision.

However, at any finite velocity, the boundary brane co
sion must result in the production of radiation on the bran
since it is a nonadiabatic process. In the M theory context
corresponding string theory is weakly coupled near the c
lision, and this production of radiation should be computa
once the correct matching conditions are understood.

Let us consider the case where the incoming state ha
radiation, and the potentialV(f) vanishes att50 and there-
after. This requires that the potential is turned off at collisio
requiring a sudden and permanent change in the internal
of the branes. Associated with this change, we assume th
small amount of radiation, with densityr r̄ , is generated on a
brane with scale factorā. The collision is therefore inelastic
We parametrize the inelasticity as follows. The Friedma
constraint after collision reads

a08~out!22a18~out!25
4~ r̄ r ā

4!

3M Pl
2

. ~51!

Since the right-hand side is positive, the outgoing traject
must be time-like in the (a0 ,a1)-plane. Since radiation red
shifts asā24, the expression (r̄ r ā

4) is a constant. If radiation
is generated on both branes, this term can be taken to re
sent the sum of the corresponding terms for both branes

We then define the efficiencyj with which radiation is
produced by

j[
4~ r̄ r ā

4!

3M Pl
2 a18~ in!2

, ~52!

which with Eq. ~51! yields a single equation for the tw
velocitiesa08(out) anda18(out). We need another equation
fix both.

In the special case of dimensional reduction from five
four dimensions, there is a natural candidate for an appr
mately conserved quantity, analogous to the total momen
for an inelastic particle collision. As mentioned above,
small brane separations one has the standard Kaluza-K
result that the size of the extra dimension is proportiona
eA2/3f/M Pl. As stated above, we are assuming that the po
tial V(f) vanishes asf tends to2`. Other terms in the
Lagrangian describing matter on the branes may in princ
acquire f-dependence upon dimensional reduction. Ho
ever, the terms describing massless gauge fields and ferm
do not obtain any suchf-dependence due to their conform
invariance in four dimensions.~To see this, note that the fou
dimensional Einstein-frame metricgmn is conformally re-
5-10
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DENSITY PERTURBATIONS IN THE EKPYROTIC SCENARIO PHYSICAL REVIEW D66, 046005 ~2002!
lated to the four dimensional components of the five dim
sional metric.! Therefore at the classical level, in thef→
2` limit, the Lagrangian describing gravity,f and four
dimensional radiation possesses a global symmetryf→f
1const, and it is plausible that the corresponding Noet
chargeQ,

Q[
1

4
~a0a182a1a08!}a2f8, ~53!

tends to a constant as the collision approaches. In this l
the classical equation of motion off is just Q850.

However, the sign ofQ must flip at the bounce. As argue
in Ref. @4#, this is essential in order that the trajectory r
mains in the physical region of the (a0 ,a1)-plane. The rever-
sal of Q may be also understood by the following highe
dimensional argument. The value ofQ at collision is
proportional to the time derivative of log(a0 /a1). The latter
quantity is the distance, rather than the vector displacem
between the boundary branes. Hence, if the branes com
gether and then draw apart,Q must change sign although it
magnitude remains constant. It is therefore natural to imp
the Z2 symmetry att50, Q→2Q, which should become
exact in the limit that the collision velocity approaches ze

These arguments suggest that we parametrizeQ-violation
at the bounce~brane collision! using

D[
Q~out!1Q~ in!

Q~ in!
, ~54!

whereD is expected to be small. Equations~51!, ~52! and
~54! together uniquely parametrize the final values ofa08 and
a18 after the bounce:

a08~out!5S 12D1
j

4~12D! Da18~ in!

a18~out!52S 12D2
j

4~12D! Da18~ in!. ~55!

An example of an ekpyrotic two-brane collision is shown
Fig. 1, for a specific choice of the interbrane potential. Bo
branes initially expand under the influence of the attract
potential. But when they get close, and the potential rise
zero, this deceleratesa0 so that it begins to contract. At col
lision, a08(in)52a18(in). Immediately afterwards,a08 is posi-
tive and, for smallj, a18 is negative.

Assuming that the potential remains zero after collisio
and that only radiation is present, we havea0 anda1 flying
apart linearly int after collision, corresponding to an expan
ing a. According to Eq.~55!, a1 is decreasingafter collision,
and it tends to zero. This would lead to the separation
tween the branes going to infinity. However, it is eas
avoided, essentially because thea1 modulus has apositive
kinetic term. If there are one or more massless moduli fie
x coupling toa1 asa1

2x82, they produce an effective poten
tial in the a1 equation which is proportional toa1

22. This
repels thea1 modulus froma150. Figure 1 shows an ex
ample of the full evolution, including the brane collisio
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reversal and turn-around ofa1 so thata0 and a1 are both
expanding at late times. The final evolution ofa1 is insensi-
tive to the value ofx8, which only affects the evolution a
smalla1. In the long time limit, the scalar fieldf also tends
to a constant and therefore so does the interbrane separa

One can generalize these considerations to exam
where the potentialU[a4V(f) is finite and negative a
brane collision. This requires rather special potentialsV(f),
which diverge at largef, but not too strongly. In this case
the trajectories are space-like at collision.

Having specified the background evolution for th
‘‘nearly light-like bounce,’’ we can now consider the matc
ing of perturbations. We have assumed thatU vanishes at
collision. For simplicity we shall assume that its first deriv
tives ]U/]a0 and ]U/]a1 also vanish there. Now we ca
read off from Eq.~48! that w(2),50, but we have from Eq.
~49! and the formulas of this section that

w(2).5
2

3
j2

a18~ in!2

a1
2

. ~56!

We can also read off from Eq.~50! that for the ‘‘nearly
light-like bounce,’’

e052
2k12n

3M PlApa1a18~ in!
, ~57!

where we assumedj,D!1. Putting these together in Eq
~47!, we find the final density perturbation amplitude is

z lw;
1

12
j2

k212n

M PlAp

a18~ in!

a1
3

. ~58!

It remains to computea1 and a18(in) at collision using the
detailed behavior of the potentialV(f) for negativef.

FIG. 1. Sketch of a nearly light-like collision between tw
boundary branes. The potential employed wasa4V(f)5

2a1
4(a1 /a0)4e2 f where f 5

1
10@(a0 /a1)21#21, chosen so that

when expressed in terms off, the potentialV vanishes asf→
2`, in a manner mimicking the vanishing of a nonperturbati

potentialV}e21/g2
or V}e21/g. At collision, a08 and a18 are equal

and opposite. The matching rule we propose is given in Eq.~55!; in
the figure it is assumed that the efficiencyj andQ-violation param-
eter D are small. The scale factora1 is decreasing after collision
we assume it couples to a massless modulusx which causesa1 to
be repelled froma150. In the final state botha0 and a1 are ex-
panding, and the universe becomes radiation-dominated with
outer-brane separation tending to a finite constant.
5-11
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As discussed in Ref.@4#, asf→2`, the string coupling
constant tends to zero. It is natural to expect that the po
tial V(f) goes to zero in this limit. We shall adopt a ve
simplified model here, in which the potential jumps to zero
some particular, negative value off j . In this case it is
straightforward to computea1 anda18 ast tends to zero from
below. First, assume the jump happens at some timet j , be-
fore which Eqs.~7! are valid. The total energy in the scal
field is 1

2 ḟ21V(f)53p2M Pl
2 /t2, and this is equal to the

kinetic energy in the scalar field after the potential jump. S
just after the jump we have

ḟ52A6
pMPl

~2t j !
. ~59!

Now, from a0[2a cosh(f/A6M Pl), we have

a085aS Ha02
ḟ

A6M Pl

a1D ~60!

and similarly for a18 . Since the potential vanishes, and
radiation is present,a08 anda18 are both constant up to colli
sion. Then Eqs.~5!, ~7! and ~60! imply that

a08~ in!522p~2t j !
2p21ef j /(A6M Pl)52a18~ in!. ~61!

After the potential jump,a0 anda1 evolve linearly int. To
leading order inj andD we have

a05~2t j !
p@2 cosh~f j /A6M Pl!1a18~ in!~t2t j !#

a15~2t j !
p@2 sinh~2f j /A6M Pl!2a18~ in!~t2t j !#.

~62!

Setting these equal determines the time of collision a
brane scale factors at collision,

a05a15~2t j !
pe2f j /(A6M Pl). ~63!

Now we have all we need to determine the final fluctuat
spectrum. From Eqs.~58!, ~61! and ~63!, we have

z lw;
1

6

Ap

M Plk11n(2t j )
11p

j2e4f j /(A6M Pl). ~64!

The dependence onk, t j and p is the same as is obtaine
from the naive ‘‘time delay’’ formula mentioned in Sec. I
Using Eq.~16! for df, the time delay method yields a pe
turbation amplitude

;Hdf/ḟ;M Pl
21Apk2(11n)~2t !2(11p),

in agreement with the dependence upon these quantitie
Eq. ~64!. In the time delay argument, however, one uses
Hubble constant on the branes at collision, which is close
but not quite the same as the factor occurring in Eq.~64!.

Let us now translate the dependence of the last facto
Eq. ~64! into quantities determined by observations in t
final expanding, radiation dominated Universe. After co
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sion, we assume the potentialV(f) is zero ~because the
internal state of the branes has changed so they no lo
attract each other!, so that thef modulus describing the
interbrane separation is a free massless field. We also ass
radiation is present, in an abundance parametrized byj. It is
straightforward to analytically solve the equations of moti
post-collision, assuming the presence of the additio
modulus needed to keepa1 away from zero. This modulus
becomes irrelevant at late times. In the long time limit, o
findsa0 anda1 increasing linearly in conformal timet, with
a0 /a1→ua08(out)/a18(out)u'11 1

2 j, neglecting the depen
dence onD which is reasonable ifD is small. Equating this
to coth(2f/A6M Pl), we find that thefinal resting value for
f is given by

e(2f f /A6M Pl)5
j

4
. ~65!

However, what enters Eq.~64! is not f f , but f j , the value
of f at which the potentialV(f) switches off. We can trans
late both values off into the corresponding string couplin
constants, using the relationgs}eA3/2f/M Pl, which follows
from M theory with the assumption that the six Calabi-Y
dimensions are fixed in the 11 dimensional metric@16#.

For p close to zero, we find the final result

k3/2zk
lw;A2Vj

M Pl

4
j4

96S gs~ j !

gs~ f ! D
4/3

. ~66!

The right-hand side is the amplitude of the growing mo
adiabatic density perturbation relevant to structure format
in the late Universe.~For an accurate calculation one shou
of course retain thep dependence, since over the many o
ders of magnitude ofk involved, this can significantly affec
the final normalization. We leave this complication for futu
work.!

Our result forzk
lw depends on the square root of the p

tential energyV at its minimum, in Planck units. This is
reminiscent of the usual inflationary result. However, ad
tional suppression factors arise. First, the numerical coe
cient is small. Second, the factorj4 is small if the efficiency
of production of radiation at collision is small. Finally, th
string coupling constant where the potential turns off, wh
we have crudely parametrized asgs( j ), would be expected to
be substantially smaller than the value of the string coupl
constant in the asymptotic outgoing state. Translating the
mulas relevant to Horava-Witten theory, given by Witte
@16#, one finds for today’s value of the string coupling co
stant

gs~ f !5S M Pl

MGUT
D 3 gGUT

4

A2
v0

1/2, ~67!

where the volume of the Calabi-Yau manifold isv0MGUT
26 .

Before discussing numerical values, it is important
make the following caveats. First, the resting value of
scalar fieldf determined during the radiation era followin
the bounce is not necessarily that measured in today’s
5-12
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verse. If there is a stabilizing potential forf, that will instead
determine the final resting value. Nevertheless it is conc
able that the resting value early in the hot big bang phas
closely related to the final value~as for example iff devel-
ops a potential with many closely spaced degene
minima!. Second, the presence of additional moduli~such as
are found in Horava-Witten theory! could have important
consequences on the dynamical evolution off in these early
stages. In the above calculation we have limited ourselve
only one modulus, translating that directly into the stri
coupling constant. So the final numerical result can only
suggestive.

For example, plausible values of the grand unified the
~GUT! coupling are gGUT

2 ;0.5, and the GUT mas
1017 GeV, giving gs( f );103v0

1/2. The turn-off of nonper-
turbative potentials might plausibly occur atgs( j );10, if
instanton effects produce factors of the form exp(28p2/g2).
The last factor in Eq.~66! then yields;1025v0

22/3. For v0

;1023, andj4(2Vj )/M Pl
4 ;1022, we can obtain an ampli

tude;1025, as required by observations.
We conclude that the ekpyrotic scenario may offer a na

ral explanation for the smallness of the observed density
turbations. As we have emphasized, this is only suggestiv
this stage, and will remain so in the absence of:~i! a micro-
scopic check of the matching condition used forem , within
the context of M theory and string theory;~ii ! a computation
of the efficiency parameterj describing the production o
radiation on the branes;~iii ! a check that the parameterD is
indeed small, as was assumed; and~iv! a full calculation of a
realistic interbrane potentialV(f) and a numerical solution
of the equations improving the jump approximation us
above.

Although we have focused here on matching scalar p
turbations, in principle one also needs a matching condi
for tensor and vector modes. Neither acquire long wa
length power in the contracting phase of the ekpyro
model, and it seems unlikely they will be generated at
brane collision. Nevertheless one can attempt to study p
sible matching conditions. It is not hard to see that the ten
amplitudehi j

T exhibits the same logarithmic divergence
the perturbation in the three-curvature of comoving slicesz.
However, the canonically conjugate momentuma2hi j

T 8 does
tend to a finite constant att50, suggesting it provides a
possible matching variable. Again, establishing this w
probably require a satisfactory microscopic theory.

VII. CONCLUSIONS

We have shown that inclusion of gravitational backre
tion has a negligible effect on the density perturbations p
duced in the ekpyrotic universe, during the initial pha
which is slowly contracting from the point of view of th
four dimensional effective theory.

We have proposed what we believe is a physically s
sible matching condition at the bounce, based upon iden
ing physical perturbation variables which are well behav
~i.e. small! at t50, and matching on surfaces defined by t
scalar fieldf. The variables we used are well behaved,
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should emphasize, provided certain conditions are met as
4D effective scale factor approaches zero, namely~i! the
energy density is dominated by the kinetic energy of a sc
field ~the modulusf in our case! and ~ii ! the interbrane
potential V(f) does not diverge asf tends to2`. We
showed that with the simplest matching prescription, nam
matching the two linearly independent solutions att50, the
scale invariant spectrum of perturbations developed inF
early on in the contracting phase is generically passed o
the variablez representing the amplitude of the long wav
length growing mode density perturbation in the expand
phase. We also identified examples where no density pe
bations are generated in the final Universe. If no radiation
generated at the brane collision, and if the potential vanis
sufficiently smoothly there, the perturbations ‘‘time-revers
at a50 and the amplitude of the growing mode perturbati
is precisely zero in the final expanding Universe. Such
amples are not realistic since there is no entropy genera
at the brane collision, and in any case seem highly unlik
given that the outer-brane collision is not an adiabatic eve

The existence of a ‘‘zero-perturbation limit’’ is an intrigu
ing feature of the ekpyrotic model and the matching presc
tion given here, since it suggests a natural explanation for
smallness of the observed density perturbations. Recall th
feature of inflation is that it naturally predicts a value of t
density perturbation amplitude that is far too large, and fi
tuning of potentials is required to obtain a sufficiently sm
amplitude.

We conclude that, while many issues connected to
microphysics at brane collision remain to be settled by r
orous investigation of string theory in the limit of oute
brane collision, the basic idea of Ref.@1# for producing den-
sity perturbations during the early stages of the ekpyro
Universe, in a phase which is slowly contracting from t
four dimensional point of view, remains viable.

Note added. As mentioned in the Introduction, our con
clusions differ from those of Lyth, Brandenberger a
Finelli, and Hwang@7–9#. The disagreement is due to diffe
ent assumptions about physical conditions near the bou
and to a different prescription for matching across it. W
believe that the assumptions made by the authors of R
@7–9# are inconsistent with what we proposed in Refs.@1#
and @4#, because of the following.

~i! They use a scalar field potential which diverges
minus infinity as the bounce is approached. This potentia
not compatible with the bounce prescription discussed
Ref. @4#, since it is too singular.

~ii ! They choose to match on a surface of constant ene
density in the contracting phase, assuming that the scale
tor of the universe reverses from contraction to expansion
this surface. This behavior is incompatible with the fie
equations describing the cosmological background solut
We instead follow the classical field equations all the way
the bounce, and apply a matching prescription consis
with our treatment of the background at this point. As w
have explained above, the appropriate matching surfac
the ekpyrotic setup is defined by the scalar field specify
the interbrane separation, and not by the energy density.

~iii ! Brandenberger and Finelli claim our matching pr
5-13
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scription based on the energy density perturbation on sl
of constant scalar field is inconsistent with results given
the literature for models where the equation of state und
goes a sudden jump@17#. It is easy to see why matchingem
and its time derivative in this situation is incorrect. The equ
tion of motion Eq.~33! for em involves cs

2 , related by Eq.
~36! to the time derivative ofw. Hence, ifw jumps,cs

2 ac-
quires a delta function contribution, which causes a jump
em8 across the matching point, which may be straightf
wardly computed. The key point, however, is in the situat
we are discussing,w is continuousacross the bounce, thu
there are no such delta function contributions. Therefore
‘‘counterexample’’ is truly a red herring.

~iv! Brandenberger and Finelli mistakenly imply that r
versal from contraction to expansion would occur at a b
brane–boundary brane collision. If the four dimensional
fective description is valid, then reversal canonly happen at
a boundary brane–boundary brane collision, as describe
Ref. @4#. In the four dimensional effective description, th
s

N
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universe continues to contract after a bulk-boundary co
sion, soz remains small andF continues to grow. Only
when the outer boundary brane collision occurs, as it m
can the growing perturbations inF get converted to long
wavelength fluctuations inz.
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