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We study the generation of density perturbations in the ekpyrotic scenario for the early universe, including
gravitational backreaction. We expose interesting subtleties that apply to both inflationary and ekpyrotic mod-
els. Our analysis includes a detailed proposal of how the perturbations generated in a contracting phase may be
matched across a “bounce” to those in an expanding hot big bang phase. For the physical conditions relevant
to the ekpyrotic scenario, we reobtain our earlier result of a nearly scale-invariant spectrum of energy density
perturbations. We find that the perturbation amplitude is typically small, as desired to match observation.
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We recently proposed a novel scenario for the early Uni- In the case of the ekpyrotic model, there is the major
verse in which the hot big bang is created by the collisioncomplication that the perturbations are produced when the
between two M-theory brand4]. The scenario assumes the effective 4D scale factor is contracting. In order to have a
Universe begins in an almost static, nearly Bogomol’'nyi-viable scenario, a mechanism must be found to reverse from
Prasad-Sommerfiel(BPS initial state consisting of empty, contraction to expansion. This issue has been addressed in a
flat, parallel three-branes. In the effective 4D theory, the BPSecent paper we have written with Seibddj, where we
state is homogeneous and has zero spatial curvature becawsgue that such a “bounce” may be allowed in the context of
of nonperturbative effects, however, a tiny force attracts thévl-theory, where it corresponds to a collision and rebound of
branes to one another. As the branes come together, quantidhe outer boundary branes. A matching rule linking the ho-
fluctuations create ripples in the brane surfaces that result imogeneous background variables of the contracting phase to
spatial variations in the time of collision. Consequently,those describing the expanding phase was suggested there.
some regions heat up and begin to cool before others, prdssuming this proposal is valid, what remains is to apply and
ducing a spectrum of long wavelength density perturbation@Xte”d those ideas to describe the evolution of perturbations
which can seed structure formation in the Universe. through the moment of reversal.

We estimated the perturbation spectrum using a “time de- /A Stimulus for the present work was a paper by Ly,
lay” formalism [2], often used in simplified treatments of which calculated the growth of the perturbation variable

inflationary models. In that context, spatial variations in the(also commonly terme®) representing the curvature per-

time when inflation ends result in long wavelength densityig:bi“?hn é)érsrggttllal SSAI(;:V?/Z;V ?#;2 3;:;220;’:29"\3”;2 'Egetrr]r;at-
inhomogeneities. We applied the same formalism to varia-__° Y y b

tions in the time of collision in the ekpyrotic scenario. The contracting phase of the ekpyrotic universe. He claimed this

tion for fluctuat i th lar fielild bing th implied that when gravitational backreaction was included,
equation for fluctuations in the scalar fiefildescribing the the spectrum of density perturbations became strongly scale-

interbrane separation in the ekpyrotic model is almost idendependent with negligible power on large scales, making the
tical to that describing fluctuations in the inflaton during ekpyrotic scenario incompatible with observations. His
slow-roll inflation. Consequently, a nearly scale-invariantanalysis employed a certain class of analytically solvable
spectrum of fluctuations is found. The result is remarkablenodels with exponential potentials, previously used to de-
because it shows that the Harrison-Zel'dovich spectrum cagcribe power law inflatiorj6] and simply extended to the
be obtained without inflation in a space-time which is verysituation of slow contraction relevant to the ekpyrotic sce-
nearly static Minkowski space. nario. We repeat his analysis here, but also compute the per-
The time delay formalism is a crude approximation, andturbation in the Newtonian potentidt. We show that in the
only quantitatively accurate for a small class of inflationarycontracting phase, gravitational backreaction actually en-
potentialg 3]. Nevertheless, it often gives a good estimate ofhances rather than suppresses long wavelength fluctuations,
the spectral index for the power spectrum of perturbationsbut these fluctuations show up purely dn and not in¢.
One of the goals of this paper is to investigate whether th&herefore gravitational backreaction does not spoil the ekpy-
same statement is true for the ekpyrotic model. rotic mechanism, at least in the contracting phase.
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The remaining issue regards the appropriate matchinfjve (or indeed elevendimensional brane-world. As in Ref.
condition for tracking the perturbations across the bouncé¢l], we shall assume those other degrees of freedom are fro-
and into the expanding hot big bang. Consistent with thezen, or at least so slowly varying that their inclusion would
arguments of Ref[4], we seek to identify variables which not substantially alter the result. We shall focus here on
are nonsingular at the bounce, both for the background ansingle moduli field¢ which determines the outer brane sepa-
perturbation variables. We then match the amplitudes of theation in a brane-world Universe. In R¢l] we considered a
two linearly independent solutions for the perturbation vari-model in which the perturbations are produced by the colli-
ables across the bounce. With our prescription, we find thagion of a bulk brane with one of the boundary branes. As we
the long wavelength perturbations developed in the contraciointed out there, if the 4D effective theory is valid, the scale
ing phase do indeed survive to the expanding phase, prqactor in that theory must continue to contract until the outer
vided there is a change in the equation of state at the bouncgyanes collide and bounce. In Ré4] we suggested a sim-
such as occurs if a sub-dominant component of radiation igjified model in which there is only one collision between
produced there. Our final expression for the density perturg,g boundary branes and no bulk brane is needed. The per-

bation spectrum agrees well with the more naive time delay,,-yations are produced as the outer branes approach one

est'lArRate. icati limi . £ thi another. For simplicity, here we shall restrict ourselves to this
er communicating a pretiminary Version ot this paper ., , ane scenario, in which the same scalar figlds re-

0 I__yth and Bra_ndenberger, Lyt_h prepared a second ma.nuéponsible both for the development of the perturbations, and
script[ 7] proposing that contraction be matched to expansio

on a time-slice of fixed energy density]. With this proce- for describing the outer-brane collision and bounce. Gener-

dure, he argues that the curvature perturbagi@mconserved alizgtions to bulk-boundary collisions, as in the origina! sce-
across the bounce. But sin¢edoes not acquire a scale in- 120 of Ref_.[l], are a stralghtfor_ward extension and will be
variant spectrum in the contracting phase, he argues¢that Priefly mentioned when appropriate. _
will not have such a spectrum in the expanding phase, where '€ outline of this paper is as follows. In Sec. | we dis-
it represents the amplitude of growing mode adiabatic percuss tht_a propertlgs of th_e inter-brane potential _rel_evant to the
turbations. Lyth’s conclusion is that any growing mode den-€kpyrotic scenario, an issue referred to again in the note
sity perturbations developed in the contracting phase matcfdded at the end of this paper. We then review the applica-
perfectly onto pure decaying mode perturbations in the extion of the time delay formalism to the ekpyrotic scenario, as
panding phase. Brandenberger and Firj8lliand Hwang9]  described in Ref.1], showing that a scale invariant spectrum
have recently produced papers repeating this argument. Incf fluctuations is naturally predicted. In Sec. II, we show that
note added, at the end of this paper, we explain why we dincluding gravitational backreaction has, in Newtonian
not believe these conclusions are valid for the ekpyrotic scegauge, only negligible effects on the fluctuations acquired by
narios proposed in Reffl] and[4]. the scalar field. Section Ill is devoted to a discussion of the
Let us outline our approach to the matching problem. Werole of the curvature perturbatiofi (or R) conventionally
want to evolve background and perturbation variables acused in the analysis of inflationary models, which is in fact
cording to the appropriate field equations, all the way to zeransensitive to the growing mode perturbation in the contract-
scale factor in the four dimensional effective theory. Weing phase of the ekpyrotic model. This is further elaborated
identify a complete set of variables which are nonsingular ain Sec. IV where we show thdtis canonically conjugate to
the bounce, and match those nonsingular variables across ihe direction of amplification, which is proportional to the
This prescription automatically excludes the varialsbeand  variable ®. As a consequence of Liouville’s theorem,is
¢, both of which diverge. More generally, geometrical quan-“squeezed” as the perturbations develop during the collaps-
tities such as the synchronous gauge comoving metric peing phase of the ekpyrotic scenario.
turbationh;; also diverge. Indeed the meaning of the three- Section V addresses the key moment of reversal, which is
geometry is unclear at zero scale factor. when, in the four dimensional effective description, the Uni-
Instead our approach is essentially algebraic rather thamerse “bounces” as the scale factarhits zero. Since the
geometrical. We focus on gauge invariant perturbation varifour dimensional space-time geometry is singular there, a
ables which are consistently small at all times and matcHour dimensional geometrical description using the Einstein
these across the bouncetat0. We argue that this matching frame metric is inappropriate. However, our approach is to
would give consistent results for an infinite class of pertur-identify a complete set of dynamical variables which remain
bation variables so defined. Our prescription can only bdinite at the bounce and to match them at the transition from
fully justified by a satisfactory microscopic description of the contraction to expansion. We ignore divergent quantities as
relevant degrees of freedom. Nevertheless, if string theorynphysical, attributing their bad behavior to a singular choice
shows that the scale factor can truly pass through zero anof field and metric variables. We used this approach in Ref.
bounce, then tracking perturbative gauge-invariant degred4] to describe the homogeneous background evolution dur-
of freedom which remain small and finite seems likely to being the bounce. Here we shall show that there is also a set of
the right approach to matching fluctuations across theyauge invariant linear perturbation variables which are well-
bounce. behaved at the bounce. When the theory is formulated in
Our analysis shall be performed entirely within the con-these variables, there is a well defined matching prescription,
text of four dimensional effective field theory. This does noteven in the four dimensional effective field theory, which
capture all the low energy degrees of freedom relevant to theeems to yield physically sensible results.
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In order for the well-behaved variables to exist, we em-result in whichd~e?3#Mpi_,0 as¢$— —o. [Here and be-
phasize that it is important to have two conditiofig:there  low, Mp,=(87G) 2 is the four dimensional reduced
must be a free scalar fielthe modulusp in our casg¢whose  Planck mas$.In standard Kaluza-Klein theory, the same de-
kinetic energy diverges at the bounce diiglthe scalar po- pendence holds at largé, so the range ofp is —»<¢
tential V(¢) must be sufficiently nonsingular at the bounce. <o, But the presence of a bulk warp factor alters this. In
The simplest case is wheié(¢) approaches zero at the many models, when the outer-brane distaddends to in-
bounce, as suggested by the mapping from M-theory tdinity, ¢ tends to a finite value, which may be taken to be
weakly coupled string theorjd]. If these two conditions are zero. For example, for a pair of positive and negative tension
fulfilled, then it is possible to follow the perturbations and boundary branes with a bulk anti—de Sitter space, the inter-
match ata=0. brane distance id=L In[coth(~ ¢/\6Mp|)] whereL is the

Our main finding, in Secs. V and VI, is that as long asAdS radius[1]. A suitable ekpyrotic potential would then
radiation is produced or fields are excited at the outer-brangehave as~—(—¢)N~—e("N¥Y)  at small ¢, and we
collision so that there is a jump in the first or second timewould be interested in starting the system in a state such that
derivative of the equation of state paramete=P/p, the 40 at large negative times. In models with a bulk brane,
scale invariant perturbation spectrum developed during thguch as those considered in Rif], the location of the bulk
contracting phase propagates through the bounce and into theane would again be described by a scalar field, but this
final expanding Universe. Intriguingly, the final density per-time its range would be finite. The exponential motBlis
turbation amplitude derived in Sec. VI is naturally sup-useful, since it is mathematically tractable. However, one
pressed by a small numerical coefficient, by quantities whickshould remember, in general it should only be expected to
are automatically small in Horava-Witten theory, and by fac—app|y over some finite range @f.
tors involving the efficiency with which brane kinetic energy  \We now review how the time delay formalism can be
is converted into radiation. We comment on how this sup-applied to our example. The classical solution is given by

pression may naturally explain the small perturbation amp”'solvin b= — J=2V. ForV iven in Ea.(1). we obtain
tude ~107° we see via observations of the cosmic micro- 9 ' (4) 9 a-(L),

wave sky in the universe today. 5
—t= J¢ dd) ec¢/2: 2 ec¢/2: 2
o 2V0 C 2V0 -

V b
I. TIME DELAY NEGLECTING b
GRAVITY PRE-COLLISION

)

where the time is large and negative at largk We follow

i . he ek . . . the evolution to some finite, small negatiyeat which point
We first derive the ekpyrotic spectrum in a very NalVeha modes of interest are “frozen in.” For small fluctuations,

“time delay” approach which totally neglects cosmological L e ik ) )
expansion, gravity and all moduli other than We also ig- expanding in plane waves¢=>3e'*5¢(t), one finds
nore the crucial element of reversal from contraction to ex- 2

pansion, which will be a critical aspect of the discussion in Sdi= —k25¢g—vy¢¢5¢g= —k28pi+ 50k ()
Secs. V and VI. As we shall see, despite the fact that the time t
delay argument ignores these very important features, it ne§7—g

ertheless comes close to matching our final answer. Thus, sing the solution Eq(2) abovd. Curiously, even though

is the case in inflation, the time delay argument turns out t e background here is nearly static, this is the same equation

be a convenient heuristic even though it is neither physically’jls.that governing a massless figléh a de Sitter background
rigorous nor numerically accurate. (with xy = ¢/a, with a the scale factor antdconformal time.

We assume that at large positidethe effective potential As in that case, starting from an initial Minkowski vacuum
governing the evolution of takes the form one generates a long wavelength spectrum of scale invariant
fluctuations.
V=—Vye ¢, (1) We assume that the quantum fluctuati®yy; starts in the
Minkowski vacuum(| 8¢g|?)<k 2, so the amplitude of nor-
where V,, and ¢ are positive constants. The ekpyrotic sce-malized modes with wave numbris ~k~*2 Consider a
nario starts at large positives, in a state of nearly zero Mode where-kt;>1, wheret; is the initial time. The mode
energy, and rolls towards negative values. ésbecomes Oscillates at fixed amplitude™ "> until t increases td;~
increasingly negative and the branes come close together;K ", when the destabilizing &/ term in Eq.(3) begins to
V(¢) must turn upwards and approach zero. As discussed idominate over the stabilizing® term. One then ha$¢;
Ref. [4], for example, this is the behavior to be expected in~ (2/t?) ¢i, with growing solutiond¢g=(—t) 1. Hence,
M-theory because the string coupling constant vanishes abe final amplitude for the fluctuation, aspproaches zero,
the outer branes collidéA similar constraint applies in the is 8¢~k Y3(—t,)/(—t)~k ¥4 —1t)~1. The precise result
bulk brane collision, as discussed in Rgf].) for the long wavelength spectrum is
Generally, in brane world models, the separation of the
two boundary branes can be described by a canonically nor- 12 1
malized, minimally coupled scalar fielfl (the “radion”). As (l6¢l*)= e K=l “)
the brane separatiahgoes to zero, one can ignore the effect
of the bulk “warp factor” and one obtains the Kaluza-Klein which is scale-invariant as claimed.
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A naive estimate of the final density perturbation ampli-tives with respect to shall, as above, be denoted by dots and
tude runs as follows. The scalar field fluctuations give rise tdhenceforth, derivatives with respect tashall be denoted by
a time delay in the moment of collision. Neglecting gravita- primes.
tional effects, the time delay between collisions relative to Mathematically, Newtonian gauge is convenient for
the mean collision time is- §¢/¢,. The net density pertur- studying scalar field perturbations since the linearized equa-
bation after collision is then jusip/p~ —4H &t whereH is tions reduce to a single second order differential equation for
the Hubble parameter at the time of collision. Despite thethe Newtonian potentiad (for a derivation see e.g. Ref.
deficiencies of this time delay approach, this answer is quité10]),
close to the result we shall eventually derive, including
gravitational backreaction and matching across the bounce, L, A | H
which we give in Eq.(64) below. P +2Kq) +k2®+2¢0< =0, ©
The first step in improving the above treatment is to in-

clude gravitational backreaction in the initial, ContraCtingwhereA=(¢ )1, andH=a'la. Here, and below, the wave
- 0 I} - . 1] ]

feh aa:tiec; an(; rtrrgiti%:]rsp?oseé qvx)e focus on the gravitational bac humber dependence of all perturbation quantities is not

shown explicitly. For® one should read; and so on.
We now eliminate the first derivative term by settidg
=u/A, obtaining

!

0

II. INCLUDING GRAVITATIONAL BACKREACTION

lutions to the Friedmann-Robertson-Walker equations which u"— AUt k2u+ 2}
at large negativéapproximate the assumed initial conditions

in the ekpyrotic setup, and which allow an analytic treatment . ) ) )
[6]. For the exponential potential considered as an approxi>uPstituting the above scaling solution, we obtain
mation over some range @f in the ekpyrotic scenario, one

has the background solution U= —Ku+

For exponential potentials, there exist analytic scaling so- " H\'
—| u=0. (10
0

p
aTpz2" D
2
a(t)=(—tP,  ¢o(t)= E“’l(—l\/lt), (5  which is a form of Bessel's equation, with corresponding
order v=3%(1+p)/(1—p). Note that our notation for the
where a(t) is the scale factort is proper Friedmann- variableu, and for the variable introduced later, matches
Robertson-WalketFRW) time, taking negative values, and Mukhanov's original notatiori12]. . _
The initial conditions are that the scalar field fluctuations

2 A should be in the Minkowski vacuum state as»—o: in

M2=———— (6)  Newtonian gauge, two constraints determiteand & in

= —2 2 y 2 _ 1) -
C"Mp Mpip(1-3p) terms of 8¢ and 5¢:

andM p = (87G) ~?is the reduced Planck mass. Some use- 5

ful quantities are 5¢:2|§:PI[¢)+H®]'

0

p

Mei

. bo=1\2p t : 2M3,
Sp=— —

2 d)O

M3, 2

V=—p(1—3p)t—2, V.se=—(1-3p),

H=

SN
r—+|'c

(12

(7)  Atlarge —kt, for S¢p~e 7/(a/2k), which is the incoming
Minkowski vacuum, one finds
where a dot denoted/dt. In ekpyrotic models, we are inter-
ested in potentials in which the evolution is very slow or, Pi /Lkmte*”” (13
equivalently, for whichp<1. (Parenthetically, note that the 2Mp,
same solution, fopp>1, describes a universe undergoing

power law inflation) The conformal time is which vanishes at early times, consistent with our ekpyrotic
initial condition that the space is asymptotically Minkowski
_o[odt  (=ptP ot in the past.
- ft atty (1-p) a(l-p)’ (8) Neglecting an irrelevant phase factor, the solutionufds

then

running from—-oc to 0 ast does, although as mentioned we
shall have to alter the form of the potential aand = ap- (12 \/E 1y p
proach zero, to avoid its diverging to minus infinity. Deriva- u=(~km) 2H”( kr) (2k)3;2|vI P (14
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whereH? is a Hankel function and was given above. We 2 H 1 +d HD' +H 2D
follow this solution forward to conformal times at which §E§ Tow = > +d, (18
—kr<1, when the modes become frozen in. Converting 4mG ey

back to®, and using the small argument expansion for the

: i . ) whereH=a'/a andw is the ratio of pressure to density in
Hankel function, again neglecting phase factors we find the background universe. The varialflavas introduced by

Bardeen[11] in his classic paper, in which it was termed
P i, oy ém- It was employed in the context of inflation by Bardeen,
=y mk GOm0l (19 Steinhardt, and Turnd.3] and its use later elaborated upon
by many author§6,12,14. Mukhanovet al.[12] reexpresg
Since we are interested jm<1, we henceforth neglect cor- as{=v/z (for spatially flat hypersurfacgsand thereby de-
rections of ordep to the numerical coefficient. But we keep Ve the “v-equation”:
thep dependence in the scaling with wavelength and time for o
comparison with later results. v"=—k%+—v (19
Now we can convert back to the scalar fiélg, using the z

formulas(12) given above, and obtain wherez=apq/H. For the power law solution given in Eq.
2

(7), this reads
Pl

2M .
Sp=——[D+HP]~2 VA A+ (—t)=(1+p), . ., b(1-2p)
¢0 v =—k V=72 U.
(16) (1-p)°r

(20

Since the last term is negative, it follows that there is no
classical instability in the variable, a point emphasized by
Ref.[3]. (Note that Ref[3] relabels Mukhanov's variable
asu; here we have kept to the original notatipn.
(| 5bel D)~ Ek*Z(H D(—t)-2(1+P) However, this does not at all imply the absence of a grow-

k 2 ing mode density perturbation: the varialbe doesexhibit

an instability, as we have discussed above. Given a solution
1 v, the potentiald can be obtained by solving
=(|6¢l O (17)
k2P/(1=p)

(—t)2° e
k2q>=—4w67°(u/z)'. (21)

where we used®o(— 1) 2%x(—t)"(P) The resulting
power spectrum of fluctuations is

+Cyz

where (| 8¢¢]?)(©) is the result obtained in Eq4) ignoring

gravitational backre_action. Rgca_lling that the regime of inter--l-he general solution to the-equation to ordek? is

est for the ekpyrotic scenario is smal] we see that we

obtain the same answer as in E4) up to small corrections. rdr (v

The backreaction produces a slight reddening of the power v=C,z 1—k2f —ZJT zqu-”)

spectrum, presumably because long wavelength perturba- —®Zn o

tions were generated sooner and had longer to self-gravitate. , ,

However, since in the ekpyrotic scenario we hgwe&l, JT d_T_szT d_TfT 2d 22)
these corrections to the spectral index are actually smaller — 72 o 72 ) —w '

than corrections arising from the nontrivial kinetic term for

¢, which were computed in Refl]. The result shows that whereC; and C, are arbitrary constants. Substituting into
backreaction and metric fluctuations have an insignificant efEq. (21), we obtain
fect on the density perturbations developed during the initial,
contracting phase of the ekpyrotic universe. ¢=61‘1>o f

T

sz 7'+ 62(1)0 (23)

Ill. THE CURVATURE PERTURBATION IN THE

—Aal/a3 C C.
CONTRACTING PHASE where ®,=a’/a”, and C, and C, are constants. For the

power law solutions studied herexa. For an expanding

Rather than solve for the evolution of the Newtonian po-universe, the first term dominates the secontl-as>. How-
tential in Eq.(9), a common procedure used for inflationary ever, for a contracting universe, the second term is the proper
models is to track the curvature perturbation on spatial slicegrowing mode ags—0. The solution is the same as that
which are comoving with the matter. As we shall discussfound in Eq.(15), from which we derived the scale-invariant
this variable is in fact insensitive to the growing mode den-spectrum.
sity perturbation in the contracting phase. Various subtleties are worthy of further comment. First

Following the notation of Mukhanoet al. [12], we de- note that®,=a’/a® is anexactsolution of the perturbation
note the curvature perturbation on comoving sliceg bgle-  equation(9) for k=0. In fact, fork=0, the perturbationb,
fined by just represents a coordinate transformation of the tinaed
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is therefore unphysical. However, for nonzérthe solutions In the inflationary case, which correspondste 1 in the
tending towardsb, are not gauge modes and therefore rep-above analysis, both the variahleand its canonical conju-
resent a real gravitational instability. gate momentuni (or u) obey equations exhibiting a classi-

Second, note that is insensitive to any component @  cal instability: both are amplified as approaches zero. The
tending towardsb,, as may be seen from the expression system starts near=u=0, with only small quantum fluc-
tuations. As time proceeds, the system evolves away from

2 i) )’ the origin along a certain lingjocv in phase space. By Li-

(1w

(29 ouville’s theorem, the phase space density is “squeezed” in
the direction orthogonal to this line. But in the ekpyrotic
case,p<1, thev (or {) variable is instead stable and clas-

Fr?rllnflatl?naryfrT%dels, trzat%klngﬁas n'sngotr;]etmr ma;ny tSi al trajectories instead run out along théor ®) axis. The
analyses, Is usetul because the components that are projec e%or {) direction must in consequence be “squeezed.” Thus

A . . U
out in this formula are harmless decaying modes. Howeve . . . : . -
for the ekpyrotic model, the growing mode tendsltg, One t[:feé;s[g]o classical growth iy consistent with the finding
can in fact recover the growing mode solution fr@nor v, B
but special care has to be taken to do so, by keeping the next

a'la®

order terms irk® as we have done above. V. REVERSAL AND A NONSINGULAR
MATCHING CONDITION
IV. CANONICAL CONJUGATES AND “SQUEEZING” Having established that there is indeed a growing mode

scale-invariant spectrum of density perturbations in the col-
andv in Eq. (19) at the heart of the analysis of the previous lapsing phase, we now turn to the more challenging question

X . . . . f whether these perturbations survive the reversal to expan-
sections are in fact canonically conjugate. The importance of. . g
g ) . . sion. We have recently addressed the issue of reversal in a
this is that in the p,q) phase space plane, the trajectories of

the system are focused towards certain lines—for examplgaper with Seiberg4] and we shall employ and extend the

) S . . - analysis of that paper here.
the linep=q in the case of the upside-down harmonic oscil- As we have discussed, the variatilés not amplified in
lator. These lines are then the classically amplified directionﬁ1 ’

in phase space, and from Liouville's theorem the phase space. collapsing phase, since it is insensitive to the growing
P bace, P PaGEode perturbation. Howeveg, doesyield the amplitude of

density is necessarily squeezed in the orthogonal directions, . o .
. . T . e growing mode perturbation in the expanding phase.
While the calculation of Ref5] is indeed correct, it does not ; . .
Therefore, if{ was in fact the correct variable to match at

by itself indicate the absence of a growing mode density — 0. the arowing mode perturbation which developed in the
perturbation, because the curvature perturbation which wagc;la‘ sin 9 hasg wouldp'ust match onto a urepdeca in
computed is actuallyrthogonalto the direction in which psing p J P ying

fluctuations are amplified in the ekpyrotic setu@e note mode perturbation in the_expanding phase. This ha_s indeed
that Refs[7] and[8] agree with this conclusio. been suggested by Lyth in a follow-up paper following our

Our starting point is the action for gravity plus a Scalarcommumcatlon_ of the ?bove calculatlons_ to himfi. '_I'he
field in canonical(first ordey form. The relevant formulas new argument is essentially that perturbation evolution may

may b found orexample n R, The Newtonian po- (=152 & collson, Tht b neglgbly sma grew
tential ® is written in terms ofu, and{ is written in terms of y larg ’

v as above. One finds the quadratic action for perturbationgXpans.'on’q) ;hrank prgmsely bacl§ to zero. .
In this section, we wish to explain why matchigigacross

In this section we show that the variablesn Eg. (10)

reduces to ; ) ! . .
the bounce is not appropriate in the scenarios we consider.
2M2 B 1 K2 Instead, we claim, the scale invariant growing mode spec-
S= P'f dr( vF'+ —vF—=F2— —p2|, (25 trum gengrated in the_contracting pha_lse matches onto a linear
T 2 2 combination of growing and decaying modes at reversal.

) Consequently, the density perturbations survive the reversal
where 8=p/(1-p), F=k?u, and we have written the La- of the scale factor to seed structure formation in the hot big
placianV? as —k2. The sum over all Fourier modes is im- bang.
plicit. In order to analyze matching at the bounce, gauge invari-

The action(25) is in canonical form/pq’ —H(p,q), with  ant variables must be identified which are well-behaved as
H the Hamiltonian. Therefore, up to normalizatienandF  and r approach zero. We have already seen that the growing
are canonically conjugate. The equations of motion are  mode solution ford is proportional toa’/a3, which is di-
vergent asr tends to zero. Likewise, as discussed below, in
_ 8l v 2 - , the situation of interest; is logarithmically divergent. Since
F= TB( 7 kev=7"AF)", (26) linear perturbation theory can only be valid when the pertur-
bation variables are small, it follows thdtis not a good
which are just the relations above: Eg1), which expresses matching variable. Nevertheless, with careful treatment to
® in terms of¢ and{’, and Eq.(24), which expresseg in  exclude the logarithmic divergencé shall be very useful in
terms of ® and ®'. These imply the equations of motion the analysis after=0, just because its “long wavelength”
(11) and(19) used in the previous sections. component is nearly constant in the expanding phase, and

!
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gives the amplitude of the growing mode linear density perpresent situation, this is unambiguously defined as the time
turbation. slice where¢ tends to—<, or, rephrased in terms of the
As mentioned in the Introduction, the potenti&¢) in brane separation, the time whdre@3¢/Mpi_ 0 If we as-
Eg. (1) cannot hold asp— —=. In the main example we sume that no radiation is present in the contracting phase, so
treat here, we instead assurMé¢) bends upward so that that the only energy density present is thatdn then the
V(¢)—0 as¢p— —x. In this case, just before collision the surfaces of constanp are also the comoving surfacéise-
system is completely described as a massless scalar fietduse the perturbation to the momentum is proportional to
coupled to gravity, in a collapsing Universe. As discussed ind¢), and ¢, is the fractional energy density perturbation
Ref. [4], one can in this case define regular variables, inevaluated upon these surfaces.
which the evolution througla=0 becomes well defined. At the bounce, we assume that there is a change in the
For the perturbation analysis, it is very important that, asinternal state of the branes so tht¢) switches off and the
a—0, the Universe is dominated by scalar field kinetic en-boundary branes no longer attract. After the boungeis
ergy. In this situation, a good perturbation variable is thetherefore a massless, free field. We also assume some radia-
fractional energy density perturbation on spatial slices whichtion is produced on the branes. Again the matching surface is
are comoving with the matter, termeg, by Bardeen in his  defined in terms of¢, but with radiation present it is not
discussion of gauge invariant cosmological perturbatiorobvious that the surfaces of constafitare still comoving
theory [11]. This variable[defined in his Eq.(3.13] is a  with the matter. However this is indeed the case for adiabatic
linear combination of the energy density perturbatiﬁl’ﬁ, perturbations as the following calculation reveals.
and the velocity perturbatioff®, which is invariant under We perform the calculation in the conformal Newtonian
linearized coordinate transformations. It equals the energgauge. The equation governing the evolution of the radiation
density perturbation in any gauge in which the matter worldperturbation is given in this gauge by
lines are orthogonal to the=const hypersurfaces, and as
Bardeen emphasized it is the natural choice of perturbation (5, —4d)' = fkv (29)
. . . r rs
amplitude from the point of view of the matter.
The equations of motion for the mattdr,. =0, lead to

the following equations of motion: where 6, is the fractional energy density perturbation in the

radiation andv, the velocity perturbation. We now make the
(pade) = —( +p)a3kv(°) assumption of adiabaticity, equivalent to the statement that
P m P s . - . L .
the ratio of radiation to scalar field energy density is spatially
uniform being determined locally by the microphysics of
(C2emtwn), brane collision. The condition for the “entropy perturbation”
27 n, defined above, to be zero at early times is tld#at
= %5¢,, whered, is the fractional density perturbation in the

wherev(® is the gauge-invariant velocity perturbation de- Scalar field. In the Newtonian gauge we have

fined by Bardeen. Here we introduae= p/p parametrizing 5’

tr;e equation of state for pressupeand energy densitp, 5¢:2<ii_q))_ (30)
cs=dp/dp being the sound speed, apdoeing the “entropy b0

perturbation,” defined as the difference between the pressure o o ]
perturbation and that expected from the density perturbatiodhe final ingredient in calculating, is the equation for per-
and the background pressure-density relation. In most of thirbations in the massless scalar field,

analysis below we shall assumgis zero, which is to say " A L2

that the density perturbations are “adiabatic.” For the types 0Q"+ 210" = 4¢P’ —K5¢. (3D
of matter we conside(perfect fluids and scalar fielgsthe From the adiabaticity condition and Ed&9), (30), and(31),

anisotropic stress is zero, and Bardeen’s potentials are relat%g W ; "
. . L ell as the background equatigy+ 2 =0, one de-
to our potentiald® by ®=d,=—®,,. With these simplifi- g quatigq + 27,

©) 4 3,0 — ke +
Ug Hog'=kd 1+w)

cations, and for the flat universe we consider, E4s%) and termines
(4.8) of Bardeen's pap€drll] reduce to Eq(27) above. 5

Remarkably, scalar field kinetic energy domination im- v,=—k—. (32
plies thate,, is actually finite atr==0. This can be seen from b0

the Einstein constraint equation, which reads . , o .
This is the velocity of the radiation in the Newtonian gauge.

V2 =47Gpae,,, (28)  We wish to transform to the time-orthogonal gauge in which
d¢ is zero. The transformation required is a shift in confor-
where p is the total background energy density. For scalarmal time byT= — ¢/ ¢, accompanied by a shift in spatial

field kinetic dominationp>a~® asa tends to zero. But the coordinates with a potential such that.’ = —kT, to ensure
growing mode perturbatio®xa’/a%xa"* and, from Eq. the absence of time-space components of the métrithe
(28), €, is finite asa tends to zero. notation of Sec. Il in Bardeen’s papgtl]). The result of

Having identified a nonsingular matching variable, wethese transformations is that in tidé=0 gauge, the veloc-
still need to decide which time slice to match on. In theity potential for the radiation equals, +L’, which is zero.
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Therefore, for adiabatic initial conditions, the radiation fluid This follows from computing
is actually comoving with the massless scalar field. There-

fore the comoving slices correspond to constant scalar field

slices, both before and after the bounce.

So we may therefore focus on the evolution of the energy

density perturbation on comoving slices,, and attempt to
match it across the bounce &t 0. The equation of motion
for e, is straightforwardly derived from Ed27) by elimi-
natingv ), to obtain

en+f(r)eh+9(7) em=—Kwa, (33
where

f(7)=H(1+3c2—6w),

g(7)=H2(9c2+ w2 —12w— 2)+k2c2. (34

As an aside, we now infer the behavior of the variablat
small . One has

_ (azHem)’ (35)
£= (1+w)k?a?’

Employing the background relations

1
H' =— = (1+3w)H?,

5 w'=—3H(c2—w)(1+w),

(36)
one obtains

2
,:Hcsem
1+w '’

(37

Since¢’ is down byk? relative toZ, the rate of change af
is typically much smaller thar{{ for the low k modes of

interest. So one might imaginewould be a good matching

variable. However, as noted abowg, is finite ast tends to
zero. From Eq(37) and the fact that{< 7~ * for small 7, one
observes that diverges logarithmically at smal. Hence, as
stated above, in linear perturbation thedrys not a good
variable for establishing a matching conditionrat 0. Nev-

§¢,2+ a2V

_ 3M{Q%-a’u
3M32,Q%+a%U’
2 Va°

2— —
cs=1+ 3aga

N z a;U ot aouyl! (39)
3 HMpQ
wherea?=}(a5—a?), U=Va* andQ=1%(aga,—a;a;). As
discussed in Ref4], the variablesa,=2a coshg/\6Mp)),
anda, = —2asinh(¢/\6Mp) are both finite atr=0. These
variables were introduced in RdfL], with motivation from
the five dimensional geometry. In the AdS caag,anda;
are the scale factors on the positive and negative tension
boundary branes respectively. Although the four dimensional
Einstein frame scale factoa tends to zero at an outer-
boundary collisiong tends to minus infinity in just such a
manner as to leava, anda, finite at collision.
The physics of bounce and reversal are discussed in Ref.
[4], the results of which are assumed here. The key point for
our analysis is that the equations of motion &randa,,

(40)

are actually regular at=0. It follows that all the variables
in Eg. (39) have simple power series expansions around
=0, as shown in Eq(38), for either positive or negative.

It will be important below to include a component of ra-

ertheless{ does have some utility. If one separates out thegiation after the bounce. As discussed in Réf, the density
short wavelength piece which is divergent, the remainindand temperature of radiation on the branes is actually finite at

long wavelength component df is finite and nearly con-

a=0, as long as the radiation couples to the scale faetgprs

stant. This finite piece is then very useful, since it gives thepr a,, which are both finitgand equal as ¢— — . If, for

amplitude of the final growing mode linear density perturba-

tion in the expanding Universe.

We now turn to an analysis of E¢33). The first thing to
note is that in the setup considered hetg, w and c? all
have expansions in terms of simple powersrofor either
70 or 7>0:

1.
H=5 7 thothyrt- .,

wW=1+W;7+W,y72+ - - -,

ci=1+cym+C P+ - -, (39

exampleU is zero after the collision but there is a dens;_i;y
of radiation produced on the brane with scale faetdin the

simplest models, we have= a, or a; for the positive or
negative tension branes respectivethen the expression for
w in Eq. (39) is replaced by

1
3MEQ%+ Z(pah)a’

w= — . (41
3M2,Q%+ (p,at)a?

Before proceeding to analyze E@®3J), it is important to
recognize that the expansion coefficients in E3) are not

046005-8



DENSITY PERTURBATIONS IN THE EKPYROTIC SCENARIO PHYSICAL REVIEW B6, 046005 (2002

independent, but are related by E6). These imply, for of ¢, is fixed by the limit asr tends to zero ofi[ ey(7)
example, thathy=—%w; and c;=%w;. The coefficient —euD(7)]", so one needs to know, as 7 tends to zero, in
functions in Eq.(33) have the following expansions: order to determine,.
Recall that since diverges logarithmically as—0, it is
not a good matching variable. However, this divergence only
affects the short wavelength part ¢f and the long wave-
length part is still very useful since it yields the amplitude of
g(r)=g_17 *+gotgy7+---, (42)  the growing mode perturbations in the expanding phase. As
we now see, the above prescription for matchéggactually
with fo=—2w;, g_;=3w,, andgo= %W%-f‘ k2. Now the implies that the long wavelength part 6thas a jump across
general solution of the perturbation equatidy. (33)]isa  7=0. Using Eq.(36), we reexpress Eq35) as
sum of the two linearly independent solutions

1
f(r)=——+fo+fart .,

H , 3
em=€oD(7)+ €,E(7), (43 {=- —(1+W)k2 €mT EH(l—W) €m|- (45)
wheree, and e, are arbitrary constants, and Substituting the above expansions, one finds the leading or-
. der behavior
D( ’T) =1+ d1’7'+ d2'T2|n | T|
~ €
+da7In| 7| +d3r3+ - - -, 5”Zo(m|T|_%)+k72(%€2_%fow(2)), (46)

—_ .2 3
E(n)=1"+egm+ . 44 wherew@=w,+ 2w?, plus terms which vanish astends to

. . . - zero. The first term is logarithmically divergent at=0.
The equation of motion determines all the coefficietits However, since it is down by a factor &, it rapidly be-

n=134...,dy,, n=23,... ande,, n=3,4,... . Oné  comes irrelevant as increases away from zero. The second
finds dy=g_;=3w;, dy=—3[d(fo+9_1)+go]=—3k?  term, the long wavelength piegd”, is the quantity we are
and so on. Since the coefficiems, w,, ... change across actually interested in. This constant, long wavelength piece is

7=0, the two series expansions are different fat0 and accurately conserved after the bounce as long as the matter
7>0. We denote the coefficients in E@3), for <0 and evolution remains adiabatic, and yields the amplitude of the

7>0 respectively, ag,(07), €,(07) andeg(07), €,(07). growing mode adiabatic density perturbation in the late Uni-
The matching rule we seek should determine the latter twaerse.
constants in terms of the former. As we have discussed abowg, is finite at7=0 and from

It seems clear that we should match the amplitude of th&ecs. Il and IV, there is no long wavelength contribution to
finite perturbation variables,, across7=0, and this fixes ¢ in the collapsing phase. It follows thaj= 2 e;w(? in that
€0(07)=€,(07). But how should we determine,(07)?  phase. One situation of special interest is whef@=0 in
The simplest prescription is just to se(0")=€,(07). This  the collapsing phase, where the potential is irrelevanp at
amounts to matching the amplitude of the linearly indepen-— — and there is no radiation in the incoming state. In this
dent solution which vanishes at 0, as well as that which is case,e,(07)=0. In this case, we would obtain the same
finite at 7=0. This prescription is invariant under redefining final result from any matching rule which set,(0™)
the independent solutions, e.g. by adding an arbitrary amount Ae,(07), with any constanA.
of the solutionE(7) to D(7). Matching any other nonsingu- The key point is that generically® jumpsacrossr=0,
lar perturbation variable, defined to be an arbitrary linearsince the background equation of state changes at the brane
combination ofe,, and e/, with coefficients which are non- collision. Matchingey and e, we obtain a long wavelength
singular background variablédefined to possess power se- contribution to{ in the expanding phase,
ries expansions i, as abovgwill, with the same prescrip-
tion of matching the amplitudes of both linearly independent
solutions, also yield precisely the same result.

This prescription is simple, but it is certainly not unique,
and we emphasize that a proper understanding of the corregtherew®< andw®> are the values ofv‘® for r<0 and
matching condition must ultimately rest on a better under-->0 respectively. Since=k?® and, as discussed earlier,
standing of the singularity, either directly from string or M & has a nearly scale invariant power spectrum, it follows
theory or from a well defined regularization and renormal-from Eq. (47) that if w2 undergoes a jump, thei will
ization procedure. inherit a scale invariant long wavelength piece. This is our

Note that any such matching rule appliedratO cannot  main result. In the following sections we will study a simple
match bothe,, ande;,, as would be appropriate at a regular example of a situation whens(?) is discontinuous.
point of the differential equation. This is becausgand e/, We shall need explicit formulas for the jumpwi?), and
cannotbe independently specified at=0, just becauser  for e,. The formulas fow(? are obtained from Eq$39) and
=0 is a singular point of the differential equation. The value(41) above. If we assume that prior to=0 there is no ra-

3
{(7>0)~ — 75k Zeo(W@ —w®?), (47)
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diation, so that in addition to scalar kinetic energy we have} ag—aj, and this vanishes at the bounce.

only the potential, then taking the limit ag tends to zero If the potentialV(¢) vanishes ag runs off to— [more
from below one finds that precisely, if the quantitg*V(¢) vanishe$ then the Fried-
mann constraint equation implies that the trajectory in the
2US+ EM2P|QU1 (ao,al)—plane_inter_sects_ thg boundary o_f moduli. Sspage
W= 3 =a, along a light-like dlrect|or{4]. Then, |f no radiation is
M‘,i Q2 ' produced on the branes, the trajectory simply reverses, cor-

responding to the matching conditiag ,(out)=—ag 4(in).
We describe this as aelastic collision, since the internal
(49 states of the two branes are unchanged by the collision.
However, at any finite velocity, the boundary brane colli-
sion must result in the production of radiation on the branes,
since it is a nonadiabatic process. In the M theory context the
corresponding string theory is weakly coupled near the col-
lision, and this production of radiation should be computable
a2 once the correct matching conditions are understood.
@-_8 (pa?) ! o
w)>=_— i (49) Let us consider the case where the incoming state has no
27 M3,Q? radiation, and the potentis(¢) vanishes at=0 and there-
) ) (2)< o (2)> . ) after._ This requires that the potential is turn(_ad off at collision,
Since in general'~~#w*’~, we infer that generically, a requiring a sudden and permanent change in the internal state

scale invariant spectrum of perturbations will, with our pre-of the pranes. Associated with this change, we assume that a

SCl‘Ipt.IOI’] above, propagate across 0 into the expanding small amount of radiation, with densim—,is generated on a
hot big bang phase.

Finally, to compute the perturbation amplitude given inbrane with scale facta. The collision is therefore inelastic.
Eq. (47) v;/e neede,. This can be read off from the expres- We parametrize the inelasticity as follows. The Friedmann

sion Eq.(15) above, by translating the dependence into Cconstraint after collision reads
a’/a® and employing the fact that the latter gives the exact
dependence for the long wavelength modes of interest even
when the potential breaks away from the pure exponential
form used in the first half of this paper. We find thatzat
=0, Since the right-hand side is positive, the outgoing trajectory
must be time-like in thed,,a;)-plane. Since radiation red-

0= 4kt . (50) shifts asa™ 4, the expressiong;a®) is a constant. If radiation
3Mppag(ay—al) is generated on both branes, this term can be taken to repre-
sent the sum of the corresponding terms for both branes.
To summarize the results of this section, we have elaborated We then define the efficiency with which radiation is
the conditions under which a scale invariant spectrum of perproduced by
turbations survives the passage throagh0. Basically this
requires 'Fhat th_e equati_on of state, as pa_rametrize_d(by, 4(?}1)
have a discontinuous first or second derivative with respect f=———,
to 7 at 7=0. This condition would appear to be quite generi- SMpjay(in)
cally fulfilled, in any situation where entropy is generated at . ) . . .
a brane collision. A key assumption in the calculation wasVich ,W'th, Eq. (5) yu’aIdS a single equation for the two
that the energy density is dominated by scalar field kineti¢/€locitiesag(out) anda; (out). We need another equation to
energy as we approac=0. This assumption is natural in fix both. _ , , , ,
the ekpyrotic scenario, where the scalar field represents the !N the special case of dimensional reduction from five to

separation of the boundary branes. We shall explore one pafeur dimensions, there is a natural candidate for an approxi-
ticular, simplified model in the next section. mately conserved quantity, analogous to the total momentum

for an inelastic particle collision. As mentioned above, at
small brane separations one has the standard Kaluza-Klein
result that the size of the extra dimension is proportional to
e?R/Mei As stated above, we are assuming that the poten-
In this section we review and extend the description oftial V(¢) vanishes asp tends to—o. Other terms in the
reversal from contraction to expansion, as elaborated in Ref.agrangian describing matter on the branes may in principle
[4]. As discussed there, the background evolution is deacquire ¢-dependence upon dimensional reduction. How-
scribed by the variablea, and a;, which for the simplest ever, the terms describing massless gauge fields and fermions
brane modeli.e. branes in Adgrepresent the scale factors do not obtain any suck-dependence due to their conformal
on the positive and negative tension boundary branes. Thiavariance in four dimension§To see this, note that the four
four dimensional effective scale factom is given by dimensional Einstein-frame metrig,, is conformally re-

—11'].= /_+ r =
U;=U’lo ao&ao al&al’
where Q=%(apa;—ajap). Likewise, for the expanding
phase, if we assumd=0 but radiation is now present, we
obtain

4(p,a*)
el
Pl

ag(out)>—aj(out)?= (51)

(52

VI. BACKGROUND EVOLUTION IN A NEARLY LIGHT-
LIKE BOUNCE
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lated to the four dimensional components of the five dimen-
sional metric) Therefore at the classical level, in thie—

—oo limit, the Lagrangian describing gravityp and four
dimensional radiation possesses a global symmetry ¢
+const, and it is plausible that the corresponding Noether
chargeQ,

scale factor

(b)

1

J— ! !
Q=Z(a0al—a1ao)oca2¢>', (53 FIG. 1. Sketch of a nearly light-like collision between two
boundary branes. The potential employed wadV(¢)=
tends to a constant as the collision approaches. In this limit-a%(a,/ay)*e™" where f=15[(as/a;)—1]"%, chosen so that
the classical equation of motion &f is justQ’=0. when expressed in terms @f, the potentialV vanishes asp—

However, the sign of) must flip at the bounce. As argued —«, in a manner mimicking the vanishing of a nonperturbative
in Ref. [4], this is essential in order that the trajectory re- potentiaIVoce’”gZ or Ve~ M. At collision, a, anda; are equal
mains in the physical region of tha{,a;)-plane. The rever- and opposite. The matching rule we propose is given in(&%); in
sal of Q may be also understood by the following higher- the figure it is assumed that the efficiereygnd Q-violation param-
dimensional argument. The value @& at collision is eterA are small. The scale factar, is decreasing after collision:
proportional to the time derivative of logf/a;). The latter ~we assume it couples to a massless modylughich causes; to
quantity is the distance, rather than the vector displacemenige repelled froma;=0. In the final state botla, anda, are ex-
between the boundary branes. Hence, if the branes come tpanding, and the universe becomes radiation-dominated with the
gether and then draw apa@, must change sign although its outer-brane separation tending to a finite constant.

magnitude remains constant. It is therefore natural to impose

the Z, symmetry att=0, Q— —Q, which should become

reversal and turn-around @f; so thata, and a; are both

exact in the limit that the collision velocity approaches zero.€xpanding at late times. The final evolutionafis insensi-

These arguments suggest that we parame@izgolation
at the bouncébrane collision using

A Q(out)+Q(in)
~ Q(n)
where A is expected to be small. Equatio(tl), (52) and
(54) together uniquely parametrize the final valuegfpfand
a, after the bounce:

(54

tive to the value ofy’, which only affects the evolution at
smalla;. In the long time limit, the scalar fielgh also tends

to a constant and therefore so does the interbrane separation.

One can generalize these considerations to examples
where the potential=a*V(¢) is finite and negative at
brane collision. This requires rather special potentiélg),
which diverge at largeb, but not too strongly. In this case,
the trajectories are space-like at collision.

Having specified the background evolution for the

“nearly light-like bounce,” we can now consider the match-

, L ing of perturbations. We have assumed thavanishes at
ap(ouy = ( 1-A+ 4(1—A) ay(in) collision. For simplicity we shall assume that its first deriva-
tives gU/day and dU/da,; also vanish there. Now we can
_ read off from Eq.(48) thatw(®==0, but we have from Eq.
a;(out)=—|1-A— I(1-1) ay(in). (55 (49) and the formulas of this section that
An example of an ekpyrotic two-brane collision is shown in 2 _aj(in)?
Fig. 1, for a specific choice of the interbrane potential. Both W(2)>=§§2 2 (56)
1

branes initially expand under the influence of the attractive
potential. But when they get close, and the potential rises to .
zero, this decelerates, so that it begins to contract. At col- e can also read off from E¢50) that for the “nearly
lision, ag(in) = —aj(in). Immediately afterwards) is posi- light-like bounce,
tive and, for small, a; is negative.

Assuming that the potential remains zero after collision,
and that only radiation is present, we hayganda; flying
apart linearly int after collision, corresponding to an expand-

ing a. According to Eq/(55), a, is decreasingafter collision,  \here we assumed,A<1. Putting these together in Eq.

and it tends to zero. This would lead to the separation be¢17), we find the final density perturbation amplitude is
tween the branes going to infinity. However, it is easily

avoided, essentially because tAg modulus has gositive
kinetic term. If there are one or more massless moduli fields
x coupling toa; asafx’z, they produce an effective poten-
tial in the a, equation which is proportional tal_z. This
repels thea; modulus froma,=0. Figure 1 shows an ex- It remains to comput@, and a;(in) at collision using the
ample of the full evolution, including the brane collision, detailed behavior of the potenti&l(¢) for negatived.

2k17v

P YVE TR, (57)
3MpVpagay(in)

€=

gIW~£ 5 k=17v aj(in)
127 Mppp  af

(58)
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As discussed in Ref4], as ¢— — o, the string coupling sion, we assume the potentisl{ ¢) is zero (because the
constant tends to zero. It is natural to expect that the poterinternal state of the branes has changed so they no longer
tial V(¢) goes to zero in this limit. We shall adopt a very attract each other so that the¢p modulus describing the
simplified model here, in which the potential jumps to zero atinterbrane separation is a free massless field. We also assume
some particular, negative value @f;. In this case it is radiation is present, in an abundance parametrizegl lityis
straightforward to computa; anda; as tends to zero from  straightforward to analytically solve the equations of motion
below. First, assume the jump happens at some tjimée-  post-collision, assuming the presence of the additional
fore which Eqs(7) are valid. The total energy in the scalar modulus needed to keep, away from zero. This modulus
field is 32+ V() =3p2M2/t2, and this is equal to the becomes irrelevant at late times. In the long time limit, one

kinetic energy in the scalar field after the potential jump. So/iNds@p anda, increasing linearly in conformal time, with

just after the jump we have ag/a;—|ag(out)/a;(out) ~1+ 3¢, neglecting the depen-

dence oM\ which is reasonable i is small. Equating this
¢_ \/6 pMp, (59 to coth(= H\6M p1), we find that thefinal resting value for
- (—t)° ¢ is given by
Now, from a,=2a cosh@/\/6Mp,), we have (261 1BMpy) — § (65
. 4
, ¢
ap=al Hao— JoM p|a1 (600 However, what enters E@64) is not ¢, but ¢;, the value

of ¢ at which the potentiaV/(¢) switches off. We can trans-
and similarly fora]. Since the potential vanishes, and no até both values of into the Corrgggzadlng string coupling
radiation is presens, anda) are both constant up to colli- €onstants, using the relatiogsee* PI, which follows

; ; from M theory with the assumption that the six Calabi-Yau
sion. Then Eqs(5), (7) and (60) imply that ) ) . ) . ; )
as(S). () (60) imply dimensions are fixed in the 11 dimensional mefii6].
ap(in)=—2p(—t;) % te? I(BMp) = —a!(in). (61) For p close to zero, we find the final result

After the potential jumpagy anda; evolve linearly in7. To 321w —Vj, & (as(j) | *°

. . K32~ =42 : (66)
leading order int andA we have Mp, 96| g4(f)

ag=(—1;)P[2 costi¢;/\6Mp)) +aj(in)(7— )] The right-hand side is the amplitude of the growing mode

adiabatic density perturbation relevant to structure formation
a;=(—t;))P[2 sinh(— ¢, /\/EM p)—ay(in)(r—7))]. in the late Universe(For an accurate calculation one should

(62) of course retain the dependence, since over the many or-
_ ) ) o ders of magnitude of involved, this can significantly affect
Setting these equal determines the time of collision anghe final normalization. We leave this complication for future
brane scale factors at collision, work.)
Our result forg“L‘” depends on the square root of the po-
tential energyV at its minimum, in Planck units. This is
Now we have all we need to determine the final fluctuationrem'n'scem of the usual inflationary result. However, addi-

tional suppression factors arise. First, the numerical coeffi-
spectrum. From Eqg58), (61) and(63), we have cient is small. Second, the factét is small if the efficiency

ap=a,=(—t;)Pe 4 /(M) (63

1 \/5 of production of radiation at collision is small. Finally, the
MW D T #2684 /(BMp) (64)  string coupling constant where the potential turns off, which
6M PlkLF¥(—t))1+P we have crudely parametrized@gj), would be expected to

] ] ) be substantially smaller than the value of the string coupling
The dependence ok t; andp is the same as is obtained ¢onstant in the asymptotic outgoing state. Translating the for-
fro_m the naive “time delayf' formula mentloned_ in Sec. Il. mulas relevant to Horava-Witten theory, given by Witten
Using Eq.(16) for 6¢, the time delay method yields a per- [16], one finds for today’s value of the string coupling con-

turbation amplitude stant

~H8pl p~Mplpk HFI(—1) (4P, Mpi \29Gur
. . L g(f)=( vy, (67)
in agreement with the dependence upon these quantities in ° Meut/ 2 0

Eq. (64). In the time delay argument, however, one uses the

Hubble constant on the branes at collision, which is close tavhere the volume of the Calabi-Yau manifoldugM gJ1.

but not quite the same as the factor occurring in &4). Before discussing numerical values, it is important to
Let us now translate the dependence of the last factor imake the following caveats. First, the resting value of the

Eq. (64) into quantities determined by observations in thescalar field¢ determined during the radiation era following

final expanding, radiation dominated Universe. After colli- the bounce is not necessarily that measured in today’s uni-
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verse. If there is a stabilizing potential fér, that will instead  should emphasize, provided certain conditions are met as the
determine the final resting value. Nevertheless it is conceiv4dD effective scale factor approaches zero, nameélythe
able that the resting value early in the hot big bang phase isnergy density is dominated by the kinetic energy of a scalar
closely related to the final valu@as for example ity devel-  field (the modulus¢ in our casé and (ii) the interbrane
ops a potential with many closely spaced degeneratgotential V() does not diverge ag tends to—o. We
minima). Second, the presence of additional modsilich as  showed that with the simplest matching prescription, namely
are found in Horava-Witten theorycould have important matching the two linearly independent solutions-at0, the
consequences on the dynamical evolutiorbdf these early  scale invariant spectrum of perturbations developedbin
stages. In the above calculation we have limited ourselves t8arly on in the contracting phase is generically passed on to
only one modulus, translating that directly into the stringthe variable; representing the amplitude of the long wave-
coupling constant. So the final numerical result can only bqength growing mode density perturbation in the expanding

suggestive. _ B phase. We also identified examples where no density pertur-
For example, plau3|bI2e values of the grand unified theory,ations are generated in the final Universe. If no radiation is
(GUT) coupling are ggy71~0.5, and the GUT mass generated at the brane collision, and if the potential vanishes
10" GeV, giving g5(f)~10°§?. The turn-off of nonper-  sufficiently smoothly there, the perturbations “time-reverse”
turbative potentials might plausibly occur g§(j)~10, if  ata=0 and the amplitude of the growing mode perturbation
instanton effects produce factors of the form exB@“/g”).  is precisely zero in the final expanding Universe. Such ex-
The last factor in Eq(66) then yields~ 10‘5v52’3. Forvy,  amples are not realistic since there is no entropy generation
~103, and§4(—VJ~)/Mé,~10‘2, we can obtain an ampli- at the brane collision, and in any case seem highly unlikely
tude ~10"°, as required by observations. given that the outer-brane collision is not an adiabatic event.
We conclude that the ekpyrotic scenario may offer a natu- The existence of a “zero-perturbation limit” is an intrigu-
ral explanation for the smallness of the observed density peing feature of the ekpyrotic model and the matching prescrip-
turbations. As we have emphasized, this is only suggestive &ion given here, since it suggests a natural explanation for the
this stage, and will remain so in the absence(fa micro-  smallness of the observed density perturbations. Recall that a
scopic check of the matching condition used &y, within feature of inflation is that it naturally predicts a value of the
the context of M theory and string theorji) a computation —density perturbation amplitude that is far too large, and fine-
of the efficiency paramete¢ describing the production of tuning of potentials is required to obtain a sufficiently small
radiation on the branesiii) a check that the parametaris ~ amplitude.
indeed small, as was assumed; &ivd a full calculation of a We conclude that, while many issues connected to the
realistic interbrane potential(¢) and a numerical solution microphysics at brane collision remain to be settled by rig-
of the equations improving the jump approximation usedorous investigation of string theory in the limit of outer-
above. brane collision, the basic idea of R¢t] for producing den-
Although we have focused here on matching scalar persity perturbations during the early stages of the ekpyrotic
turbations, in principle one also needs a matching conditiodniverse, in a phase which is slowly contracting from the
for tensor and vector modes. Neither acquire long wavefour dimensional point of view, remains viable.
length power in the contracting phase of the ekpyrotic Note addedAs mentioned in the Introduction, our con-
model, and it seems unlikely they will be generated at theclusions differ from those of Lyth, Brandenberger and
brane collision. Nevertheless one can attempt to study pog=inelli, and Hwand 7-9]. The disagreement is due to differ-
sible matching conditions. It is not hard to see that the tensognt assumptions about physical conditions near the bounce,
amplitude hf; exhibits the same logarithmic divergence asand to a different prescription for matching across it. We
the perturbation in the three-curvature of comoving sli¢es, Pelieve that the assumptions made by the authors of Refs.
However, the canonically conjugate momentafin;;” does [7-9] are inconsistent with what we proposed in Réfs]

tend to a finite constant at=0, suggesting it provides a 2nd[4], because of the following.

possible matching variable. Again, establishing this will () They use a scalar field potential which diverges to
probably require a satisfactory microscopic theory. minus infinity as the bounce is approached. This potential is
not compatible with the bounce prescription discussed in

Ref.[4], since it is too singular.
VIl. CONCLUSIONS (ii) They choose to match on a surface of constant energy
density in the contracting phase, assuming that the scale fac-
We have shown that inclusion of gravitational backreac-or of the universe reverses from contraction to expansion on
tion has a negligible effect on the density perturbations prothis surface. This behavior is incompatible with the field
duced in the ekpyrotic universe, during the initial phaseequations describing the cosmological background solution.
which is slowly contracting from the point of view of the We instead follow the classical field equations all the way to
four dimensional effective theory. the bounce, and apply a matching prescription consistent
We have proposed what we believe is a physically senwith our treatment of the background at this point. As we
sible matching condition at the bounce, based upon identifyhave explained above, the appropriate matching surface in
ing physical perturbation variables which are well behavedhe ekpyrotic setup is defined by the scalar field specifying
(i.e. smal) at 7=0, and matching on surfaces defined by thethe interbrane separation, and not by the energy density.
scalar field¢. The variables we used are well behaved, we (iii) Brandenberger and Finelli claim our matching pre-
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scription based on the energy density perturbation on slicegniverse continues to contract after a bulk-boundary colli-
of constant scalar field is inconsistent with results given insion, so¢ remains small andbP continues to grow. Only
the literature for models where the equation of state undemhen the outer boundary brane collision occurs, as it must,
goes a sudden jumd7]. It is easy to see why matching, can the growing perturbations i get converted to long
and its time derivative in this situation is incorrect. The equawavelength fluctuations ig.
tion of motion Eq.(33) for e, involvesc?, related by Eq.
(36) to the time derivative ofv. Hence, ifw jumps,c? ac-
quires a delta function contribution, which causes a jump in
€, across the matching point, which may be straightfor- We thank V. Mukhanov for insightful remarks and contri-
wardly computed. The key point, however, is in the situationbutions. We have greatly benefited from explaining our argu-
we are discussingy is continuousacross the bounce, thus ments and criticisms to D. Lyth prior to publication and ob-
there are no such delta function contributions. Therefore thigaining his comments. We especially thank D. Wands for
“counterexample” is truly a red herring. helpful correspondence and important questions. We also
(iv) Brandenberger and Finelli mistakenly imply that re- thank R. Brandenberger for showing us a preliminary version
versal from contraction to expansion would occur at a bulkof his paper. This work was supported in part by the Natural
brane—boundary brane collision. If the four dimensional ef-Sciences and Engineering Research Council of Canada
fective description is valid, then reversal canly happen at (J.K), the U.S. Department of Energy grants DE-FGO02-
a boundary brane—boundary brane collision, as described @1ER40671 (J.K. and P.J.$. and DE-AC02-76-03071
Ref. [4]. In the four dimensional effective description, the (B.A.O.), and by PPARC-UK(N.T.).
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