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pp waves and holography
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We consider aspects of holography in thepp-wave limit of AdS53S5. This geometry contains twoR4’s, one
obtained fromAdS5 directions, and the other from theS5. We argue that the holographic direction in the
pp-wave background can be taken to ber, the radial direction in the firstR4. Normalizable modes correspond
to states, and non-normalizable modes correspond to deformations of the boundary theory. In the strict
pp-wave limit, there are additional non-normalizable modes in the secondR4, which have no apparent super-
Yang-Mills interpretation. We outline the procedure for calculating correlation functions holographically.
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I. INTRODUCTION

Recently a study ofpp-wave backgrounds from the poin
of view of the AdS-CFT correspondence was initiated@1,2#.
Namely, the pp wave is realized as a certain limit o
AdS53S5, where one considers a large boost along one
the S5 directions. The light cone string theory in this bac
ground contains eight massive bosons and superpartners
exactly solvable, with a spectrum

H5 (
n52`

`

NnAm21
4nosc

2

~a8p2!2
. ~1.1!

BMN identified the oscillator modes of this string within th
dual N54 Super-Yang-Mills~SYM! theory.

In addition to providing another example of a holograph
dual, the exciting new feature of@2# is a more or less direc
connection between the boundary theory and the st
theory in this background, including non-BPS massive str
modes. Examining this duality can then provide a clue to
nature of holography in a more generic setting. Previo
work on pp waves include Refs.@3#, and subsequent wor
includes@4–7#.

Here we consider in more detail aspects of holography
the pp wave. We would like to establish more clearly th
holographic map. To do so, we will concentrate in this pap
on the supergravity modes~we are making an assumptio
that there is a decoupling here,a8mp2@1). The map be-
tween normalizable supergravity modes and states, and
normalizable modes and sources is well known in AdS-C
We explore this map in the present context. In a sense,
may expect that this is determined by the knownAdS53S5
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results, since thepp-wave geometry is obtained in a scalin
limit. On the other hand, questions such as ‘‘where does
SYM theory live’’ are somewhat confusing. Thepp-wave
background has anSO(4)3SO(4),SO(8) isometry; one
might well wonder what this means from the SYM point
view.

In this paper we take the point of view that describing t
holographic dual in terms of the original SYM theor
amounts to making certain choices that are arbitrary from
bulk viewpoint. This seems to choose one of the two cop
of R4 in the geometry as the base space of the SYM the
and retains the memory of the origin of the other copy fro
a compact space~the originalS5). Perhaps this is the mos
surprising aspect of our analysis—some aspects of
pp-wave background~namely non-normalizable modes i
directions originating from the sphere! do not seem to be
described by the original SYM theory.

Retaining features coming from the seemingly decoup
asymptotically AdS region, we formulate the holographic
lation between this background and SYM theory. Up to so
important differences we outline below, the corresponde
is the familiar one, with the radial coordinate playing the ro
of the holographic one.

We discuss supergravity modes, normalizable and n
normalizable, in the next section. We find that the spectr
of p2 span the positive real axis, and there exist the t
types of modes for all such values. We conclude by form
lating the holographic calculation of correlation function
We hope to return to this calculation in the near future.

There are several interesting questions not answered
the present work. The string theory in this background
simple, and one would hope to be able to calculate m
general amplitudes directly on the world sheet. Howev
presently the string theory involves a Green-Schwarz form
lation of the worldsheet theory, which is more difficult t
work with. It is also of interest to compare the gravity~or
string! calculations to the corresponding SYM calculation
This would be a check of the holographic correspondence
©2002 The American Physical Society04-1
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suggest, and can perhaps serve to formulate a hologra
dual that is more directly connected with thepp-wave back-
ground.

While this manuscript was in final stages of preparati
we became aware of the reports in@8#. These papers discus
similar topics from a somewhat different viewpoint. In pa
ticular, we emphasize here that as long as one uses the o
nal SYM theory as the boundary theory, the holographic
ordinate which classifies gravity modes is the radial o
Indeed, we find that this classification simply descends fr
the corresponding classification in the original AdS space

II. BULK MODES: DEFORMATIONS AND STATES

The metric of thepp wave is obtained through a suitab
scaling limit onAdS53S5 in global coordinates@2#. In this
coordinate system the initial background is dual toN54
SYM theory onR3S3. The metric obtained in@2# is

dspp
2 524dx1dx22yi

2m2~dx1!21dyi
2 ~2.1!

wherei 51, . . . ,8,while theRR background is

F112345F156785m. ~2.2!

This background is clearlySO(4)3SO(4) invariant; as
such, let us rewrite the metric in a suggestive form, in sph
cal coordinates in each of the twoR4 factors.

dspp
2 524dx1dx21dr21r 2

„dV3
22m2~dx1!2

…1dr̃ 2

1 r̃ 2
„dṼ3

22m2~dx1!2
…. ~2.3!

We note that at larger, we have anS33R coordinatized by
V3 ,x1. Similarly, at larger̃ , we also have anS33R coordi-
natized byṼ3 ,x1. In what follows, we will show that the
holographic coordinate is indeedr. Equivalently, we could
say that the holographic coordinate isr̃ ; thus there are appar
ently two distinct ‘‘boundaries’’ in thepp-wave geometry.
For the duality to SYM theory, we focus on one or the oth

Let us consider a scalar mode which is massless in
dimensions.1 In the coordinates given in Eq.~2.1!, the La-
placian is clearly

D52]1]21
1

4
m2y2]2

2 1D8 . ~2.4!

Solutions are of the form

f5eip1x1
eip2x2

)
j 51

8

e2a j y j
2/4Hnj

SAa j

2
yj D ~2.5!

with p15( j (a j /p2)(nj11/2), and a j56mp2 . For a
.0, theHn’s are Hermite polynomials, and these solutio
are clearly normalizable.

1Such a mode is dual to an operator which is a descendant in
SYM theory, of dimensionD5J14.
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As is familiar from AdS-CFT, we should not be so quic
to discard the non-normalizable solutions. Instead, we
faced with the task of finding a criterion for distinguishin
allowed modes from forbidden ones.2

An analysis similar to the one leading to th
Breitenlohner-Freedman bound suggests that we should
modes withp2 positive only. From the gauge theory side w
have a variant of the familiar light-cone quantization; it is
familiar aspect of lightcone treatment that the spectrum
p2 is semi-infinite. We claim this should be the case both
~normalizable! states, and for~non-normalizable! operators,
or sources.

The bulk treatment clarifies the need for positivity ofp2 .
In the familiar AdS story, there are two modes for each va
of all quantum numbers, one normalizable, and o
non-normalizable.3 Those modes have different values of t
Hamiltonian ~scaling dimension!. They are associated with
each other since they carry the same quantum numbers;
turning on the non-normalizable mode will inevitably exci
the normalizable mode.

Now, for the normalizable modes the situation is clear
one should not allow a normalizable state with a negat
value of the Hamiltonian; this would correspond to a ru
away behavior of the vacuum. This is the origin of th
Breitenlohner-Freedman bound in AdS space@10#. Excluding
the normalizable state with a negative scaling dimension a
eliminates the corresponding source with the same quan
numbers.

In the present case, the Hamiltonian isp1 , and one
should not allow normalizable modes with negative eige
values. This excludes all normalizable modes with nega
p2 . The non-normalizable mode with the same quant
numbers is also required to be absent. The quantum num
in question correspond to oscillator numbers in all eig
transverse directions, and to the light-cone momentump2 .

To more fully appreciate the significance of Eq.~2.5!, let
us consider the coordinatization given in Eq.~2.3!. The sca-
lar Laplacian is

D52]1]21F1

4
m2r 2]2

2 1D r ,V3G1F1

4
m2r̃ 2]2

2 1D r̃ ,Ṽ3G .
~2.6!

Solutions can be written as

f5eip1x1
eip2x2

f ~r ,V3! f̃ ~ r̃ ,Ṽ3!. ~2.7!

Acting on such modes, the Laplacian reduces to

D5p1p21F2
1

4
m2p2

2 r 21D r ,V3G1F2
1

4
m2p2

2 r̃ 21D r̃ ,Ṽ3G .
~2.8!

he

2As this contradicts some statements in the literature, we dem
strate the existence of the non-normalizable modes in the Appen

3There is a small window where both modes can be normaliza
This subtlety is well understood, and will play no role in our di
cussion.
4-2
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Any given solution will satisfy

D r̃ ,Ṽ3
f̃ 2

1

4
m2p2

2 r̃ 2 f̃ 52Ẽ f̃ ~2.9!

D r ,V3
f 2

1

4
m2p2

2 r 2f 52E f ~2.10!

with

p15
E1Ẽ

p2
. ~2.11!

This form is consistent with thenosc50 part of Eq.~1.1!.
Solutions are readily obtained as

f 5e2ar 2/4r bLn
(b11)~ar 2/2!Y,,m1 ,m2

~V3! ~2.12!

with a similar expression forf̃ . HereLn
(n)(x) is the Laguerre

polynomial.4 If we want the solutions to be singularity-fre
in the interior, r;0, then b5,. The differential equation
then reduces to

E5a~,1212n!. ~2.13!

For each,, there is a certain degeneracy, which is accoun
for in the analysis in Cartesian coordinates~see the Appendix
for details!.

So the analysis of the gravity modes suggests that
sensible to formulate question in the SYM theory regard
modes with positivep2 , and to answer those questions h
lographically. The gravity modes are divided in the famili
way: normalizable modes are states in the Hilbert spac
the theory, and non-normalizable modes are sources~defor-
mations! of the theory. We proceed next to outline the pr
cedure to calculate the correlation functions of arbitra
modes of positivep2 .

The picture is less clear regarding the otherR4 contained
in the pp-wave geometry.A priori, in considering propaga
tion on thepp-wave background, one should consider bo
normalizable and non-normalizable modes in thatR4 as well.
It is not clear to us, though, that the SYM formulation know
about both types of modes.

To clarify this statement, let us derive the modes in t
background as limits of modes in the originalAdS53S5

background. Let us consider the scalar fieldf on AdS5 with
metric

dsAdS5

2 5R2~2cosh2rdt21dr21sinh2rdV3
2!.

~2.14!

The Laplacian is

4We would like to thank Sumit Das for pointing out the existen
of this factor.
04600
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1

R2 X2 1

cosh2r
] t

22
,~,12!

sinh2r

1
1

coshr sinh3r
]r~coshr sinh3r]r! C. ~2.15!

The solution of the Laplace equation (D2m2)f50 is given
by @see review@9#, Eq. ~2.34!#

f5eivt~coshr!2l~ tanhr!,
2F1~2n,l1,1n,

l 12,tanh2r)Y,,m1 ,m2
~V3! ~2.16!

where (vR)25(l1,12n)2. In the AdS5 case,l is given
by

l5D6526A41m2R2. ~2.17!

In the limit D[D1;R2;AN@1, the normalizable mode
D1 corresponds tol5D and the non-normalizable mod
D2542D1;2D corresponds tol52D.

In the scaling limit

r5
r

R
, l56D56

1

2
~p11p2R2!,

R→`, ~2.18!

with r ,p15D2J,p25(D1J)/R2.0 fixed, this AdS solu-
tion reduces to

f→eivtS 11
r 2

2R2D 7(1/2)p2R2S r

RD
1

,

F1S 2n,,12;

6
1

2
p2R2tanh2~r /R! DY,,m1 ,m2

~V3!

;eivte7(1/4)p2r 2
r ,Ln

(,11)~6p2r 2/2!Y,,m1 ,m2
~V3!.

~2.19!

One can introduce the parameterm by the redefinition
x6→m6x6 as usual. Thenp6 goes tom7p6 . Therefore,
these solutions agree with those we obtained in thepp-wave
background. Moreover, the normalizability in thepp-wave
limit, i.e., the sign of the Gaussian factor descends from
choice ofD1 or D2 .

Therefore we see that by scaling of the modes
AdS53S5 we obtain both types of modes in the AdS dire
tions. However, we started with normalizable modes only
the sphere directions. The non-normalizable modes in di
tions originating from the sphere are then not expected to
included in the original SYM description.

The situation is analogous to the original derivation
AdS-CFT from the near horizon geometry of the 3-bran
One obtainsAdS53S5 in Poincare´ coordinates. In the de
coupling limit a lot of the original structure of the asympto
cally flat space is eliminated, of course. In our case
analogous statement is that most of the structure of the S
theory will be irrelevant in the limit taken. This is apparen
4-3
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for example, in the statement that most of the virtual p
cesses appearing in SYM diagrams will have vanishing c
tributions to the amplitudes we are interested in.

However, in the AdS case, there were also additio
structures in the theory which are only visible in global c
ordinates. This is visible only when one truly eliminates ev
the possibility of appending an asymptotically flat region
the geometry.

Therefore, it seems to us that insisting on describing
system by theoriginal holographic dual retains some fe
tures of the original asymptotic region. It may well be t
case that this eliminates the possibility of discussing n
normalizable modes in the other directions. Such discus
naively requires a higher dimensional holographic du
Since a putative dual is absent, we proceed by assuming
the modes are normalizable in the directions originating fr
the sphere.

III. CONCLUSIONS AND CORRELATION FUNCTIONS

The next step in discussing the radial holography is
computation of the correlation functions. We sketch here
procedure for such a calculation.

The holographic calculation of the partition function wi
arbitrary sources is performed by fixing a surface near
boundary, and solving the Dirichlet problem, finding t
fields with fixed sources on the surface. The partition fu
tion is then, in the supergravity approximation, the value
the action on shell.

A primary role in this calculation is played by the bulk
boundary propagator. The solution to the Dirichlet proble
is the propagator convoluted with the given boundary sou
In AdS53S5 the bulk to boundary operatorKm2(x,r ;y) is
defined for each mode of massm, wherex,y are boundary
points, andr is the holographic coordinate~so thatx,r speci-
fies a bulk position!. It is required to satisfy the Laplac
equation:

~]22m2!Km250 ~3.1!

with the boundary conditions

K~x,r ;y!→r Dd~x2y!

asr approaches the boundary ~3.2!

where D is determined by the behavior of the no
normalizable mode at the boundary—it depends only onm2.

One way of solving the equation is as follows. Conside
complete set of functions on the boundary,cn(x), and modes
of the bulk Laplacian that satisfy

Fn~r ,x!→r Dcn~x!

asr approaches the boundary. ~3.3!

We note that the constantD is required to be identical fo
all modes, independent ofn. It is uniquely specified by the
massm. In this case it is easy to check that
04600
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K~x,r ;y!5(
n

Fn~r ,x!cn~y!. ~3.4!

This is the bulk to boundary propagator. Since the se
boundary sourcescn is complete, one is able to turn on a
arbitrary boundary source for any operator of a definite sc
ing dimension~which is related tom). The natural sources to
consider then have definite values of theSO(6) Casimir
(m2).

Similar procedure can be obtained in our case. A comp
set of functions on the boundary, which is of the for
R3S3, can be chosen to carry definitep1 andSO(4) quan-
tum numbers. We have thencn(x1 ,V3)5eip1X1YI(V3).
Here the angles on the sphere are denoted byV3, and
YI(V3) are scalar spherical harmonics.

The source function on the boundary determines the
havior of the corresponding non-normalizable modes. T
internal quantum numbers in our case arep2 , and the angu-
lar and radial quantum numbers in the additional copy ofR4.
The behavior of the non-normalizable mode only depends
p2 , so one has to work in a definitep2 basis. The quantum
number p2 plays a role similar to the Casimirm2 in the
AdS53S5 case.

A slight complication here is the absence of coordin
system in which the consequences of conformal invaria
are transparent. In AdS one usually works in Poincare´ coor-
dinates, where a surface near the boundary corresponds
ultraviolet cutoff which manifests cleanly the consequen
of conformal invariance. Here we are restricted to work
global coordinates, where thepp wave limit is done, so we
are led to a more complicated procedure. We hope to re
on progress in this direction in the near future.
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APPENDIX: FOUR DIMENSIONAL HARMONIC
OSCILLATOR

We work out a simple quantum mechanics problem, c
sidering the eigenmodes of a four dimensional harmonic
cillator. The questions we are interested in are naturally
ferent from the conventional ones, for example the existe
of non-normalizable modes and their behavior at radial
finity.

In Cartesian coordinates the problem is readily separa
to four identical harmonic oscillators, satisfying

f 92m2p2
2 x2 f ~x!5E f~x!. ~A1!

We can then writef 5e2(1/2)ax2
g(x). One gets

g922axg81~E2a!g50 ~A2!
4-4
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where we choosea56mp2 . We note that we reserve th
choice ofa being positive or negative, corresponding to n
malizable or non-normalizable modes.

The equation forg(x) is almost identical to the familia
Hermite equation. We need to rescale the coordinatex5ay
to get to the form

g922yg812ng50. ~A3!

For this to be correct one has to choosea25a, so a has to
be positive. In that case one obtains the equation for
Hermite polynomials, provided

En5aS n1
1

2D . ~A4!

This yields normalizable solution for any sign ofp2 . One
simply has to choosea5mup2u.
u-
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A different solution is obtained by choosinga5
2mup2u, which yields an exponentially growing mode. On
can still do the above change of variables fora252a. One
gets a slightly different equation forg

2g922yg81S E

a
21Dg50. ~A5!

The solutions of this equation are polynomials of the fo
Pn5 i nHn( iy). These are real polynomials iny ~the imagi-
nary normalization factors forn odd do not matter for a
linear equation!. The modes we obtain are simply polynom
als multiplied by an exponentially growing Gaussian. In p
ticular they do not blow up at the origin.

The spectrum ofE is the same for those non-normalizab
modes. Note however thata is negative here, so the spe
trum is negative definite.
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