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We consider aspects of holography in fhe-wave limit of AdS;x S°. This geometry contains twe*'s, one
obtained fromAdS; directions, and the other from tH&. We argue that the holographic direction in the
pp-wave background can be taken torhehe radial direction in the fird®*. Normalizable modes correspond
to states, and non-normalizable modes correspond to deformations of the boundary theory. In the strict
pp-wave limit, there are additional non-normalizable modes in the seB8pahich have no apparent super-
Yang-Mills interpretation. We outline the procedure for calculating correlation functions holographically.
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[. INTRODUCTION results, since thep-wave geometry is obtained in a scaling
limit. On the other hand, questions such as “where does the
Recently a study op p-wave backgrounds from the point SYM theory live” are somewhat confusing. Thep-wave
of view of the AdS-CFT correspondence was initiafé?].  background has a80O(4) X SQ(4)CS((8) isometry; one
Namely, thepp wave is realized as a certain limit of might well wonder what this means from the SYM point of
AdS;x S°, where one considers a large boost along one ofiew.
the S° directions. The light cone string theory in this back-  In this paper we take the point of view that describing the
ground contains eight massive bosons and superpartners; itliwlographic dual in terms of the original SYM theory

exactly solvable, with a spectrum amounts to making certain choices that are arbitrary from the
bulk viewpoint. This seems to choose one of the two copies
o 4n2 of R* in the geometry as the base space of the SYM theory,
2 0sc - -
H= E Ny \/ #?+ ———. (1.2 and retains the memory of the origin of the other copy from
n=-« (a'p-) a compact spacéhe originalS°). Perhaps this is the most

surprising aspect of our analysis—some aspects of the
BMN identified the oscillator modes of this string within the pp-wave backgroundnamely non-normalizable modes in
dualN=4 Super-Yang-Mills(SYM) theory. directions originating from the spheéreélo not seem to be

In addition to providing another example of a holographicdescribed by the original SYM theory.
dual, the exciting new feature ¢2] is a more or less direct ~ Retaining features coming from the seemingly decoupled
connection between the boundary theory and the stringsymptotically AdS region, we formulate the holographic re-
theory in this background, including non-BPS massive stringation between this background and SYM theory. Up to some
modes. Examining this duality can then provide a clue to thémportant differences we outline below, the correspondence
nature of holography in a more generic setting. Previouss the familiar one, with the radial coordinate playing the role
work on pp waves include Refqd.3], and subsequent work of the holographic one.
includes[4-7]. We discuss supergravity modes, normalizable and non-
Here we consider in more detail aspects of holography fonormalizable, in the next section. We find that the spectrum

the pp wave. We would like to establish more clearly the of p_ span the positive real axis, and there exist the two
holographic map. To do so, we will concentrate in this papertypes of modes for all such values. We conclude by formu-
on the supergravity modeisve are making an assumption lating the holographic calculation of correlation functions.
that there is a decoupling here, up_>1). The map be- We hope to return to this calculation in the near future.
tween normalizable supergravity modes and states, and non- There are several interesting questions not answered by
normalizable modes and sources is well known in AdS-CFTthe present work. The string theory in this background is
We explore this map in the present context. In a sense, wsimple, and one would hope to be able to calculate more
may expect that this is determined by the knowdS;XS°  general amplitudes directly on the world sheet. However,

presently the string theory involves a Green-Schwarz formu-

lation of the worldsheet theory, which is more difficult to

*Email address: rgleigh@uiuc.edu work with. It is also of interest to compare the gravityr
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suggest, and can perhaps serve to formulate a holographic As is familiar from AdS-CFT, we should not be so quick
dual that is more directly connected with th@-wave back- to discard the non-normalizable solutions. Instead, we are
ground. faced with the task of finding a criterion for distinguishing

While this manuscript was in final stages of preparationallowed modes from forbidden onés.
we became aware of the reports[8]. These papers discuss  An analysis similar to the one leading to the
similar topics from a somewhat different viewpoint. In par- Breitenlohner-Freedman bound suggests that we should take
ticular, we emphasize here that as long as one uses the origitodes withp_ positive only. From the gauge theory side we
nal SYM theory as the boundary theory, the holographic cohave a variant of the familiar light-cone quantization; it is a
ordinate which classifies gravity modes is the radial onefamiliar aspect of lightcone treatment that the spectrum of
Indeed, we find that this classification simply descends fronp_ is semi-infinite. We claim this should be the case both for
the corresponding classification in the original AdS space. (normalizable states, and fofnon-normalizablg operators,

or sources.
Il. BULK MODES: DEFORMATIONS AND STATES The bulk treatment clarifies the need for positivitypof .
In the familiar AdS story, there are two modes for each value

The metric of thq)p wave is obtained through a suitable of all quantum numberS, one norma"zab|e7 and one
scaling limit onAdS;X S in global coordinate$2]. In this  non-normalizablé. Those modes have different values of the
coordinate system the initial background is dualNe=4  Hamiltonian (scaling dimension They are associated with
SYM theory onRx S°. The metric obtained if2] is each other since they carry the same quantum numbers; thus

e 2 2y anD ) turning on the non-normalizable mode will inevitably excite
dspp=—4dx"dx™ —y;u?(dx")*+dy, (2D the normalizable mode.

Now, for the normalizable modes the situation is clear—
one should not allow a normalizable state with a negative
= —E — 2.2 value of the Hamiltonian; this would correspond to a run-

+1234~ F +5678 H away behavior of the vacuum. This is the origin of the

This background is ClearI)SO(4)><SO(4) invariant; as Breitenlohr?er-Freedmanl bound in AdS Spm E_XCIud!ng
such, let us rewrite the metric in a suggestive form, in spherilhe normalizable state with a negative scaling dimension also

wherei=1, ... ,8,while theRR background is

cal coordinates in each of the tviRf factors. eliminates the corresponding source with the same quantum
numbers.
dsf,p:—4dx+dx*+dr2+rz(dﬂg—uz(dx*)2)+d~rz In the present case,.the Hamlltonlan ps , an_d one
should not allow normalizable modes with negative eigen-
+T2(d02— p2(dx)?). (2.3  Vvalues. This excludes all normalizable modes with negative

p_. The non-normalizable mode with the same quantum
We note that at large, we have ar8®x R coordinatized by —humbers is also required to be absent. The quantum numbers
Q4,x*. Similarly, at largér, we also have as®x R coordi- in question correspond to oscillator numbers in all eight
= ’ ’ . transverse directions, and to the light-cone momenpum
natized by(s,x*. In what follows, we will show that the g

: . . . To more fully appreciate the significance of E8.5), let
holographic coordinate is indeed Equivalently, we could us consider the coordinatization given in E2.3). The sca-

say that the holographic coordinaterighus there are appar- |gr Laplacian is
ently two distinct “boundaries” in thepp-wave geometry.
For the duality to SYM theory, we focus on one or the other. 1 5 1 5

Let us consider a scalar mode which is massless in tenA=—4d.d_+ ZM2r257+Ar,93 + ZﬂZF 202+ A7,
dimensions. In the coordinates given in Eq2.1), the La- 2.6
placian is clearly

1 Solutions can be written as
A=—0,0_+ = u?y29® +Ag. (2.4 T ——
v gy 8 p=eP+< P X f(r, 0T (F,0y). 2.7

Solutions are of the form Acting on such modes, the Laplacian reduces to

8

: + - 2 o 1
—aiPy P ajy;l4 Iy
p=ePrerr 1] ene Hnj(\fzyj) (29 A=p,p_+|- zu2r A,

with p, =2;(aj/p-)(n;+1/2), and a¢j=*up_. For a
>0, theH,’s are Hermite polynomials, and these solutions
are clearly normalizable. 2As this contradicts some statements in the literature, we demon-
strate the existence of the non-normalizable modes in the Appendix.
3There is a small window where both modes can be normalizable.
ISuch a mode is dual to an operator which is a descendant in thehis subtlety is well understood, and will play no role in our dis-
SYM theory, of dimensiolA=J+4. cussion.

1 ~
+| = ZuPIr 2+ ATG |

(2.9
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Any given solution will satisfy 1 1 , (({+2)
A=ge|” cosip %t “sintfp
~ 1 2~27 7% Ef
A;@Sf—z,u p<r<f=—Ef (2.9 1 _
+ Wﬂp(COShp Slnl'fspﬁp) . (213
A, g f- EMZpZ_er - Ef (2.10  The solution of the Laplace equatioi - m?) =0 is given
¢4 by [see review 9], Eq. (2.34)]
with d=e'“(coshp) Mtanhp)¢ ,F(—n,A+€+n,
E4+E I+2,tantp) Y m, m,(Q2a) (2.1
Py=— (2.11)
P- where @R)?=(\+¢+2n)2. In the AdS; case,\ is given
by

This form is consistent with tha,s.=0 part of Eq.(1.2).
Solutions are readily obtained as A=A,=2%+4+m°R% (2.1

f=e‘“rz"‘rﬁLﬁ]’”l)(arz/Z)Y(m n(Qz) (212 In the limit A=A, ~R?~\N>1, the normalizable mode
e A, corresponds to\=A and the non-normalizable mode
A_=4-A,~—A corresponds tad. = —A.

with a similar expression fof. HereL{")(x) is the Laguerre In the scaling limit

polynomial? If we want the solutions to be singularity-free

in the interior,r~0, then B=¢. The differential equation r N +1 )

then reduces to p=g: A=FA=2S(p.+p-RY,
E=a(f+2+2n). (2.13 R— o, (2.18

For eacht, there is a certain degeneracy, which is accountedvith r,p, =A—J,p_=(A+J)/R?>0 fixed, this AdS solu-
for in the analysis in Cartesian coordinatese the Appendix tion reduces to

for details. _ 5
So the analysis of the gravity modes suggests that it is ot 1.4 r2 | FWap-R eF (4o
sensible to formulate question in the SYM theory regarding $—e 2R? R/t -n ’

modes with positivgp_ , and to answer those questions ho- !

lographically. The gravity modes are divided in the familiar 1 )

way: normalizable modes are states in the Hilbert space of *5P-R ta”ﬁ(r/R))Yf,ml,mz(Qﬁ

the theory, and non-normalizable modes are soufdefor-

mationg of the theory. We proceed next to outline the pro- ot AT (1/4)p_r2. ¢ (€+1 2

cedure to calculateythe cgrrelation functions of arbi'gary ~eleT WPy Lﬁ‘ )(ip,r /Z)Yf'ml'mz(QS)'

modes of positivep_ . (2.19
The picture is less clear regarding the otRércontained One can introduce the parameter by the redefinition

in the pp-wave geometryA priori, in considering propaga- x*— u*x* as usual. Therp. goes tou*p. . Therefore

tion on thepp-wave background, one should consider bOththese solutions agree with those we obtained irnpavvave’

normalizable and non-normalizable modes in R&as well.

. . background. Moreover, the normalizability in tipgp-wave
It is not clear to us, though, that the SYM formulation knows it 5 e the sign of the Gaussian factor descends from the
about both types of modes.

To clarify this statement, let us derive the modes in thist 0 cc OFA+ O A
o clarify this statement, let us derive the modes in this Therefore we see that by scaling of the modes on

background as limits Of_ modes in the _ongm&ld&ox_sf’ AdS;x S° we obtain both types of modes in the AdS direc-
background. Let us consider the scalar figldon AdS with 4515 However, we started with normalizable modes only in
metric the sphere directions. The non-normalizable modes in direc-
) tions originating from the sphere are then not expected to be
dSZAdSS: R?(—costfpdt®+dp®+sinifpd ). included in the original SYM description.
(2.19 The situation is analogous to the original derivation of
AdS-CFT from the near horizon geometry of the 3-brane.
The Laplacian is One obtainsAdS;x S° in Poincarecoordinates. In the de-
coupling limit a lot of the original structure of the asymptoti-
cally flat space is eliminated, of course. In our case the
“We would like to thank Sumit Das for pointing out the existence analogous statement is that most of the structure of the SYM
of this factor. theory will be irrelevant in the limit taken. This is apparent,
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for example, in the statement that most of the virtual pro-
cesses appearing in SYM diagrams will have vanishing con- K(X,r;y) =2 ®n(r, %) ¢n(y). (3.9
tributions to the amplitudes we are interested in. A
However, in the AdS case, there were also additional o ]
structures in the theory which are only visible in global co- ~ This is the bulk to boundary propagator. Since the set of
ordinates. This is visible only when one truly eliminates evenPoundary sourceg, is complete, one is able to turn on an
the possibility of appending an asymptotically flat region togrbltr'ary bqundary source for any operator of a definite scal-
the geometry. ing d_|men3|or(wh|ch is re]qted tan). The natural sources to
Therefore, it seems to us that insisting on describing th&onsider then have definite values of tB&(6) Casimir
system by theoriginal holographic dual retains some fea- (m?).
tures of the original asymptotic region. It may well be the  Similar procedure can be obtained in our case. A complete
case that this eliminates the possibility of discussing nonset of functions on the boundary, which is of the form
normalizable modes in the other directions. Such discussioR* S*, can be chosen to carry definile andSQ(4) quan-
naively requires a higher dimensional holographic dualfum numbers. We have theit,(x., ,Q23)=eP+*+Y (Q3).
Since a putative dual is absent, we proceed by assuming thiiere the angles on the sphere are denoted(ay and
the modes are normalizable in the directions originating fromY,({23) are scalar spherical harmonics.
the sphere. The source function on the boundary determines the be-
havior of the corresponding non-normalizable modes. The
internal quantum numbers in our case pre, and the angu-
lar and radial quantum numbers in the additional copRbf
The next step in discussing the radial holography is arhe behavior of the non-normalizable mode only depends on
computation of the correlation functions. We sketch here thg _, so one has to work in a definife. basis. The quantum
procedure for such a calculation. numberp_ plays a role similar to the Casimin? in the
The holographic calculation of the partition function with AdS;x S° case.
arbitrary sources is performed by fixing a surface near the A slight complication here is the absence of coordinate
boundary, and solving the Dirichlet problem, finding the system in which the consequences of conformal invariance
fields with fixed sources on the surface. The partition func-are transparent. In AdS one usually works in Poincarer-
tion is then, in the supergravity approximation, the value ofdinates, where a surface near the boundary corresponds to an
the action on shell. ultraviolet cutoff which manifests cleanly the consequences
A primary role in this calculation is played by the bulk to of conformal invariance. Here we are restricted to work in
boundary propagator. The solution to the Dirichlet problemglobal coordinates, where thgp wave limit is done, so we
is the propagator convoluted with the given boundary sourceare led to a more complicated procedure. We hope to report
In AdS; X S° the bulk to boundary operatd€,2(x,r;y) is  on progress in this direction in the near future.
defined for each mode of masg wherex,y are boundary
points, and is the holographic coordinatso thatx,r speci-

I1ll. CONCLUSIONS AND CORRELATION FUNCTIONS

fies a bulk position It is required to satisfy the Laplace ACKNOWLEDGMENTS
equation: We thank David Berenstein and Gordon Semenoff for
useful conversations. R.G.L. and K.O. thank the University
(#*=m*)Kmp2=0 (3.)  of British Columbia for hospitality. This work was supported

in part by US DOE grant DE-FG02-91ER40677.
with the boundary conditions

K(x.r:y)—r38(x—y) APPENDIX: FOUR DIMENSIONAL HARMONIC
OSCILLATOR
asr approaches the boundary (3.2 We work out a simple quantum mechanics problem, con-

sidering the eigenmodes of a four dimensional harmonic os-

where A is determined by the behavior of the non- cillator. The questions we are interested in are naturally dif-

normalizable mode at the boundary—it depends onlymdn  ferent from the conventional ones, for example the existence

One way of solving the equation is as follows. Consider aof non-normalizable modes and their behavior at radial in-
complete set of functions on the boundagy(x), and modes finity.

of the bulk Laplacian that satisfy In Cartesian coordinates the problem is readily separable

to four identical harmonic oscillators, satisfying
<I>n(r,x)—>rAz/;n(x)
" — u?p?x? f(x)=E f(x). (A1)
asr approaches the boundary. (3.3

. (12« 2
We note that the constant is required to be identical for ~ We can then writef =e~(¥2%g(x). One gets
all modes, independent of It is uniquely specified by the
massm. In this case it is easy to check that g"—2axg'+(E—a)g=0 (A2)
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where we chooser=* up_. We note that we reserve the A different solution is obtained by choosingr=

choice ofa being positive or negative, corresponding to nor-— u|p_|, which yields an exponentially growing mode. One

malizable or non-normalizable modes. can still do the above change of variables 8= — a. One
The equation foilg(x) is almost identical to the familiar gets a slightly different equation fay

Hermite equation. We need to rescale the coordinatay

to get to the form E
—-g"—2yg'+|——1|g=0. (A5)
g"—2yg’ +2ng=0. (A3) «
For this to be correct one has to cho@@e= «, so a has to The solutions of this equation are polynomials of the form
be positive. In that case one obtains the equation for th&n=1"Hn(iy). These are real polynomials in(the imagi-
Hermite polynomials, provided nary normalization factors fon odd do not matter for a

linear equation The modes we obtain are simply polynomi-
1 als multiplied by an exponentially growing Gaussian. In par-
En= a( n+ 2/ (A4 ticular they do not blow up at the origin.
The spectrum oE is the same for those non-normalizable
This yields normalizable solution for any signpf . One  modes. Note however that is negative here, so the spec-
simply has to choose=u|p_|. trum is negative definite.
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