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We argue that the gauge theory dual to the type IIB string theory in a ten-dimenpiowehve background
resides on &uclideansubspace spanning four of the eight transverse coordinates. We then show that the
evolution of the string along one of the light cone directions in the bulk is identifiable as the RG flow of the
gauge theory, a relation facilitating the “holography” of tpg@-wave background. The “holography” reorga-
nizes the dual gauge theory into theories defined over Hilbert subspaces oRftkedge. The reorganization
breaks the SO(4,% SO(6) symmetry to a maximal subgroup SO¥430(4) spontaneously. We argue that
the low-energy string modes may be regarded as Goldstone modes resulting from such a symmetry breaking
pattern.
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I. OVERVIEW cant progress beyond the AdS conformal field the@iT)
correspondenckl4], as it provides a dictionary for associat-

It has been known for some time that there is a certainng the gauge theory operators for not just supergravity
limit, so-called the Penrose limit, that any spacetime whichmodes, but for higher string modes as well. The BMN pro-
solves the Einstein’s field equation reduces to a plane-waveosal is also extended to backgrounds with less supersym-
background[1]. Roughly speaking, the plane-wave back-metry[12,13.
ground refers to the spacetime close to a null geodesic. This In this paper we substantiate aspects of the BMN pro-
assertion has been extended to supergravity backgrd@hds posal. Specifically, we clarify the holographic relation be-
involving, in addition to the metric, dilatorp-form gauge tween the bulk string states and the boundary gauge theory
fields and fermionic partner fields. It was also realif8fl  operators. In doing so, we emphasize the crucial role played
that maximally supersymmetrizp-wave solutiong4—8] are by the choice of the gauge theory vacuum, on which both the
obtainable as the Penrose limit of the AdSS? backgrounds — superconformal symmetry and tResymmetry are spontane-
in ten-dimensional type I1B supergravity and 11-dimensionalously broken. In Sec. II, we contrast the bulk-boundary rela-
supergravity. Remarkably, the first-quantized superstring igons displayed in the AdS/CFT correspondence and those in
exactly solvable in theop-wave background9,10], as the the pp-wave/Yang-Mills correspondence. In Sec. Ill, we il-

Green-Schwarz string action is quadratic in the worldsheelustrate this by working out a profile of the supergravity
variables. modes in thepp-wave background. In Sec. IV, we elaborate

Recently, Berenstein, Maldacena, and NastéB®IN) the pattern of the aforementioned spontaneous conformal and
[11] argued that type 1IB string theory on suchpp-wave R-symmetry breaking. We emphasize that the dual gauge
background with eight transverse directions is dual to théheory is a theory defined on Euclidean four-dimensional
large R-charge sector afV=4 supersymmetric gauge theory space. We argue that holography relates the light-cone time
in the largeN limit. They identified a certain class of long in the pp-wave background to the renormalization group
supermultiplet operators in the gauge theory with variousscale in the dual gauge theory. We show that this newly
String states. By summing over a class of Feynman diagramg’ientiﬁed holography facilitates the nature of the String in
they claimed that anomalous contributions to the scaling diterms of the dual gauge theory. In Sec. V, we discuss aspects
mension of these operators indeed reproduce the dispersi@fthe enhanced supersymmetry in the dual gauge theory. We
relations predicted by the light-cone quantization. More sig-conclude with remarks in Sec. VI.
nificantly, they proposed a concrete construction of the ten-
dimensional string in terms of the four-dimensional gauge IIl. AdS/CFT VERSUS pp-WAVE /YANG-MILLS

theory variables. If correct, the construction marks signifi-
In the AdS/CFT correspondence, the dual conformal field

theory resides on the boundary of the AdS spfee-16,

*Email address: das@theory.tifr.res.in and the radial direction of the AdS space plays the role of
"Email address: cesar.gomez@uam.es scale of the boundary theoffl7—22. Consider the global
*Email address: sjrey@gravity.snu.ac.kr coordinates in Ad$, ;X 7! space with metric
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L dar2 while holding
d?=R? — (1+r)dt?+——=-+r2dQ3_,
(1+r2) @
o x=,r,p=fixed and =y =fixed. (7)
o\ 7 dp2 — 2 \/ER
+(1-p?)de*+ —_24—p2ng,1 , (1)
(1-p9) The resulting spacetime is then reduced to
where the first and the second parts express the; Adsnd ds?=2dx*dx™ — u?(r2+p?)(dx*)?+dr?

the $'** subspace, respectively. A bulk single particle state
of a given mass and spin, satisfying classical field equation,
is specified by several “momenta”: angular momentum
guantum numbersl(m,, ... ,my_,) for the §‘*1 part in
AdS,.; space and I(my, ... mg) for the $** respec- +dy-dy, (8
tively, and a principal quantum numbarfor the remaining

radial coordinate in AdS,,; space. The bulk energy is where we have defined transverse coordinafgsvhich de-

then given in terms of these quantum numbers by a dispescribe theR? made out of and $~*, andR? made out of
sion relation. In the dual conformal field theory, we haveand S, respectively. Even though the metric exhibits SO
composite  operators O m(t,é1, ...,¢q-1), Where (d+d) isometry, it turns out the RR five-form field strengths
(t, 1, ...,pq—1) denote coordinates oRxX S 1. These break it to SOd)xSO(d_).

operators are decomposable into Fourier modes with a given A novel feature of thepp-wave background is that the
energyo and S~ spherical harmonicsl(m,, ... ,mq_,).  single particle bulk states are now given in terms of certain
The remaining quantum numbers, i, ...,mg) are en- harmonic oscillator quantum numbersny(--ng) and
coded in the structure of the operators. For instance, ifm;---mg) for a given value of the momentum conjugate to
AdS;x S°, theS® quantum numbers are encoded in the manx~, which we callp_=2p*. The light-cone energy.

ner the six Higgs fieldsb?!, ... ®% of the N=4 gauge =2p  is then given by a dispersion relation. We will il-
theory appear in the operator. As a concrete example, a bulkstate this later in this section. According to the BMN pro-
dilaton mode in Ad$xS® with S° angular momentum posal, with these harmonic oscillator quantum numbers, the

(I_Hl ... my) is described by a set of chiral primary op- chiral primary operators dual to a single-particle bulk state
erators whose bosonic component is given by with the lowest light-cone energy, which turns out to be a

linear combination of the self-dual RR four-form potential

+r2d03  +dp?+p2dQ5 |

=2dx"dx™ — u?(x2+y?)(dx")2+dx- dx

THF (1. . -q)iﬂ](t_,@- by 1), ) and trace of the graviton, take the form

in which the indices- - -ijare decomposed into irreducible 2 TZ-- .zz(Dilz)zz. ..ZZdz77...727
representations of S@J. F,,, denotes the gauge field
strength. Likewise, chiral primary operators X(Di,2)ZZ- - -Z2Z9%77Z- - -]. 9

T DD(t, - - - by_1) (3)  Here, along a string ol factors ofZ=(®°%+i®F), one dis-

tributesn; insertions of D;Z) and m, insertions of “trans-

describe modes of a linear combination of the four-form selfverse” Higgs fieldsb? (a=7, . . . ,10) Then,®° and®® are
dual potential and the trace of the longitudinal graviton inthe two remaining, “longitudinal” Higgs fields in th&/=4
ten-dimensions. gauge theory. The sum is over all distifap to cyclic per-

One can obtain the Penrose limit of Ed) along a ge-  mutation locations of the operatoi3;Z and®? in the string
neric null geOdeSlC as follows. Boost along the two |50metryof Z's. The quantum numbel is related to the |ight_cone
directions: momentump™ by the relation

t=coshat — sinha?,

d d
23+Zl n; + 21 ma). (10)

L1
_ _ (4) P =5r2
0= —sinhat + cosha 6,
For other single-particle supergravity states such as the dila-
ton, one needs to insert an operafey,,F™" inside the
“ Z-string.” For higher string-mode states, each term in the

and rescale two “radial” and light-cone coordinates:

D — DA ._R sum is weighted by a phase-factor, which depends on the
r=Rr. p=Rp, and x*= \/E(eit)' © location of the various operators in the stringZs$.
Note thatall the bulk quantum numbers appear in the
Then, take the limit structure of the dual gauge theory operators, ([@y. This is
in sharp contrast to the AJS/CFT correspondence, where
R—w and a—» (6) only half of the quantum numbers reside in the operator
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structure. There, the remainimglf were encoded as depen- whereH,(x),H,,(y) denote the Hermite polynomiatsThe
dence of the operator on coordinates of the four-dimensionadtates of this scalar field theory are therefore created from the
spacetime, the boundary of AgSn which the dual gauge bulk Fock-space vacuum by creation operators
theory resides. Evidently, the operators in E®).cannot be  a'(n;,m,,p") in a light cone quantization. In a first quan-
regarded as functions of the coordinates of the fourtized theory of particles in this background, states are created
dimensional spacetime, as that would result in more quanturby creation operators ',c2":

numbers than needed for specifying a given single particle

supergravity or string state in the bulk. c=(p+ix)/\2 and ¢T=(p—ix)/\2,

In subsequent sections, we will argue that the gauge
theory dual to thgpp-wave background Ed9) resides on a
Euclidean four-dimensional space, which may be taken to be
the R* spanned by coordinates. Precise form of the dual o . )
gauge theory operators are then given in terms of the HeMvhere the indices,a refer_to the transverse directions along
mite transformation of local operators defined BA. The ~ RYXRY spanning a ¢+d) dimensional transverse space.
fact that this space has to be Euclidean, rather tharfhe bulk dispersion relation is then given by
Minkowski spanned by light-cone coordinates and part of
R4, follows from the correspondence between the operators 1 u
Eq. (9) and the one-particle states of the bulk supergravity or p- =5P+=7
string theory. The latter states are described in terms of the

(d+d) set of simple harmonic oscillator operators with in- .
dices in a Euclidean space. For a string theory defined in th ote Fhat the value ., is mdepgndent of the value gt .
bulk, these oscillators also carry a label for the level numbe his IS beca}use th? supergravity modes are massl_ess. For
[9]. As we will see, this observation leads naturally to anMassIve, s?rl_ng oscillation fields, the dlspers!on relatlpn (_je-
interpretation ofk* as the holographic bulk coordinate in the pends explicitly op-_. The sum over zero-point energies Is
Penrose limit, so that evolution " in the bulk generates sFandar'd. We will see that, for the ex'pI|C|t exa”.‘p'e of a tgn—
scale transformation in the dual gauge theory. dlme_n5|onalp p-wave bgckground, th's zero-point energy IS
From the point of view of the Yang-Mills theory we wil preC|ser what is requ_|red for precise correspondence with
argue that selecting a sector with a fixed (3Ccharged is appropriate operators in the dual gauge theory. We note, for

tantamount to a spontaneous breaking of the conformaﬁ“tl_Jre _refergnce, that _the.dispersion relation for the m_ode
group S@4,2) to SO4) and theR-symmetry group to S@) which is a linear comblnatllon.of the foyr form RR potentla]
as well. The low-energy fluctuations are then the Goldston@nd the tra(_:e of the I(_)ng|tud|nal graviton does not contain
modes of the broken symmetries. The representation of thedBIS Zéro-point fluctuation.

operators in terms of Hermite transforms then follows in a It is natgral to expect that the dual gauge theory has op-
natural fashion. erators which are Hermite transforms of local operators de-

fined on theR* spanned by.

C=(patiy)/y2 and AT=(p,—iy?/\2,

d d 1
izl niJraZ1 m,+ E(dJrE) . (13

Ill. SUPERGRAVITY MODES IN pp-WAVE

BACKGROUNDS Oln]=H.T[O], (14

Let us first consider the equation satisfied by the dilaton invhere the Hermite transform of a generic operafgx) on
the (d+d+1) dimensionalpp-wave background. Consider R is defined as
a minimally coupled, massless scalar fidddwhose field
equation is given in the global coordinates E8). as

d
1 .
| - H.T.[O]=Nf d,LL[X]iI:[l Hn (Vp-x)O(x), (15
20_0, —pPOR+YA) P+ 2, T+ 2, Iy
i=1 =1 where is a normalization factor, and the measure is given

XD(x",x7,x,y)=0. (11) by
The normal modes witpp_>0 are given by du[x]=d%xe " (L2mp-x*
.
Do, o nm(X7X7,X,y) Using the standard recursion relation for Hermite polynomi-
d als these can be reduced to expressions with derivativés on
:e—(l/Z),u.p,(x2+y2)Hl Hni(\/ﬂTXi) and no factors of the Hermite polynomials.
1=

d 1 . . .
Note that, because of the harmonic potential provided by the
; - +
xall Hen (Vup-y?) X exp(ip X~ +p.,Xx"), second term in Eq(11), there is no real distinction between nor-
malizable and non-normalizable modes for>0. The modes with
(12 p_=0 are notl, normalizable, but aré-function normalizable.
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It may be useful to formally define operators on aplace between the traces of the graviton and the scalars of the
RYX R? by introducing a set of fiducial coordinatggor the ~ RR four-form potential. We thus denote these modes as

RY. Performing the Hermite transform on this eight-

. . N 1 .
dimensional space, h:=h;6" and C::E'Ellklcijkh

_ — 1
h:=h,,0™ and c:=mem”p°cmnpq.

d
1 )
HTLO)= | dulxIautyITT Ho(Vep %)
) ' -
x |1 Hin, (Vp-y) O(X,Y). These fields are singlets of the two @Ds on R*XR?, re-
a=1 spectively.

. . . _ _ Then, the linearized field equations exhibiting the mode
Using recursion relations obeyed by the Hermite polynoml-mixing are given by

als, one can then express the Hermite transform in terms of
derivativ_es with re'spect'ty,_which in turn become commu- A h—16ud_c=0,
tators with Higgs fields inside the operator.
V2c—2ud_h=0,
A. Dilaton
whereA, stands for the Lichnerowitz operator for the spin-2
graviton. Utilizing the fact that £ h);;= —%Vzhij and di-
agonalizing the two coupled equations, we obtain scalar-
mode field equations

In the ten-dimensionagbh p-wave background, the dilaton
field equation take the same form as Etfl). Thus the light-
cone energy spectrum of the dilaton state is given by

4 4
1 . .
Edi.awnzg 3t X mersaca)). a9 [V2—8iud_](h+4ic)=0 (17)
_ _ and its complex conjugated equation fdr-{4ic). Exactly
According to the BMN proposal, the light-cone enefgyea-  the same set of equations hold forandc as well.
sured in units ofu/2) ought to match with £ —J) of a The field equatior{17) is soluble exactly as in the dilaton

gauge theory operator dual to the dilaton. A single insertiorszse. We find that the light-cone spectrum of the-@ic)
of FrngF™", which carriesA =4 andJ=0, inside theZstring  complex “scalar” field is given by

in Eq. (14) is precisely what we need to match the zero-point

light-cone energy. Interestingly, in providing the requisite u
zero-point energy (44)/2=4, four-dimensionality of the EZscaIar:E(
internal spac&k* has played a crucial role.

The ground-state of dilaton single particle states corre-
sponds t;m=m=0. For the states with higher energy, using
the recursion relation of Hermite polynomials, we deduce
that the corresponding operators are precisely insertions of
the “transverse” Higgs fields and covariant derivatives, viz. On the right-hand side of the first expression, the first and the

4 4

1
D oni+ >, myt —(4+4)
= a=1 2

—2u

4 4
> oni+ >, ma)>o.
i=1 a=1

a set of operators of the form second terms are contributions froWit and —8iud_, re-
spectively. Evidently, the zero-point energy arising from
T F,F™"22...220%27227.--27 fluctuations along the eight transverse directions is cancelled

precisely by the classical contributien2 « to the light-cone
energy. Hence along with the second set of complex “sca-

lar;” field (h+4ic), we conclude that there are two bulk

X(DiZ)ZZ- - - 2Zd%*ZZ- - -].

B. Longntudinal graviton and four-form potential “scalar” modes yielding the minimum of the light-cone en-
The pp-wave background is supported by a homogeneou§'9Y (in units of u/2) to be zero. These bulk “scalar” fields
RR 5-form field strength are then identified with the dual gauge theory operators
F 12347~ T F 5678~ 11, Tzz..-227.--77],

giving rise to Eq.(1) through the Einstein’s field equation. Viz- the Z-string, first introduced by BMN. _

As such, degrees of freedom of the graviton and the four- [N contrast, the complex-conjugate “scalar” field$ (
form Ramond-RamondRR) potentials would mix each —4ic) and (h—4ic) are subject to the classical contribution
other. More precisely, expanding type IIB supergravity field+2u to the light-cone energy. It implies that the minimum
equations of the metric and the RR four-form potential toof the light-cone energy ién units of x/2) +8, instead of 0,
linear order fluctuationsh,,, ,c,,.s, and taking the light- rendering the corresponding dual gauge theory operator in-
cone gaugé,_=0,c,,,— =0, we find that the mixing takes volving eight powers ofb®s distributed along the-string.
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IV. PENROSE CONTRACTION, SPONTANEOUS Penrose limit as defining a sort of spontaneous symmetry
SYMMETRY BREAKING, AND EUCLIDEAN DUAL breaking from SO(4,2» SO(6) to SO(4® SO(4) with the
GAUGE THEORY 18 generators of the broken symmetries defining the two

Heisenberg algebrag4)’s and the outer automorphism.

As the simplest illustration, consider AgS8S?, relevant
for the near-horizon geometry of four-dimensional
Bogemol'nyi-Prasad-SommerfielPS black holes. In this
dase, the symmetry group is SO(1s230(3) with six gen-
erators that we will denotf,,K;,P,,K,,D;,D,. They sat-
isfy, in particular,[ P;,K;]=D; and[P,,K,]=D,.2 In the
Penrose limit,P; ,K; become the generators of two Heisen-

We now turn to the dualN=4 supersymmetric gauge
theory. This theory is invariant under SO(42%0(6),
where S@6) refers to the internaR symmetry. We denote
the generators of S@,2) asJ,g with A,B=1,...,6,where
5,6 are the directions with negative signature, and those
SQO6) as Jyy with U,V=7,...,12. Interms ofJ,g, the
generators of the conformal group are

Ji, P=Js+Js, Ki=Js—Js, Di;=Jss (18 berg algebras and tH#;’s produce the common central term
e romE TR e Tl and the outer automorphism. In fact, denoting the Penrose
; 4100 ~2.1 qily 4i202
withi,j=1,...,4. Thesame can be done for the generatorsScaling by{}, we getD;(Q2)=d"Q"*+d""+d" SN
of SO6), and we defind,,,,P,,K,,D, accordingly, where With d"=d=" The central term is defined by~ and the
a,b=7,...,10 andD,=Jq; 10 outer automorphism byd(!—d'?). Expansion oD'(Q) is

Let us now assume that there exists a vacuum state, dhen interpretablg as a perturbative expansion in powers of
which the SO(4,2pSO(6) is broken spontaneously to the Penrose scaling paramet@r,

SO(3,1)2 SO(4), viz. standard symmetry breaking pattern AN imsportant aspect of the Penrose limit in the case of
preserving Lorentz plus “transverse” internal symmetries.AdSsX S’ considered by BMN is that the unbroken symme-

The number of generators of broken symmetries is 18, vizlly IS SO(4)2SO(4). Inother words, if we want to use the

nine nonlinearly realized symmetries for each product groupP€nrose contraction as a pattern of the symmetry breaking
The generators of the broken symmetries ardor the dualN=4 gauge theory, we should assume that the

P.,K:,P.,K4,D;,D, and the generators of the unbroken V&CUum is invariant not under the Lorentz group but under a

symmetries are th; for the Lorentz group S@,1) and the rotat?on groyp_in a four-dim_ensional Eucl_idean space. Insight
J.p for the internal symmetry group $@). One easily finds to this possiblity can be gained by recalling aspects of spon-

that generators of the broken symmetries satisfy the follow{@neous conformal symmetry breaking, studied thoroughly

ing commutation relations some time ag$23,24. The idea was to assume an underly-
ing theory invariant under the conformal group and, after
[P,,K]=D; and [P,.K,]=D,. spontaneous conformal symmetry breaking, to study the low-

energy physics of the corresponding Goldstone bosons. The

These commutation relations are very suggestive. If ondirst peculiar aspect of the spontaneous conformal symmetry
were to put aside the fact th&t; andD, do not commute Preaking, S™4,2) to S1,3), is that the generators of trans-
with the P’s andK’s, one may try to interpret the previous lations are part of the broken symmetries. Being so, only the
commutation relations as defining two Heisenberg algebragenerators of special conformal transformations and dilata-
h(4)®h(4), each one with eight generators, for whigh ~ tions were considerel®3] as real Goldstone bosons. A con-

and D, are the two central extensions. This interpretation S€duence of this is that these Goldstone bosons, contrary to
as it stands, is not viable if one just considers the standarte standard case, are not massless as the broken symmetries

symmetry  breaking pattern  SO(4@B0(6) to do not commute with the Hamiltonian, viz. with translations

SO(3,1)» SO(4): D, and D, are not central terms and we in time. In the Penrose contraction, we are facing a similar
cannot organize the generators of the broken symmetries ipfoblem. If we considef'=4 gauge theory and the standard
terms of two Heisenberg algebras. It is precisely at this poinfPoNntaneous breaking pattern to SO(&,80(4), we are in-
where the existence of supergravity/string duals and the corfluding among the broken symmetry generators the transla-

cept of the Penrose contraction can help us to define a difion generators in physical time as well as the spatial trans-
ferent pattern of the symmetry breaking. lation generators. If we try to understand this breaking in the

old-fashioned approadi23], we need to organize the 18 bro-
ken symmetries into a set of nine massless Goldstone
bosons, corresponding to the spontaneous breakdown of the
As is well known, the symmetry algebra internal symmetry S@®), five massive Goldstone bosons
SO(4,2)2SO(6) of N=4 gauge theory are realizable as corresponding to the special conformal transformations and
isometries of the AdSx S° spacetime. The Penrose limit re- dilatations that do not commute with the Hamiltonian and
capitulated in Sec. Il preserves the total number of Killingfour translations. This is certainly not the picture we get if
vectors but can change their algebraic relations. In particulaive use Penrose contraction. In the Penrose contraction, we
if we perform the Penrose limit on a generic light geodesic inorganize the 18 broken symmetries into a Heisenberg algebra
AdS; X S° the Killing vectors define the algebrgh(4) h(8) and an outer automorphism. What now remains is a
®h(4)]®so(4)y»so(4),where the bracket is to emphasize
the fact that two Heisenberg algebras share the same central—
extension. The extra Killing vector defines an outer- 2n [6] the generator®; ,K;,D; correspond, respectively, to the
automorphism of the Heisenberg algebras. We interpret thgilling vectors E; ,E} ,¢; .

A. Penrose contraction
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concrete interpretation of the Heisenberg algebi® land  |ation operators as before, vin,=1)Js=b3'|0),. Bothb),
the outer automorphism entirely within the dual gauge theoryyith j=1, ... 4 andbd with a=7, . . . , 10transform as vec-

formulation. tors under the two S@)’s, respectively. From now on, we

_ _ will denote them collectively as by,by  with i
B. Dual gauge theory is Euclidean =1,...,47 ...,10. These operators generate the Heisen-
Let®; i=5---10 be the Higgs fields of/=4 super Yang berg algebra (8). Note that this is true only in the largk-

Mills theory. Following BMN, define the fieldZ=(®s limit and for Euclidean gauge theory. In view of the BMN
+i®g), and denote byl the SA2) R charge corresponding proposal, it is quite natural to identify this Heisenberg alge-
to rotations in the internals,6)-plane. Consider decompos- bra H8) with the similar Heisenberg algebra encountered in
ing the gauge theory Hilbert space into infinite towers ofthe Penrose contraction of SO(42$50(6).
Hilbert subspaces of definité quantum number. Evidently, ~ The next step would be to identify, within the dual gauge
on each subspace, Fock-space “ground state” breaks the ifbeory, the physical meaning of both the central extension
ternal SA@6) spontaneously to S@). We denote the Fock- and the outer automorphism. In the original theory invariant
space vacuum withR charge equal td as|0);. We will be  under SO(4,2p SO(6),there are two generators of the sym-
interested in the Hilbert space of quantum fluctuationgmetry algebra that are of special importance, viz. the genera-
around this vacua. The first thing to be done is characterizinér of dilatations of the space-time coordinates and the gen-

the statd0);. The simplest way to define this state is eratorJ of the SG2) R symmetry. Inferring the discussion on
the Penrose contraction in Sec. Il, we ought to expect that
Tr(Z%)(x=0)|0)ym both the central extension and the outer automorphism are

) associated with these two generators. In the dual gauge
where|0)yy refers to the perturbative vacuum of the dualtheory, these generators have a very clear physical meaning:
N=4 gauge theory. The dual gauge theory is defined on thghe generator of space-time dilatations will define ghaling
Euclidean SpaC§£4, and is not related priori to Euclidean- dimensiom\ of Operators and the generatmhe Correspond_
ized N'=4 super Yang-Mills theory defined d® < R® after  ing R charge. Note that in the AdSealization of SO4,2)
the Wick rotation. OrR*, a local operator TrZ’)(x) is €x-  the embedding coordinateX?, A=1,...,6 [with (X1)2
pandable in a complete basis of the Hermite polynomials 4 (x2)2—(x3)2—...(X%)2=R?] are given in terms of the

global coordinatesﬁ ¢;) as

4
TZ)(x) = col] [e ¥ H,(Ax)], (19 _
=i i X'=RV1+r?cost,

where A is a scale defined within the dual gauge theory,

2_ T 2aint
which will be determined later. Thus we can write X“=Ryl+r-sint, (21
10)5=Cn=0l0)ym - (20) X?*=Rro® (a=3,...,6),
The Hilbert space of qugntum fluctuations is generated byvhere w® denotes the embedding coordinates of a urit S
states|n);=c,|0)yy . For instance, we get The standard “dilatation” generator of the $02) group,
which is J;», generates translations in global tirheln the
> Tr(Z'(Di2)Z°7)(0)|0)ym=|ni=1);. Penrose limit,r—0 with r=Rr held fixed. ThusX%(a
! =3,...,6) areO(1) and becomeunconstrained while
X1, X2 are of O(R). The dual gauge theory is now defined on

One can define creation and annhilation operagrandby'
obeying the canonical commutation relatipij,bs']= &'
such that

the Euclidean plan&?3, ... X% andJ;, generates the scale
transformations on thiR* subspace as in the standard real-
ization of the S@®,2) group. Let us denote the eigenvalues
b”|0) ~|n=1) of these generators, for a given operatorAaandJ, respec-
0/ 2 tively. For the statd0),, we have
These operators generate the Heisenberg algélyais we

are working inA’=4 gauge theory, we can also consider
fluctuations with respect to the internal directions, namely,

A|0);=J]0); and J]|0);=J|0);,

while, for states of typeby'- - -bi|0);, we haveA=(J
+n), wheren refers to the number di" oscillators andJ
> Tr(Z'(D,2)Z°7")(0)|0)ym =J. Thus, on these states, we hav&+J)=2J+n and
! (A—J)=n. If we work in the limits of larged, largeN, and
smalln limits with
=2 TH(Z'®,2Z7)(0)|0)yu
2
. o 9°N:=\?—o0, J2—w, and A—::ggﬁ—ﬁinite,
with a=7,...,10. In the largg- limit, one can represent J2
these states in terms of the same type of creation and annihi- (22
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we observe thatX +J)\ becomes the true central extension mains finite. This is the reason why, though it appears natural
commuting with theby and b'OJr operators and that (A —J) to considert as a holographic direction from the bulk point
is simply the number operator for ths, bl oscillators and ~ of view, it is actually more natural to consider as the
therefore is a true outer automorphism of the Heisenberdolographic direction from the gauge theory point of view.
algebra. The relation Eq(25) reflects an important difference be-
In summary, built only upon Euclidean gauge theorytween thepp wave and AdS backgrounds. In the standard
residing on R* subspace, we succeeded in finding aAdS;/CFT, correspondence, the gauge theory operators are
SO(4)®»SO(4) invariant vacuum and a representation of thgapeled by the angular momentarf, ,m,) on theS® where

Heisenberg group 8) in terms of creation and annhilation the gauge theory lives, thR symmetry quantum numbers
operators acting on the Hilbert space of small quantum fluc;;7——

. . AT I,m;---my,), and the energys. The operators which are
tuations. The corresponding outer automorphism is just th , : . 5
mer opertor Nots it e vacuum s = ot oy 1 1 S ariel hotes 0SS e e pep
invariant under SO(49 SO(4) but also with respect to the y dimension dep Y
one-parameter group generated by the outer automorphisnfn€try guantum .numbersl (mll' --mg), but not on w or
So far, we have considered only the modes which ardl,m;,my). This is reflected in the bulk wave function as
chiral primaries. The scaling dimensidnof the correspond- Well. Here, the radial coordinate is identified with the RG

ing operator is direction and, to read off the dimension of the corresponding
. A gauge theory operator, one has to look at the radial depen-

dence of the wave function near the boundary. As is well

A= ‘H;l ni+aZl ma), @3 known (and is in fact a consequence of conformal invari-

‘ ance, the radial dependence isdependenbf the angular
where there arg; insertions oD;Z, andm); insertions ofP’.  momentum in Ad$ and the energy, but does depend on the
Supersymmetry descendants of these would contain factotggular momentum on®SThe previous discussion shows
involving the gauge field, as discussed in Sec. Ill. Considerhat, in order to read off the conformal dimension in the
for example, the dilaton. The operator dual to this should beoenrose limit, one has to look at ttime dependence of the

the integral of bulk wave function. It is clear from Eq$12) and (13) that
mng (1. .. i o this depends oall the quantum numbensg andm,. In the

TR 0T QUL i Paa). gauge theory, this is reflected by the fact that the dimension

For such operators, the scaling dimensibiis given by of the dual gauge theory operators also depends on all of the

n; ,m, quantum numbers.
Finally, it should be clear from the definition of the op-
A=J+2 ni+ > my+d. (24 erators that one needs to introduce a cutoff mass stale
i=1 m=1 . . .
Inferring expressions for the normal modes of the bulk fields,

These relations are consistent with our interpretation of thd 1S natural to choose the scale to be given, up(il)
holographic coordinate. numerical factor, by

The scaling dimensioa of the dual operator is, however,
the eigenvalue of the operato#, in the bulk theory. TheR
charge is of course the eigenvalue 6f. These relations are A=pup-. (26)
in accord with the solutions of the bulk wave equations. Take

the dilaton as an example. From H43) with d=4 andd
=4, we have

4 4

At first sight, this identification appears strange. It would

mean that one needs priori a different scale for each op-

erator asp_ is defined by A+J)/\. However, in the ap-
(25 proximation adpoted EQ(22), n;,m,<J. As such, p_
~J/IN~O(1). This implies that all the operators involved
are governed universally by a common renormalization
Fcale.

4 4
p=(A—J)=ﬁ(2 ni+2 m,+4
2 a=1

=1

and find precise agreement with E@4). From the bulk
point of view, the additive factor 4 appears as a zero poin
energy. From the gauge theory viewpoint, this reflects the
presence ofF,,,F™" in the operator. For the bulk mode
which is a fluctuation of the four form RR potential, this zero
point energy is absent, which is consistent with the absence o.e we have defined the outer automorphism, ca, it
of any factor of gauge field strength in the dual operator. INye can trivially use it to define a one parameter family of

the J—eo limit, A—cc as well. Howeverp. =(A—J) re-  gheraiors. In fact, we can introduce a formal parameteas
a conjugate variable tbl and define

C. Light-cone holography

3Notice that once we identify this term with the central extension
. . i it _ i+ .
of the Heisenberg algebrfa we need to pormah;eb{hand by so z Tr(Z'(DiZ)ZJ ')(0,X+)|0>=e ix Hbg|0)3.
that they obey the canonical commutation relations. [
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This is a trivial and certainly not an interesting way to intro-  We close this section with comments. Quantum mechani-
duce an extrdolographiccoordinate in the Euclidean gauge cally, the valueA of the scaling dimension is corrected by
theory. In fact, what we get is simply the contribution of anomalous dimensions, whereas the value
J of the R-symmetry charge remains unchanged. As such,
one ought to expect quantum corrections to the outer auto-
morphism A —J). How is it corrected? The interaction part
of N=4 gauge theory contains a term of the type
(1/27wg?)Tr{Z,®,][Z,®,]. This term induces nonvanishing
transitions of the type:

ZI Tr(Z'(D;2)Z7")(0x™)|0)ym

e W OIT @D 2Z )OI (@27)

and the outer automorphisid=idy+. If we wish, we can (TH(Z'®, 22" () Tr(Z' 27~ (D) (0))
also introduce another holographic coordinate, saycon- 1
jugate to the central extensi@= (A +J)/\ by = 5.,2mg?NZ(X) —— (29)
AeX
2 THZ(D;Z2)Z77)(0X" x7)[0)vu and
— X Ce i Hpit|g). (Tr(Z'®, 2" (x) Tr(Z'®,27~")(0))

This dependence or™ is ftrivial, as it is the same for all
operators. It depends only on the particular finite value we
choose forg?N/J? in the double larger and largeN limit.
Once we introduce the coordinate, the central extensio@  The functionZ(x) is given by
can be represented asidy-.

We can readily make contact with the spacetime Killing
vectors in the Penrose limit. To illustrate this, consider
the case of Ad$xS®. In the Penrose limit, the
isometry group SO(2,2SO(4) is contracted to Where A defines the ultraviolet cutoff. Both contributions
[H(2)®H(2)]®SO(2)2SO(2). We areinterested in the cancel each other, meaning that, for operators of the type
generators of the Heisenberg group@)s: 3, Tr(Z'(Di2)2°7") or 2, Tr(Z'®,2°""), the value of

—J) is not corrected at least at first-order in the weak cou-

_ 2
= 5.,p2mg*NI(X) pEwE

1
I(x)= mlog|x|A+finite,

9 . 9 pling perturbation theory. As pointed out by BMN already,
Pi(X+)=C05(MX+)§+MX' S""(,U«X+)ax—_, the situation is different for operators of the type
P ‘ P E ei(27rn|/J) Tr(zl(Diz)ZJfl) (30)
Ki(xT)=sin(ux")— — ux' cog ux")—. !
ax' X~
or
These are the generators that we should put in correspon-
dence with the operatots, andby in the dual gauge theory. > @) T Z\p 271 (31)
[

As discussed above, the operatord,- plays the role of the

central extensiorC of the Heisenberg algebra. In the stan- . ) )
dard coordinate-momentum notation, we can write modulated by the “separation-dependent” phase-factors. We

will discuss aspects of these corrections in the next section.
Pi(x")=pj cod ux ")+ uCx sin(ux"),
_ D. Strings out of dual gauge theory
IxT)=n. of +y_ i +
Ki(x™)=pj sin(ux™) — uCx' cog ux™), Let us first recapitulate what we have done so far. We
have considered Euclidea=4 gauge theory around a

where the parameté® represents the central extension term, . -
P P vacuum state invariant under SO®&3$0(4) and under the

and . .
outer automorphisntd. The Hilbert space of small fluctua-
[pi. xi]=—idl. tions around this vacua define a representation of the Heisen-
berg algebra (8). The outer automorphis is simply the
Evidently, we can write number operator associated with the creation and annihila-
tion operators generating®). In addition, using the gravity
pi(x+):efiX+Hpi(o)e+iX+H (28) dual of the MinkowskianV=4 gauge theory, we can define

a precise map between the creation anhilation operators and
for H the light-cone Hamiltonian defined iy =id,+. This  the outer automorphistd on the dual gauge theory side and
shows that the HamiltoniaH is the outer automorphism of the Killing vectors in the Penrose limit of AgS S® on the
the Heisenberg algebra. gravity side. The formal conjugate variables of the Hamil-
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tonianH and the central extensid® become the coordinates Compared to the light-cone string in flat spacetime, the main

x" andx” of the Penrose limit of the bulk spacetime. difference is the existence of the Heisenberg algebra for the
Probably the most surprising result of all this is the con-b ,b'oT harmonic oscillator operators. In fact, in flat space-

nection between the Penrose limit of MinkowskiAf=4  time, one only has the Heisenberg algebra for the center-of-

gauge theory and the EuclideAf=4 gauge theory around a mass part

particular vacua. The main reason for this strange connection

(32

has to do with the peculiarities of spontaneous breakdown of [Xo ,p"]=i.
conformal invariance. In fact, one can in principle think of o -
this as a spontaneous breakdown ol & to the Euclidean L€t us now see how the outer automorphishis modified
subgroup S@). In this case, the Lorentz invariance of the PY quantum effects. As cgrmputgd by BMN, the scaling di-
original Minkowskian theory should be hidden somehow inmensionA for the stateb,, |0); is given in first-order in
the dynamics of the Goldstone bosons around the vacua us@grturbation theory by
to break the conformal symmetry spontaneously. >
How then is the Lorentz invariance realized in the Hilbert A=J+1+8ng? cos( _) —1l.
space of small fluctuations around the chosen vdoyg? J
The answer descending from the BMN proposal is quite sur- ) L
prising and in fact extremely interesting. It asserts that thel NUS the outer automorphism at the quantum level is given
Hilbert space of small fluctuations of the EuclideAf=4 y
gauge theory around the vaci®; in the large-N and large- 2.
J limit is the Hilbert space of a ten-dimensional string theory H=(A—-J)=1+8%%g°N cos( —) — 1}
in a suitable Minkowskian background. J
To understand this, we begin with recalling some salient
facts of string dynamics in the light-cone gauge. In flat ten- _ 27g°N 2
dimensional spacetime and for the bosonic sector, the light- =1+ 2 e
p : g J
cone gauge-fixed string is defined by:
(i) string oscillators: infinite tower of Heisenberg algebraswhere, in obtaining the second expression, we have taken the
it larged and largeN limit. We thus find that
[an 'am]_ 5n,m5i,j
2

with i,j=1, ...,8 thetransversal coordinates; Hie=2 \/1+——b/b, (33
(i) light-cone Hamiltonian: " (P")
providedthe parameters are identified as
n
- T .
HLC_; Za’p+ anan+(H.C.), i JZ B 1
(P == %
g N Jeff
(iii ) string parameter space: total length of the light-cone ) o o
string is given byp*; and This is the light-cone Hamiltonian of a string in the Penrose
(iv) Virasoro constraint: infinite tower of constraints sat- limit of AdSsx S° with a nnonvanishing RR five-form field
isfying the Virasoro algebra. strength background. This RR background is in fact crucial

The way a string dynamics emerges out of the Euclideat® match the units consistent[y. The Iight-cone_ Hamiltonian
N=4 gauge theory around the vacuu@) relies crucially ~in the pp-wave background with constant RR field is
on the existence of the Heisenberg algeb(®) and of the
outer automorphisnH. In order to establish a connection 2 n
between the two structures, the first thing we should do is to pot a'(ph)?
extend the Heisenberg algebré8hto an infinite family of
Heisenberg algebras of the type displayedinRemarkably, In order to make contact with what we get from thé=4
this is achieved by the phase-factor-modulated operators, ifyauge theory, we need to use dimensionless quantities,
troduced first by BMN: namely, o’ - . In other words, in order to map the string
theory into the dual gauge theory, we need two independent
i(2anild) | 3o it scales in the string theory. In addition to the slope parameter,
Z € TH(Z'D,Z7 ) (0)|0)ym=by[0); . ', this requires turning on the RR five-form field strength
background u.
. . . One thing we have not elaborated on in detail is the string
One_ c_an_show readily that the newly 'T“FOdF‘C_e‘? creation an‘é/wasoro constraints. We end this section with brief remarks
anr)lhllatlon operators obey the requisite infinite towers ofOn this issue. By inserting phases into the dual gauge theory
Heisenberg algebras: operators, the Heisenberg algebr@)his extended to the
o family of Heisenberg algebras E(?2). It is also natural to
[by.bi]=8amd; (MnNn=012...). extend the outer automorphism to this collection of Heisen-

2
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berg algebras by introducing operatdis (n=0,1,2...) V. SYMMETRY ENHANCEMENT AS
such that[H, ,b,]=b,+n and Hy=H for the light-cone “POST MORTEM EFFECT

Hamiltonian H. These outer automorphisms then generate
the string Virasoro algebra. A very interesting question left In recent papergl2,13, the results of BMN have been

for the future would be to uncover meaning of these \ﬁrasorcgeneral'Zed to gauge theories with less supersymmetry, in

constraints entirely within the dual gauge theory viewpoint particular, to the gravity duals of AdS T"". The fact that
y gaug y POINL- the Penrose limit of this space is the same as the one of

AdS; X S° raises the question regarding the reason behind

E. Light-cone Hamiltonian and renormalization group flow supersymmetry enhancement frovis= 1 to A/=4. The point
The renormalization group equation for the correlatorsOf this seemingly mysterious result goes back to the fact that,
(O(x)O* (0)) is in the strict Penrose limit, there always appear extra isome-
tries. In[6], these extra isometries are referred to gsoat
[md,+2y(0)O(x)O0*(0))=0, mortemeffect. These isometries always define a Heisenberg

algebra. In the case of A8 T the isometries are
SO(4,2)» [SU(2)®SU(2)®U(1)], and are in correspon-
dence, respectively, with the conformal invariance andRhe
symmetry of the dual gauge theory. Following our approach,
we can think in terms of a spontaneous breakdown of this
symmetry to SO(4% SO(4). The diference with the case of
N=4 supersymmetric gauge theory is that we now have a
2y(0)=(A-J)[0]-1, (34 smaller number of Goldstone bosons associated with the bro-
ken symmetries, viz. ten instead of 18 in thé=4 super-
where A —J)[ O] is the value of A —J) for the operato©. symmetric case. The deficit eight Goldstone bosons are pre-
This equation is reexpressible in a more suggestive form: cisely the ones associated with the Higgs fields in Me
=4 supersymmetric gauge theory. These are the fields that
29(0)O=[H,0]-0, would.re.nder the theorW=4 §upersymmetric. In the Pen-
rose limit of any ten-dimensional background, we always
) ) ) o have a Heisenberg algebrd8h of the isometries. In the
whereH is, as usual, the string light-cone Hamiltonidny( Ags,x T1 case, the Heisenberg algebra is composed of two
+Lg). Heisenberg subalgebragdh with a common central exten-
Note that the anomalous dimensigifO) appearing in  sion. The eight generators of one of the two algebras are the
Eq. (34) is, for the operatorO==3,e?™" Tr(Z'®,Z’""),  ones we are going to use as the eight missing broken sym-
given by metries. These Post morteriGoldstone bosons are simply
states that, in théV'=1 gauge theory, are degenerate in the
Y(O)=IYZ)+ y(D,), light-cone masgthe eigenvalue of the outer automorphism
or the light-cone Hamiltonign with the real Goldstone
) ) bosons. As the enhancement/df=4 supersymmetry is true
where y(Z) represents the anomalous dimension of the opgpy in the strict Penrose limit, viz. for the Penrose scaling

eratorZ. Generically, the anomalous dimensig(Z) is af-  taci0r 16— 0, we expect this enhancement to be violated by
fected by radiative effects through the self—energyo(l/N) corrections.

corrections! If not protected by supersymmetry, these con-

tributions would go asg®N and the connection with the

strin.g Iight-cong Hamiltonian would t?e lost. Moreover, the VI. CONCLUSIONS

scaling dimension of the operato€3, in that case, would

grow with 't Hooft’s coupling constant and eventualy disap- Our main conclusion is that the supersymmetric gauge

pear out of the physical spectrum. In the supersymmetri¢gheory dual to the type 1B string theory in a ten-dimensional

case we are considering, supersymmetry rengé) =0. pp-wave background lives on Buclideanfour-dimensional

This is the reason behind regarding®) as the anomalous space. The indications has come from several corners. The

dimension of the fieldp,’s. From the previous discussion, it most direct reason is that the dual operators are in one-to-one

should be evident that changes in the holographic coordinateorrespondence with the states of the string theory which are

x* are equivalent to changes of the renormalization grougreated bytransverseoscillators in the light-cone gauge.

scaleu if we interpret (A —J) as the anomalous dimension. This is in fact apparent in the zero-mode sector of the string
relevant for the supergravity modes and follows from field
equations in this background. Furthermore, understanding of

*These are so-called zero-momentum effects in the nomenclatuf@€ low-energy Nambu-Goldstone modes resulting from
of BMN. symmetry breaking of the original symmetry group
SDefinition of the renormalization group(©) as (A—J) or as  SO(4,2)XSO(6) to SO(4X SO(4)xH(4)XH(4) also indi-

(A—J)—1 depends on whether one adpots the canonical dimencates that the dual theory lives in a Euclidean space.

sions for the fields and masses or not. For a lucid discussion on this One may think of this Euclidean space as the space

point, sed25]. spanned by four of the transverse directions. In this case, the

where p refers to the renormalization group scale. If
we consider the phase-modulated operato©
=>.,e>™ Tr(Z'®,2°"), in the larged and largeN limit,
we get
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light-cone time has a natural explanation as the holographiquantum fluctuations around the selected vacuum or, equiva-
coordinate representing the scale of the dual gauge theorlently, finite light-cone masgdefined by the outer automor-
Details of the proposed holographic correspondence remaiphism) for the Goldstone bosons. Taking the real-world
to be understood better. The fact that a Euclidean theory caQCD, one now hagb initio two related problems: anomaly
give rise to strings living in a spacetime with Lorentzian for the conformal invariancéviz. a nonvanishing beta func-
signature is intriguing and deserves better understanding. Wen) and anomaly for the axial (@) symmetry, which would
expect that this would enhance our understanding of hologserve as a natural candidate for the glob&l)Usymmetry.
raphy in general. We can try to solve these problems by introducing two extra
Extending the results of this work, one can abstract thescalar fields, namely the dilatdd and the axiomA. We then
main ingredients needed in order to generalize the BMN profind an indication that the fieldd(+iA) is a natural candi-
posal to generic situations. The minimal starting point woulddate to play the role of th&-field in the BMN proposal.
be a four-dimensional gauge theory invariant under the con-
formal group and with a nonanomalous globdll)Jsymme-
try. The spontaneous breakdown of SO(&2)(1) to SQ4)
provides ten broken generators that we can try to organize, We would like to thank the Isaac Newton Institute for
taking Euclidean signature dual theory, into a Heisenbergathematical Sciences, Cambridge University and organiz-
algebra ¥) and an outer automorphishkh This is the struc- ers of “M-theory” workshop for hospitality. The work of
ture that we can try to map into the Hilbert space of a nonS.R.D. is partially supported by U.S. DOE contract DE-
critical six-dimensional string theory in the light-cone gaugeFG01-00ER45832. The work of C.G. is partially supported
with the SA4) rotational invariance acting on the transversalby grant AEN2000-1584. The work of S.-J.R. was supported
coordinates. Of course, we also need controllable, finiten part by BK-21 Initiative in PhysicéSNU-Project 2, KO-
contributions—in the large 't Hooft coupling limit—to the SEF Interdiscplinary Research Grant 98-07-02-07-01-5, and
anomalous dimensions of the fields representing the smaKOSEF Leading Scientist Program.
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