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Penrose limit, spontaneous symmetry breaking, and holography in app-wave background
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We argue that the gauge theory dual to the type IIB string theory in a ten-dimensionalpp-wave background
resides on aEuclideansubspace spanning four of the eight transverse coordinates. We then show that the
evolution of the string along one of the light cone directions in the bulk is identifiable as the RG flow of the
gauge theory, a relation facilitating the ‘‘holography’’ of thepp-wave background. The ‘‘holography’’ reorga-
nizes the dual gauge theory into theories defined over Hilbert subspaces of fixedR charge. The reorganization
breaks the SO(4,2)3SO(6) symmetry to a maximal subgroup SO(4)3SO(4) spontaneously. We argue that
the low-energy string modes may be regarded as Goldstone modes resulting from such a symmetry breaking
pattern.
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I. OVERVIEW

It has been known for some time that there is a cert
limit, so-called the Penrose limit, that any spacetime wh
solves the Einstein’s field equation reduces to a plane-w
background@1#. Roughly speaking, the plane-wave bac
ground refers to the spacetime close to a null geodesic.
assertion has been extended to supergravity background@2#,
involving, in addition to the metric, dilaton,p-form gauge
fields and fermionic partner fields. It was also realized@3#
that maximally supersymmetricpp-wave solutions@4–8# are
obtainable as the Penrose limit of the AdSp3Sq backgrounds
in ten-dimensional type IIB supergravity and 11-dimensio
supergravity. Remarkably, the first-quantized superstring
exactly solvable in thepp-wave background@9,10#, as the
Green-Schwarz string action is quadratic in the worldsh
variables.

Recently, Berenstein, Maldacena, and Nastase~BMN!
@11# argued that type IIB string theory on such app-wave
background with eight transverse directions is dual to
largeR-charge sector ofN54 supersymmetric gauge theo
in the largeN limit. They identified a certain class of lon
supermultiplet operators in the gauge theory with vario
string states. By summing over a class of Feynman diagra
they claimed that anomalous contributions to the scaling
mension of these operators indeed reproduce the dispe
relations predicted by the light-cone quantization. More s
nificantly, they proposed a concrete construction of the t
dimensional string in terms of the four-dimensional gau
theory variables. If correct, the construction marks sign
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cant progress beyond the AdS conformal field theory~CFT!
correspondence@14#, as it provides a dictionary for associa
ing the gauge theory operators for not just supergrav
modes, but for higher string modes as well. The BMN p
posal is also extended to backgrounds with less supers
metry @12,13#.

In this paper we substantiate aspects of the BMN p
posal. Specifically, we clarify the holographic relation b
tween the bulk string states and the boundary gauge th
operators. In doing so, we emphasize the crucial role pla
by the choice of the gauge theory vacuum, on which both
superconformal symmetry and theR symmetry are spontane
ously broken. In Sec. II, we contrast the bulk-boundary re
tions displayed in the AdS/CFT correspondence and thos
the pp-wave/Yang-Mills correspondence. In Sec. III, we
lustrate this by working out a profile of the supergrav
modes in thepp-wave background. In Sec. IV, we elabora
the pattern of the aforementioned spontaneous conformal
R-symmetry breaking. We emphasize that the dual ga
theory is a theory defined on Euclidean four-dimensio
space. We argue that holography relates the light-cone t
in the pp-wave background to the renormalization gro
scale in the dual gauge theory. We show that this ne
identified holography facilitates the nature of the string
terms of the dual gauge theory. In Sec. V, we discuss asp
of the enhanced supersymmetry in the dual gauge theory
conclude with remarks in Sec. VI.

II. AdS ÕCFT VERSUS pp-WAVE ÕYANG-MILLS

In the AdS/CFT correspondence, the dual conformal fi
theory resides on the boundary of the AdS space@14–16#,
and the radial direction of the AdS space plays the role
scale of the boundary theory@17–22#. Consider the global
coordinates in AdSd113Sd̄11 space with metric
©2002 The American Physical Society02-1
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ds25R2F2~11 r̄ 2!d t̄21
dr̄2

~11 r̄ 2!
1 r̄ 2dVd21

2

1~12 r̄2!dū21
dr̄2

~12 r̄2!
1 r̄2dV d̄21

2 G , ~1!

where the first and the second parts express the AdSd11 and
the Sd̄11 subspace, respectively. A bulk single particle st
of a given mass and spin, satisfying classical field equat
is specified by several ‘‘momenta’’: angular momentu
quantum numbers (l ,m1 , . . . ,md22) for the Sd21 part in
AdSd11 space and (l̄ ,m̄1 , . . . ,m̄d̄) for the Sd̄11, respec-
tively, and a principal quantum numbern for the remaining
radial coordinater̄ in AdSd11 space. The bulk energyv is
then given in terms of these quantum numbers by a dis
sion relation. In the dual conformal field theory, we ha
composite operators O$ l̄ ,m̄%( t̄ ,f1 , . . . ,fd21), where
( t̄ ,f1 , . . . ,fd21) denote coordinates ofR3Sd21. These
operators are decomposable into Fourier modes with a g
energyv and Sd21 spherical harmonics (l ,m1 , . . . ,md22).
The remaining quantum numbers (l̄ ,m̄1 , . . . ,m̄d̄) are en-
coded in the structure of the operators. For instance
AdS53S5, theS5 quantum numbers are encoded in the m
ner the six Higgs fieldsF1, . . . ,F6 of the N54 gauge
theory appear in the operator. As a concrete example, a
dilaton mode in AdS53S5 with S5 angular momentum
( l̄ ,m̄1 , . . . ,m̄d̄) is described by a set of chiral primary op
erators whose bosonic component is given by

Tr@FmnF
mnF ( i 1

•••F i l̄ )#~ t̄ ,f i•••fd21!, ~2!

in which the indicesi 1••• i l̄ are decomposed into irreducib
representations of SO(d̄). Fmn denotes the gauge fiel
strength. Likewise, chiral primary operators

Tr@F ( i 1
•••F i l̄ )#~ t̄ ,f i•••fd21! ~3!

describe modes of a linear combination of the four-form s
dual potential and the trace of the longitudinal graviton
ten-dimensions.

One can obtain the Penrose limit of Eq.~1! along a ge-
neric null geodesic as follows. Boost along the two isome
directions:

t5cosha t̄ 2sinhaū,
~4!

u52sinha t̄ 1coshaū,

and rescale two ‘‘radial’’ and light-cone coordinates:

r 5Rr̄, r5Rr̄, and x65
R

A2
~u6t !. ~5!

Then, take the limit

R→` and a→` ~6!
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x6,r ,r5fixed and
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A2R
[m5fixed. ~7!

The resulting spacetime is then reduced to

ds252dx1dx22m2~r 21r2!~dx1!21dr2

1r 2dVd21
2 1dr21r2dV d̄21

2

52dx1dx22m2~x21y2!~dx1!21dx•dx

1dy•dy, ~8!

where we have defined transverse coordinatesx,y which de-
scribe theRd made out ofr and Sd21, andRd̄ made out ofr
and Sd̄21, respectively. Even though the metric exhibits S
(d1d̄) isometry, it turns out the RR five-form field strength
break it to SO(d)3SO(d̄).

A novel feature of thepp-wave background is that th
single particle bulk states are now given in terms of cert
harmonic oscillator quantum numbers (n1•••nd) and
(m1•••md̄) for a given value of the momentum conjugate
x2, which we call p2[2p1. The light-cone energyp1

[2p2 is then given by a dispersion relation. We will i
lustate this later in this section. According to the BMN pr
posal, with these harmonic oscillator quantum numbers,
chiral primary operators dual to a single-particle bulk st
with the lowest light-cone energy, which turns out to be
linear combination of the self-dual RR four-form potenti
and trace of the graviton, take the form

( Tr@Z•••ZZ~Di 1
Z!ZZ•••ZZFa1ZZ•••ZZ

3~Di 2
Z!ZZ•••ZZFa2ZZ•••#. ~9!

Here, along a string ofJ factors ofZ[(F51 iF6), one dis-
tributesni insertions of (DiZ) and ma insertions of ‘‘trans-
verse’’ Higgs fieldsFa (a57, . . . ,10).Then,F5 andF6 are
the two remaining, ‘‘longitudinal’’ Higgs fields in theN54
gauge theory. The sum is over all distinct~up to cyclic per-
mutation! locations of the operatorsDiZ andFa in the string
of Z’s. The quantum numberJ is related to the light-cone
momentump1 by the relation

p15
1

2R2 S 2J1(
i 51

d

ni1 (
a51

d̄

maD . ~10!

For other single-particle supergravity states such as the d
ton, one needs to insert an operatorFmnF

mn inside the
‘‘ Z-string.’’ For higher string-mode states, each term in t
sum is weighted by a phase-factor, which depends on
location of the various operators in the string ofZ’s.

Note that all the bulk quantum numbers appear in t
structure of the dual gauge theory operators, Eq.~9!. This is
in sharp contrast to the AdS/CFT correspondence, wh
only half of the quantum numbers reside in the opera
2-2
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structure. There, the remaininghalf were encoded as depen
dence of the operator on coordinates of the four-dimensio
spacetime, the boundary of AdS5, on which the dual gauge
theory resides. Evidently, the operators in Eq.~9! cannot be
regarded as functions of the coordinates of the fo
dimensional spacetime, as that would result in more quan
numbers than needed for specifying a given single part
supergravity or string state in the bulk.

In subsequent sections, we will argue that the ga
theory dual to thepp-wave background Eq.~9! resides on a
Euclidean four-dimensional space, which may be taken to
the R4 spanned byx coordinates. Precise form of the du
gauge theory operators are then given in terms of the H
mite transformation of local operators defined onR4. The
fact that this space has to be Euclidean, rather t
Minkowski spanned by light-cone coordinates and part
R4, follows from the correspondence between the opera
Eq. ~9! and the one-particle states of the bulk supergravity
string theory. The latter states are described in terms of
(d1d̄) set of simple harmonic oscillator operators with i
dices in a Euclidean space. For a string theory defined in
bulk, these oscillators also carry a label for the level num
@9#. As we will see, this observation leads naturally to
interpretation ofx1 as the holographic bulk coordinate in th
Penrose limit, so that evolution inx1 in the bulk generates
scale transformation in the dual gauge theory.

From the point of view of the Yang-Mills theory we wil
argue that selecting a sector with a fixed SO~2! chargeJ is
tantamount to a spontaneous breaking of the confor
group SO~4,2! to SO~4! and theR-symmetry group to SO~4!
as well. The low-energy fluctuations are then the Goldst
modes of the broken symmetries. The representation of th
operators in terms of Hermite transforms then follows in
natural fashion.

III. SUPERGRAVITY MODES IN pp-WAVE
BACKGROUNDS

Let us first consider the equation satisfied by the dilaton
the (d1d̄11) dimensionalpp-wave background. Conside
a minimally coupled, massless scalar fieldD whose field
equation is given in the global coordinates Eq.~8! as

F2]2]12m2~x21y2!]2
2 1(

i 51

d

]xi
2

1(
j 51

d̄

]yj
2 G

3D~x1,x2,x,y!50. ~11!

The normal modes withp2.0 are given by

Dp1 ,p2 ,n,m~x1,x2,x,y!

5e2(1/2)mp2(x21y2
))

i 51

d

Hni
~Amp2xi !

3 )
a51

d̄

Hma
~Amp2ya!3exp~ ip2x21p1x1!,

~12!
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whereHn(x),Hm(y) denote the Hermite polynomials.1 The
states of this scalar field theory are therefore created from
bulk Fock-space vacuum by creation operato
a†(ni ,ma ,p1) in a light cone quantization. In a first quan
tized theory of particles in this background, states are crea
by creation operatorsci†,ca†:

ci5~pi1 ixi !/A2 and ci†5~pi2 ixi !/A2,

ca5~pa1 iya!/A2 and ca†5~pa2 iya!/A2,

where the indicesi ,a refer to the transverse directions alon
Rd3Rd̄, spanning a (d1d̄) dimensional transverse spac
The bulk dispersion relation is then given by

p25
1

2
p15

m

2 S (
i 51

d

ni1 (
a51

d̄

ma1
1

2
~d1d̄!D . ~13!

Note that the value ofp1 is independent of the value ofp2 .
This is because the supergravity modes are massless
massive, string oscillation fields, the dispersion relation
pends explicitly onp2 . The sum over zero-point energies
standard. We will see that, for the explicit example of a te
dimensionalpp-wave background, this zero-point energy
precisely what is required for precise correspondence w
appropriate operators in the dual gauge theory. We note
future reference, that the dispersion relation for the mo
which is a linear combination of the four form RR potenti
and the trace of the longitudinal graviton does not cont
this zero-point fluctuation.

It is natural to expect that the dual gauge theory has
erators which are Hermite transforms of local operators
fined on theR4 spanned byx.

O@n#5H.T.@O#, ~14!

where the Hermite transform of a generic operatorO(x) on
Rd is defined as

H.T.@O#5
1

NE dm@x#)
i 51

d

Hni
~Amp2xi !O~x!, ~15!

whereN is a normalization factor, and the measure is giv
by

dm@x#ªddxe2(1/2)mp2x2
.

Using the standard recursion relation for Hermite polynom
als these can be reduced to expressions with derivatives oO
and no factors of the Hermite polynomials.

1Note that, because of the harmonic potential provided by
second term in Eq.~11!, there is no real distinction between no
malizable and non-normalizable modes forp2.0. The modes with
p250 are notL2 normalizable, but ared-function normalizable.
2-3
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It may be useful to formally define operators on
Rd3Rd̄ by introducing a set of fiducial coordinatesy for the
Rd̄. Performing the Hermite transform on this eigh
dimensional space,

H.T.@O#5
1

NE dm@x#dm@y#)
i 51

d

Hni
~Amp2xi !

3 )
a51

d̄

Hma
~Amp2ya!O~x,y!.

Using recursion relations obeyed by the Hermite polyno
als, one can then express the Hermite transform in term
derivatives with respect toy, which in turn become commu
tators with Higgs fields inside the operator.

A. Dilaton

In the ten-dimensionalpp-wave background, the dilato
field equation take the same form as Eq.~11!. Thus the light-
cone energy spectrum of the dilaton state is given by

Edilaton5
m

2 S (
i 51

4

ni1 (
a51

4

ma1
1

2
~414!D . ~16!

According to the BMN proposal, the light-cone energy~mea-
sured in units ofm/2) ought to match with (D2J) of a
gauge theory operator dual to the dilaton. A single insert
of FmnF

mn, which carriesD54 andJ50, inside theZ string
in Eq. ~14! is precisely what we need to match the zero-po
light-cone energy. Interestingly, in providing the requis
zero-point energy (414)/254, four-dimensionality of the
internal spaceR4̄ has played a crucial role.

The ground-state of dilaton single particle states co
sponds ton5m50. For the states with higher energy, usi
the recursion relation of Hermite polynomials, we dedu
that the corresponding operators are precisely insertion
the ‘‘transverse’’ Higgs fields and covariant derivatives, v
a set of operators of the form

Tr@FmnF
mnZZ•••ZZFa1ZZ•••ZZ

3~DiZ!ZZ•••ZZFa2ZZ•••#.

B. Longntudinal graviton and four-form potential

Thepp-wave background is supported by a homogene
RR 5-form field strength

F1123451F156785m,

giving rise to Eq.~1! through the Einstein’s field equation
As such, degrees of freedom of the graviton and the fo
form Ramond-Ramond~RR! potentials would mix each
other. More precisely, expanding type IIB supergravity fie
equations of the metric and the RR four-form potential
linear order fluctuations,hmn ,cmnab , and taking the light-
cone gaugehm250, cmna250, we find that the mixing takes
04600
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place between the traces of the graviton and the scalars o
RR four-form potential. We thus denote these modes as

h:5hi j d
i j and cª

1

4!
e i jkl ci jkl ,

h̄:5hmnd
mn and c̄ª

1

4!
emnpqcmnpq.

These fields are singlets of the two SO~4!’s on R43R4̄, re-
spectively.

Then, the linearized field equations exhibiting the mo
mixing are given by

DLh216m]2c50,

¹2c22m]2h50,

whereDL stands for the Lichnerowitz operator for the spin
graviton. Utilizing the fact that (LLh) i j 52 1

2 ¹2hi j and di-
agonalizing the two coupled equations, we obtain sca
mode field equations

@¹228im]2#~h14ic !50 ~17!

and its complex conjugated equation for (h24ic). Exactly
the same set of equations hold forh̄ and c̄ as well.

The field equation~17! is soluble exactly as in the dilato
case. We find that the light-cone spectrum of the (h14ic)
complex ‘‘scalar’’ field is given by

EZ2scalar5
m

2 S (
i 51

4

ni1 (
a51

4

ma1
1

2
~414!D 22m

5
m

2 S (
i 51

4

ni1 (
a51

4

maD>0.

On the right-hand side of the first expression, the first and
second terms are contributions from¹2 and 28im]2 , re-
spectively. Evidently, the zero-point energy arising fro
fluctuations along the eight transverse directions is cance
precisely by the classical contribution22m to the light-cone
energy. Hence along with the second set of complex ‘‘s
lar;’’ field ( h̄14i c̄), we conclude that there are two bu
‘‘scalar’’ modes yielding the minimum of the light-cone en
ergy ~in units of m/2) to be zero. These bulk ‘‘scalar’’ fields
are then identified with the dual gauge theory operators

Tr@ZZ•••ZZ•••ZZ#,

viz. theZ-string, first introduced by BMN.
In contrast, the complex-conjugate ‘‘scalar’’ fields (h

24ic) and (h̄24i c̄) are subject to the classical contributio
12m to the light-cone energy. It implies that the minimu
of the light-cone energy is~in units ofm/2) 18, instead of 0,
rendering the corresponding dual gauge theory operator
volving eight powers ofFa’s distributed along theZ-string.
2-4
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IV. PENROSE CONTRACTION, SPONTANEOUS
SYMMETRY BREAKING, AND EUCLIDEAN DUAL

GAUGE THEORY

We now turn to the dualN54 supersymmetric gaug
theory. This theory is invariant under SO(4,2)^ SO(6),
where SO~6! refers to the internalR symmetry. We denote
the generators of SO~4,2! asJAB with A,B51, . . . ,6,where
5,6 are the directions with negative signature, and thos
SO~6! as JUV with U,V57, . . . ,12. In terms of JAB , the
generators of the conformal group are

Ji j , Pi5J5i1J6i , Ki5J5i2J6i , D15J56 ~18!

with i , j 51, . . . ,4. Thesame can be done for the generato
of SO~6!, and we defineJab ,Pa ,Ka ,D2 accordingly, where
a,b57, . . . ,10 andD25J11,12.

Let us now assume that there exists a vacuum state
which the SO(4,2)̂ SO(6) is broken spontaneously
SO(3,1)̂ SO(4), viz. standard symmetry breaking patte
preserving Lorentz plus ‘‘transverse’’ internal symmetrie
The number of generators of broken symmetries is 18,
nine nonlinearly realized symmetries for each product gro
The generators of the broken symmetries
Pi ,Ki ,Pa ,Ka ,D1 ,D2 and the generators of the unbroke
symmetries are theJi j for the Lorentz group SO~3,1! and the
Jab for the internal symmetry group SO~4!. One easily finds
that generators of the broken symmetries satisfy the follo
ing commutation relations

@Pi ,Ki #5D1 and @Pa ,Ka#5D2 .

These commutation relations are very suggestive. If
were to put aside the fact thatD1 and D2 do not commute
with the P’s andK ’s, one may try to interpret the previou
commutation relations as defining two Heisenberg algeb
h(4)% h(4), each one with eight generators, for whichD1
and D2 are the two central extensions. This interpretati
as it stands, is not viable if one just considers the stand
symmetry breaking pattern SO(4,2)^ SO(6) to
SO(3,1)̂ SO(4): D1 and D2 are not central terms and w
cannot organize the generators of the broken symmetrie
terms of two Heisenberg algebras. It is precisely at this po
where the existence of supergravity/string duals and the c
cept of the Penrose contraction can help us to define a
ferent pattern of the symmetry breaking.

A. Penrose contraction

As is well known, the symmetry algebr
SO(4,2)̂ SO(6) of N54 gauge theory are realizable a
isometries of the AdS53S5 spacetime. The Penrose limit re
capitulated in Sec. II preserves the total number of Killi
vectors but can change their algebraic relations. In particu
if we perform the Penrose limit on a generic light geodesic
AdS53S5 the Killing vectors define the algebra@h(4)
% h(4)# % so(4)% so(4), where the bracket is to emphasiz
the fact that two Heisenberg algebras share the same ce
extension. The extra Killing vector defines an out
automorphism of the Heisenberg algebras. We interpret
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Penrose limit as defining a sort of spontaneous symm
breaking from SO(4,2)̂ SO(6) to SO(4)̂ SO(4) with the
18 generators of the broken symmetries defining the
Heisenberg algebras h~4!’s and the outer automorphism.

As the simplest illustration, consider AdS23S2, relevant
for the near-horizon geometry of four-dimension
Bogemol’nyi-Prasad-Sommerfield~BPS! black holes. In this
case, the symmetry group is SO(1,2)^ SO(3) with six gen-
erators that we will denoteP1 ,K1 ,P2 ,K2 ,D1 ,D2. They sat-
isfy, in particular,@P1 ,K1#5D1 and @P2 ,K2#5D2.2 In the
Penrose limit,Pi ,Ki become the generators of two Heise
berg algebras and theDi ’s produce the common central term
and the outer automorphism. In fact, denoting the Penr
scaling byV, we getDi(V)5di ,0V221di ,11di ,2V21•••

with d1,05d2,0. The central term is defined bydi ,0 and the
outer automorphism by (di ,12di ,2). Expansion ofDi(V) is
then interpretable as a perturbative expansion in power
the Penrose scaling parameter,V.

An important aspect of the Penrose limit in the case
AdS53S5 considered by BMN is that the unbroken symm
try is SO(4)̂ SO(4). Inother words, if we want to use th
Penrose contraction as a pattern of the symmetry brea
for the dualN54 gauge theory, we should assume that
vacuum is invariant not under the Lorentz group but unde
rotation group in a four-dimensional Euclidean space. Insi
to this possiblity can be gained by recalling aspects of sp
taneous conformal symmetry breaking, studied thoroug
some time ago@23,24#. The idea was to assume an under
ing theory invariant under the conformal group and, af
spontaneous conformal symmetry breaking, to study the l
energy physics of the corresponding Goldstone bosons.
first peculiar aspect of the spontaneous conformal symm
breaking, SO~4,2! to SO~1,3!, is that the generators of trans
lations are part of the broken symmetries. Being so, only
generators of special conformal transformations and dila
tions were considered@23# as real Goldstone bosons. A con
sequence of this is that these Goldstone bosons, contra
the standard case, are not massless as the broken symm
do not commute with the Hamiltonian, viz. with translatio
in time. In the Penrose contraction, we are facing a sim
problem. If we considerN54 gauge theory and the standa
spontaneous breaking pattern to SO(3,1)^ SO(4), we are in-
cluding among the broken symmetry generators the tran
tion generators in physical time as well as the spatial tra
lation generators. If we try to understand this breaking in
old-fashioned approach@23#, we need to organize the 18 bro
ken symmetries into a set of nine massless Goldst
bosons, corresponding to the spontaneous breakdown o
internal symmetry SO~6!, five massive Goldstone boson
corresponding to the special conformal transformations
dilatations that do not commute with the Hamiltonian a
four translations. This is certainly not the picture we get
we use Penrose contraction. In the Penrose contraction
organize the 18 broken symmetries into a Heisenberg alg
h~8! and an outer automorphism. What now remains is

2In @6# the generatorsPi ,Ki ,Di correspond, respectively, to th
Killing vectors Ei ,Ei* ,e i .
2-5
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concrete interpretation of the Heisenberg algebra h~8! and
the outer automorphism entirely within the dual gauge the
formulation.

B. Dual gauge theory is Euclidean

Let F i i 55•••10 be the Higgs fields ofN54 super Yang
Mills theory. Following BMN, define the fieldZ5(F5
1 iF6), and denote byJ the SO~2! R charge corresponding
to rotations in the internal~5,6!-plane. Consider decompos
ing the gauge theory Hilbert space into infinite towers
Hilbert subspaces of definiteJ quantum number. Evidently
on each subspace, Fock-space ‘‘ground state’’ breaks the
ternal SO~6! spontaneously to SO~4!. We denote the Fock
space vacuum withR charge equal toJ as u0&J . We will be
interested in the Hilbert space of quantum fluctuatio
around this vacua. The first thing to be done is characteriz
the stateu0&J . The simplest way to define this state is

Tr~ZJ!~x50!u0&YM ,

where u0&YM refers to the perturbative vacuum of the du
N54 gauge theory. The dual gauge theory is defined on
Euclidean space,R4, and is not relateda priori to Euclidean-
ized N54 super Yang-Mills theory defined onRt3R3 after
the Wick rotation. OnR4, a local operator Tr(ZJ)(x) is ex-
pandable in a complete basis of the Hermite polynomials

Tr~ZJ!~x!5(
$n%

cn)
i 51

4

@e2L2xi
2
Hni

~Lxi !#, ~19!

where L is a scale defined within the dual gauge theo
which will be determined later. Thus we can write

u0&J5cn50u0&YM . ~20!

The Hilbert space of quantum fluctuations is generated
statesun&J5cnu0&YM . For instance, we get

(
l

Tr„Zl~DiZ!ZJ2 l
…~0!u0&YM5uni51&J .

One can define creation and annhilation operatorsb0
i andb0

i†

obeying the canonical commutation relation@b0
i ,b0

j †#5d i , j

such that

b0
i†u0&J5uni51&J .

These operators generate the Heisenberg algebra h~4!. As we
are working inN54 gauge theory, we can also consid
fluctuations with respect to the internal directions, namel

(
l

Tr„Zl~DaZ!ZJ2 l
…~0!u0&YM

;(
l

Tr~ZlFaZZJ2 l !~0!u0&YM

with a57, . . . ,10. In the large-J limit, one can represen
these states in terms of the same type of creation and an
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lation operators as before, viz.una51&Js5b0
a†u0&J . Both b0

i

with i 51, . . . ,4 andb0
a with a57, . . . ,10transform as vec-

tors under the two SO~4!’s, respectively. From now on, we
will denote them collectively as b0

i ,b0
i† with i

51, . . .,4,7, . . . ,10. These operators generate the Heise
berg algebra h~8!. Note that this is true only in the large-J
limit and for Euclidean gauge theory. In view of the BM
proposal, it is quite natural to identify this Heisenberg alg
bra h~8! with the similar Heisenberg algebra encountered
the Penrose contraction of SO(4,2)^ SO(6).

The next step would be to identify, within the dual gau
theory, the physical meaning of both the central extens
and the outer automorphism. In the original theory invaria
under SO(4,2)̂ SO(6),there are two generators of the sym
metry algebra that are of special importance, viz. the gen
tor of dilatations of the space-time coordinates and the g
eratorJ of the SO~2! R symmetry. Inferring the discussion o
the Penrose contraction in Sec. II, we ought to expect
both the central extension and the outer automorphism
associated with these two generators. In the dual ga
theory, these generators have a very clear physical mean
the generator of space-time dilatations will define thescaling
dimensionD of operators and the generatorJ the correspond-
ing R charge. Note that in the AdS5 realization of SO~4,2!
the embedding coordinatesXA, A51, . . . ,6 @with (X1)2

1(X2)22(X3)22•••(X6)25R2# are given in terms of the
global coordinates (t̄ , r̄ ,f i) as

X15RA11 r̄ 2cost̄ ,

X25RA11 r̄ 2sin t̄ , ~21!

Xa5Rr̄va ~a53, . . . ,6!,

whereva denotes the embedding coordinates of a unit3.
The standard ‘‘dilatation’’ generator of the SO~4,2! group,
which is J12, generates translations in global timet̄ . In the
Penrose limit, r̄→0 with r 5Rr̄ held fixed. ThusXa(a
53, . . . ,6) areO(1) and becomeunconstrained, while
X1,X2 are ofO(R). The dual gauge theory is now defined o
the Euclidean planeX3, . . . ,X6 and J12 generates the scal
transformations on thisR4 subspace as in the standard re
ization of the SO~4,2! group. Let us denote the eigenvalu
of these generators, for a given operator, asD andJ, respec-
tively. For the stateu0&J , we have

Du0&J5Ju0&J and Ju0&J5Ju0&J ,

while, for states of typeb0
i†
•••b0

i†u0&J , we haveD5(J
1n), wheren refers to the number ofb† oscillators andJ
5J. Thus, on these states, we have (D1J)52J1n and
(D2J)5n. If we work in the limits of large-J, large-N, and
small-n limits with

g2Nªl2→`, J2→`, and
l2

J2
ªgeff

2 →finite,

~22!
2-6
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we observe that (D1J)l becomes the true central extensi
commuting with theb0

i andb0
i† operators,3 and that (D2J)

is simply the number operator for theb0
i ,b0

i† oscillators and
therefore is a true outer automorphism of the Heisenb
algebra.

In summary, built only upon Euclidean gauge theo
residing on R4 subspace, we succeeded in finding
SO(4)̂ SO(4) invariant vacuum and a representation of
Heisenberg group H~8! in terms of creation and annhilatio
operators acting on the Hilbert space of small quantum fl
tuations. The corresponding outer automorphism is just
number operator. Note that the vacuum stateu0&J is not only
invariant under SO(4)̂ SO(4) but also with respect to th
one-parameter group generated by the outer automorph

So far, we have considered only the modes which
chiral primaries. The scaling dimensionD of the correspond-
ing operator is

D5S J1(
i 51

4

ni1 (
a51

4

maD , ~23!

where there areni insertions ofDiZ, andmj insertions ofF j .
Supersymmetry descendants of these would contain fac
involving the gauge field, as discussed in Sec. III. Consid
for example, the dilaton. The operator dual to this should
the integral of

Tr@FmnF
mnF ( i 1

•••F i l̄ )#~ t,f i•••fd21!.

For such operators, the scaling dimensionD is given by

D5J1(
i 51

4

ni1 (
m51

4

ma14. ~24!

These relations are consistent with our interpretation of
holographic coordinate.

The scaling dimensionD of the dual operator is, howeve
the eigenvalue of the operatori ] t in the bulk theory. TheR
charge is of course the eigenvalue ofi ]u . These relations are
in accord with the solutions of the bulk wave equations. Ta
the dilaton as an example. From Eq.~13! with d54 and d̄
54, we have

p25~D2J!5
m

2 S (
i 51

4

ni1 (
a51

4

ma14D ~25!

and find precise agreement with Eq.~24!. From the bulk
point of view, the additive factor 4 appears as a zero po
energy. From the gauge theory viewpoint, this reflects
presence ofFmnF

mn in the operator. For the bulk mod
which is a fluctuation of the four form RR potential, this ze
point energy is absent, which is consistent with the abse
of any factor of gauge field strength in the dual operator.
the J→` limit, D→` as well. However,p15(D2J) re-

3Notice that once we identify this term with the central extens
of the Heisenberg algebra we need to normalize theb0

i andb0
i† so

that they obey the canonical commutation relations.
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mains finite. This is the reason why, though it appears nat
to considert as a holographic direction from the bulk poin
of view, it is actually more natural to considerx1 as the
holographic direction from the gauge theory point of view

The relation Eq.~25! reflects an important difference be
tween thepp wave and AdS backgrounds. In the standa
AdS5 /CFT4 correspondence, the gauge theory operators
labeled by the angular momenta (l ,m1 ,m2) on theS3 where
the gauge theory lives, theR symmetry quantum number

( l̄ ,m̄1•••m̄4), and the energyv. The operators which are
dual to the single-particle modes in AdS53S5 have the prop-
erty that their conformal dimension depends on theR sym-

metry quantum numbers (l̄ ,m̄1•••m̄4), but not on v or
( l ,m1 ,m2). This is reflected in the bulk wave function a
well. Here, the radial coordinate is identified with the R
direction and, to read off the dimension of the correspond
gauge theory operator, one has to look at the radial dep
dence of the wave function near the boundary. As is w
known ~and is in fact a consequence of conformal inva
ance!, the radial dependence isindependentof the angular
momentum in AdS5 and the energy, but does depend on t
angular momentum on S5. The previous discussion show
that, in order to read off the conformal dimension in t
Penrose limit, one has to look at thetime dependence of the
bulk wave function. It is clear from Eqs.~12! and ~13! that
this depends onall the quantum numbersni andma . In the
gauge theory, this is reflected by the fact that the dimens
of the dual gauge theory operators also depends on all o
ni ,ma quantum numbers.

Finally, it should be clear from the definition of the op
erators that one needs to introduce a cutoff mass scaleL.
Inferring expressions for the normal modes of the bulk fiel
it is natural to choose the scale to be given, up toO(1)
numerical factor, by

L5mp2 . ~26!

At first sight, this identification appears strange. It wou
mean that one needsa priori a different scale for each op
erator asp2 is defined by (D1J)/l. However, in the ap-
proximation adpoted Eq.~22!, ni ,ma!J. As such, p2

;J/l;O(1). This implies that all the operators involve
are governed universally by a common renormalizat
scale.

C. Light-cone holography

Once we have defined the outer automorphism, call itH,
we can trivially use it to define a one parameter family
operators. In fact, we can introduce a formal parameterx1 as
a conjugate variable toH and define

(
l

Tr„Zl~DiZ!ZJ2 l
…~0,x1!u0&5e2 ix1Hb0

i†u0&J .
2-7
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This is a trivial and certainly not an interesting way to intr
duce an extraholographiccoordinate in the Euclidean gaug
theory. In fact, what we get is simply

(
l

Tr„Zl~DiZ!ZJ2 l
…~0,x1!u0&YM

5e2 ix1(D2J)(
l

Tr„Zl~DiZ!ZJ2 l
…~0!u0&YM ~27!

and the outer automorphismH5 i ]x1. If we wish, we can
also introduce another holographic coordinate, sayx2, con-
jugate to the central extensionC5(D1J)/l by

(
l

Tr„Zl~DiZ!ZJ2 l
…~0,x1,x2!u0&YM

5eix2Ce2 ix1Hb0
i†u0&J .

This dependence onx2 is trivial, as it is the same for al
operators. It depends only on the particular finite value
choose forg2N/J2 in the double large-J and large-N limit.
Once we introduce the coordinatex2, the central extensionC
can be represented as2 i ]x2.

We can readily make contact with the spacetime Killi
vectors in the Penrose limit. To illustrate this, consid
the case of AdS33S3. In the Penrose limit, the
isometry group SO(2,2)̂ SO(4) is contracted to
@H(2)^ H(2)# ^ SO(2)̂ SO(2). We areinterested in the
generators of the Heisenberg groups H~2!’s:

Pi~x1!5cos~mx1!
]

]xi
1mxi sin~mx1!

]

]x2
,

Ki~x1!5sin~mx1!
]

]xi
2mxi cos~mx1!

]

]x2
.

These are the generators that we should put in corres
dence with the operatorsb0

i andb0
i† in the dual gauge theory

As discussed above, the operator2 i ]x2 plays the role of the
central extensionC of the Heisenberg algebra. In the sta
dard coordinate-momentum notation, we can write

Pi~x1!5pi cos~mx1!1mCxi sin~mx1!,

Ki~x1!5pi sin~mx1!2mCxi cos~mx1!,

where the parameterC represents the central extension ter
and

@pi ,xj #52 id i
j .

Evidently, we can write

Pi~x1!5e2 ix1HPi~0!e1 ix1H ~28!

for H the light-cone Hamiltonian defined byH5 i ]x1. This
shows that the HamiltonianH is the outer automorphism o
the Heisenberg algebra.
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We close this section with comments. Quantum mecha
cally, the valueD of the scaling dimension is corrected b
the contribution of anomalous dimensions, whereas the va
J of the R-symmetry charge remains unchanged. As su
one ought to expect quantum corrections to the outer a
morphism (D2J). How is it corrected? The interaction pa
of N54 gauge theory contains a term of the ty
(1/2pg2)Tr@Z,Fa#@Z,Fa#. This term induces nonvanishin
transitions of the type:

^Tr~ZlFaZJ2 l !~x!Tr~Zl 11FbZJ2( l 11)!~0!&

5dab2pg2NI~x!
1

4p2x2J22
~29!

and

^Tr~ZlFaZJ2 l !~x!Tr~ZlFbZJ2 l )!~0!&

5dab2pg2NI~x!
1

4p2x2J22
.

The functionI(x) is given by

I ~x!5
1

4p2loguxuL1finite,

where L defines the ultraviolet cutoff. Both contribution
cancel each other, meaning that, for operators of the t
( l Tr„Zl(DiZ)ZJ2 l

… or ( l Tr(ZlFaZJ2 l), the value of (D
2J) is not corrected at least at first-order in the weak co
pling perturbation theory. As pointed out by BMN alread
the situation is different for operators of the type

(
l

ei (2pnl/J) Tr„Zl~DiZ!ZJ2 l
… ~30!

or

(
l

ei (2pnl/J) Tr~ZlF iZ
J2 l ! ~31!

modulated by the ‘‘separation-dependent’’ phase-factors.
will discuss aspects of these corrections in the next sect

D. Strings out of dual gauge theory

Let us first recapitulate what we have done so far.
have considered EuclideanN54 gauge theory around
vacuum state invariant under SO(4)^ SO(4) and under the
outer automorphismH. The Hilbert space of small fluctua
tions around this vacua define a representation of the Hei
berg algebra h~8!. The outer automorphismH is simply the
number operator associated with the creation and annih
tion operators generating h~8!. In addition, using the gravity
dual of the MinkowskianN54 gauge theory, we can defin
a precise map between the creation anhilation operators
the outer automorphismH on the dual gauge theory side an
the Killing vectors in the Penrose limit of AdS53S5 on the
gravity side. The formal conjugate variables of the Ham
2-8
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tonianH and the central extensionC become the coordinate
x1 andx2 of the Penrose limit of the bulk spacetime.

Probably the most surprising result of all this is the co
nection between the Penrose limit of MinkowskianN54
gauge theory and the EuclideanN54 gauge theory around
particular vacua. The main reason for this strange connec
has to do with the peculiarities of spontaneous breakdow
conformal invariance. In fact, one can in principle think
this as a spontaneous breakdown of SO~4,2! to the Euclidean
subgroup SO~4!. In this case, the Lorentz invariance of th
original Minkowskian theory should be hidden somehow
the dynamics of the Goldstone bosons around the vacua
to break the conformal symmetry spontaneously.

How then is the Lorentz invariance realized in the Hilb
space of small fluctuations around the chosen vacuau0&J?
The answer descending from the BMN proposal is quite s
prising and in fact extremely interesting. It asserts that
Hilbert space of small fluctuations of the EuclideanN54
gauge theory around the vacuau0&J in the large-N and large
J limit is the Hilbert space of a ten-dimensional string theo
in a suitable Minkowskian background.

To understand this, we begin with recalling some sali
facts of string dynamics in the light-cone gauge. In flat te
dimensional spacetime and for the bosonic sector, the li
cone gauge-fixed string is defined by:

~i! string oscillators: infinite tower of Heisenberg algebr

@an
i ,am

j †#5dn,md i , j

with i , j 51, . . . ,8 thetransversal coordinates;
~ii ! light-cone Hamiltonian:

HLC5(
n

n

2a8p1
an

†an1~H.c.!;

~iii ! string parameter space: total length of the light-co
string is given byp1; and

~iv! Virasoro constraint: infinite tower of constraints sa
isfying the Virasoro algebra.

The way a string dynamics emerges out of the Euclid
N54 gauge theory around the vacuumu0&J relies crucially
on the existence of the Heisenberg algebra h~8! and of the
outer automorphismH. In order to establish a connectio
between the two structures, the first thing we should do i
extend the Heisenberg algebra h~8! to an infinite family of
Heisenberg algebras of the type displayed in~i!. Remarkably,
this is achieved by the phase-factor-modulated operators
troduced first by BMN:

(
l

ei (2pnl/J) Tr~ZlFaZJ2 l !~0!u0&YMªbn
i†u0&J .

One can show readily that the newly introduced creation
annihilation operators obey the requisite infinite towers
Heisenberg algebras:

@bn
i ,bm

j †#5dn,md i , j ~m,n50,1,2, . . . !.
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Compared to the light-cone string in flat spacetime, the m
difference is the existence of the Heisenberg algebra for
b0

i ,b0
i† harmonic oscillator operators. In fact, in flat spac

time, one only has the Heisenberg algebra for the center
mass part

@x0
2 ,p1#5 i .

Let us now see how the outer automorphismH is modified
by quantum effects. As computed by BMN, the scaling
mensionD for the statebn

i†u0&J is given in first-order in
perturbation theory by

D5J1118pg2FcosS 2pn

J D21G . ~32!

Thus the outer automorphism at the quantum level is gi
by

H5~D2J!5118p2g2NFcosS 2pn

J D21G
511

2pg2N

J2
n21•••,

where, in obtaining the second expression, we have taken
large-J and large-N limit. We thus find that

HLC5(
n
A11

n2

~p1!2
bn

†bn ~33!

providedthe parameters are identified as

~p1!25
J2

g2N
5

1

geff
2

.

This is the light-cone Hamiltonian of a string in the Penro
limit of AdS53S5 with a nonvanishing RR five-form field
strength background. This RR background is in fact cruc
to match the units consistently. The light-cone Hamiltoni
in the pp-wave background with constant RR field is

Am21
n2

a8~p1!2
.

In order to make contact with what we get from theN54
gauge theory, we need to use dimensionless quanti
namely,a8•m. In other words, in order to map the strin
theory into the dual gauge theory, we need two independ
scales in the string theory. In addition to the slope parame
a8, this requires turning on the RR five-form field streng
background,m.

One thing we have not elaborated on in detail is the str
Virasoro constraints. We end this section with brief rema
on this issue. By inserting phases into the dual gauge the
operators, the Heisenberg algebra h~8! is extended to the
family of Heisenberg algebras Eq.~32!. It is also natural to
extend the outer automorphism to this collection of Heis
2-9
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SUMIT R. DAS, CESAR GOMEZ, AND SOO-JONG REY PHYSICAL REVIEW D66, 046002 ~2002!
berg algebras by introducing operatorsHn (n50,1,2, . . . )
such that@Hn ,bm#5bn1m and H05H for the light-cone
Hamiltonian H. These outer automorphisms then gener
the string Virasoro algebra. A very interesting question l
for the future would be to uncover meaning of these Viras
constraints entirely within the dual gauge theory viewpoi

E. Light-cone Hamiltonian and renormalization group flow

The renormalization group equation for the correlat
^O(x)O* (0)& is

@m]m12g~O!#^O~x!O* ~0!&50,

where m refers to the renormalization group scale.
we consider the phase-modulated operatorO
5(ne2pnl Tr(ZlFaZJ2 l), in the large-J and large-N limit,
we get

2g~O!5~D2J!@O#21, ~34!

where (D2J)@O# is the value of (D2J) for the operatorO.
This equation is reexpressible in a more suggestive form

2g~O!O5@H,O#2O,

whereH is, as usual, the string light-cone Hamiltonian (L0

1L̄0).
Note that the anomalous dimensiong(O) appearing in

Eq. ~34! is, for the operatorO5(ne2p inl Tr(ZlFaZJ2 l),
given by

g~O!5Jg~Z!1g~Fa!,

whereg(Z) represents the anomalous dimension of the
eratorZ. Generically, the anomalous dimensiong(Z) is af-
fected by radiative effects through the self-ener
corrections.4 If not protected by supersymmetry, these co
tributions would go asg2N and the connection with the
string light-cone Hamiltonian would be lost. Moreover, t
scaling dimension of the operatorsO, in that case, would
grow with ’t Hooft’s coupling constant and eventualy disa
pear out of the physical spectrum. In the supersymme
case we are considering, supersymmetry rendersg(Z)50.
This is the reason behind regardingg(O) as the anomalous
dimension of the fieldFa’s. From the previous discussion,
should be evident that changes in the holographic coordi
x1 are equivalent to changes of the renormalization gro
scalem if we interpret (D2J) as the anomalous dimension5

4These are so-called zero-momentum effects in the nomencla
of BMN.

5Definition of the renormalization groupg(O) as (D2J) or as
(D2J)21 depends on whether one adpots the canonical dim
sions for the fields and masses or not. For a lucid discussion on
point, see@25#.
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V. SYMMETRY ENHANCEMENT AS
‘‘ POST MORTEM’’ EFFECT

In recent papers@12,13#, the results of BMN have been
generalized to gauge theories with less supersymmetry
particular, to the gravity duals of AdS53T1,1. The fact that
the Penrose limit of this space is the same as the one
AdS53S5 raises the question regarding the reason beh
supersymmetry enhancement fromN51 to N54. The point
of this seemingly mysterious result goes back to the fact t
in the strict Penrose limit, there always appear extra isom
tries. In @6#, these extra isometries are referred to as apost
mortemeffect. These isometries always define a Heisenb
algebra. In the case of AdS53T1,1, the isometries are
SO(4,2)̂ @SU(2)^ SU(2)^ U(1)#, and are in correspon
dence, respectively, with the conformal invariance and thR
symmetry of the dual gauge theory. Following our approa
we can think in terms of a spontaneous breakdown of
symmetry to SO(4)̂ SO(4). The difference with the case o
N54 supersymmetric gauge theory is that we now hav
smaller number of Goldstone bosons associated with the
ken symmetries, viz. ten instead of 18 in theN54 super-
symmetric case. The deficit eight Goldstone bosons are
cisely the ones associated with the Higgs fields in theN
54 supersymmetric gauge theory. These are the fields
would render the theoryN54 supersymmetric. In the Pen
rose limit of any ten-dimensional background, we alwa
have a Heisenberg algebra h~8! of the isometries. In the
AdS53T1,1 case, the Heisenberg algebra is composed of
Heisenberg subalgebras h~4! with a common central exten
sion. The eight generators of one of the two algebras are
ones we are going to use as the eight missing broken s
metries. These ‘‘post mortem’’ Goldstone bosons are simply
states that, in theN51 gauge theory, are degenerate in t
light-cone mass~the eigenvalue of the outer automorphis
or the light-cone Hamiltonian! with the real Goldstone
bosons. As the enhancement ofN54 supersymmetry is true
only in the strict Penrose limit, viz. for the Penrose scali
factor 1/l→0, we expect this enhancement to be violated
O(1/N) corrections.

VI. CONCLUSIONS

Our main conclusion is that the supersymmetric gau
theory dual to the type IIB string theory in a ten-dimension
pp-wave background lives on aEuclideanfour-dimensional
space. The indications has come from several corners.
most direct reason is that the dual operators are in one-to
correspondence with the states of the string theory which
created bytransverseoscillators in the light-cone gauge
This is in fact apparent in the zero-mode sector of the str
relevant for the supergravity modes and follows from fie
equations in this background. Furthermore, understandin
the low-energy Nambu-Goldstone modes resulting fr
symmetry breaking of the original symmetry grou
SO(4,2)3SO(6) to SO(4)3SO(4)3H(4)3H(4) also indi-
cates that the dual theory lives in a Euclidean space.

One may think of this Euclidean space as the sp
spanned by four of the transverse directions. In this case
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light-cone time has a natural explanation as the holograp
coordinate representing the scale of the dual gauge the
Details of the proposed holographic correspondence rem
to be understood better. The fact that a Euclidean theory
give rise to strings living in a spacetime with Lorentzia
signature is intriguing and deserves better understanding
expect that this would enhance our understanding of ho
raphy in general.

Extending the results of this work, one can abstract
main ingredients needed in order to generalize the BMN p
posal to generic situations. The minimal starting point wo
be a four-dimensional gauge theory invariant under the c
formal group and with a nonanomalous global U~1! symme-
try. The spontaneous breakdown of SO(4,2)^ U(1) to SO~4!
provides ten broken generators that we can try to organ
taking Euclidean signature dual theory, into a Heisenb
algebra h~4! and an outer automorphismH. This is the struc-
ture that we can try to map into the Hilbert space of a n
critical six-dimensional string theory in the light-cone gau
with the SO~4! rotational invariance acting on the transvers
coordinates. Of course, we also need controllable, fin
contributions—in the large ’t Hooft coupling limit—to th
anomalous dimensions of the fields representing the s
s
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quantum fluctuations around the selected vacuum or, equ
lently, finite light-cone mass~defined by the outer automor
phism! for the Goldstone bosons. Taking the real-wor
QCD, one now hasab initio two related problems: anomal
for the conformal invariance~viz. a nonvanishing beta func
tion! and anomaly for the axial U~1! symmetry, which would
serve as a natural candidate for the global U~1! symmetry.
We can try to solve these problems by introducing two ex
scalar fields, namely the dilatonD and the axionA. We then
find an indication that the field (D1 iA) is a natural candi-
date to play the role of theZ-field in the BMN proposal.
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