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Propagators in noncommutative instantons
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We explicitly construct Green'’s functions for a field in an arbitrary representation of a gauge group propa-
gating in noncommutative instanton backgrounds based on the Atiyah-Drinfeld-Hitchin-NfsDhiM ) con-
struction. The propagators for spinor and vector fields can be constructed in terms of those for the scalar field
in a noncommutative instanton background. We show that the propagators in the adjoint representation are
deformed by noncommutativity while those in the fundamental representation have exactly the same form as in
the commutative case.
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I. INTRODUCTION some quadratic matrix equatiofteence noncommutative ob-
jects in naturgto construct(anti-)self-dual configurations of
Instantons were found by Belavin, Polyakov, Schwartzthe gauge field. Thus the noncommutativity of space is not a
and Tyupkin(BPST) [1] almost 30 years ago, as topologi- serious obstacle for the ADHM construction of noncommu-
cally nontrivial solutions of the duality equations of the Eu- tative instantons and indeed it turns out that it is a really
clidean Yang-Mills theory with a finite action. Immediately powerful tool even for noncommutative instantons. Recently
instantons were realized to describe the tunneling process@such progress has been made in this direcfib®,17,19—
between different vacua in Minkowski space and led to the 35,
strong CP problem in QCD[2,3]. (For an earlier develop- | order to calculate instanton effects in quantum gauge
ment of instanton physics, see the collection of papét$  theory, it is important to know the Green’s function in instan-
The nonperturbative chiral anomaly in the instanton backigp background§6]. In this paper, based on the ADHM con-
ground led to baryon number violation and a solution to thestryction, we will construct the Green's functions for a field
U(1) problem[5,6]. These results revealed that instantonsin an arbitrary representation of the gauge group propagating
can have relevance to phenomenological models such a8 noncommutative instanton backgrounds. Recently several
QCD and the standard modé]. _ paperg 26,36—43 discussed the instanton moduli space and
Instanton solutions also appear as Bogomol'nyi-Prasadie instanton calculus in noncommutative spaces. This paper
Sommerfield (BPS states in string theory. They are de- js organized as follows. In the next section we review briefly
scribed by [p-branes bound to O+ 4)-braneq8,9]. Sub-  the Weyl ordering prescription for operators and the Green’s
sequently, in[10,11], low-energy excitations of D-brane fynction in noncommutative space, needed for later applica-
bound states were used to explain the microscopic degrees gns. In Sec. IIl, we generalize the argumenf4d] to non-
freedom of black-hole entropy, for which the information on commutative space and show that the propagators for spinor
the instanton moduli space has a crucial role. In addition th@nd vector fields can be constructed in terms of those for the
multi-instanton calculus was used for a nonperturbative tes§calar field in a noncommutative instanton background. In
of AdS/CFT corresponden¢@2-15, where the relation be-  gec. |v, we explicitly construct the scalar propagators in the
tween Yang-Mills instantons and D-instantons was beautifyndamental representation & and the tensor produc,
fully confirmed by the explicit form of the classical x G, [45] where the adjoint representation is a special case.
D-instanton solution in Ad$<S® background and its asso- \we observe that the propagator in the adjoint representation
ciated supermultiplet of zero modes. _ or the tensor product gauge gro@ X G, is deformed by
Recently, instanton solutions on noncommutative space§oncommutativity while that in the fundamental representa-
have turned out to have richer spectrums. While commutagion has exactly the same form as in the commutative case.
tive instantons are always BPS states, noncommutative iNp Sec. V we speculatively discuss some important issues
stantons admit both BPS and non-BPS states. In particulagych as the infrared divergence in the vector propagator, the

instanton solutions can be found in(1) gauge theory and  ;ero modes for the tensor product gauge group, and the con-
the moduli space of non-BPS instantons is smooth, smaformal property of instanton propagators.

instanton singularities being resolved by the noncommutativ-
ity [16,17]. Remarkably, instanton solutions in noncommuta-
tive gauge theory can also be studied by the Atiyah-Drinfeld-
Hitchin-Manin (ADHM) equation[18] slightly modified by
the noncommutativityf 16]. The ADHM construction uses In this section we review briefly the Weyl ordering pre-
scription for operators and the Green’s function in noncom-
mutative spac¢46,47), needed for later applications.
*Electronic address: bhi@ccs.sogang.ac.kr Here we will work in general in flat noncommutative Eu-
TElectronic address: hsyang@phys.ntu.edu.tw clidean spac®* represented by

II. GREEN'S FUNCTION IN NONCOMMUTATIVE SPACE
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SH SV —i grY are occupation numbers in the harmonic oscillators. Thus the
[x#,X"]=i6 2.1 . Y :
noncommutative spadey in the basisF becomes a two-
where§*”= — 6"* and we use the caret to indicate operatorsdimensional integer latticg(ny,n,) e Zio} and the integra-

in A, for a moment. Sincé“" is an antisymmetric tensor, let tion on Ry, can be defined by the sum over the lattice,
us decompose them into self-dual and anti-self-dual parts:
{m\?

0,,= n‘zvga—i—;iv)(a. (2.2 TrHO(X)E<7) (n§12) (n1,n,lO(x)[ng,n,) (2.10)

Since the self-duality condition is invariant under @D

. . i X .
rotations[or more generally SL(®R) transformation§ one for an operatorO(x) in A,. While, for R NC R in Eq

can always make the matrig,, into a standard symplectic 2.8,
form by performing the S@) transformationR: J2ajx2a—1 f2a_jg2a-1 212
~ A==, a=——F—=, .
9=RORT, 2.3 N Ve
where we choos®@ as wherea=1 for §,#0 anda=2 for 6,#0. In this case, the
representation spade is given by}“=2nezzoc|n> and the
6 6 0 O integration for an operata®(x) in A, with 6,0, for ex-
~ -9, 0 0 © ample, can be replaced by
0,,= . (2.9
" 0 0 0 6,
0 0 -6 0 f d*xO(x _>g77n62>0 d?>x(n|O(x)|n), (2.13
There are four important cases to consider: whered?x=dx3dx4.
6,=0,-0: commutativeR?, 2.5 We introduce coherent states defined by
: _
¢ |&)=e]0), (¢=(0le (2.14
61=0,=7: selt-dual Ric (2.6

where|0) is a vacuum defined bg|0)=0. For notational
simplicity, we only present the construction for the algebra
(2.12, but a similar construction can be given for £g.10),

0,=— 02=£: anti-self- duaIRNC, . agt =
4 for which | £)=e%"%|0). The statd ¢) satisfies

2.7 -
‘ alg)=¢), (fa’=(¢¢ (2.19
010,=0 but 61+ 0,=7: RZXR2. and
(2.9
By noncommutative spadey; one means the algebsé, <77|§)=e;f, 26 fe &2 |&)(&]= (2.16)

generated by the* satisfying Eq.(2.1). The commutation
relation (2.1) in the basis(2.4) is equivalent to that of the Tnhen we see that
annihilation and creation operators for a one-dimensional or

two-dimensional harmonic oscillator: <7]|ei(k1;<1+k2;<2)|§>:e—§k2/8ei(klzl+k222)e;§ (2.17)
t1_
a,,ap]= Oap, 2.9 ) —
[2a 25]= 0a 29 here k2=k 14k and Z2=i(V{2)(¢— ), Z22=(JLI2)(¢
wherea=1,2 for Egqs.(2.6) and(2.7) anda=1 for Eq.(2.8). 1;).
Explicitly, for self-dual and anti—self—duaﬂtﬁc in Egs.(2.6) It is well known that the Weyl or symmetric ordering
and (2.7), prescription provides the procedure that maps commutative
smooth functions onto operators acting on the Fock sgace
_ \ﬁ(;(za+ jea1x2a-1 [48]:
7 ,
oo d*k o
> f(x)»ef(x)zf 4f(k)e' X (2.18
= \[Z(%?a—iealﬁzal), (2.10 (2m)
where

wherea=1,2 ande=0,/60,. So, for self-dual and anti-self-
dual Ry, the representation spageof A, can be identified | 4 —ikox
with the Fock spacé-‘=E(nl,nz)ezioqnl,nz), whereny,n, f(k)—f d*xf(x)e" """ (2.19
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Using the prescription(2.18), it is easy to show that the jnvariance for the Green’s functid®(®)(x,y). In other words

operator muItipI.ication in4, is isomorphic to the Moyal the Green's function depends only o#. Using the Weyl
product of functions: prescription(2.18), we see that

If f(x)—f(x) and g(x)—g(x),
then (f*g)(x)—(fg)(x), (2.20

where the Moyal product is defined as

4

k _
(ZW)4G<°>(k)e'k'(X*y>, (2.28

G‘O)(x—y)=f

4
aK iy,
m)?

5(X—y)=f(2

(f*g)(x)=elRIAXDIANIE (%) g(y)|yoy. (2.2D)

In order to discuss instanton propagators in the noncomThen the defining relatiof2.22 implies thatG(®(k) = 1/k?.
mutative spacé2.1), we first should know the free Green’s  To discuss more general Green’s functions, especially in-

function G(O)(x,y) for the ordinary Laplaciaf46,47: stanton propagators, let us describe the formal procedure de-
fining the Green'’s function. Lek be a linear operator oA,
— fgﬂf;ﬂé(o)()},g/) =3(X—Y) (2.22  with a set of eigenvectors,(x) € A, and corresponding ei-
o genvalues\, :
where the derivative for an operatbfx) is defined as
A (X) =N (%), (2.29
2, 50)=—=i(07% . [x"F(%)]. 2.2 . . .
Iut) 107w lX 0] 223 where the parametercan be either continuous or discrete.
In commutativeR?, it is given by We shall assume the completenesspfx),
1 TrH¢r(X)T¢s(X) = s (2.30
GOxy)= ———. (224 : -
A7 (X—Y) in the Hilbert spacét, of one-particle states to be

Here some comments should be made. In order to define the 5

Green's function, we have introduced the tensor product Hy= ¢(X):§r: ard)r(x):Zr la,[*<ee.  (2.3)
AY?= A%® A2 of two copies of the algebral,. We repre-

sent.Ay® as an algebra of operators on the tensor produchs usual thea, become operatoror example, creation or
HY?2=H1eH? of two Fock spaces. The functions annihilation operators of a particle with quantum number
é(O)()‘(,g), 3()2—9) e AX? are operators acting i *2 We  when the field is quantized. The Green’s function is defined

identify x“=x*®1 andy#=1®Yy* in the tensor product. as the formal sum

Thus in the operator senge*,y*]=0. Therefore, if we 3 .
introduce the “center of mass coordinatd?® and the “rela- G(X’V)ZZ At (X)bi(y) (232
tive coordinatest“ defined by
o For the free Green’s function in Eq2.22, for example,
L XEEYR L #r(x)=e"* and \=Kk? for the LaplacianA=—4,d,,. In
=T TEXEEY (225 this case, the sum overshould be the integration over mo-
mentak* as in Eq.(2.28.

they satisfy the following commutation relatiop46]:
i III. INSTANTON PROPAGATORS IN NONCOMMUTATIVE
[RRVI=5 0%, [T4v]=2i0"", [RAi"]=0. SPACE
(2.26 In this section we will generalize the argument ##] to
noncommutative space to construct the propagators for
The tensor productl 1% can thus be decomposed in the form spinor and vector fields in terms of those for the scalar field
in a noncommutative instanton background. This generaliza-
Al=DeR (2.27  tion is straightforward so one may regard it as a review of
R R Secs. Il and IIl in[44]. This result definitely generalizes that
whereR* acts onD andr# onR. Since the noncommutative for free fields[49]; the Green’s functions for spinor and vec-
space(2.1) is homogeneous and so always respects a globabr fields propagating in vacuum are determined by the cor-
translation symmetry, it is reasonable to require translatiomesponding scalar propagator.

1This is consistent with the fact that the Moyal brackets between 2From now on, we will delete the caret indicating operatorstjn
two sets of independent variables vanish, thatxi&;y”—y"* x* for notational convenience as long as it does not cause any confu-
=0 sincedy”/dx*=0. sion.
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To consider the spinor propagator, let us introduce quaterEquation(3.5) forces the second term of the right-hand side

nions defined by of Eqg. (3.9 to vanish for spinors with positivénegative
L chirality in the self-dual (anti-self-dual instanton back-
X=X,0",  x=X,0", (3.2 ground. In this case there is no zero mode solution satisfying
where o= (i72,1) and o*=(—i7,1)= — c2c*Ta2. The y*D, =0, yspP==y. (3.10

. . M _[L . .
quaternion matrices”* and o have the basic properties However, the second term in E(.9) does not vanish for a

positive (negative chirality spinor in anti-self-dual(self-
dual) instantons. In this case a finite number of zero modes
_ — - _ satisfying Eq.(3.10 can be found. In the background kf
ota’=56""+iok", ot'=nh = —*o, instantons in UK) gauge theory, the number of zero modes
is kin the fundamental representation anfdi2in the adjoint

v vy v v_ a a_ x v
alo’=""+iok", ot'=n] =% o, (3.2

and representatiof4?2].
— v We will now consider a spinor field in the background of
TapTys~ TapTys=20as0py (33 k anti-self-dual instantons. The self-dual case is obtained
_ simply by changing the sign ofs, ys— — ys. Let us intro-
O B0 5= Ohp0h =28\ E s, duce eigenfunctiong;, (x) such that
where «,8,v,6=1,2 are quaternionic indices. The* and YD i (X) = N i (X) (3.11

o* can be used to construct the Euclidean Dirac matrices as ) . ) , L
to define the spi- Green’s functionS(x,y) which is de-

0 o* 1 0 scribed by the formal expression
M= - =
Y (U“ 0 ), YsT V17273747 —1)' L T
(3.4 SOy =2 A () g (y) (3.12
[y, y" ) =26m" y,w:i[yﬂ = o 0 where the prime means that the zero motitates with\
' ' 2i ' 0 ot =0) are excluded from the sum. It follows from E®.12
that the spins propagator is orthogonal to all the zero modes

Thus Egs.(3.2) and(3.4) show that in Eq. (3.10:

1+ ys 1+ ys T, (O (x) TS(x,y))=0. (3.13
N e e (3.5

Thus the sping propagator obeys the following equation:
We shall consider the propagator for spinor fields transform- _
ing in an arbitrary representatigfundamental, adjoint, etc. Y*D,S(xY)=Q(xy) 3.1
of the U(N) gauge group in the background @nti-)self-

dual instantons. The covariant derivatie, is defined by where

D,=d,+A, (3.6 Qx,y)=8(x,y)— > ¢y Py)"  (3.19

and the field strengtk ,, is given by ) ) )
with the summation running over all the zero modes (

F..=[D,.D,] =1, ... k for spinors in the fundamental representation and
n=1,...,Nk in the adjoint representationThe quantity
= AT AT AL AL (37 Q(xy) represents the projection operator, ie.,
Z — i -
Since we are interested in spinor fields propagating in theTrH(Q(X’Z)Q(Z’y))_Q(X’y)’ into the subspace of all non

zero modes.
Using the same operator technique ad4d], the con-
struction of S(x,y) can be easily achieved. Let us introduce

background of(anti-)self-dual instantons, we will assume
that the field strength satisfies tlianti-)self-duality condi-

tion an operatorS whose matrix representation with regard to
1 position eigenstates ik, is S(x,y),
F.=**F, ., =*z¢,,0F 0 (3.8
. . 2 rmee e (x|9ly)=S(x,y). (3.1
Then we have Similarly, we write the corresponding spin-0 propagator
G(x,y), which is defined b
th'}/S Zli')/5 | v lei’)/5 ( y) y
(y-D) =D + -FAy»——— (3.9 _ _ _
2 2 2 2 D,D,G(x,y)=d(x—y), (3.19
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as the matrix element of an operator-1)2,

£

We will show that the operator expression of the spin-
propagator is

— (3.18

Y> =G(xy).

1 1-y 1

S=— D % 319
-p2 2 —-D? 2
First note that
y-DS=Q, (3.20
where
- 1_275—7~D_]|-32y-D1+275. (3.21)

Equation(3.20 implies thatQ contains no zero modes since
they are annihilated by-D. On the other hand, we find that

y-DQ=7vy-D (3.22
and
QS=S. (3.23

It is easy to show tha®?=Q. Therefore Eq(3.22 shows

that Q is the operator that projects into the subspace of all

nonzero modes and &|Q|y) is the function defined in Eq.
(3.15. Moreover, Eq.(3.23 implies thatS is orthogonal to
all the zero modes. This ensures our claim in E319.

Let us consider Yang-Mills theory with gauge group

U(N) with action

1 1
ETrHtr FWFW+E

S=-— (D,A,)? (3.249

and small fluctuations about a classical instanton solution

Au(X)

ALX)=A,(X)+ A, (X). (3.25

If the action is expanded to second orderdA,, one can
find the following result:

A, I=HA,]-Trytr A, —D?5,,— 2F

nv

+

1
1- E) D,D,|sA,. (3.26

In our previous papef42] we showed that in & mstanton
background there are Nk adjoint zero modesd)
=1,... 4k satisfyingD,, ¢(“)—0 and

(D25,,+2F,,) 6" =0. (3.27)

PHYSICAL REVIEW 56, 045027 (2002

Thus to define the spin-1 propagator we should project out
the zero modes just as in the sgirpropagaton(3.14). Ac-
cording to the actiori3.26), the spin-1 propagatds ,,(X,y)
in the anti-self-duak instanton background is defined by

_D25M)\_2FM)\+ 1- G)\v(X'Y):Q,w(XN),

(3.28

1
E) D,LLD)\

where

Qur(XY) = 8, 0(x=y) = 2 61X (y)".
(3.29

The quantity Q,,(x,y) is the projection operator, i.e.,
Tr5,Q,,(%,2) Q) ,(2.y) =Q,.(x,y), onto the space of the
nonzero modes.

Using the operator formalism used in the spipropaga-
tor, one can show that the spin-1 propagator can also be
constructed in terms of the corresponding scalar propagator.
To proceed with the construction, define

q(+) =

MVNK 5 5)\K+77( )aﬂ( Ja

Ak

5,u)\5w<+ 77£n\)a77(vj<)a
(3.30
are defined in Eq(3.2).

where ()= 73,

The tensor

and 7{,,)*= 7},

72002 =

1
Z(5MA6VK 5 51/)\— }LV)\K) (331)

projects out the self-dual or anti-self-dual part of the anti-
symmetric tensor since',,5;)°=0. Following [44], let

v 7’;/,11
us introduce the bracket operation

X} =alADAXD, (332
for an arbitrary operatoX. Then it is easy to see that
D {X},)=D?XD,+[F,,¥*F,,.XD,]. (3.33

So if the field strength satisfies the self-duality condition
(3.8), EQ.(3.33 reduces to

)_n2
D {X}{,)=D2XD,,. (3.39
Similarly,
{x}{,)b,=D,D?X. (3.35
Let us quote the following algebraic relatipf4]:
qp,)\voqg:lp: CrTq/;KVp r,ELt()Vp(TT (336)
where
r,(ui;)vpzrfz ( 5,4.LV77$(+,J)C 6Kp 77,(¢Ltz)c+ Sabcﬂﬁ)aﬂ&;)b) 7]5;;)0
(3.3

and thus has the following duality property:
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ESUTU)\r/.:—I—(VpUT: + rE,LiK)VpU}\ ' (33&
In the derivation of Eq(3.37), we used
Wg\i)aﬂgj)b: 5ab5;tv+8abc77§,¢11—/)c . (339

PHYSICAL REVIEW D66, 045027 (2002

propagatoiG,,,(x,y) in terms of Eq.(3.41). In commutative
space, the scalar propagator in the fundamental representa-
tion has a remarkably simple express[&®,51:

G(x,y)=v(x)TGO(x,y)v(y)

wherev (x) is a function determining the ADHM gauge field

4.1

Using these properties, the following bracket compositionA.(X) by A, (x)=0v(x)"3,v(x). The scalar propagator in the

law can be derived:

(3.40

Now it is straightforward to see tha&s,,(x,y) has the
following formal operator expression

DAAYIG ={XD?Y}(D).

MmN v

1\? 1\?
Guv:_{(ﬁ) ] +(1-¢D, E D,. (3.4)
v
The reason is the following. First note that
5 1
-D 5M)\_2FM)\+ 1_E D#D)\ G)\V:Q/.LV’
(3.42
where
] 1

We used Eqs(3.34) and(3.35 and the bracket composition
(3.40 in the derivation. Comparing with E¢3.28, we see

adjoint representation has a more complicated expression of
which we will present the explicit form. We will first show
that the scalar propagator in the noncommutative instanton
background has exactly the same form as @dl).

To derive the above remarkable formula, we need the fol-
lowing basic properties in the ADHM construction
[18,50,51. The gauge field with instanton numblefor the
U(N) gauge group is given in the form

AL () =v(x)",0(x) (4.2
wherev(x) is the (N+2k) X N matrix defined by the equa-
tions

v(x)Tv(x)=1, 4.3

v(x)TA(x)=0. (4.4
In Eq. (4.4), A(X) is an N+ 2Kk) X 2k matrix, linear in the
position variablex, having the structure

a—bx, self-dual instantons,

A(x)= (4.9

a—bx, anti-self-dual instantons,

that Q,,, does not contain any zero modes. And, using thavherea,b are (N+ 2k) x 2k matrices.v(x) can be thought

composition law(3.40, one can easily see thqQ,, is a
projection operator, i.eQ,,\Q,,=Q,,. Indeed,Q,,, is the
projection operator onto all the nonzero modes in BR9
and thus an operator realization of the projed@y,(X,y)
since it satisfies the following equations:

Q;L}\G}\V:G;LV!
) 1
_D 5M)\_2F}4)\+ 1_E DMD)\ Q)\V
) 1
=| ~D?8,,~2F,,+[1-Z|D,D.|. (344

Thus we complete the proof of our claim in E§.40).

IV. SCALAR INSTANTON PROPAGATORS

of as a map from alN-complex dimensional spad®' to an
(N+2k)-complex dimensional spac¥. Thus A(x) must
obey the completeness relation

P(x)+AX)f(x)A(x)T=1 (4.6)
where P(x)=v(x)v(x)". The matricesa,b are constrained
to satisfy the conditions thak(x)TA(x) be invertible and
that it commutes with the quaternions. These conditions im-
ply that A(x)TA(x) as a X 2k matrix has to be factorized
as follows:

AX)TAX)=f"1(x)®1, 4.7
where f ~1(x) is a kxk matrix and 1 is a unit matrix in
guaternion space.

Given a pair of matrices,b, Egs.(4.3) and(4.4) define
A, up to gauge equivalence. Different pairs of matriagls

In order to calculate instanton effects in quantum gaugemay yield gauge equivaled,, since Eqs(4.3) and(4.4) are
theory, it is important to know the Green’s function in instan- invariant under
ton background$6]. In the previous section, following the
same method as 4], we showed that the propagators for
spinor and vector fields can be constructed in terms of those :
for the scalar field in a noncommutative instanton back-WhereQeU(N+2k) andKe GL(k,C). This freedom can
ground. Thus, if we can find the scalar propagagd,y)  P€ used to pug,b in the canonical forms
[Eqg. (3.17] for the fundamental representation or adjoint N 0
a= , b= )
( f) 1ok

a—QakK, b—QbK, v—Qu (4.8

representation, we know the spjnpropagatorS(x,y) for

(4.9
each representation in terms of E®.19 and the spin-1

045027-6
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wherel is anN X 2k matrix andé¢ is a 2k X 2k matrix. Here

we decompose the matrixin the quaternionic basis” as a
matter of convenience,

E=¢,0%, (4.10

where the¢,’s are kxXk matrices. In the basi¢4.9), the
constraint(4.7) boils down to

0“7, self-dual instantons,
tr,7%a’a= " . .
0“*n,,, anti-self-dual instantons,
(4.11)
£=¢,, (4.12

where tp is the trace over the quaternionic indices.

A. Scalar propagator in fundamental representation

Now we will explain how to derive the formul&.l).
First note that the covariant derivative for a field in the
fundamental representation of N has the simple expres-
sion

D, d=(d,+v'9,0)P=0"9,(v®P). (4.13
Using this relation, let us calculateD ,D ,G(x,y),
D) 'GOxy)u(y))
=—0(x)"9,(P(x)2,(P(X)GO(x,y)v(y))).
(4.14

Note thatv (x) TP(x)=v(x)T, so
D,G(X,y)=—v(X)"3,(P(x)d,P(x)G(x,y)v(y)
—2v(x)"(9,P(x)3,GO(x,y)v(y)
-v(x)'9,0,GOx,y)v(y). (4.15

Let us calculate the first term of the right-hand side in Eq.

(4.15:

v(X) 73, (P(x)d,P(x))
==0(X)"9, (P, A)F)AMX)T)
=v(x)T2,A)F(x)AX)T9,A)F(x)AX)T

—v(x)T9,A(x)9,F(X)A(X)T

—v(x) 9, Ax)f(x)2,A(x)7 (4.1

where we used Eq$4.4) and(4.6). Also note that

9, F(x)=—=1(x)(0,A)TAX)+AX)T9,A(x))f(x)
(4.17

from Eq. (4.7).

PHYSICAL REVIEW 56, 045027 (2002

larly calculated. Usingd, A(x)——bo and ¢ A(x)*—
—o,b" and the formulas

a, A bo,=—2bTA(X), o,f(x)a,=4f(x),

(4.18
we arrive at

v(x)19,(P(x)3,P(x))=—4v(x)'bf(x)bT, (4.19

ﬂhere we used the fact that the functiffx) commutes with
o, ando, . Then our original equatiof4.19 reduces to
—-D,D,G(x,y)=2v(x)"(2bf(x)b’'G(x,y)
—3,P(x)3,GO(x,y)v(y)+ 8(x—y)
(4.20

where —3,9,G(x,y)=8(x—y) is used. Note that the
whole procedure above until E(4.20 is totally valid even
for noncommutative space.

To arrive at our final destinatiofB.17), we must show
that

v(x)"(2bf(x)b'GO(x,y)~3,P(x)3,GO(x,y))v(y)=0.
(4.2

First let us show Eq(4.21) in commutativeR*, where we do
not have to worry about the ordering problem, which will
also be helpful in finding the noncommutative version. If one
notices thatA (y)Tv(y)=0 and

2(X=Y)y

(x=y)*"
the second term of Eq4.21) can be written as

v(x)9,P(x)3,6(x,y)v(y)

3,GO(x,y)=-G(x,y) (4.22

=v(x) b, F(x)3,GO0x,y)AX)T=A(y) Do(y)

=20(:)'bf(x)7,,7,b'GO(x, y>(( ;z(x Y (y).
(4.23

Sincegﬂa o, +I(TM,,, Eq. (4.23 exactly cancels the first
termin Eq.(4. 2],) Thus we proved Eq4.1) in commutative
R*.

Before going on to noncommutative space, let us explain
why we expect Eq(4.1) even for noncommutative space.
The relation(3.6) implies that, if we define

d=vd and D,d=D,d, (4.24

we get

D,b=Pd,d. (4.25

For explicit calculation, let us take the anti-self-dual in- \We may interpret this result as follows0]. The matrixv:

stanton withA(x)=a— bx. The self-dual case can be simi-

W—V maps® in the N-dimensional complex vector space

045027-7
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Wto @ in an (N+ 2k)-dimensional complex vector spave ¢®F=A®---®A as rightA module) Thus one can imag-

which lies in anN-dimensional subspace 6" 2 i.e., the ine that the Green’s functioB(x,y) for the field® living in
subspace the “nontrivial” N-dimensional vector spad#, which is de-

fined asG(x,y)=(®(x),®(y)), is obtained by the map:
Ex={&IP(x)€=¢} (426  W—V from the Green's functios(©)(x,y)=(d(x),d(y))

. . L for the field & living in the “free” ( N+ 2k)-dimensional
orthogonal toA(x) onto whichP is the projection operator. vector spaceV. This is precisely the content of E@4.1).

. ; 4 4
The collection of spacefE,} as x varies overR™ or R\c  Note, however, that this argument should also be valid for a
forms a vector bundle and this vector bundle precisely deponcommutative space. This is the reason why we expect the

fines the ADHM gauge fielda,(x) through Eq(4.25. This  propagator(4.1) even for a noncommutative instanton back-
is a statement of the Serre-Swan theoréf]; the vector ground.

bundle over aC* algebra.A (which is a complex Banach To show Eq{4.21) in the noncommutative spa¢g.1), let
algebra with adjoint operatigris a finitely generated projec- us follow the previous commutative calculation keeping in
tive module.(A module€ is projective if there exists another mind the ordering due to the noncommutativity. The second
module F such that the direct sunf®F is free, i.e., term in Eq.(4.21) can be written as

v(x)73,P(x)3,GO(x,y)v(y)=v(x)'ba,f(x)A(X)T9,GO(x,y)v(y)
=0(x)0f(x)7,3,600x,y) A= A(Y) Do (y) +v() bf(X) o [AX)T,9,6Ox,y)Tv(y)
=—0(x)'bf(x)7,0,b79,GO(x,y)(x=y),0(y) v (x)'bf(X),0,b"[X, 8,6 x,y) v (y)
=—v(x)'bf(x)7,0,b"(x~Y),0,6x,y)v(y) —v(x)'bi(X)0,0,by, 8,6 x,y)v(y)

1 _
=— 5v(X)Tbf(X)oﬂobe(&,LG‘O)(x,y)(x—y)V+ (x=¥),3,GOxy)v(y)
1 _
- iv(X)be(X)%UVbT[(Xer)V ,3,GOx,y)Ju(y)

=- ;v(X)Tbf(X);,LUIJOT(r9,LG(°)(X.Y)(X—Y)VJr (x=¥),3,GO0y)v(y). (4.27)

In the last step, we used the fact that the functionThus if we can show that the total divergence
9,G(x,y) depends only on the combinatiox{y) be-

cause of translation invariance and E2.26). dk g [k
In order to calculate the right-hand side of £4.27), we f — 0,0, (_“eik-(xy) =K(x—y)
will use the Weyl symmetric prescriptio®.18: (2m)* " ok | K2
1—
EU,LUV(ﬂﬂG(O)(X,y)(X—y)ﬁ (x=¥),d,GO(x,y)) vanishes or8® in the largek limit, we can finally achieve our
goal (4.21) in the noncommutative space. It is easy to show
dk — k, 0 directly in the basis of the tensor produlgf;,&,)=|¢&;)
= f ———0,0, 5 —el &) ®|é&,) of coherent states such é514), using(2.17), that the
(27) k® ok function (&1,&|K(x—y)|&1,&) vanishes for anyé;,&y).
4%k g [k This means that the operator functikiix—y) should vanish
= oo K gk (x=y) even in noncommutative space.
(2m* " Tokv | k2
d*k 1 k,ukv . B. Scalar propagator in adjoint representation
_f 2Ty | Our— 2 5 | €O Next let nsider the scalar propagator in the adjoint
(2m) K2 2 ext let us consider the scalar propagato e adjo

representation. Iy denotes the fundamental representation
d*k — 9 [k, of U(N), the adjoint representation can be obtained by the
_ K Aik-(x—y) ZG(O) — .
= (277_)40-#0-1/ | 2 ® - (X,y). tensor productj®q, for which

(4.29 D,=d,+A,®1+10A,. (4.29
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In other words, we regard a field in the adjoint representation We will try the same expression &.34) to construct the

as a two-index object, one index transforming according tamoncommutative instanton propagator. To calculate Eg.
the fundamental representation and the other its comple3.17) for the ansatZ4.34), first note that, using the multi-
conjugate. Motivated by this fact and to follow the method inplication law(4.33),

[45], we treat this problem in a more general context. Con-

sider the direct produd®, X G, and suppose we have instan- D0 (x)"=01(x)"9,P1(x)@02(x)"
ton solutions +0100T802019,P(x), (439
Al(x)=v.x)T9,01x), AZ2(X)=v.(X)T9,0,(x),
M( )=v1(X) ,uvl( ) #( )=v2(X) ;Ll)z( )(4.3() DMDMU(X)*:vl(X)Tﬁ#(vl(X)Tﬁﬂpl(X))@@Uz(X)T
T t t
described in the ADHM way for each gauge group. Also F01(x)1802(x)19,2(X)9,P2(X))
consider a field transforming under the fundamental repre- +2U1(X)T(9MP1(X)®U2(X)T(9MP2(X),
sentation of each; thus its covariant derivative is defined by (4.36
_ 1 2
Du=dut A0 1+ 10A,. (4.3) where we defined
The adjoint representation of Nj would be obtained by = _ t —12 43
taking G; = G,=U(N) andAL=A2=A,. a(¥)=valXJva(x)’, - a=12. (4.37
The Green’s function for a tensor product should be ob4f we further define
tained by solving Eq(3.17 with D, defined by Eq(4.31).
Thus we will also consider the tensor product P(X)=P1(X)®Pz(X), (4.38
v(X)=v1(X)®v(X) (4.32 the above covariant derivatives can be rewritten as, using Eq.
(4.33 again,
of two independent fields (x),v,(x) in the fundamental ; R
representation o6, and G,, respectively. To preserve the Dv(X)'=v(x)'d,P(x), (4.39
group structure for G;XG,, i.e., (91,9,)(hi,hy)
:(glhligZhZ) EGlXGZ fOI’ a” gl,h]_EGl and gz,hz DMDMU(X)T:U(X)Ta,u,(P(X)a,uP(x))! (44@

e G,, we define aunique multiplication between elements

of G, X G, such that where we usedv](X)Pi(X)=vi(x) and v}(x)P,(x)

=v§(x). Thus we can proceed with the calculation of
(91(X)® P2(X))(x1(X) ® x2(X)) —-D,D,@(x)'GO(x,y)v(y)) in the same way as in Sec.

Il A. Consequently, we get
= (1(X) x2(X)® (d2(X) x2(X)) (4.33 L)
for all ¢(x), x1(x) € Gy and é(x), x2(X) € G,. This multi- ~DuDL LG Y)u(Y))

plication law will be crucial for our calculation of the adjoint =5(x—y)—2@ 1(X)T(3MP1(X)®UZ(X)T07MP2(X))
Green'’s function. The commutative Green'’s functid(x,y) )
satisfying Eq.(3.17) for G; X G, was previously constructed X G (%, y) wa(y)@va(y)). (4.4

in [45] and is of the form Let us calculate the second term in E4.41). For explicit

G(x,Y)=[v1(X)®0(x)]TGOX,Y)[v1(Y)@v4(Y)] calculation, Iet_ us take the anti-self-dual mst_anton with
A,(x)=a,—byx. The self-dual case can be similarly done.
Note that, according to ADHM construction,

TR CY): (438 (X)19,Pa(X) =va(x) 1bac, fa(X) Ax(x). Again the multi-
plication law(4.33 will have a crucial role in the calculation
We will specify the explicit form ofC(x,y) later. below:

—21()"9,P1(x) ®v2(x) 9, P2(x)GO(x,y)v(y)
= —21(X) by, F1(X) A1) T@v(x) T, Po(x)GO(x,y)v(y)
= —2v1(x) 010, F1(X)@0,(x) T3, P(x))([A1(x) '@ 1GO(x,y) 1+ GO(x,y) (A 1(x) T = As(y) N2 1)v(y)
= =210 b1, f1(X)@02(X) 3, P2(X))([7,b]y,® 1,GO(x,y) ]+ (a,b](x~y),@ DGO(x,y))v(y)
=~ 10010, F1(X) ®02(X) 9, P())(GO(x,y) (0,01 (x~y),@ 1)+ (a,bl(x—y),© 1)GO(x,y))v(y).
(4.42

045027-9
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In the last step, we used the fact that the functionOne can check that

9,G(x,y) depends only on the combination{y) and
Eqg.(2.26. We can repeat the same procedure as iN£¢42
for the termu,(x) "9, P5(x). Then we get

—201(0)19,P1(x)®0,(x)"9,P2(x)GO(x,y)v(y)
1 — _
== E(U 1(X)Tb10Mf1(X)®02(X)Tb20Mf2(X))

X (FO(x,y)1® o\ by (x—y),)

+(Loabix—yIFOxyo(y), (443
where  FO(x,y) =G(x,y) (c,b](x—y),®1)+ (o, bi(x
-y),®1)GO(x,y).

In order to calculate the right-hand side of E4.43, we
will again use the Weyl symmetric prescripti¢®.18). First
note that

4
dk 1 9 ey

(0) = _—9j T —
F™M(x,y) 2I(0',,b1®1)j (2 2 oK
(4.44

and
FO(x,y)(1® o, by(x—y),) + (1@ o, bh(x—y))F O(x,y)

dk 1 &2

il ek (x=y)
(2m)* k% ok¥ ok

= —4(0',,b1®0')\b;)f

=—4(o,bi®a b)) H,\(x,y). (4.49

Then we arrive at
—201(0)'3,P1(x)®0,(x)"d,P2(x))GO(x,y)v(y)
=2(v1(x)'by0,0,f1(X)b]@v,(X) b0, 0, fo(X)b))
XH (X Y)v(y),
=2(v1(x) by, F1(X)bl®v,(x) by, f2(x)b])
XH,,(x,y)v(y). (4.49

To derive the last result in E¢4.46), we used Eq(3.2), Eq.
(3.39, and the fact thaH ,, (x,y) =H,.(X,y).

In order to calculatéd ,,(X,y), we introduce an infrared
cutoff €, i.e., 1k?>—1/k?>+ e. After performing the integral,
we will take the limite—0:

Hocy)= i f d*k g
(X Y)=1lim -
Y c0d (2m)* 9K,

19 gkeey)

k2+ € ok¥

eik-(x—y))

i J’ d*k 8e
e—od (2m)* (k2 +¢€)3

N 2k”
(k?+¢€)?

ek ().

(4.47

5(K). (4.48

m —_——_—
0 7 (K>+€)®
Using the coherent state basis ,&,)=|&,)®|€,) as in Eq.

(4.28), it is easy to see that the total divergence in @7
vanishes org® in the largek limit. So we have

1
Ho(X,Yy)=——. 4.4
w(X,Y) e (4.49
Finally, we get
—-D,D,(x)'GO(x,y)v(y))
1 th T
=d(x=y) = —— 1(X)'byo,f1(x)b;
2

®v2(X) b0, F2(x)bYo (y). (4.50

Note that the above expression has exactly the same form as

in the commutative case.
Therefore, in order to get the answ@17) for the spin-1
propagator(4.34), we must show that

—D,D,C(X,Y)=4((v1(X) b1 1(X))a® (Wa(X) Tbof (X)) )
X ((blv1(¥)),® (030 (Y))5)€ ape ys
(4.51)

where we used Eq€3.3) and (4.33. Since the right-hand
side of Eq.(4.51) has exactly the same form as the commu-
tative one, we will take the same ansatz @&x,y) as in the
commutative casg45]:

Cusot(X,Y) =M im( 1(X)Tbl)u,ia(v Z(X)sz)s,jﬁ
X (bIU l(y))l y,v(b;UZ(y))mﬁ,tS aBE s
(4.52

or in tensor notation
C(X,Y)=((1(X) D7), ® (2(X)Tb,) 5)
XM((blv1(¥)),® (030 2(¥) )€ ape 1o,
(4.53

whereM;; ;, is a constant matrix to be determined later,
v=1,... Ny=dim G4, s,;t=1,... N,=dim G, are group
indices, andi,l=1,... Kkq,j,m=1,... Kk, are instanton
number indices. Using the formuldsee Egs.(3.6) and

(4.19]
D,0a(X) =04(x)Thao,fa(x)Ax(x)T,
DD, va(X)"=—40,(x)"bafo(x)b], (4.54

and the multiplication(4.33), it is straightforward to show
that
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=D,D,C(%,y)=4((v1(X)1f1(X))a® W2(X) Tbaf 2(X)) 5) (b1 & f5 1(x) +F 1 () ® bl — (A1(X) Tby) e

® (8200"02) 48 &) M((B1V1(¥)),® (B0 2(¥)) 5 apE yo1 (4.55
|
where we used Eq33) in the final stage. Thus if the matrix In order to construct the propagator fq@a in Eq.
M satisfies (4.29, that is, the adjoint representation of NJ, we take
[45]

(bIby®f; X (x)+ 1 {(x)®blb,

(8100 B1) @ (A5(0"B7) o ) =M 2,
(4.56 v1(X)=v,(X)* =v(X) (4.60

a]_:a, a2=a*0'2, b]_:b, bzzb*O'Z,

we finally prove Eq(4.51 and so Eq(3.17) for the tensor and anti-Hermitian generators of NJ as TA A
productG; X G,, where the adjoint representation is a spe-=1, ... N2 which are normalized as

cial case. However, to achieve this final goal, we should go

further since Eq.(4.56 appears to state that the constant

matrix M is the inverse of ax-dependent matrix. In com- tr(TAT®) =~ 5 9aB (4.61
mutative space, as a result of conformal invariance of the

matrix M [45], the x-dependent parts of the left-hand side in N2 AB
Eq. (4.56 are completely canceled. We will show that this WhereT™ =(1/iy2N)1y. Then the propagatds™(x,y) for

also the case even for noncommutative space, but the matrige adjoint/ieprgsentation can be obtained by multiplying Eg.
M is slightly modified by the noncommutativity. (4.34 by T, T,y and summing oveu,s,v,t=1,... N:

First note that, in the canonical bas$is9), : A 0
Gas(X.y)=[v() 1unTodv ()1, (x,y)

-1 _ t
fa () =440044(%) X[o(Y) T, To o () e,

1
_ Aty _en 2_ v
=a,a,— &X, +xX°— 0o, 0" (4.57 1
ave At 2" +—2Mij,|m[W(X)T]u,iaTﬁs[W(X)]ja,s
4
and
XIW) 11,0 Tl WY) Temg (4.62
A1(x)Tby),:®(A,(x) b
(81007D2) ¢ (A2(x) b2 g8 e s where\,p=1, ... N+ 2k are ADHM indices and we intro-
=(ajby) ,:®(alby) ;& = 2%, (£4®1) duced a XX N matrix w(x) =bTv(x).
— s 2
2Xu(18 &5) + 2. (4.58 V. DISCUSSION
Using these results, it is easy to see that thdependent We explicitly constructed Green’s functions for a scalar
parts of the left-hand side in E¢4.56 are completely can- field in an arbitrary representation of a gauge group propa-
celed and the matriM is defined by gating in a noncommutative instanton background. We

showed that the propagators in the adjoint representation are
, deformed by noncommutativity while those in the fundamen-
anaﬂ tal representation have exactly the same form as in the com-
mutative case.

We showed, generalizing the argumenf4d] to noncom-
mutative space, that the propagators for spinor and vector
fields can be constructed in terms of those for the scalar field

(4.59 in a noncommutative instanton background. However, it was
f.o 1 v : . . pointed out in44] that the vector propagator suffers from an
Note thataa,—20,,6"" is propT)ortl_onal to the identity Ma- j¢rared divergence. Let us discuss this problem in our con-
trix in quaternionic space whila,a, is not, as seen from EqQ. text, The vector propagator can be constructed by the opera-

(4.57. We see that the matrid is deformed by the noncom- o expression(3.41) which is involved in the convolution
mutativity, but only for a non-BPS instanton background,jntegral overz coordinates

that is for anti-self-duakself-dua) instantons in self-dual
(anti-self-dual Rﬁ,c and all instantons for Eq2.8), since < ( 1 )2
X —
2
D AB

o~ | +

T T T
(blb1® 8275 Ty a;a;—

®bb,—(alby) @ (ajhy) & e §§)= ML

7%,m5,=0. If 0#"=0, of course, we recover the result in
commutative space.

Y> =Tr;,Gac(X,2)Gca(z,y), (5.0
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where Gpg(x,y) is defined by Eq.(4.62. Using the [bIC]iaF[b;d]jai . (5.7
asymptotic behaviof53,14] of several ADHM quantities in ' '

the largez limit, in which the noncommutativity of space is However, in noncommutative space, we cannot say that the
irrelevant, one can check that the integi@l) is logarithmi-  gglution of Eq.(5.2 would be Eq.(5.7) sincex does not
cally divergent or a logarithmically divergent sum, e.g., necessarily commute with,(x)"b,f,(x). So the simple
3,n"*, in the noncommutative case. According[#], one  minded ansatz(5.3 does not work for noncommutative
can see that this divergence is coming from the zero modspace. To find the fermionic zero modes for the gauge group
fluctuations corresponding to global gauge rotations and al, X G,, it may be necessary to apply a systematic method
overall scale change, which are already contained in the zef@r the tensor product of instantons as was dond4if.
mode sum(3.29, where the zero mode for the scale changeynfortunately, the ADHM construction for the tensor product
is generated by the Lorentz rotation of the gauge zero modefyolves tedious and complicated manipulations even for
However, note that the global gauge zero modes are not nogpmmutative space. We did not succeed in generalizing to
malizable onR* or Ry since it is noncompact space noncommutative space yet. We leave this problem for future
[54,51. A natural way to remove this logarithmic divergence work.

is to put the theory on compactified Euclidean space,$e., In Sec. IV, we observed that thedependent matriv

as in[55,56. As shown in[56], this compactified Euclidean (4.56) is equal to the constant mati (4.59 and the matrix
formalism provides a gauge invariant normalization for theM is deformed by noncommutativity only for non-BPS in-

[aIC]ia,j:[a;d]ja,iv

global gauge zero modes since the volumeSbfis now

stantons. In commutative space, tkendependence of the

finite. Thus the divergence in the vector propagator may benatrix M is a result of conformal invariance and the confor-

cured in this way because the convolution intedBal) on

mal invariance has an important role in calculating multi-

S* can be finite. It will be interesting to see if the infrared instanton determinants7—60. Since, for BPS instantons
divergence in the vector propagator can be cured by an “apifcommutative instantons are always BP®e matrixM has
propriate” compactificatiofi28] of noncommutative space in the same form as the commutative one, the conformal invari-

the same way.

ance for this background should be manifest. Although the

Let us consider the massless Dirac equation defined batrix M is deformed by the noncommutativity for non-BPS

the covariant derivative4.29 in the background of anti-self-

instantons, it is still a constant matrix. Thus one may expect

dual instantons. In this case it has only positive chirality(deformed conformal invariance even for the non-BPS

solutions[42] described by two spinorgg= s , satisfying
oD ,r=0. (5.2
Take the same ansatz as in the commutative péSle
Pusa=[v1(¥)b10?f100 1y ialv20)Td]s;
+[v1(¥)Cyilv200 10202 2(X) g i »

wherec,d are constantN; + 2k;) Xk, and (N,+ 2k,) Xk,

(5.3

matrices to be determined. Here we are using ordinary mul-

tiplication rather than the tensor prodét33 sincec,d are

coupling two space&; and G, together. In the case of the

adjoint representation, using E@.60, the ansat£5.3) can
be arranged in the form

Yr=v(X)TMF(x)bTv (%) —v(x) T f(x) M Tv (%),
(5.4)

with the (N+2k) Xk matrix M. Using the formula(4.54
and

a*(Ax(x) b, )= —2blA (%),

TH(BiAL(X) 0 =2(A4(X) D +bIAL(X), (5.5
it is straightforward to calculate E@5.2):
otD ,ihr= 28 5,[v1(X) D1 f1(X) ]y i 5
X ([v200)Tbaf2(X) s 5L A2(¥) ']}
—[A1(X)TC]in[v2(X)TDaf2(X)]s ). (5.6)

In the commutative cadel5], Eq. (5.2) requires that

background. IN42], we observed that the conformal zero
modes have a similar deformation because of the noncom-
mutativity and we speculated that the conformal symmetry
has to act nontrivially only on the SMI) instanton sector.
These deformations of conformal symmetry in zero modes
and propagators should be related to each other.

Let us briefly discuss the conformal property of the matrix
M (4.59 in the BPS background, in which the, , 6" term
vanishes. From Eq4.56 and Eq.(4.59, we see that the
matrix M in (4.59 is invariant under the transformations
a=1,2. (5.8

a,—az+bp, b,—b,,

Since it is symmetric under interchange af andb,, it is
also invariant under the transformationsse o*o’+ o*o"
=tr,(c* o) =try(c* ") to checl

83— 8a; ba—ba+ aaa (5.9
While, under the transformations
Aa— aaE ba_> ba& (5.10

it changes by a factqu?q? for any quaterniong,q [use Eq.
(3.2 to checK. This factor can be scaled to unity in terms of
simultaneous global scaling ef, ,b, by a real number. The
above transformation&.8)—(5.10 actually correspond to a
unimodular conformal group5] (so a 15-parameter group

If we try to generalize the above consideration to non-
BPS instantons, in which we have thg, ,6*" term, we im-
mediately meet some nontrivial problems. The main source
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