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Propagators in noncommutative instantons
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We explicitly construct Green’s functions for a field in an arbitrary representation of a gauge group propa-
gating in noncommutative instanton backgrounds based on the Atiyah-Drinfeld-Hitchin-Manin~ADHM ! con-
struction. The propagators for spinor and vector fields can be constructed in terms of those for the scalar field
in a noncommutative instanton background. We show that the propagators in the adjoint representation are
deformed by noncommutativity while those in the fundamental representation have exactly the same form as in
the commutative case.
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I. INTRODUCTION

Instantons were found by Belavin, Polyakov, Schwar
and Tyupkin~BPST! @1# almost 30 years ago, as topolog
cally nontrivial solutions of the duality equations of the E
clidean Yang-Mills theory with a finite action. Immediate
instantons were realized to describe the tunneling proce
between differentu vacua in Minkowski space and led to th
strongCP problem in QCD@2,3#. ~For an earlier develop
ment of instanton physics, see the collection of papers@4#.!
The nonperturbative chiral anomaly in the instanton ba
ground led to baryon number violation and a solution to
U~1! problem @5,6#. These results revealed that instanto
can have relevance to phenomenological models such
QCD and the standard model@7#.

Instanton solutions also appear as Bogomol’nyi-Pras
Sommerfield ~BPS! states in string theory. They are d
scribed by Dp-branes bound to D(p14)-branes@8,9#. Sub-
sequently, in @10,11#, low-energy excitations of D-bran
bound states were used to explain the microscopic degre
freedom of black-hole entropy, for which the information o
the instanton moduli space has a crucial role. In addition
multi-instanton calculus was used for a nonperturbative
of AdS/CFT correspondence@12–15#, where the relation be
tween Yang-Mills instantons and D-instantons was bea
fully confirmed by the explicit form of the classica
D-instanton solution in AdS53S5 background and its asso
ciated supermultiplet of zero modes.

Recently, instanton solutions on noncommutative spa
have turned out to have richer spectrums. While commu
tive instantons are always BPS states, noncommutative
stantons admit both BPS and non-BPS states. In partic
instanton solutions can be found in U~1! gauge theory and
the moduli space of non-BPS instantons is smooth, sm
instanton singularities being resolved by the noncommuta
ity @16,17#. Remarkably, instanton solutions in noncommu
tive gauge theory can also be studied by the Atiyah-Drinfe
Hitchin-Manin ~ADHM ! equation@18# slightly modified by
the noncommutativity@16#. The ADHM construction uses
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some quadratic matrix equations~hence noncommutative ob
jects in nature! to construct~anti-!self-dual configurations of
the gauge field. Thus the noncommutativity of space is no
serious obstacle for the ADHM construction of noncomm
tative instantons and indeed it turns out that it is a rea
powerful tool even for noncommutative instantons. Recen
much progress has been made in this direction@16,17,19–
35#.

In order to calculate instanton effects in quantum gau
theory, it is important to know the Green’s function in insta
ton backgrounds@6#. In this paper, based on the ADHM con
struction, we will construct the Green’s functions for a fie
in an arbitrary representation of the gauge group propaga
in noncommutative instanton backgrounds. Recently sev
papers@26,36–43# discussed the instanton moduli space a
the instanton calculus in noncommutative spaces. This pa
is organized as follows. In the next section we review brie
the Weyl ordering prescription for operators and the Gree
function in noncommutative space, needed for later appl
tions. In Sec. III, we generalize the argument in@44# to non-
commutative space and show that the propagators for sp
and vector fields can be constructed in terms of those for
scalar field in a noncommutative instanton background.
Sec. IV, we explicitly construct the scalar propagators in
fundamental representation ofG and the tensor productG1
3G2 @45# where the adjoint representation is a special ca
We observe that the propagator in the adjoint representa
or the tensor product gauge groupG13G2 is deformed by
noncommutativity while that in the fundamental represen
tion has exactly the same form as in the commutative ca
In Sec. V we speculatively discuss some important iss
such as the infrared divergence in the vector propagator,
zero modes for the tensor product gauge group, and the
formal property of instanton propagators.

II. GREEN’S FUNCTION IN NONCOMMUTATIVE SPACE

In this section we review briefly the Weyl ordering pr
scription for operators and the Green’s function in nonco
mutative space@46,47#, needed for later applications.

Here we will work in general in flat noncommutative Eu
clidean spaceR4 represented by
©2002 The American Physical Society27-1
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@ x̂m,x̂n#5 iumn ~2.1!

whereumn52unm and we use the caret to indicate operat
in Au for a moment. Sinceumn is an antisymmetric tensor, le
us decompose them into self-dual and anti-self-dual part

umn5hmn
a za1h̄mn

a xa. ~2.2!

Since the self-duality condition is invariant under SO~4!
rotations@or more generally SL(4,R) transformations#, one
can always make the matrixumn into a standard symplecti
form by performing the SO~4! transformationR:

u5RũRT, ~2.3!

where we chooseũ as

ũmn5S 0 u1 0 0

2u1 0 0 0

0 0 0 u2

0 0 2u2 0

D . ~2.4!

There are four important cases to consider:

u15u250: commutativeR4, ~2.5!

u15u25
z

4
: self-dualRNC

4 , ~2.6!

u152u25
z

4
: anti-self-dualRNC

4 ,

~2.7!

u1u250 but u11u25
z

2
: RNC

2 3RC
2 .

~2.8!

By noncommutative spaceRNC
4 one means the algebraAu

generated by thex̂m satisfying Eq.~2.1!. The commutation
relation ~2.1! in the basis~2.4! is equivalent to that of the
annihilation and creation operators for a one-dimensiona
two-dimensional harmonic oscillator:

@aa ,ab
†#5dab , ~2.9!

wherea51,2 for Eqs.~2.6! and~2.7! anda51 for Eq.~2.8!.
Explicitly, for self-dual and anti-self-dualRNC

4 in Eqs. ~2.6!
and ~2.7!,

aa
†5A2

z
~ x̂2a1 i ea21x̂2a21!,

aa5A2

z
~ x̂2a2 i ea21x̂2a21!, ~2.10!

wherea51,2 ande5u1 /u2. So, for self-dual and anti-self
dualRNC

4 , the representation spaceH of Au can be identified
with the Fock spaceF5( (n1 ,n2)PZ

>0
2 Cun1 ,n2&, wheren1 ,n2
04502
s

r

are occupation numbers in the harmonic oscillators. Thus
noncommutative spaceRNC

4 in the basisF becomes a two-
dimensional integer lattice$(n1 ,n2)PZ>0

2 % and the integra-
tion on RNC

4 can be defined by the sum over the lattice,

TrHO~x![S zp

2 D 2

(
(n1 ,n2)

^n1 ,n2uO~x!un1 ,n2& ~2.11!

for an operatorO(x) in Au . While, for RNC
2 3RC

2 in Eq.
~2.8!,

a†5
x̂2a1 i x̂2a21

Az
, a5

x̂2a2 i x̂2a21

Az
, ~2.12!

wherea51 for u1Þ0 anda52 for u2Þ0. In this case, the
representation spaceH is given byF5(nPZ>0

Cun& and the

integration for an operatorO(x) in Au with u1Þ0, for ex-
ample, can be replaced by

E d4xO~x!→zp (
nPZ>0

E d2x^nuO~x!un&, ~2.13!

whered2x5dx3dx4.
We introduce coherent states defined by

uj&5eja†
u0&, ^ju5^0uej̄a ~2.14!

where u0& is a vacuum defined byau0&50. For notational
simplicity, we only present the construction for the algeb
~2.12!, but a similar construction can be given for Eq.~2.10!,

for which uj&5ejaaa
†
u0&. The stateuj& satisfies

auj&5juj&, ^jua†5^ju j̄ ~2.15!

and

^huj&5eh̄j, E dj̄dj

2p i
e2uju2uj&^ju51. ~2.16!

Then we see that

^huei (k1x̂11k2x̂2)uj&5e2zk2/8ei (k1z11k2z2)eh̄j ~2.17!

where k25k1
21k2

2 and z15 i (Az/2)(j2h̄), z25(Az/2)(j

1h̄).
It is well known that the Weyl or symmetric orderin

prescription provides the procedure that maps commuta
smooth functions onto operators acting on the Fock spacF
@48#:

f ~x!° f̂ ~ x̂!5E d4k

~2p!4
f ~k!eik• x̂, ~2.18!

where

f ~k!5E d4x f~x!e2 ik•x. ~2.19!
7-2
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Using the prescription~2.18!, it is easy to show that the
operator multiplication inAu is isomorphic to the Moyal
product of functions:

If f ~x!° f̂ ~ x̂! and g~x!°ĝ~ x̂!,

then ~ f * g!~x!°~ f̂ ĝ!~ x̂!, ~2.20!

where the Moyal product is defined as

~ f * g!~x!5e( i /2)umn(]/]xm)(]/]yn) f ~x!g~y!ux5y . ~2.21!

In order to discuss instanton propagators in the nonc
mutative space~2.1!, we first should know the free Green
function Ĝ(0)( x̂,ŷ) for the ordinary Laplacian@46,47#:

2 ]̂m]̂mĜ(0)~ x̂,ŷ!5 d̂~ x̂2 ŷ! ~2.22!

where the derivative for an operatorf̂ ( x̂) is defined as

]̂m f̂ ~ x̂!52 i ~u21!mn@ x̂n, f̂ ~ x̂!#. ~2.23!

In commutativeR4, it is given by

G(0)~x,y!5
1

4p2~x2y!2
. ~2.24!

Here some comments should be made. In order to define
Green’s function, we have introduced the tensor prod
A u

1,25A u
1

^ A u
2 of two copies of the algebraAu . We repre-

sentA u
1,2 as an algebra of operators on the tensor prod

H 1,25H 1
^ H 2 of two Fock spaces. The function

Ĝ(0)( x̂,ŷ), d̂( x̂2 ŷ)PA u
1,2, are operators acting onH 1,2. We

identify x̂m5 x̂m
^ 1 and ŷm51^ ŷm in the tensor product

Thus in the operator sense@ x̂m,ŷn#50.1 Therefore, if we
introduce the ‘‘center of mass coordinates’’R̂m and the ‘‘rela-
tive coordinates’’r̂ m defined by

R̂m5
x̂m1 ŷm

2
, r̂ m5 x̂m2 ŷm, ~2.25!

they satisfy the following commutation relations@46#:

@R̂m,R̂n#5
i

2
umn, @ r̂ m, r̂ n#52iumn, @R̂m, r̂ n#50.

~2.26!

The tensor productA u
1,2 can thus be decomposed in the for

A u
1,2>D^ R ~2.27!

whereR̂m acts onD andr̂ m on R. Since the noncommutativ
space~2.1! is homogeneous and so always respects a glo
translation symmetry, it is reasonable to require transla

1This is consistent with the fact that the Moyal brackets betw
two sets of independent variables vanish, that is,xm* yn2yn* xm

50 since]yn/]xm50.
04502
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invariance for the Green’s functionĜ(0)( x̂,ŷ). In other words
the Green’s function depends only onr̂ m. Using the Weyl
prescription~2.18!, we see that2

G(0)~x2y!5E d4k

~2p!4
G(0)~k!eik•(x2y), ~2.28!

d~x2y!5E d4k

~2p!4
eik•(x2y).

Then the defining relation~2.22! implies thatG(0)(k)51/k2.
To discuss more general Green’s functions, especially

stanton propagators, let us describe the formal procedure
fining the Green’s function. LetD be a linear operator onAu
with a set of eigenvectorsf r(x)PAu and corresponding ei
genvaluesl r :

Df r~x!5l rf r~x!, ~2.29!

where the parameterr can be either continuous or discret
We shall assume the completeness off r(x),

TrHf r~x!†fs~x!5d rs , ~2.30!

in the Hilbert spaceHp of one-particle states to be

Hp5H f~x!5(
r

arf r~x!:(
r

uar u2,`J . ~2.31!

As usual thear become operators~for example, creation or
annihilation operators of a particle with quantum numberr )
when the field is quantized. The Green’s function is defin
as the formal sum

G~x,y!5(
r

l r
21f r~x!f r~y!†. ~2.32!

For the free Green’s function in Eq.~2.22!, for example,
fk(x)5eik•x and lk5k2 for the LaplacianD52]m]m . In
this case, the sum overr should be the integration over mo
mentakm as in Eq.~2.28!.

III. INSTANTON PROPAGATORS IN NONCOMMUTATIVE
SPACE

In this section we will generalize the argument in@44# to
noncommutative space to construct the propagators
spinor and vector fields in terms of those for the scalar fi
in a noncommutative instanton background. This general
tion is straightforward so one may regard it as a review
Secs. II and III in@44#. This result definitely generalizes tha
for free fields@49#; the Green’s functions for spinor and ve
tor fields propagating in vacuum are determined by the c
responding scalar propagator.

n 2From now on, we will delete the caret indicating operators inAu

for notational convenience as long as it does not cause any co
sion.
7-3



te

s

rm

th
e

de

ing

es

es

of
ed

es

(
nd

e.,
-

ce
to

tor

BUM-HOON LEE AND HYUN SEOK YANG PHYSICAL REVIEW D66, 045027 ~2002!
To consider the spinor propagator, let us introduce qua
nions defined by

x5xmsm, x̄5xms̄m, ~3.1!

where sm5( i ta,1) and s̄m5(2 i ta,1)52s2smTs2. The
quaternion matricessm and s̄m have the basic properties

sms̄n5dmn1 ismn, smn5hmn
a ta5* smn, ~3.2!

s̄msn5dmn1 i s̄mn, s̄mn5h̄mn
a ta52* s̄mn,

and

s̄ab
m sgd

m 5sab
m s̄gd

m 52daddbg , ~3.3!

sab
m sgd

m 5s̄ab
m s̄gd

m 52«ag«bd ,

wherea,b,g,d51,2 are quaternionic indices. Thesm and
s̄m can be used to construct the Euclidean Dirac matrice

gm5S 0 s̄m

sm 0
D , g55g1g2g3g45S 1 0

0 21D ,

~3.4!

$gm,gn%52dmn, gmn5
1

2i
@gm,gn#5S s̄mn 0

0 smnD .

Thus Eqs.~3.2! and ~3.4! show that

* gmn
16g5

2
57gmn

16g5

2
. ~3.5!

We shall consider the propagator for spinor fields transfo
ing in an arbitrary representation~fundamental, adjoint, etc.!
of the U(N) gauge group in the background of~anti-!self-
dual instantons. The covariant derivativeDm is defined by

Dm5]m1Am ~3.6!

and the field strengthFmn is given by

Fmn5@Dm ,Dn#

5]mAn2]nAm1@Am ,An#. ~3.7!

Since we are interested in spinor fields propagating in
background of~anti-!self-dual instantons, we will assum
that the field strength satisfies the~anti-!self-duality condi-
tion

Fmn56* Fmn56
1

2
«mnrsFrs . ~3.8!

Then we have

~g•D !2
16g5

2
5D2

16g5

2
1

i

2
Fmngmn

16g5

2
. ~3.9!
04502
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Equation~3.5! forces the second term of the right-hand si
of Eq. ~3.9! to vanish for spinors with positive~negative!
chirality in the self-dual ~anti-self-dual! instanton back-
ground. In this case there is no zero mode solution satisfy

gmDmc6
(0)50, g5c6

(0)56c6
(0) . ~3.10!

However, the second term in Eq.~3.9! does not vanish for a
positive ~negative! chirality spinor in anti-self-dual~self-
dual! instantons. In this case a finite number of zero mod
satisfying Eq.~3.10! can be found. In the background ofk
instantons in U(N) gauge theory, the number of zero mod
is k in the fundamental representation and 2Nk in the adjoint
representation@42#.

We will now consider a spinor field in the background
k anti-self-dual instantons. The self-dual case is obtain
simply by changing the sign ofg5 , g5→2g5. Let us intro-
duce eigenfunctionsc r(x) such that

gmDmc r~x!5l rc r~x! ~3.11!

to define the spin-12 Green’s functionS(x,y) which is de-
scribed by the formal expression

S~x,y!5(
r

8 l r
21c r~x!c r~y!† ~3.12!

where the prime means that the zero modes~states withl r
50) are excluded from the sum. It follows from Eq.~3.12!
that the spin-12 propagator is orthogonal to all the zero mod
in Eq. ~3.10!:

TrH
x
„cn

(0)~x!†S~x,y!…50. ~3.13!

Thus the spin-12 propagator obeys the following equation:

gmDmS~x,y!5Q~x,y! ~3.14!

where

Q~x,y!5d~x,y!2(
n

cn
(0)~x!cn

(0)~y!† ~3.15!

with the summation running over all the zero modesn
51, . . . ,k for spinors in the fundamental representation a
n51, . . . ,2Nk in the adjoint representation!. The quantity
Q(x,y) represents the projection operator, i.
TrH

z
„Q(x,z)Q(z,y)…5Q(x,y), into the subspace of all non

zero modes.
Using the same operator technique as in@44#, the con-

struction ofS(x,y) can be easily achieved. Let us introdu
an operatorS whose matrix representation with regard
position eigenstates inHp is S(x,y),

^xuSuy&5S~x,y!. ~3.16!

Similarly, we write the corresponding spin-0 propaga
G(x,y), which is defined by

2DmDmG~x,y!5d~x2y!, ~3.17!
7-4
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PROPAGATORS IN NONCOMMUTATIVE INSTANTONS PHYSICAL REVIEW D66, 045027 ~2002!
as the matrix element of an operator 1/2D2,

K xU 1

2D2UyL 5G~x,y!. ~3.18!

We will show that the operator expression of the spin1
2

propagator is

S52g•D
1

2D2

12g5

2
2

1

2D2
g•D

11g5

2
. ~3.19!

First note that

g•DS5Q, ~3.20!

where

Q5
12g5

2
2g•D

1

2D2
g•D

11g5

2
. ~3.21!

Equation~3.20! implies thatQ contains no zero modes sinc
they are annihilated byg•D. On the other hand, we find tha

g•DQ5g•D ~3.22!

and

QS5S. ~3.23!

It is easy to show thatQ25Q. Therefore Eq.~3.22! shows
that Q is the operator that projects into the subspace of
nonzero modes and so^xuQuy& is the function defined in Eq
~3.15!. Moreover, Eq.~3.23! implies thatS is orthogonal to
all the zero modes. This ensures our claim in Eq.~3.19!.

Let us consider Yang-Mills theory with gauge grou
U(N) with action

S52
1

2
TrHtrS FmnFmn1

1

j
~DmAm!2D ~3.24!

and small fluctuations about a classical instanton solu
Am(x)

Am8 ~x!5Am~x!1dAm~x!. ~3.25!

If the action is expanded to second order indAm , one can
find the following result:

S@Am8 #'S@Am#2TrHtr dAmF2D2dmn22Fmn

1S 12
1

j DDmDnGdAn . ~3.26!

In our previous paper@42# we showed that in ak instanton
background there are 4Nk adjoint zero modesfm

(n) , n
51, . . . ,4Nk, satisfyingDmfm

(n)50 and

~D2dmn12Fmn!fn
(n)50. ~3.27!
04502
ll

n

Thus to define the spin-1 propagator we should project
the zero modes just as in the spin-1

2 propagator~3.14!. Ac-
cording to the action~3.26!, the spin-1 propagatorGmn(x,y)
in the anti-self-dualk instanton background is defined by

F2D2dml22Fml1S 12
1

j DDmDlGGln~x,y!5Qmn~x,y!,

~3.28!

where

Qmn~x,y!5dmnd~x2y!2(
n

fm
(n)~x!fn

(n)~y!†.

~3.29!

The quantity Qmn(x,y) is the projection operator, i.e.
TrH

z Qml(x,z)Qln(z,y)5Qmn(x,y), onto the space of the
nonzero modes.

Using the operator formalism used in the spin-1
2 propaga-

tor, one can show that the spin-1 propagator can also
constructed in terms of the corresponding scalar propaga
To proceed with the construction, define

qmnlk
(6) 5dmndlk1hmn

(6)ahlk
(6)a5dmldnk1hml

(7)ahnk
(7)a

~3.30!

wherehmn
(1)a5hmn

a andhmn
(2)a5h̄mn

a are defined in Eq.~3.2!.
The tensor

hmn
(6)ahlk

(6)a5
1

4
~dmldnk2dmkdnl6«mnlk! ~3.31!

projects out the self-dual or anti-self-dual part of the an
symmetric tensor sincehmn

(6)ahmn
(7)b50. Following @44#, let

us introduce the bracket operation

$X%mn
(6)5qmnlk

(6) DlXDk ~3.32!

for an arbitrary operatorX. Then it is easy to see that

Dn$X%nm
(6)5D2XDm1@Fmn7* Fmn ,XDn#. ~3.33!

So if the field strength satisfies the self-duality conditi
~3.8!, Eq. ~3.33! reduces to

Dn$X%nm
(6)5D2XDm . ~3.34!

Similarly,

$X%mn
(6)Dn5DmD2X. ~3.35!

Let us quote the following algebraic relation@44#:

qmlns
(6) qlktr

(6) 5dstqmknr
(6) 1r mknrst

(6) ~3.36!

where

r mknrst
(6) 5~dmnhkr

(7)c2dkrhmn
(7)c1«abchmn

(7)ahkr
(7)b!hst

(7)c

~3.37!

and thus has the following duality property:
7-5
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BUM-HOON LEE AND HYUN SEOK YANG PHYSICAL REVIEW D66, 045027 ~2002!
1

2
«stylr mknrst

(6) 57r mknryl
(6) . ~3.38!

In the derivation of Eq.~3.37!, we used

hlm
(6)ahln

(6)b5dabdmn1«abchmn
(6)c . ~3.39!

Using these properties, the following bracket composit
law can be derived:

$X%ml
(6)$Y%ln

(6)5$XD2Y%mn
(6) . ~3.40!

Now it is straightforward to see thatGmn(x,y) has the
following formal operator expression

Gmn52H S 1

D2D 2J
mn

1~12j!DmS 1

D2D 2

Dn . ~3.41!

The reason is the following. First note that

F2D2dml22Fml1S 12
1

j DDmDlGGln5Qmn ,

~3.42!

where

Qmn5H 1

D2J
mn

. ~3.43!

We used Eqs.~3.34! and~3.35! and the bracket compositio
~3.40! in the derivation. Comparing with Eq.~3.28!, we see
that Qmn does not contain any zero modes. And, using
composition law~3.40!, one can easily see thatQmn is a
projection operator, i.e.,QmlQln5Qmn . Indeed,Qmn is the
projection operator onto all the nonzero modes in Eq.~3.29!
and thus an operator realization of the projectorQmn(x,y)
since it satisfies the following equations:

QmlGln5Gmn ,

F2D2dml22Fml1S 12
1

j DDmDlGQln

5F2D2dmn22Fmn1S 12
1

j DDmDnG . ~3.44!

Thus we complete the proof of our claim in Eq.~3.41!.

IV. SCALAR INSTANTON PROPAGATORS

In order to calculate instanton effects in quantum gau
theory, it is important to know the Green’s function in insta
ton backgrounds@6#. In the previous section, following th
same method as in@44#, we showed that the propagators f
spinor and vector fields can be constructed in terms of th
for the scalar field in a noncommutative instanton ba
ground. Thus, if we can find the scalar propagatorG(x,y)
@Eq. ~3.17!# for the fundamental representation or adjo
representation, we know the spin-1

2 propagatorS(x,y) for
each representation in terms of Eq.~3.19! and the spin-1
04502
n

e

e
-

se
-

t

propagatorGmn(x,y) in terms of Eq.~3.41!. In commutative
space, the scalar propagator in the fundamental represe
tion has a remarkably simple expression@50,51#:

G~x,y!5v~x!†G(0)~x,y!v~y! ~4.1!

wherev(x) is a function determining the ADHM gauge fiel
Am(x) by Am(x)5v(x)†]mv(x). The scalar propagator in th
adjoint representation has a more complicated expressio
which we will present the explicit form. We will first show
that the scalar propagator in the noncommutative instan
background has exactly the same form as Eq.~4.1!.

To derive the above remarkable formula, we need the
lowing basic properties in the ADHM constructio
@18,50,51#. The gauge field with instanton numberk for the
U(N) gauge group is given in the form

Am~x!5v~x!†]mv~x! ~4.2!

wherev(x) is the (N12k)3N matrix defined by the equa
tions

v~x!†v~x!51, ~4.3!

v~x!†D~x!50. ~4.4!

In Eq. ~4.4!, D(x) is an (N12k)32k matrix, linear in the
position variablex, having the structure

D~x!5H a2bx, self-dual instantons,

a2bx̄, anti-self-dual instantons,
~4.5!

wherea,b are (N12k)32k matrices.v(x) can be thought
of as a map from anN-complex dimensional spaceW to an
(N12k)-complex dimensional spaceV. Thus D(x) must
obey the completeness relation

P~x!1D~x! f ~x!D~x!†51 ~4.6!

where P(x)5v(x)v(x)†. The matricesa,b are constrained
to satisfy the conditions thatD(x)†D(x) be invertible and
that it commutes with the quaternions. These conditions
ply that D(x)†D(x) as a 2k32k matrix has to be factorized
as follows:

D~x!†D~x!5 f 21~x! ^ 12 ~4.7!

where f 21(x) is a k3k matrix and 12 is a unit matrix in
quaternion space.

Given a pair of matricesa,b, Eqs.~4.3! and ~4.4! define
Am up to gauge equivalence. Different pairs of matricesa,b
may yield gauge equivalentAm since Eqs.~4.3! and~4.4! are
invariant under

a→QaK, b→QbK, v→Qv ~4.8!

whereQPU(N12k) and KPGL(k,C). This freedom can
be used to puta,b in the canonical forms

a5S l

j
D , b5S 0

12k
D , ~4.9!
7-6
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wherel is anN32k matrix andj is a 2k32k matrix. Here
we decompose the matrixj in the quaternionic basiss̄m as a
matter of convenience,

j5jms̄m, ~4.10!

where thejm’s are k3k matrices. In the basis~4.9!, the
constraint~4.7! boils down to

tr2taa†a5H umnh̄mn
a , self-dual instantons,

umnhmn
a , anti-self-dual instantons,

~4.11!

jm
† 5jm , ~4.12!

where tr2 is the trace over the quaternionic indices.

A. Scalar propagator in fundamental representation

Now we will explain how to derive the formula~4.1!.
First note that the covariant derivative for a fieldF in the
fundamental representation of U(N) has the simple expres
sion

DmF5~]m1v†]mv !F5v†]m~vF!. ~4.13!

Using this relation, let us calculate2DmDmG(x,y),

2DmDm„v~x!†G(0)~x,y!v~y!…

52v~x!†]m~P~x!]m„P~x!G(0)~x,y!v~y!…!.

~4.14!

Note thatv(x)†P(x)5v(x)†, so

2DmDmG~x,y!52v~x!†]m„P~x!]mP~x!…G(0)~x,y!v~y!

22v~x!†
„]mP~x!]mG(0)~x,y!…v~y!

2v~x!†]m]mG(0)~x,y!v~y!. ~4.15!

Let us calculate the first term of the right-hand side in E
~4.15!:

v~x!†]m„P~x!]mP~x!…

52v~x!†]m„P~x!]mD~x! f ~x!D~x!†
…

5v~x!†]mD~x! f ~x!D~x!†]mD~x! f ~x!D~x!†

2v~x!†]mD~x!]m f ~x!D~x!†

2v~x!†]mD~x! f ~x!]mD~x!† ~4.16!

where we used Eqs.~4.4! and ~4.6!. Also note that

]m f ~x!52 f ~x!„]mD~x!†D~x!1D~x!†]mD~x!…f ~x!
~4.17!

from Eq. ~4.7!.
For explicit calculation, let us take the anti-self-dual i

stanton withD(x)5a2bx̄. The self-dual case can be sim
04502
.

larly calculated. Using]mD(x)52bs̄m and ]mD(x)†5
2smb† and the formulas

s̄mD~x!†bs̄m522b†D~x!, s̄m f ~x!sm54 f ~x!,
~4.18!

we arrive at

v~x!†]m„P~x!]mP~x!…524v~x!†b f~x!b†, ~4.19!

where we used the fact that the functionf (x) commutes with
s̄m andsm . Then our original equation~4.15! reduces to

2DmDmG~x,y!52v~x!†
„2b f~x!b†G(0)~x,y!

2]mP~x!]mG(0)~x,y!…v~y!1d~x2y!

~4.20!

where 2]m]mG(0)(x,y)5d(x2y) is used. Note that the
whole procedure above until Eq.~4.20! is totally valid even
for noncommutative space.

To arrive at our final destination~3.17!, we must show
that

v~x!†
„2b f~x!b†G(0)~x,y!2]mP~x!]mG(0)~x,y!…v~y!50.

~4.21!

First let us show Eq.~4.21! in commutativeR4, where we do
not have to worry about the ordering problem, which w
also be helpful in finding the noncommutative version. If o
notices thatD(y)†v(y)50 and

]mG(0)~x,y!52G(0)~x,y!
2~x2y!m

~x2y!2
, ~4.22!

the second term of Eq.~4.21! can be written as

v~x!†]mP~x!]mG(0)~x,y!v~y!

5v~x!†bs̄m f ~x!]mG(0)~x,y!„D~x!†2D~y!†
…v~y!

52v~x!†b f~x!s̄msnb†G(0)~x,y!
~x2y!m

~x2y!2
~x2y!nv~y!.

~4.23!

Sinces̄msn5dmn1 i s̄mn , Eq. ~4.23! exactly cancels the firs
term in Eq.~4.21!. Thus we proved Eq.~4.1! in commutative
R4.

Before going on to noncommutative space, let us expl
why we expect Eq.~4.1! even for noncommutative space
The relation~3.6! implies that, if we define

F̂5vF and DmF̂5DmF̂, ~4.24!

we get

DmF̂5P]mF̂. ~4.25!

We may interpret this result as follows@50#. The matrixv:
W→V mapsF in the N-dimensional complex vector spac
7-7
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W to F̂ in an (N12k)-dimensional complex vector spaceV
which lies in anN-dimensional subspace ofCN12k, i.e., the
subspace

Ex5$juP~x!j5j% ~4.26!

orthogonal toD(x) onto whichP is the projection operator
The collection of spaces$Ex% as x varies overR4 or RNC

4

forms a vector bundle and this vector bundle precisely
fines the ADHM gauge fieldsAm(x) through Eq.~4.25!. This
is a statement of the Serre-Swan theorem@52#; the vector
bundle over aC* algebraA ~which is a complex Banach
algebra with adjoint operation! is a finitely generated projec
tive module.~A moduleE is projective if there exists anothe
module F such that the direct sumE% F is free, i.e.,
io

04502
-

E% F>A^ •••^ A as rightA module.! Thus one can imag-
ine that the Green’s functionG(x,y) for the fieldF living in
the ‘‘nontrivial’’ N-dimensional vector spaceW, which is de-
fined asG(x,y)5^F(x),F(y)&, is obtained by the mapv:
W→V from the Green’s functionG(0)(x,y)[^F̂(x),F̂(y)&
for the field F̂ living in the ‘‘free’’ ( N12k)-dimensional
vector spaceV. This is precisely the content of Eq.~4.1!.
Note, however, that this argument should also be valid fo
noncommutative space. This is the reason why we expec
propagator~4.1! even for a noncommutative instanton bac
ground.

To show Eq.~4.21! in the noncommutative space~2.1!, let
us follow the previous commutative calculation keeping
mind the ordering due to the noncommutativity. The seco
term in Eq.~4.21! can be written as
v~x!†]mP~x!]mG(0)~x,y!v~y!5v~x!†bs̄m f ~x!D~x!†]mG(0)~x,y!v~y!

5v~x!†b f~x!s̄m]mG(0)~x,y!„D~x!†2D~y!†
…v~y!1v~x!†b f~x!s̄m@D~x!†,]mG(0)~x,y!#v~y!

52v~x!†b f~x!s̄msnb†]mG(0)~x,y!~x2y!nv~y!2v~x!†b f~x!s̄msnb†@xn ,]mG(0)~x,y!#v~y!

52v~x!†b f~x!s̄msnb†~x2y!n]mG(0)~x,y!v~y!2v~x!†b f~x!s̄msnb†@yn ,]mG(0)~x,y!#v~y!

52
1

2
v~x!†b f~x!s̄msnb†

„]mG(0)~x,y!~x2y!n1~x2y!n]mG(0)~x,y!…v~y!

2
1

2
v~x!†b f~x!s̄msnb†@~x1y!n ,]mG(0)~x,y!#v~y!

52
1

2
v~x!†b f~x!s̄msnb†

„]mG(0)~x,y!~x2y!n1~x2y!n]mG(0)~x,y!…v~y!. ~4.27!
ow

int
ion
the
In the last step, we used the fact that the funct
]mG(0)(x,y) depends only on the combination (x2y) be-
cause of translation invariance and Eq.~2.26!.

In order to calculate the right-hand side of Eq.~4.27!, we
will use the Weyl symmetric prescription~2.18!:

1

2
s̄msn„]mG(0)~x,y!~x2y!n1~x2y!n]mG(0)~x,y!…

5E d4k

~2p!4
s̄msn

km

k2

]

]kn
eik•(x2y)

5E d4k

~2p!4
s̄msn

]

]kn S km

k2
eik•(x2y)D

2E d4k

~2p!4
s̄msn

1

k2 S dmn22
kmkn

k2 D eik•(x2y)

5E d4k

~2p!4
s̄msn

]

]kn S km

k2
eik•(x2y)D 22G(0)~x,y!.

~4.28!
nThus if we can show that the total divergence

E d4k

~2p!4
s̄msn

]

]kn S km

k2
eik•(x2y)D [K~x2y!

vanishes onS3 in the largek limit, we can finally achieve our
goal ~4.21! in the noncommutative space. It is easy to sh
directly in the basis of the tensor productuj1 ,j2&5uj1&
^ uj2& of coherent states such as~2.14!, using~2.17!, that the
function ^j1 ,j2uK(x2y)uj1 ,j2& vanishes for anyuj1 ,j2&.
This means that the operator functionK(x2y) should vanish
even in noncommutative space.

B. Scalar propagator in adjoint representation

Next let us consider the scalar propagator in the adjo
representation. Ifq denotes the fundamental representat
of U(N), the adjoint representation can be obtained by
tensor productq^ q̄, for which

Dm5]m1Am ^ 111^ Ām . ~4.29!
7-8
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In other words, we regard a field in the adjoint representa
as a two-index object, one index transforming according
the fundamental representation and the other its com
conjugate. Motivated by this fact and to follow the method
@45#, we treat this problem in a more general context. C
sider the direct productG13G2 and suppose we have insta
ton solutions

Am
1 ~x!5v1~x!†]mv1~x!, Am

2 ~x!5v2~x!†]mv2~x!,
~4.30!

described in the ADHM way for each gauge group. Al
consider a field transforming under the fundamental rep
sentation of each; thus its covariant derivative is defined

Dm5]m1Am
1

^ 111^ Am
2 . ~4.31!

The adjoint representation of U(N) would be obtained by
taking G15G25U(N) andAm

1 5Am
2 5Am .

The Green’s function for a tensor product should be
tained by solving Eq.~3.17! with Dm defined by Eq.~4.31!.
Thus we will also consider the tensor product

v~x!5v1~x! ^ v2~x! ~4.32!

of two independent fieldsv1(x),v2(x) in the fundamental
representation ofG1 and G2, respectively. To preserve th
group structure for G13G2, i.e., (g1 ,g2)(h1 ,h2)
5(g1h1 ,g2h2)PG13G2 for all g1 ,h1PG1 and g2 ,h2
PG2, we define a~unique! multiplication between element
of G13G2 such that

„f1~x! ^ f2~x!…„x1~x! ^ x2~x!…

5„f1~x!x1~x!…^ „f2~x!x2~x!… ~4.33!

for all f1(x),x1(x)PG1 andf2(x),x2(x)PG2. This multi-
plication law will be crucial for our calculation of the adjoin
Green’s function. The commutative Green’s functionG(x,y)
satisfying Eq.~3.17! for G13G2 was previously constructe
in @45# and is of the form

G~x,y!5@v1~x! ^ v2~x!#†G(0)~x,y!@v1~y! ^ v2~y!#

1
1

4p2
C~x,y!. ~4.34!

We will specify the explicit form ofC(x,y) later.
04502
n
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We will try the same expression as~4.34! to construct the
noncommutative instanton propagator. To calculate
~3.17! for the ansatz~4.34!, first note that, using the multi
plication law ~4.33!,

Dmv~x!†5v1~x!†]mP1~x! ^ v2~x!†

1v1~x!†
^ v2~x!†]mP2~x!, ~4.35!

DmDmv~x!†5v1~x!†]m„v1~x!†]mP1~x!…^ v2~x!†

1v1~x!†
^ v2~x!†]m„v2~x!†]mP2~x!…

12v1~x!†]mP1~x! ^ v2~x!†]mP2~x!,

~4.36!

where we defined

Pa~x!5va~x!va~x!†, a51,2. ~4.37!

If we further define

P~x!5P1~x! ^ P2~x!, ~4.38!

the above covariant derivatives can be rewritten as, using
~4.33! again,

Dmv~x!†5v~x!†]mP~x!, ~4.39!

DmDmv~x!†5v~x!†]m„P~x!]mP~x!…, ~4.40!

where we used v1
†(x)P1(x)5v1

†(x) and v2
†(x)P2(x)

5v2
†(x). Thus we can proceed with the calculation

2DmDm„v(x)†G(0)(x,y)v(y)… in the same way as in Sec
III A. Consequently, we get

2DmDm„v~x!†G(0)~x,y!v~y!…

5d~x2y!22„v1~x!†]mP1~x! ^ v2~x!†]mP2~x!…

3G(0)~x,y!„v1~y! ^ v2~y!…. ~4.41!

Let us calculate the second term in Eq.~4.41!. For explicit
calculation, let us take the anti-self-dual instanton w
Da(x)5aa2bax̄. The self-dual case can be similarly don
Note that, according to ADHM construction

va(x)†]mPa(x)5va(x)†bas̄m f a(x)Da(x)†. Again the multi-
plication law~4.33! will have a crucial role in the calculation
below:
22„v1~x!†]mP1~x! ^ v2~x!†]mP2~x!…G(0)~x,y!v~y!

522„v1~x!†b1s̄m f 1~x!D1~x!†
^ v2~x!†]mP2~x!…G(0)~x,y!v~y!

522„v1~x!†b1s̄m f 1~x! ^ v2~x!†]mP2~x!…~@D1~x!†
^ 1,G(0)~x,y!#1G(0)~x,y!„D1~x!†2D1~y!†

…^ 1!v~y!

522„v1~x!†b1s̄m f 1~x! ^ v2~x!†]mP2~x!…~@snb1
†yn ^ 1,G(0)~x,y!#1„snb1

†~x2y!n ^ 1…G(0)~x,y!!v~y!

52„v1~x!†b1s̄m f 1~x! ^ v2~x!†]mP2~x!…~G(0)~x,y!„snb1
†~x2y!n ^ 1…1„snb1

†~x2y!n ^ 1…G(0)~x,y!!v~y!.

~4.42!
7-9
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In the last step, we used the fact that the funct
]mG(0)(x,y) depends only on the combination (x2y) and
Eq. ~2.26!. We can repeat the same procedure as in Eq.~4.42!
for the termv2(x)†]mP2(x). Then we get

22„v1~x!†]mP1~x! ^ v2~x!†]mP2~x!…G(0)~x,y!v~y!

52
1

2
„v1~x!†b1s̄m f 1~x! ^ v2~x!†b2s̄m f 2~x!…

3~F (0)~x,y!„1^ slb2
†~x2y!l…

1„1^ slb2
†~x2y!l…F

(0)~x,y!!v~y!, ~4.43!

where F (0)(x,y)5G(0)(x,y)„snb1
†(x2y)n ^ 1…1„snb1

†(x
2y)n ^ 1…G(0)(x,y).

In order to calculate the right-hand side of Eq.~4.43!, we
will again use the Weyl symmetric prescription~2.18!. First
note that

F (0)~x,y!522i ~snb1
†

^ 1!E d4k

~2p!4

1

k2

]

]kn
eik•(x2y)

~4.44!

and

F (0)~x,y!„1^ slb2
†~x2y!l…1„1^ slb2

†~x2y!l…F
(0)~x,y!

524~snb1
†

^ slb2
†!E d4k

~2p!4

1

k2

]2

]kn]kl
eik•(x2y)

[24~snb1
†

^ slb2
†!Hnl~x,y!. ~4.45!

Then we arrive at

22„v1~x!†]mP1~x! ^ v2~x!†]mP2~x!…G(0)~x,y!v~y!

52„v1~x!†b1s̄msn f 1~x!b1
†

^ v2~x!†b2s̄msl f 2~x!b2
†
…

3Hnl~x,y!v~y!,

52„v1~x!†b1s̄m f 1~x!b1
†

^ v2~x!†b2s̄m f 2~x!b2
†
…

3Hnn~x,y!v~y!. ~4.46!

To derive the last result in Eq.~4.46!, we used Eq.~3.2!, Eq.
~3.39!, and the fact thatHnl(x,y)5Hln(x,y).

In order to calculateHnn(x,y), we introduce an infrared
cutoff e, i.e., 1/k2→1/k21e. After performing the integral,
we will take the limite→0:

Hnn~x,y!5 lim
e→0

E d4k

~2p!4

]

]kn
S 1

k21e

]

]kn
eik•(x2y)

1
2kn

~k21e!2
eik•(x2y)D

2 lim
e→0

E d4k

~2p!4

8e

~k21e!3
eik•(x2y). ~4.47!
04502
nOne can check that

lim
e→0

2

p2

e

~k21e!3
5d~k!. ~4.48!

Using the coherent state basisuj1 ,j2&5uj1& ^ uj2& as in Eq.
~4.28!, it is easy to see that the total divergence in Eq.~4.47!
vanishes onS3 in the largek limit. So we have

Hnn~x,y!52
1

4p2
. ~4.49!

Finally, we get

2DmDm„v~x!†G(0)~x,y!v~y!…

5d~x2y!2
1

2p2
„v1~x!†b1s̄m f 1~x!b1

†

^ v2~x!†b2s̄m f 2~x!b2
†
…v~y!. ~4.50!

Note that the above expression has exactly the same form
in the commutative case.

Therefore, in order to get the answer~3.17! for the spin-1
propagator~4.34!, we must show that

2DmDmC~x,y!54~„v1~x!†b1f 1~x!…a ^ „v2~x!†b2f 2~x!…b!

3~„b1
†v1~y!…g ^ „b2

†v~y!…d!«ab«gd ,

~4.51!

where we used Eqs.~3.3! and ~4.33!. Since the right-hand
side of Eq.~4.51! has exactly the same form as the comm
tative one, we will take the same ansatz forC(x,y) as in the
commutative case@45#:

Cus,vt~x,y!5Mi j ,lm„v1~x!†b1…u,ia„v2~x!†b2…s, j b

3„b1
†v1~y!…lg,v„b2

†v2~y!…md,t«ab«gd ,

~4.52!

or in tensor notation

C~x,y!5~„v1~x!†b1…a ^ „v2~x!†b2…b!

3M ~„b1
†v1~y!…g ^ „b2

†v2~y!…d!«ab«gd ,

~4.53!

whereMi j ,lm is a constant matrix to be determined later,u,
v51, . . . ,N15dim G1 , s,t51, . . . ,N25dim G2 are group
indices, and i ,l 51, . . . ,k1 , j ,m51, . . . ,k2 are instanton
number indices. Using the formulas@see Eqs.~3.6! and
~4.19!#

Dmva~x!†5va~x!†bas̄m f a~x!Da~x!†,

DmDmva~x!†524va~x!†baf a~x!ba
† , ~4.54!

and the multiplication~4.33!, it is straightforward to show
that
7-10



PROPAGATORS IN NONCOMMUTATIVE INSTANTONS PHYSICAL REVIEW D66, 045027 ~2002!
2DmDmC~x,y!54~„v1~x!†b1f 1~x!…a ^ „v2~x!†b2f 2~x!…b!~b1
†b1^ f 2

21~x!1 f 1
21~x! ^ b2

†b22„D1~x!†b1…hj

^ „D2~x!†b2…xz«hx«jz!M ~„b1
†v1~y!…g ^ „b2

†v2~y!…d!«ab«gd , ~4.55!
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where we used Eq.~3.3! in the final stage. Thus if the matri
M satisfies

~b1
†b1^ f 2

21~x!1 f 1
21~x! ^ b2

†b2

2„D1~x!†b1…hj ^ „D2~x!†b2…xz«hx«jz!5M 21,

~4.56!

we finally prove Eq.~4.51! and so Eq.~3.17! for the tensor
productG13G2, where the adjoint representation is a sp
cial case. However, to achieve this final goal, we should
further since Eq.~4.56! appears to state that the consta
matrix M is the inverse of anx-dependent matrix. In com
mutative space, as a result of conformal invariance of
matrix M @45#, thex-dependent parts of the left-hand side
Eq. ~4.56! are completely canceled. We will show that th
also the case even for noncommutative space, but the m
M is slightly modified by the noncommutativity.

First note that, in the canonical basis~4.9!,

f a
21~x!5Da~x!†Da~x!

5aa
†aa2ja

mxm1x22
1

2
smnumn ~4.57!

and

„D1~x!†b1…hj ^ „D2~x!†b2…xz«hx«jz

5~a1
†b1!hj ^ ~a2

†b2!xz«hx«jz22xm~j1
m

^ 1!

22xm~1^ j2
m!12x2. ~4.58!

Using these results, it is easy to see that thex-dependent
parts of the left-hand side in Eq.~4.56! are completely can-
celed and the matrixM is defined by

Xb1
†b1^ S a2

†a22
1

2
smnumnD1S a1

†a12
1

2
smnumnD

^ b2
†b22~a1

†b1!hj ^ ~a2
†b2!xz«hx«jzC5M 21.

~4.59!

Note thataa
†aa2 1

2 smnumn is proportional to the identity ma
trix in quaternionic space whileaa

†aa is not, as seen from Eq
~4.57!. We see that the matrixM is deformed by the noncom
mutativity, but only for a non-BPS instanton backgroun
that is for anti-self-dual~self-dual! instantons in self-dua
~anti-self-dual! RNC

4 and all instantons for Eq.~2.8!, since

hmn
a h̄mn

b 50. If umn50, of course, we recover the result
commutative space.
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In order to construct the propagator forq^ q̄ in Eq.
~4.29!, that is, the adjoint representation of U(N), we take
@45#

a15a, a25a* s2, b15b, b25b* s2,

v1~x!5v2~x!* 5v~x! ~4.60!

and anti-Hermitian generators of U(N) as TA, A
51, . . . ,N2 which are normalized as

tr~TATB!52
1

2
dAB ~4.61!

whereTN2
5(1/iA2N)1N . Then the propagatorGAB(x,y) for

the adjoint representation can be obtained by multiplying
~4.34! by Tus

A ,Tvt
B and summing overu,s,v,t51, . . . ,N:

GAB~x,y!5@v~x!†#u,lTus
A @v~x!#r,sG

(0)~x,y!

3@v~y!#l,vTvt
B @v~y!†# t,r

1
1

4p2
Mi j ,lm@w~x!†#u,iaTus

A @w~x!# j a,s

3@w~y!# lb,vTvt
B @w~y!†# t,mb , ~4.62!

wherel,r51, . . . ,N12k are ADHM indices and we intro-
duced a 2k3N matrix w(x)5b†v(x).

V. DISCUSSION

We explicitly constructed Green’s functions for a sca
field in an arbitrary representation of a gauge group pro
gating in a noncommutative instanton background.
showed that the propagators in the adjoint representation
deformed by noncommutativity while those in the fundame
tal representation have exactly the same form as in the c
mutative case.

We showed, generalizing the argument in@44# to noncom-
mutative space, that the propagators for spinor and ve
fields can be constructed in terms of those for the scalar fi
in a noncommutative instanton background. However, it w
pointed out in@44# that the vector propagator suffers from a
infrared divergence. Let us discuss this problem in our c
text. The vector propagator can be constructed by the op
tor expression~3.41! which is involved in the convolution
integral overz coordinates

K xUS 1

D2D
AB

2 UyL 5TrH
z GAC~x,z!GCB~z,y!, ~5.1!
7-11
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where GAB(x,y) is defined by Eq. ~4.62!. Using the
asymptotic behavior@53,14# of several ADHM quantities in
the largez limit, in which the noncommutativity of space i
irrelevant, one can check that the integral~5.1! is logarithmi-
cally divergent or a logarithmically divergent sum, e.
(nn21, in the noncommutative case. According to@44#, one
can see that this divergence is coming from the zero m
fluctuations corresponding to global gauge rotations and
overall scale change, which are already contained in the
mode sum~3.29!, where the zero mode for the scale chan
is generated by the Lorentz rotation of the gauge zero mo
However, note that the global gauge zero modes are not
malizable on R4 or RNC

4 since it is noncompact spac
@54,51#. A natural way to remove this logarithmic divergen
is to put the theory on compactified Euclidean space, i.e.,S4,
as in@55,56#. As shown in@56#, this compactified Euclidean
formalism provides a gauge invariant normalization for t
global gauge zero modes since the volume ofS4 is now
finite. Thus the divergence in the vector propagator may
cured in this way because the convolution integral~5.1! on
S4 can be finite. It will be interesting to see if the infrare
divergence in the vector propagator can be cured by an ‘
propriate’’ compactification@28# of noncommutative space i
the same way.

Let us consider the massless Dirac equation defined
the covariant derivative~4.29! in the background of anti-self
dual instantons. In this case it has only positive chira
solutions@42# described by two spinorscR5cus,a satisfying

smDmcR50. ~5.2!

Take the same ansatz as in the commutative case@45#

cus,a5@v1~x!†b1s2f 1~x!#u,ia@v2~x!†d#s,i

1@v1~x!†c#u,i@v2~x!†b2s2f 2~x!#s,ia , ~5.3!

wherec,d are constant (N112k1)3k2 and (N212k2)3k1
matrices to be determined. Here we are using ordinary m
tiplication rather than the tensor product~4.33! sincec,d are
coupling two spacesG1 andG2 together. In the case of th
adjoint representation, using Eq.~4.60!, the ansatz~5.3! can
be arranged in the form

cR5v~x!†Mf ~x!b†v~x!2v~x!†b f~x!M †v~x!,
~5.4!

with the (N12k)3k matrix M. Using the formula~4.54!
and

s̄m
„Da~x!†ba…s̄

m522ba
†Da~x!,

sm
„ba

†Da~x!…s̄m52„Da~x!†ba1ba
†Da~x!…, ~5.5!

it is straightforward to calculate Eq.~5.2!:

smDmcR52«bg@v1~x!†b1f 1~x!#u,ib

3~@v2~x!†b2f 2~x!#s, j g@D2~x!†d# j a,i

2@D1~x!†c# ia, j@v2~x!†b2f 2~x!#s, j g!. ~5.6!

In the commutative case@45#, Eq. ~5.2! requires that
04502
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@a1
†c# ia, j5@a2

†d# j a,i , @b1
†c# ia, j5@b2

†d# j a,i . ~5.7!

However, in noncommutative space, we cannot say that
solution of Eq.~5.2! would be Eq.~5.7! since x does not
necessarily commute withv2(x)†b2f 2(x). So the simple
minded ansatz~5.3! does not work for noncommutativ
space. To find the fermionic zero modes for the gauge gr
G13G2, it may be necessary to apply a systematic meth
for the tensor product of instantons as was done in@45#.
Unfortunately, the ADHM construction for the tensor produ
involves tedious and complicated manipulations even
commutative space. We did not succeed in generalizing
noncommutative space yet. We leave this problem for fut
work.

In Sec. IV, we observed that thex-dependent matrixM
~4.56! is equal to the constant matrixM ~4.59! and the matrix
M is deformed by noncommutativity only for non-BPS in
stantons. In commutative space, thex independence of the
matrix M is a result of conformal invariance and the confo
mal invariance has an important role in calculating mu
instanton determinants@57–60#. Since, for BPS instanton
~commutative instantons are always BPS!, the matrixM has
the same form as the commutative one, the conformal inv
ance for this background should be manifest. Although
matrix M is deformed by the noncommutativity for non-BP
instantons, it is still a constant matrix. Thus one may exp
~deformed! conformal invariance even for the non-BP
background. In@42#, we observed that the conformal ze
modes have a similar deformation because of the nonc
mutativity and we speculated that the conformal symme
has to act nontrivially only on the SU(N) instanton sector.
These deformations of conformal symmetry in zero mod
and propagators should be related to each other.

Let us briefly discuss the conformal property of the mat
M ~4.59! in the BPS background, in which thesmnumn term
vanishes. From Eq.~4.56! and Eq.~4.59!, we see that the
matrix M in ~4.59! is invariant under the transformations

aa→aa1bap̄, ba→ba , a51,2. ~5.8!

Since it is symmetric under interchange ofaa and ba , it is
also invariant under the transformations@usesmsn1s̄ms̄n

5tr2(smsn)5tr2(s̄ms̄n) to check#

aa→aa , ba→ba1aap̄. ~5.9!

While, under the transformations

aa→aap̄, ba→baq̄, ~5.10!

it changes by a factorp2q2 for any quaternionsp̄,q̄ @use Eq.
~3.2! to check#. This factor can be scaled to unity in terms
simultaneous global scaling ofaa ,ba by a real number. The
above transformations~5.8!–~5.10! actually correspond to a
unimodular conformal group@45# ~so a 15-parameter group!.

If we try to generalize the above consideration to no
BPS instantons, in which we have thesmnumn term, we im-
mediately meet some nontrivial problems. The main sou
7-12
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of this difficulty is that the matrixM ~4.59! is asymmetric
under interchange ofaa and ba due to the presence of th
inhomogeneous term, i.e.,smnumn. The scale transformation
~5.10! does not generate an overall scale either, becaus
the inhomogeneous term; thus some modified transforma
would be genuinely required. Currently, we do not kno
how to modify the conformal transformations~5.8!–~5.10!.
We hope to report some progress along this line in the n
future.
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