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Energy density in the Casimir effect

V. Sopova* and L. H. Ford†

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155
~Received 25 April 2002; published 26 August 2002!

We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside
a half-space filled with a uniform dispersive dielectric. We find a positive energy density of the electromagnetic
field which diverges at the interface despite the inclusion of dispersion in the calculation. We also investigate
the mean squared fields and the energy density in the vacuum region between two parallel half-spaces. Of
particular interest is the sign of the energy density. We find that the energy density is described by two terms:
a negative position independent~Casimir! term, and a positive position dependent term with a minimum value
at the center of the vacuum region. We argue that in some cases, including physically realizable ones, the
negative term can dominate in a given region between the two half-spaces, so the overall energy density can be
negative in this region.
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I. INTRODUCTION

In 1948 Casimir made the remarkable prediction t
there is an attractive force between a pair of uncharged
allel plane perfect conductors@1#. Furthermore, he argue
that this force arises solely from a shift in the energy of
vacuum state of the quantized electromagnetic field. An e
attempt by Sparnaay@2# to observe this force was inconclu
sive, but in recent years several new experiments@3,4,5,6,7#
have been performed which seem to give good agreem
with Casimir’s prediction.~To be more precise, most of thes
experiments actually measure the force between a plate a
sphere and incorporate a theoretical correction to compa
to Casimir’s result. Of the recent experiments, only that
Bressiet al. @7# uses two parallel plates.!

If the energy of the vacuum state is zero in the limit
infinite plate separation, then the attractive force found
Casimir would seem to imply a negative vacuum energy
finite separation. In fact, Brown and Maclay@8# showed that
for perfectly conducting plates one has a constant nega
vacuum energy density. This conclusion is of great theor
cal interest, because negative energy density has the pote
to cause some rather bizarre effects in gravity theory.~See,
for example, Ref.@9# and references therein.! However,
questions have been raised as to whether the negative en
density will still arise in a more realistic treatment in whic
the plates are not perfect conductors@10,11#. In particular,
Helfer and Lang@10# calculated the energy density outside
single half-space filled with a nondispersive dielectric ma
rial and obtained a positive result. They interpreted this a
positive self-energy density associated with a single p
which would add to the negative interaction energy den
between a pair of plates. Helfer and Lang conjecture that
net Casimir energy density might be positive when the s
energy is accounted for. If this conjecture is correct, then
situation would be analogous to that of the energy densit
classical electrostatics. A pair of oppositely charged partic
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have a negative interaction energy, but the net energy d
sity, which is proportional to the square of the electric fie
is always positive.

However, the Helfer and Lang calculation does not
clude dispersion, which is essential in a realistic treatme
Pfenning@12# has studied a scalar model with dispersion a
found that the energy density can be negative. In the elec
magnetic case, numerous authors, beginning with Lifsh
@13#, have studied the effects of dispersion upon Casi
forces. However, these authors have been concerned with
force or the total energy, and not the local energy dens
The purpose of this paper is to present a calculation of
Casimir energy density in a model in which dispersion
included. For this purpose, we will use the methods of sou
theory developed by Schwinger and co-workers@14,15#. This
is a method based upon the calculation of Green’s functi
which is especially well suited to dissipative materials, a
was used by Schwingeret al. @14# to rederive the results o
Lifshitz. Milonni and Shih@16# used conventional quantum
electrodynamics to reproduce some of the results of sou
theory. There has also been considerable interest in re
years in quantization of the electromagnetic field inside d
sipative materials using operator methods@17,18,19#. The
relation between the results of the latter set of authors
those of Schwingeret al. has not yet been clarified.

The outline of this paper is as follows. In Sec. II w
review the source theory approach as applied to paralle
terfaces of dielectric media. In Sec. III we compute the e
pectation values of the squares of the electric and magn
fields in the vacuum region outside a half-space filled with
uniform dispersive dielectric. We extend this calculation
the case of two parallel dielectric half-spaces and also
cuss the energy density in Sec. IV. Conclusions are give
Sec. V.

II. GREEN’S FUNCTION APPROACH FOR MULTILAYER
DIELECTRICS

This section is a review of the formalism of Schwing
et al. @14#. One begins by writing the Maxwell equations fo
the macroscopic electromagnetic fields produced by an
©2002 The American Physical Society26-1
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ternal polarization sourceP, which formally describes the
zero point fluctuations of the fields1

B5“3A,

E52Ȧ2“f ,
~1!

“3B5eĖ1Ṗ,

“•~eE1P!50,

wheree is the dielectric constant of the medium. The wa
equation for the electric field resulting from the Maxwe
equations is

2“3~“3E!5eË5P̈. ~2!

By assuming a linear relation between sources and fields
electric field can be written as a spacetime integral

E~x!5E d4x8GI~x,x8!P~x8!, ~3!

where x5(t,r ), x85(t8,r 8), and GI is a Green’s dyadic,
which satisfies Eq.~2! with a d-function source. Let

GI~r ,r 8,v!5E
2`

`

dt eivt GI~x,x8!, ~4!

where t5t2t8. From Eqs. ~2! and ~3!, it follows that
GI(r ,r 8,v) satisfies the following equation:

2“3~“3GI!1v2eGI52v21Id~r2r 8!. ~5!

So far, the discussion has been purely classical. At
point, Schwingeret al. @14# use source theory to identify th
Green’s dyadicGI with an ‘‘effective product of electric
fields’’

i

\
^Ej~r !Ek~r 8!&5G jk~r ,r 8,v!. ~6!

We can interpret this as the Fourier transform of the elec
field correlation function. From the Maxwell equation“
3E52Ḃ, one finds the corresponding expression for
magnetic field:

i

\
^Bj~r !Bk~r 8!&5e j lmeknp~“ l“n8 /v2!Gmp~r ,r 8,v!. ~7!

Note that\ makes its first appearance in these expressio
These expressions can be identified with the vacuum ex
tation values of products of field operators, which appea
the more conventional field theory approach to quantiza
of the electromagnetic field. From now onward, we revert
units in which\51. In order to calculate the field correlatio

1Heaviside-Lorentz units withc5\51 will be used in this paper
Also, it is assumed that the magnetic permeability is unity.
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functions, one needs to find the Green’s functionG occurring
in Eq. ~5!. This amounts to solving a classical bounda
value problem.

The interfaces between the media are chosen to be
pendicular to thez direction, so for now it will matter if the
dielectric constant changes in thez direction only. Therefore,
it is convenient to introduce a transverse spatial Fou
transform

GI~r ,r 8,v!5E dk'

1

~2p!2 eik'~r2r8!'GI~z,z8,k' ,v!, ~8!

where the vectork' can be chosen to point along the1x
axis (k5uk'u).

Some components ofGI are found to be@14#

Gxx52
1

e
d~z2z8!1

1

e

]

]z

1

e8

]

]z8
gB, ~9a!

Gyy5v2gE, ~9b!

Gzz52
1

e
d~z2z8!1

k2

ee8
gB, ~9c!

Gxz5 i
k

ee8

]

]z
gB, ~9d!

Gzx52 i
k

ee8

]

]z8
gB, ~9e!

wheree85e(z8), andgE, the ‘‘transverse electric,’’ andgB,
the ‘‘transverse magnetic,’’ Green’s functions satisfy

F2
]2

]z2 1k22v2eGgE~z,z8!5d~z2z8!, ~10a!

F2
]

]z

1

e

]

]z
1

k2

e
2v2GgB~z,z8!5d~z2z8!. ~10b!

By introducing the quantity

k25k22v2e, ~11!

Eq. ~10! can be written as

F2
]2

]z2 1k2GgE~z,z8!5d~z2z8!, ~12a!

F2
]

]z

1

e

]

]z
1

k2

e GgB~z,z8!5d~z2z8!. ~12b!

So, in order to find the field correlation functions as d
fined in Eqs.~6! and ~7! in a given situation, one needs t
solve these equations with the appropriate boundary co
tions. We consider here two cases.
6-2
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III. ONE-INTERFACE CASE

We now specialize the above discussion to a situation
which the inhomogeneity of the dielectric constant is due
a plane interface separating a dielectric substance fro
vacuum:

z.0: e~z!51,

z,0: e~z![ed . ~13!

Hereed is a function of frequency, but not of position.

A. Boundary conditions

In solving Eqs.~12a! and ~12b!, we use the following
boundary conditions. Atz5z8, g is continuous but the de
rivative is discontinuous at this point@20#:

]g

]zU
z→z

28

z→z18

521. ~14!

At the boundary (z50) we use the conditions for continuit
of Ex , Ey , eEz , andBi . The first three, as seen from E
~6!, imply the continuity ofGxx , Gyy , andeGzz and subse-
quently, from Eq.~9!, the continuity ofgE, gB, and

1

e

]

]z

1

e8

]

]z8
gB.

The continuity ofBx implies that of¹z¹z8Gyy , as seen from
Eq. ~24!, which is given below. From this, using Eqs.~6! and
~9b!, we deduce the continuity of]gE/]z.

The solutionsgE and gB in the vacuum region have th
form

gE5
e2k0uz2z8u1re2k0~z1z8!

2k0
, ~15a!

gB5
e2k0uz2z8u1r 8e2k0~z1z8!

2k0
, ~15b!

where

r[
k02k1

k01k1
, ~16a!

r 8[
k0ed2k1

k0ed1k1
. ~16b!

Here k0 and k1 represent the quantityk as defined in Eq.
~11! for the vacuum region (e51), and for the dielectric
half-space region (e5ed), respectively, andr andr 8 can be
identified as reflection coefficients for two polarization sta
' andi, respectively, corresponding to the electric field ve
tor being perpendicular or parallel to the plane of inciden
of a linearly polarized electromagnetic wave@20#.
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B. The electric field

Using Eq.~6!, we write the formal expectation value o
the square of the electric field at coincident points as

^E2& f52 i E
2`

`

dv
1

2p E
0

`

dk k
1

2p
Gkk

52
i

2p2 E
0

`

dvE
0

`

dk kGkk . ~17!

In the second step, we assumed that the integrand is an
function of v. By complex rotation (v→ i z), this becomes

^E2& f5
1

2p2 E
0

`

dzE
0

`

dk kGkk . ~18!

Note from Eq. ~11! that k2.0 when v is imaginary. By
means of Eq.~9!, all of the components ofGI in a given
region can be written in terms ofGxx andGyy :

Gxz~z,z8!5
ik

k2

]

]z8
Gxx~z,z8!,

Gzx~z,z8!52
ik

k2

]

]z
Gxx~z,z8!, ~19!

Gzz~z,z8!5
k2

~k2!2

]

]z

]

]z8
Gxx~z,z8!

1
v2

k2 d~z2z8!.

By taking the limitz→z8, and thus omitting the delta func
tion, Gkk becomes

Gkk5Gxx1Gyy1
k2

~k2!2 ¹z¹z8Gxx , ~20!

or by Eq.~9!, usinge51,

Gkk5v2gE1¹z¹z8g
B1

k2

~k2!2 ¹z¹z8~¹z¹z8g
B!

5v2gE1~k21¹z¹z8!g
B. ~21!

Using Eqs.~11! and ~15!, this becomes

Gkk5
v2

k
1

1

2k
@v2r 1~2k22v2!r 8#e22kz. ~22!

Equation~18! gives a formal expectation value only, be
cause the integral is divergent. However, the diverge
comes only from thev2/k term inGkk and is independent o
z. It is the usual empty space vacuum divergence. We
henceforth drop this term and denote the resulting finite
pectation value bŷ E2&. The renormalization results in
quantity which vanishes at large distances from the interfa
^E2&→0 asz→`, which amounts to finding the differenc
in ^E2& with the boundary and without it. Thus we find
6-3
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^E2&5
1

4p2 E
0

`

dzE
0

`

dk
k

k
@2z2r 1~2k21z2!r 8#e22kz.

~23!

C. The magnetic field

Now we compute the expectation value of the magne
field. Using Eq.~7!, we find

i ^Bx~r !Bx~r 8!&5
1

v2 ~¹z¹z8Gyy2¹y¹z8Gzy

2¹z¹y8Gyz1¹y¹y8Gzz!,

i ^By~r !By~r 8!&5
1

v2 ~¹z¹z8Gxx2¹x¹z8Gzx

2¹z¹x8Gxz1¹x¹x8Gzz!, ~24!

i ^Bz~r !Bz~r 8!&5
1

v2 ~¹y¹y8Gxx2¹y¹x8Gxy

2¹x¹y8Gyx1¹x¹x8Gyy!.

From the definition ofk' , it follows that all derivatives in
y vanish, so we can write the sum of the above terms as

i ^Bi~r !Bi~r 8!&5
1

v2 ~¹z¹z8Gyy1¹z¹z8Gxx2¹x¹z8Gzx

2¹z¹x8Gxz1¹x¹x8Gzz1¹x¹x8Gyy!.

~25!

Using Eq.~19!, we have

¹x¹x8Gzz~r ,r 8,v!5E dk'

~2p!2

~k2!2

~k2!2 ¹z¹z8Gxx ,

¹z¹x8Gxz~r ,r 8,v!5E dk'

~2p!2

k2

k2 ¹z¹z8Gxx , ~26!

¹x¹z8Gzx~r ,r 8,v!5E dk'

~2p!2

k2

k2 ¹z¹z8Gxx .

This leads to

i ^B~x!B~x8!&5E dv

2p E dk'

~2p!2 F 1

v2 ~k21¹z¹z8!Gyy~z,z8!

1
v2

k4 ¹z¹z8Gxx~z,z8!G . ~27!

Using Eq.~9!, this becomes

i ^B~x!B~x8!&5E dv

2p E dk'

~2p!2 @~k21¹z¹z8!g
E~z,z8!

1v2gB~z,z8!#. ~28!
04502
c

Following the same procedure as used above in calcula
^E2&, we find the finite mean squared magnetic field to b

^B2&5
1

4p2 E
0

`

dzE
0

`

dk
k

k
@~2k21z2!r 2z2r 8#e22kz.

~29!

Note from Eqs.~23! and ~29! that ^E2&↔^B2& under inter-
change ofr and r 8. Now, the mean energy density can b
calculated as

U5
1

2
~^E2&1^B2&!. ~30!

Using Eqs.~23! and ~29!, this becomes

U5
1

4p2 E
0

`

dzE
0

`

dk
k3

k
~r 1r 8!e22kz. ~31!

We can writeU in a form more convenient for numerica
calculation by introducing polar coordinatesu and u (z
5u cosu, k5u sinu):

U5
1

4p2 E
0

`

du u3E
0

p/2

du~sinu!3~r 1r 8!e22uz. ~32!

We use the Drude model for the dielectric function

ed~v!512
vp

2

v2 , ~33!

wherevp is the plasma frequency. From Eqs.~16a!, ~16b!,
and ~33!, we find

r 5
u2Au21vp

2

u1Au21vp
2

, ~34a!

r 85
u2~cosu!21vp

22u~cosu!2Au21vp
2

u2~cosu!21vp
21u~cosu!2Au21vp

2
. ~34b!

By a substitution@cosu→t#, U becomes

U5
1

4p2 E
0

`

du u3F E
0

1

dt~12t2!~r 1r 8!Ge22uz. ~35!

By the same coordinate transform, Eqs.~23! and ~29! be-
come

^E2&5
1

4p2 E
0

`

du u3H E
0

1

dt@2t2r 1~22t2!r 8#J e22uz,

~36a!

^B2&5
1

4p2 E
0

`

du u3H E
0

1

dt@~22t2!r 2t2r 8#J e22uz.

~36b!

The plot for^E2& and^B2&, as well asU is shown in Fig.
1. As we can see from the figure, the energy density is p
tive. Now we consider some limiting cases.
6-4
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D. The fields near the interface

To see howU behaves for smallz ~largeu!, we first per-
form the t integration in Eq.~35!, which can be done ana
lytically, and then Taylor expand the resulting expression
the square brackets in powers ofu21. That is, we are ex-
panding all of the integrand except for the exponential fac
To the leading order we find

U;
&vp

64p

1

z3 . ~37!

The asymptotic behavior of the mean squared fields~36a!,
~36b! in this limit is

^E2&;
&vp

32p

1

z3 , ~38a!

^B2&;2
5vp

2

96p

1

z2 . ~38b!

We see that ^E2& dominates over ^B2&, so that U
'(1/2)^E2&; this is due to the fact that the leading order
the expression in braces in Eq.~36a! is proportional tou21

as compared tou22 in Eq. ~36b!. If we compare these ex
pressions to ones that would result if dispersion were
included in the calculation, it can be seen from Eq.~36! that
in this casê E2&}z24, and the same for̂B2& ~see also@10#!.
As seen from Eq.~38!, the inclusion of dispersion in the
calculation reduces the power inz up to two orders, but it
does not remove the singularity of the results atz50, as
might be naively expected.

After more careful consideration, it is not surprising th
dispersion alone is insufficient to render the results finite
the interface. The integrals for^E2& and^B2& at z50 diverge
quartically in a frequency cutoff. However, in general diele
tric functions go as

e~v!;11O~v22! ~38c!

FIG. 1. The expectations of the squares of electric field, m
netic field, and energy density near the dielectric half-space
illustrated.
04502
n

r.

t

t
t

-

asv→`. Thus the reflection coefficients will go to zero n
faster thanv22, leaving the integrals quadratically dive
gent. This argument explains why^B2&}z22 for smallz, but
understanding the behavior of^E2& requires examining the
dependence of the reflection coefficientsr and r 8 upon the
transverse momentumk. In fact the contribution of the coef
ficient r, which describes modes with the polarization vec
perpendicular to the plane of incidence, does go asz22. This
coefficient depends only upon frequency, and falls asv22

for largev, as can be seen from Eq.~34a!. The coefficientr 8
describes modes with the polarization vector parallel to
plane of incidence, and goes to 1 asu→p/2 ~corresponding
to grazing incidence! for all frequencies. It is this behavio
which leads to thez23 singularity in ^E2& and hence inU.
~The role of cutoffs for the quantized electromagnetic field
dielectrics has been discussed in more detail by Cand
@21#. Barton @22# has recently emphasized the fact that d
persion alone will not remove all divergences.!

The divergence ofU is not considered to be physical, bu
as resulting from the idealization of the wall as a perfec
smooth surface. One way of removing this singularity is
allow the position of the boundary to fluctuate@23#. It seems
plausible that such effects as surface roughness or the at
nature of matter on small scales can also introduce a phys
cutoff that makes the mean squared fields and the en
density finite everywhere. In the scalar models of Pfenn
@12#, the contributions of high frequencies are at least ex
nentially suppressed, resulting in a finite energy density
the boundary.

E. Case of a perfect conductor

Now we consider the limite→`. In this limit, as seen
from Eqs.~11!, ~16a!, and ~16b!, r→21 andr 8→1. Equa-
tion ~31! implies thatU becomes zero, as expected, and E
~36a! and ~36b! give

^E2&;
3

16p2

1

z4 , ~39!

^B2&;2
3

16p2

1

z4 . ~40!

These well-known results are consistent with the asympt
Casimir-Polder potential@24#

VCP;2
3

32p2

a0

z4 52
1

2
a0^E

2&, ~41!

wherea0 is the static polarizability of an atom near the i
terface.

IV. THE ENERGY DENSITY BETWEEN DIELECTRICS

In this section we calculate the energy density in
vacuum region of widtha between two dielectric half-
spaces. We define the dielectric constant as

0,z,a. e51,

z,0 and z.a: e5ed . ~42!

In the vacuum region,gE occurring in Eq.~12a! has the form

-
re
6-5
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gE52
1

2k0
H exp~2k0uz2z8u!1r 2 exp~22k0a!exp~k0uz2z8u!

r 2 exp~22k0a!21
1

r $exp@2k0~z1z8!#1exp~22k0a!exp@k~z1z8!#%

r 2 exp~22k0a!21 J ,

~43!
on

E

th
n

e
een

ag-
are
andgB has the same form asgE, with r andr 8 interchanged,
wherer and r 8 are defined in Eqs.~16a! and ~16b!. We can
now calculate the electric and magnetic fields in this regi

A. The electric field

The first and the second term on the right hand side of
~21! for the present case, in the limitz→z8, are

v2gE5
v2

2k

11r 2e22ka

12r 2e22ka 1
v2

2k

r ~e22kz1e22kae2kz!

12r 2e22ka ,

~44!

~k21¹z¹z8!g
B5

v2

2k

11r 82e22ka

12r 82e22ka 1
k21k2

2k

3
r 8~e22kz1e22kae2kz!

12r 82e22ka , ~45!

so thatGkk becomes

Gkk5
v2

k
1

v2

k S r 2

e2ka2r 2 1
r 82

e2ka2r 82D
1

1

k Fv2
r

12r 2e22ka 1~2k22v2!
r 8

12r 82e22kaG
3e2ka cosh@k~2z2a!#. ~46!

We again drop the first term on the right hand side of
above expression. After introducing polar coordinates a
using Eqs.~11! and ~46!, ~18! we find

^E2&5
1

2p2 E
0

`

du u3E
0

p/2

du sin~u!

3H cos2~u!S r 2

r 22e2ua 1
r 82

r 822e2uaD
1F2cos2~u!

r

12r 2e22ua 1@11sin2~u!#

3
r 8

12r 82e22uaGe2ua cosh@u~2z2a!#J , ~47!

or with cos(u)→t

^E2&5
1

2p2 E
0

`

du u3E
0

1

dtH t2S r 2

r 22e2ua 1
r 82

r 822e2uaD
1F2t2

r

12r 2e22ua 1~22t2!
r 8

12r 82e22uaG
3e2ua cosh@u~2z2a!#J . ~48!
04502
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B. The magnetic field

In the same way, Eq.~28! leads to

^B2&5
1

2p2 E
0

`

du u3E
0

1

dtH t2S r 2

r 22e2ua 1
r 82

r 822e2uaD
1F ~22t2!

r

12r 2e22ua2t2
r 8

12r 82e22uaG
3e2ua cosh@u~2z2a!#J . ~49!

This expression differs from the one for^E2& only in the z
dependent term withr↔r 8. A plot of ^E2&, ^B2&, andU is
shown in Fig. 2 forvpa5200. It can be seen in this figur
that significant but not complete cancellation occurs betw
^E2& and ^B2&.

C. The energy density

Now, using Eqs.~30!, ~48!, and~49!, the energy density in
the vacuum region can be calculated as

U5
1

2p2 E
0

`

du u3E
0

1

dtH t2S r 2

r 22e2ua 1
r 82

r 822e2uaD
1~12t2!F r

12r 2e22ua 1
r 8

12r 82e22uaG
3e2ua cosh@u~2z2a!#J . ~50!

FIG. 2. The expectation values of the squared electric and m
netic fields, as well as the energy density in the vacuum region,
illustrated forvpa5200.
6-6
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By analyzing this expression we can make some conclus
about the sign ofU. First we note that it is position depen
dent, and we also note that the first term is always nega
and the second term is always positive. The overall sign oU
depends on the choice ofa andvp . As vpa grows,U at the
midpoint decreases, becoming negative forvpa'100, as
seen in Figs. 3 and 4.

In Fig. 4 we see how the energy density at the cente
the vacuum region changes as the productvpa increases. It
can be seen in both Figs. 3 and 4 thatU approaches the valu
given in Eq.~52! as vpa becomes large. The separation
which U becomes negative at the center is

a.ac5
99

vp
5~1.3mm!3S 14.8 eV

vp
D , ~51!

where 14.8 eV is the plasma frequency of aluminum.

D. A perfect conductor case

In the limit vp→`, r→21 and r 8→1. Then only the
first ~z independent! term survives in Eq.~50!, and we get the
familiar result@8#

U52
p2

720a4 . ~52!

It is also interesting to examine the expressions for^E2&
and^B2& in this limit. After performing thet integration, Eq.
~48! can be written as

^E2&5
1

2p2 E
0

`

du u3F2

3

1

12e2ua

1S e22u~a2z!

12e22ua 1
e22uz

12e22uaD G , ~53!

and after performing theu integration as

FIG. 3. The energy density in the vacuum region between
dielectric half-spaces is illustrated for three values of the param
vpa. The dashed horizontal line is the energy density for the p
fectly conducting limit Eq.~52!.
04502
ns

e

f

t

^E2&52
p2

720a4 1
1

32p2a4 Fc~3!S z

aD1c~3!S 12
z

aD G .
~54!

Herec (3)5(d4/dz4)ln G(z) is the polygamma function of or
der 3. It satisfies the reflection formula@25#

c~3!S z

aD1c~3!S 12
z

aD52p
d3

d~z/a!3 cotS p
z

aD . ~55!

This yields

^E2&52
p2

720a4 1
p2

16a4

112 cos2~pz/a!

sin4~pz/a!
. ~56!

In the same way, one finds

^B2&52
p2

720a42
p2

16a4

112 cos2~pz/a!

sin4~pz/a!
. ~57!

These results are in agreement with those given by prev
authors@26,27#.

E. Energy density near the boundary

To see howU grows near the interface we note that f
small z ~largeu! Eq. ~50! becomes

U'
1

4p2 E
0

`

du u3E
0

1

dt~12t2!~r 1r 8!e22uz, ~58!

so it reduces to Eq.~35!, the solution for the one-interfac
case. In thez→0 limit, this expression reduces to Eq.~37!.
By the same reasoning, the expressions for^E2& and ^B2&,
Eqs. ~48! and ~49!, reduce to Eqs.~36a! and ~36b!, respec-
tively, in the smallz limit.

o
er
r-

FIG. 4. The graph represents the energy density at the cent
the gap between the two dielectric half-spaces as a function ofvpa.
As seen from the graph, the energy density at the center beco
negative whenvpa'99 or larger. Again the dashed line is the pe
fectly conducting limit.
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V. CONCLUSION

In this paper we examined the mean squared fields and
energy density in the region between a pair of half-spa
filled with dispersive media. We found that these quantit
diverge at the boundaries of the media, despite the inclu
of dispersion in the calculation. This divergence indicate
breakdown of a continuum description in which the diele
tric function changes discontinuously at the boundary. It a
shows that there is a positive self-energy density in the
gion outside a single plate. Nonetheless, we also found th
is possible for the net energy density in the region betw
the plates to be negative, depending upon the plate sep
tion and the plasma frequency of the material involved. T
existence of an attractive Casimir force is not an indicato
whether the energy density at the center of the plates is
tually negative or not.

We have found that the energy density at the center
comes negative whenvpa.100. Thus for fixed plasma fre
quencyvp , the energy density always becomes negative
sufficiently large separationa. Of course, in this limit the
magnitude of the energy density is also becoming sm
Similarly, for fixed a, the energy density becomes negati
for sufficiently largevp . In the limit thatvp→` our results
approach the constant negative energy density of the
fectly conducting plates. It should not come as a surprise
there is a regime of negative energy density. The calcula
assuming perfect conductivity does have a region of valid
so long asvp is large and one is not too close to one pla
Qualitatively similar behavior has recently been found
the vacuum energy density near a domain wall@28#.

In this paper, we assumed a particular form for the diel
tric function ~33! given by the collisionless Drude mode
This is a good model for many metals, especially alkali m
e

s
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als, and is the generic form for the dielectric function of
materials at high frequencies. Thus taking a different fo
for ed would change the details of our results, especially
from an interface, but should lead to the same limiting for
near an interface. We have also assumed zero temper
throughout this paper. For systems at room temperature,
should be a good approximation when the separations ar
the order of a few micrometers. More generally, one c
ignore thermal effects at distances small compared
1/(kT).

Contrary to the view expressed by Lamoreaux@11#, the
appearance of negative energy density in a quantum fi
theory is very natural. One can easily find quantum state
the free quantized electromagnetic field in empty sp
which have local negative energy densities. A squee
vacuum state is an example@29,30#. The energy density of a
quantized field has to be defined as a difference between
in empty Minkowski spacetime, and that in a given state a
is no longer positive definite, as it was for a classical fie
Apart from coupling to gravity, which produces extreme
small effects, no clear way has been found to directly o
serve the local energy density. In certain limits, the nega
energy density in a squeezed vacuum state has been s
theoretically@30# to produce an effect on the magnetic m
ment of a spin system. Whether this effect could ever
observed and whether negative Casimir energy density
produce similar effects is unknown.
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