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Energy density in the Casimir effect
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We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside
a half-space filled with a uniform dispersive dielectric. We find a positive energy density of the electromagnetic
field which diverges at the interface despite the inclusion of dispersion in the calculation. We also investigate
the mean squared fields and the energy density in the vacuum region between two parallel half-spaces. Of
particular interest is the sign of the energy density. We find that the energy density is described by two terms:
a negative position independdi@asimip term, and a positive position dependent term with a minimum value
at the center of the vacuum region. We argue that in some cases, including physically realizable ones, the
negative term can dominate in a given region between the two half-spaces, so the overall energy density can be
negative in this region.
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[. INTRODUCTION have a negative interaction energy, but the net energy den-
sity, which is proportional to the square of the electric field,
In 1948 Casimir made the remarkable prediction thatis always positive.
there is an attractive force between a pair of uncharged par- However, the Helfer and Lang calculation does not in-
allel plane perfect conductofd]. Furthermore, he argued Clude dispersion, which is essential in a realistic treatment.
that this force arises solely from a shift in the energy of thePfenning[12] has studied a scalar model with dispersion and
vacuum state of the quantized electromagnetic field. An earljound that the energy density can be negative. In the electro-
attempt by Sparnad’)z] to observe this force was inconclu- magnetic case, numerous authors, beginning with Lifshitz
Sive, but in recent years several new experiméa’t$’5,6,z [13], have studied the effects of dispersion upon Casimir
have been performed which seem to give good agreemefferces. However, these authors have been concerned with the
with Casimir’s prediction(To be more precise, most of these force or the total energy, and not the local energy density.
experiments actually measure the force between a plate andl&€e purpose of this paper is to present a calculation of the
sphere and incorporate a theoretical correction to compare §asimir energy density in a model in which dispersion is
to Casimir’s result. Of the recent experiments, only that ofincluded. For this purpose, we will use the methods of source
Bressiet al. [7] uses two parallel plates. theory developed by Schwinger and co-workdr,15. This
If the energy of the vacuum state is zero in the limit of is a method based upon the calculation of Green’s functions
infinite plate separation, then the attractive force found bywhich is especially well suited to dissipative materials, and
Casimir would seem to imply a negative vacuum energy atvas used by Schwingest al. [14] to rederive the results of
finite separation. In fact, Brown and Maclf§] showed that  Lifshitz. Milonni and Shih[16] used conventional quantum
for perfectly conducting plates one has a constant negativélectrodynamics to reproduce some of the results of source
vacuum energy density. This conclusion is of great theoretitheory. There has also been considerable interest in recent
cal interest, because negative energy density has the potent}&ars in quantization of the electromagnetic field inside dis-
to cause some rather bizarre effects in gravity thetBge, Sipative materials using operator methdds,18,19. The
for example, Ref.[9] and references therejnHowever, relation between the results of the latter set of authors and
questions have been raised as to whether the negative enerigipse of Schwingeet al. has not yet been clarified.
density will still arise in a more realistic treatment in which ~ The outline of this paper is as follows. In Sec. Il we
the plates are not perfect conduct$i®,11]. In particular, ~review the source theory approach as applied to parallel in-
Helfer and Land 10] calculated the energy density outside aterfaces of dielectric media. In Sec. Ill we compute the ex-
single half-space filled with a nondispersive dielectric mate{ectation values of the squares of the electric and magnetic
rial and obtained a positive result. They interpreted this as &elds in the vacuum region outside a half-space filled with a
positive self-energy density associated with a single platéniform dispersive dielectric. We extend this calculation to
which would add to the negative interaction energy densitythe case of two parallel dielectric half-spaces and also dis-
between a pair of plates. Helfer and Lang conjecture that theuss the energy density in Sec. IV. Conclusions are given in
net Casimir energy density might be positive when the selfSec. V.
energy is accounted for. If this conjecture is correct, then the

situation would be analogous to that of the energy density inII GREEN'S FUNCTION APPROACH FOR MULTILAYER
classical electrostatics. A pair of oppositely charged particles DIELECTRICS

This section is a review of the formalism of Schwinger
*Email address: svasilka@tufts.edu et al.[14]. One begins by writing the Maxwell equations for
"Email address: ford@cosmos.phy.tufts.edu the macroscopic electromagnetic fields produced by an ex-
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ternal polarization sourc®, which formally describes the functions, one needs to find the Green’s functibnccurring

zero point fluctuations of the fiellls in Eq. (5). This amounts to solving a classical boundary
value problem.
B=VXA, The interfaces between the media are chosen to be per-
) pendicular to the direction, so for now it will matter if the
E=-A-Vg, dielectric constant changes in taelirection only. Therefore,
o (1) it is convenient to introduce a transverse spatial Fourier
VXB=€E+P, transform
V- (eE+P)=0, - 1 R
F(r,r’,w)=f dk, se "1z, k, ,0), (8
wheree is the dielectric constant of the medium. The wave (2m)

equation for the electric field resulting from the Maxwell

equations is where the vectok, can be chosen to point along thex

axis (k=1k, ). )
—~VX(VXE)=€eE=P. 2) Some components df are found to bé14]
By assuming a linear relation between sources and fields, the 1 191 9
electric field can be written as a spacetime integral Fyx=— < o(z—2")+ Pl EQB, (93
E(x)=f d*x'T(x,x")P(x'), 3 Iyy=w’gF, (9b)
where x=(t,r), x'=(t',r'), and I’ is a Green’s dyadic, 1 ) 2 B
which satisfies Eq(2) with a s-function source. Let V== 822+ 0% (90
f‘(r,r’,w)zf dre'm I(x,x'), (4) koo
B Da=l oo 529 =)
where r=t—t’. From Egs.(2) and (3), it follows that
I'(r,r',w) satisfies the following equation: _ L ka g
o= ee' 97’7’ (%¢)

—VX(VXD)+w2el'= — 0?18(r—r'). (5)
wheree’ = €(z'), andgF, the “transverse electric,” and®,

So far, the discussion has been purely classical. At thighe “transverse magnetic,” Green’s functions satisfy
point, Schwingeeet al.[14] use source theory to identify the

Green’s dyadicf‘ with an “effective product of electric 92 . o le

fields” — SR K- e%e|gi(z2)=48(z=2), (109
i
(E{(NE(r)=T(r,r', o). (6) ala Kk
h T ?_wz 9®%(z,z)=68(z—2").  (10b

We can interpret this as the Fourier transform of the electric

field correlation function. From the Maxwell equatiofi By introducing the quantity

X E=—B, one finds the corresponding expression for the

magnetic field: k2=k?— w?, 11

i .
_<Bj(r)Bk(r’)>:ejlmeknp(vlvr’]/wz)rmp(r’r/yw)- (7) Eq (10) can be written as

h
2

Note that# makes its first appearance in these expressions. [— PJFKZ 0%(z,2')=8(z—7'), (123
These expressions can be identified with the vacuum expec-
tation values of products of field operators, which appear in

: - ot 91d «?
the more conventional field theory approach to quantization L T B2 2V = S(z— 7'

- 0°%(z,2")=6(z—2"). (12b)

of the electromagnetic field. From now onward, we revert to dz € Z €

units in whichz = 1. In order to calculate the field correlation
So, in order to find the field correlation functions as de-
fined in Egs.(6) and (7) in a given situation, one needs to
'Heaviside-Lorentz units witb=7%=1 will be used in this paper. Solve these equations with the appropriate boundary condi-
Also, it is assumed that the magnetic permeability is unity. tions. We consider here two cases.
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B. The electric field

We now specialize the above discussion to a situation in Using Eq.(6), we write the formal expectation value of
which the inhomogeneity of the dielectric constant is due tohe square of the electric field at coincident points as
a plane interface separating a dielectric substance from a

vacuum:

z>0: €(2)=1,

z<0: €(2)=¢y. (13

Here ¢4 is a function of frequency, but not of position.

A. Boundary conditions

In solving Egs.(128 and (12b), we use the following
boundary conditions. Az=z', g is continuous but the de-
rivative is discontinuous at this poif20]:

g 27,
izl

Z—Z

-1 (14)

At the boundary £=0) we use the conditions for continuity
of Ey, Ey, €E,, andB;. The first three, as seen from Eq.
(6), imply the continuity ofl’,,, T'y,, and eFZZ and subse-

quently, from Eq.(9), the continuity ofg®, gB, and

The continuity ofB, implies that ofV,V,/I'y,, as seen from
Eq. (24), which is given below. From this, using Eq$) and
(9b), we deduce the continuity afgt/Jz.

The solutionsg® and g® in the vacuum region have the

form
. e—KO\z—z’|+re—K0(z+z’)
g°= e , (153
5 efxo\zfz’|+r/efxo(z+z’)
¢°= o , (15D
where
Ko7 Ky
o Ko+ Kl ! (1659
,_ Ko€d™
r'= —Ko€d+ g (16b)

Here ko and x4 represent the quantity as defined in Eq.
(11) for the vacuum regiong=1), and for the dielectric
half-space regiond= ¢4), respectively, and andr’ can be

EZ>f_—|J da)—J dkk
szj d(z)j dkkrkk

17

In the second step, we assumed that the integrand is an even

function of w. By complex rotation ¢ —i¢), this becomes

(B =5z [ o [ akir 19
Note from Eq.(11) that k>>0 when w is imaginary. By

means of Eq(9), all of the components of in a given
region can be written in terms df,, andI'y,:

! k 6 !
I'y(z,2")= FZEFXX(ZYZ )
sz(Z,Z')I—FEFxx(Z,Z'), (19
L kKa e ,
I'{zz )ZWEEFXX(Z,Z )

w2
+—8(z—2").
K

By taking the limitz—2z', and thus omitting the delta func-
tion, I' . becomes

k2
Fkk:FXX+ Fyy+ (_KQTZVZVZ'FXX’ (20)
or by Eq.(9), usinge=1,
2
Fkk:wng+VZVngB+( )ZVV (V VZ g )
=w?gF+ (K*+V,V,)gB. (21)
Using Eqgs.(11) and(15), this becomes
w?> 1
—_ _ 2 2 2\p1t —2KZ
IN'y= p +2K[w r+(2k—w)r']e . (22

Equation(18) gives a formal expectation value only, be-
cause the integral is divergent. However, the divergence
comes only from the»?/ k term inT"y, and is independent of
z It is the usual empty space vacuum divergence. We will
henceforth drop this term and denote the resulting finite ex-

identified as reflection coefficients for two polarization statespectation value by E?). The renormalization results in a
L andll, respectively, corresponding to the electric field vec-quantity which vanishes at large distances from the interface,
tor being perpendicular or parallel to the plane of incidencg E?)—0 asz— o, which amounts to finding the difference

of a linearly polarized electromagnetic wah#0].

in (E2) with the boundary and without it. Thus we find
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1 (=, (=, k
(E2)=mj0 dgfo dk—[ = £+ (2k*+ {)r'Je >,

(23

C. The magnetic field

Now we compute the expectation value of the magneti

field. Using Eq.(7), we find

) 1
|<Bx(r)Bx(r’)> = F(VZVZ’Fyy_ Vsz’l—‘zy

— V¥, Tyt Y,V T,)),

) 1
|<By(r)By(r,)>: F(VZVZ’FXX_ ViV I gx

=V, Vi Iy, + ViV T3, (24

_ 1
[(BANBAI))= 5 (% T TV Ty
— YV Tyt BV Ty,

From the definition ok, , it follows that all derivatives in
y vanish, so we can write the sum of the above terms as

i(Bi(r)B;(r'))= Z(sz,ryywvz,rxx VY, T,y

— YV Tyt ViV Tyt VW Ty,

(25)
Using Eq.(19), we have
) dk, (k?)?2
V)(V)(’l—‘zz(r!r y @ f( 77)2 (_Z_ZVVZ’FXX!
k2
VZVXVFXZ(r,r’,w)=f(2 12 % — V.V Iy (26)

, dk, k2
VXVZTZX(I’,F ,Lt)):f(z )2 ZVVZ’FXX

This leads to

dk,

1
(277)2 F(kz"_ VZVZ')Fyy(Z1Z’)

) dw
(B0B(X) = [ 5o

2

w
+ FVZVZrFXX(Z,Z’) . (27)

Using EQq.(9), this becomes

d dk
(B98O = [ g | oama 0P+ T5,)05(2.2)

+w?9B(z,2)]. (28)

PHYSICAL REVIEW D66, 045026 (2002

Following the same procedure as used above in calculating
(E?), we find the finite mean squared magnetic field to be

<BZ>— dgf dk— [(2k2+§2) —%r' e 22,

(29
“Note from Eqgs.(23) and (29) that (E2)«(B?2) under inter-
change ofr andr’. Now, the mean energy density can be
calculated as

1 2 2
=5 (E?)+(B?). (30
Using Eqgs.(23) and (29), this becomes
o w k3
— . ’ —2kZ
U__4772 Odgfo dkK(r+r )e . (31

We can writeU in a form more convenient for numerical
calculation by introducing polar coordinates and 6 (¢
=ucos#, k=usiné):

1 % /2
u——ZJ duu3f de(sin®)3(r+r")e 2z (32
4 0 0

We use the Drude model for the dielectric function

|€
(VRSN

eg(w)=1——, (33

e

wherew, is the plasma frequency. From Ed463, (16b),
and (33), we find

u—Ju+ w?

= ——f—, 34
u+Ju+ ws (343
2 2 2_ 2 2 2
~u (cosh) +w2 u(cosé)“\u +wg. (340
u?(cosf)?+ w’+u(cosd)*\u?+ w3
By a substitutior] cosé—t], U becomes
1 (= 1
—mjo duu® Jo dt(1—t?)(r+r')|e 242 (35

By the same coordinate transform, E¢23) and (29) be-
come

<E2>=%f:du u3{ foldt[—t2r+(2—t2)r’]]e2“2,
(363

Bz>— f du uSU dt[(2—t?) tzr’]}ezuz.
(36b)

The plot for(E?) and(B?), as well adJ is shown in Fig.
1. As we can see from the figure, the energy density is posi-
tive. Now we consider some limiting cases.
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FIG. 1. The expectations of the squares of electric field, mag-
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asw—. Thus the reflection coefficients will go to zero no
faster thanw ™2, leaving the integrals quadratically diver-
gent. This argument explains wk?)oz~2 for smallz, but
understanding the behavior 6E?) requires examining the
dependence of the reflection coefficientandr’ upon the
transverse momentuika In fact the contribution of the coef-
ficientr, which describes modes with the polarization vector
perpendicular to the plane of incidence, does g &s This
coefficient depends only upon frequency, and fallswas

for large w, as can be seen from E@43a. The coefficient’
describes modes with the polarization vector parallel to the
plane of incidence, and goes to 1 @&s> 7/2 (corresponding

to grazing incidencefor all frequencies. It is this behavior
which leads to the 2 singularity in(E?) and hence irJ.
(The role of cutoffs for the quantized electromagnetic field in
dielectrics has been discussed in more detail by Candelas
[21]. Barton[22] has recently emphasized the fact that dis-
persion alone will not remove all divergencdes.

The divergence ol is not considered to be physical, but

netic field, and energy density near the dielectric half-space aras resulting from the idealization of the wall as a perfectly

illustrated.

D. The fields near the interface

To see howd behaves for smalt (largeu), we first per-

smooth surface. One way of removing this singularity is to
allow the position of the boundary to fluctud®s]. It seems
plausible that such effects as surface roughness or the atomic
nature of matter on small scales can also introduce a physical

form thet integration in Eq.(35), which can be done ana- cutoff that makes the mean squared fields and the energy

lytically, and then Taylor expand the resulting expression indensity finite everywhere. In the scalar models of Pfenning
the square brackets in powers of!. That is, we are ex- [12], the contributions of high frequencies are at least expo-

panding all of the integrand except for the exponential factorentially suppressed, resulting in a finite energy density on
To the leading order we find the boundary.

V2w, i

— E. Case of a perfect conductor
64w z°

(37)

Now we consider the limit—o. In this limit, as seen
from Egs.(11), (16a, and(16b), r——1 andr’—1. Equa-
tion (31) implies thatU becomes zero, as expected, and Egs.
(368 and(36h) give

The asymptotic behavior of the mean squared fi¢REa),
(36b) in this limit is

V2w, 1

2\ = 3 1

(E9) 3327 25 (383 (EZ>~T%2? (39
502 1 3 1

<BZ>~—QT;?. (38b) <BZ>~—W?. (40)

We see that(E?) dominates over(B?), so that U  These well-known results are consistent with the asymptotic

~(1/2)(E?); this is due to the fact that the leading order in Casimir-Polder potentigl24]

the expression in braces in E@6a is proportional tou™* 3 ag 1

as compared ta~ 2 in Eq. (36b). If we compare these ex- Vep~ — P2 A an<E2>,

pressions to ones that would result if dispersion were not

included in the calculation, it can be seen from E8p) that  yhereqy, is the static polarizability of an atom near the in-

in this casgE?)=z~ 4, and the same fdB?) (see alsd10]).  terface.

As seen from EQq(38), the inclusion of dispersion in the

calculation reduces the power mup to two orders, but it

does not remove the singularity of the resultszatO, as

might be naively expected. In this section we calculate the energy density in a
After more careful consideration, it is not surprising thatvacuum region of widtha between two dielectric half-

dispersion alone is insufficient to render the results finite aspaces. We define the dielectric constant as

the interface. The integrals fOE?) and(B?) atz=0 diverge 0<z<a. e=1,

quatrtically in a frequency cutoff. However, in general dielec-

tric functions go as

e(w)~1+0(w ?)

(41

IV. THE ENERGY DENSITY BETWEEN DIELECTRICS

z<0 and z>a: (42)

€E=€4.
(380 In the vacuum regiorg® occurring in Eq(123 has the form

045026-5



V. SOPOVA AND L. H. FORD PHYSICAL REVIEW D66, 045026 (2002

E__ 1 [exp(— KolZ—2Z']) +r2 exp( — 2kpa) expl ko|z—2'|) . r{exd — ko(z+2')]+exp —2kpa)exd x(z+2')]}
9 2ko r2exp —2koa)—1 r2exp—2xqa)—1 ’
(43
|
andg® has the same form ag, with r andr’ interchanged, B. The magnetic field

wherer andr’ are defined in Eq9.16a and(16b). We can

. o ). X ) In the same way, Eq28) leads to
now calculate the electric and magnetic fields in this region.

o 1 o . 1 5 r2 rIZ
A. The electric field (B%)= 272 ), duu o dt) t (7 gua T 77 g7ua
The first and the second term on the right hand side of Eq. ; r
(21 for the present case, in the limét-z’', are +(2—-1t?) T tzl—r’zezua}
) e wZ 1+rZe—2Ka w2 r(e_2K2+ e—ZKanKZ)
09 = 2 a5 —2.7xa ,
2k 1-r%e 2k 1-r%e @ xe‘“acosr[u(ZZ—a)]]. (49

w? 1+r'2e72K@ |24 k2

2 B_
(k +Vzvz’)g - 2k 1_rr2e72;<a+ 2k

This expression differs from the one f6E2) only in thez
dependent term with«r’. A plot of (E?), (B?), andU is

r'(e 2r24 g 2Kag2xz) shown in Fig. 2 forw,a=200. It can be seen in this figure
1% 2@ , (45  that significant but not complete cancellation occurs between
(E?) and(B?).
so thatl", becomes
W0l w2 (2 (2 C. The energy density
[=—+ _( ——+ = ,2) Now, using Eqs(30), (48), and(49), the energy density in
K K \€ —r e" —r .
the vacuum region can be calculated as
1 r r'
4+ = 2—_+ 2k2_ 2 f} 1 % 1 r2 rrZ
| Tr7e 7 O r7e 7 U:—szf du u3f dt) t*| Z— g + =g
xe *@coshk(2z—a)]. (46) ’ ’
r r'
Wi ' i i i +(1-t) 2o-2ua 202
e again drop the first term on the right hand side of the 1—r2e2ua 1 _y’2g2ua
above expression. After introducing polar coordinates and
using Egs(11) and(46), (18) we find xe‘”acosr[u(ZZ—a)]]. (50)
1 o /2
<E2>=Ff du Ugf dﬁsin(ﬁ)
m 0 0 20+ a4E2
2 12
r r 15
X 0052(0)<r2_82ua+r/2_ezua)
10
r
+|— ——————=+[1+si s
0052( 0) 1_r2e—2ua [1 sz(e)] 24U
0
r/
Xm e ”acosf[u(Zz—a)]], (47) s
or with cos@)—t o
1 (= 1 r2 r'2 T
2\ _ 2
<E >_ﬁfo duusfodt{t <r2_62ua+rr2_e2ua) ool a4p2 ©, a=200
, 0.1 0!2 073 074 0{5 0!6 0?7 0?8 0{9
r r z/a
H e ()
FIG. 2. The expectation values of the squared electric and mag-
netic fields, as well as the energy density in the vacuum region, are
xe Y2coshu(2z— a)]} . (48)  illustrated forwpa=200.
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FIG. 3. The energy density in the vacuum region between two FIG. 4. The graph represents the energy density at the center of
dielectric half-spaces is illustrated for three values of the parametehe gap between the two dielectric half-spaces as a functianaf
wpa. The dashed horizontal line is the energy density for the perAs seen from the graph, the energy density at the center becomes
fectly conducting limit Eq(52). negative whenw,a~99 or larger. Again the dashed line is the per-
fectly conducting limit.
By analyzing this expression we can make some conclusions

about the sign o). First we note that it is position depen- a2 1 - 7
dent, and we also note that the first term is always negative (E?)=— o7+ ==——| ¢®| =| + 4| 1- =] |.
: o . 7208 327“a a a
and the second term is always positive. The overall sigd of (54)

depends on the choice afandw,. As w,a grows,U at the

midpoint decreases, becoming negative foya~100, as Here y(®=(d*dZ")InT(2) is the polygamma function of or-

seen in Figs. 3 and 4. _ der 3. It satisfies the reflection formylas]
In Fig. 4 we see how the energy density at the center of

the vacuum region changes as the produiga increases. It 7 3 7
can be seen in both Figs. 3 and 4 thieapproaches the value P =+ 1-=|=— w—gcot( m—|. (55)
. . : a a d(z/a) a
given in Eq.(52) as w,a becomes large. The separation at
which U becomes negative at the center is This yields
99 14.8e
a>a,=—=(1.3um)X V) (51) (E%)=— 2 . m? 1+ 2 cog(mz/a) (56
@p @p 720a*  16a*  sinf(mz/a)
where 14.8 eV is the plasma frequency of aluminum. i
In the same way, one finds
D. A perfect conductor case 2 72 142 co§(ﬂ-z/a)
2y _

In the limit @,—, r——1 andr’—1. Then only the (B9= 720* 16a* sirf(wz/a) (57)
first (zindependentterm survives in Eq50), and we get the
familiar result[8] These results are in agreement with those given by previous

2 authors[26,27.
T
U=—5-73. (52
720 E. Energy density near the boundary
It is also interesting to examine the expressions(tf) To see howJ grows near the interface we note that for

and(B?) in this limit. After performing thet integration, Eq.  small z (largeu) Eq. (50) becomes
(48) can be written as

2 1
31-¢ea

%i - ! _ 2 "ya—2Uz
u 47T2foduu3fodt(1 t2)(r+r')e "% (58

1 o0
<E2>= gg fo du U3
so it reduces to Eq(35), the solution for the one-interface
case. In the—0 limit, this expression reduces to EQ7).

e—2u(a—z) e—2uz
oot 1—e2“a”’ (53) By the same reasoning, the expressions(fef) and(B?),
Egs. (48) and (49), reduce to Eqs(36a and (36b), respec-
and after performing the integration as tively, in the smallz limit.
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V. CONCLUSION als, and is the generic form for the dielectric function of all

In this paper we examined the mean squared fields and tq!rirewltenals at high frequencies. Thus taking a different form

energy density in the region between a pair of half-space or €4 would change the details of our results, especially far

filled with dispersive media. We found that these quantities?'rom an interface, but should lead to the same limiting forms

diverge at the boundaries of the media, despite the inclusionear an interface. We have also assumed zero temperature

of dispersion in the calculation. This divergence indicates ‘,ﬂ]roughout this paper. For systems at room temperature, this

. LD . . should be a good approximation when the separations are of
breakdown of a continuum description in which the dielec- :

. . ) : the order of a few micrometers. More generally, one can
tric function changes discontinuously at the boundary. It alsqQ ;

. " . I ignore thermal effects at distances small compared to

shows that there is a positive self-energy density in the re 1(kT)
gion outside a single plate. Nonetheless, we also found that?t Coﬁtrary to the view expressed by Lamoredas], the
is possible for the net energy denglty in the region betwee%ppearance of negative energy density in a quan,tum field
t_he plates to be negative, depending upon.th(_a plate Separﬁfeory is very natural. One can easily find quantum states of
tion and the plasma frequency of the material involved. Th he free quantized electromagnetic field in empty space
existence of an attractive Casimir force is not an indicator o

whether the energy density at the center of the plates is a(\:'\-/h'Ch have Igcal negative energy densities. A ;queezed
. vacuum state is an examdl29,30. The energy density of a
tually negative or not.

We have found that the energy density at the center peJuantized field has to be defined as a difference between that

comes negative whem,a>100. Thus for fixed plasma fre- in empty Minkowski spacetime, and that in a given state and

) . is no longer positive definite, as it was for a classical field.
quencyw,, the energy density always becomes negative for,

sufficiently large separation. Of course, in this limit the Apart from coupling to gravity, which produces extremely

. e . small effects, no clear way has been found to directly ob-
magnitude of the energy density is also becoming small;

Similarly, for fixed a, the energy density becomes negativeserve the qual energy density. In certain limits, the negative
for suffic}ently Iargeé) In the limit thatw,—oc our results energy_densny in a squeezed vacuum state has begn shown
approach the constapr{t negative energyp density of the pet[1eoret|cally[3_0] to produce an effect on the magnetic mo-
fectly conducting plates. It should not come as a surprise th ent of a spin system. Whe_ther th'.s gffect could ever be
there is a regime of negiative energy density. The calculatio bserved _an.d whether negative Casimir energy density can
; - o .. produce similar effects is unknown.

assuming perfect conductivity does have a region of validit
so long asw, is large and one is not too close to one plate.
Qualitatively similar behavior has recently been found for
the vacuum energy density near a domain \W2d].

In this paper, we assumed a particular form for the dielec- We would like to thank J.-T. Hsiang for valuable discus-
tric function (33) given by the collisionless Drude model. sions. This work was supported in part by the National Sci-
This is a good model for many metals, especially alkali metence Foundation under Grant PHY-9800965.
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