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Spectrum of a noncommutative formulation of theD=11 supermembrane with winding
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A regularized model of a noncommutative formulation of the double compactified1 supermembrane
with nontrivial winding in terms of SU{) valued maps is obtained. The condition of nontrivial winding is
described in terms of a nontrivial line bundle introduced in the formulation of the compactified supermem-
brane. The multivalued geometrical objects of the model related to the nontrivial wrapping are described in
terms of a SUN) geometrical object, which in thid— o limit converges to the symplectic connection related
to the area-preserving diffeomorphisms of the recently obtained noncommutative description of the compac-
tified D=11 supermembrang. Martin, J. Ovalle, and A. Restuccia, Phys. Rev68 096001(2001)]. The
SU(N) regularized canonical Lagrangian is explicitly obtained. The spectrum of the Hamiltonian of the double
compactifiedD =11 supermembrane is discussed. Generically, it contains local string such as spikes with zero
energy. However, the sector of the theory corresponding to a principle bundle characterized by the winding
numbern+ 0, described by the SB{) model we propose, is shown to have no local stringlike spikes and
hence the spectrum of this sector should be discrete.
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[. INTRODUCTION world volume which may even change the topology of the
world volume without changing the energy of the system.
The matrix model for bosonic membranes was first intro-Together with the supersymmetry they render the spectrum
duced in[1], and its study was extended to the supersymmetef the D= 11 supermembrane continuous from zero to infin-
ric case in2]. In that work it was shown that the supermem- ity. A complete analysis of the spectrum for the compactified
brane theory could also be understood as a supersymmetidgase similar to the one if8], for the noncompactified case,
gauge theory of the infinite group of area-preserving diffeo-has not been yet presented.
morphisms which appeared as a residual symmetry of the The analysis of the compactified D-brane was first ap-
supermembrane in the light cone gauge. They also found proached from the matrix model point of view ji]. The
satisfactory SUN) regularization of the model. The spec- matrix modeld8,9] describe the dynamics of the membranes
trum of the quantized model was found to be contini@}s in the light cone gauge in the approximation of finite number
and was afterwards interpreted in terms of a multiparticleof oscillations modes. They provide an equivalent descrip-
theory[4]. tion, to the one in[5] of the supermembrane in terms of
The D=11 supermembrane with winding was first ana-D0-branes. The formulation of compactified D-brane§7h
lyzed in [5] in terms of multivalued maps from the world was done by considering the universal covering of the com-
volume to the target space. Part of their study was based guactified target space. In that simply connected space the
a previous work on the area-preserving diffeomorphisms irmatrix model may be directly formulated in terms of the
[6]. In [5] the Hamiltonian of the theory was explicitly ob- infinite set of the copies of the D-brane system restricted by
tained. Its analysis in terms of a finilé regularization was the symmetry generated by the covering group. An interest-
performed, with the conclusion that the SU(regulariza- ing result was obtained ifL0]. It was shown that the matrix
tion of the model, which was essential in the analysis of thanodel on a noncommutative torus is equivalent to M-theory
spectrum of the noncompactified supermembrane iD a compactified in a constant antisymmetric background field.
=11 Minkowski target spacg3], was not possible because The noncommutative geometry of the supermembrane in
the structure constants associated with the presence of therms of matrix models was also described in several papers,
nonexact modes did not fit in an SN description of the seg[11] and references therein, in particularf k2] and[13].
model. It was also argued iff] that the spectrum of the In [14,15 the analysis of the compactified =11 super-
compactifiedD =11 supermembrane should also be continu-membrane was performed following the original description
ous since the instability, caused by the stringlike spikes, i$2] but the analysis emphasizes the global structure associ-
also present in the compactified case. The stringlike spikeated with the nontrivial wrapping of the supermembrane in
are singular physical configuratiorithe determinant of the terms of an associated principal bundle which is naturally
induced metric is zero at some points or open sets of theonstructed from the nontrivial central charge of the super-
symmetric algebra. This analysis is best performed in the
dual formulation of the theory. The double compactified
*Email address: mgarcia@fis.usb.ve =11 supermembrane dual directly introduces the connection
"Email address: arestu@usb.ve 1-form associated to the nontrivial principal bundle. In the

0556-2821/2002/6@)/0450237)/$20.00 66 045023-1 ©2002 The American Physical Society



M. P. GARCIA DEL MORAL AND A. RESTUCCIA PHYSICAL REVIEW D 66, 045023 (2002

formulation in[16,17] the canonical Lagrangian is expressedtogether with its supersymmetric extension
as a noncommutative gauge theory. The geometrical meaning
of the noncommutativity was explained in that work in terms s — m —

of symplectic fibrations over the world volume. The sym- L W= oI T Dy 6+ OF T X7, 0+ A{6T -, 0}]
plectomorphisms on the fibers are generated by the area- (4)
preserving diffeomorphisms on the world volume.

In this paper we present an SN regularization of that in terms of the original Majorana spinors of tbe=11 for-
formulation. All the multivalued objects related to the non- mulation, which may be decomposed in terms of a complex
trivial wrapping are handled by the connections 1-form. If8-component spinor d8O(7)xU(1).
the theory is restricted to a principle bundle characterized by m=1,...,7 are theindexes denoting the scalar fields
the winding numben, any connection on that bundle may be once the supermembrane is formulated in the light cone
expressed in terms of a fix oné plus a uniform 1-form4; ~ Jauger.s= 1,2 are the indexes related to the two (;ompacti-

fied directions of the target space, whérés the spatial part
A=T1+ A. (1) of the world volume which is assumed to be closed Riemann
surface of topology. Py, andII, are the conjugate momenta
We consideil to be the connection 1-form which minimizes 1 X" and the connection 1-form, , respectively. The co-
the Hamiltonian of the double compactified supermembrane/ariant derivative is
Although A is a uniform 1-form it has a transformation law,

under the gauge symmetry of the theory, Dr=Dr+{A .} ®)
A— A+de+{A e}=A+De, (2)  and the field strength
corresponding to a symplectic connection preserving the Frs=D, As— DA +{ A, Ag}. (6)

symplectic structure of the fibers under holonomies. Its regu- . ]
larization in terms of SUY) valued objects has consequently ~ The bracket,} is defined as
a very different behavior compared to the geometrical ob-

jects in the other approaches. (*, 0=

Sr

—(DF)(Ds0), )

Il. THE HAMILTONIAN OF THE COMPACTIFIED D=11
SUPERMEMBRANE where n denotes the integer which characterizes the non-

) ) ] o trivial principle bundle under consideratioD, is a tangent
In this section we describe the Hamiltonian of the COM-space derivative

pactifiedD =11 supermembrane oRfx Sx S1). It seems

that the best approach, from a global point of view, is to 129 o .
consider its dual formulation since as discussed previously p ¢ =" a ={II,,0}, rs=12 a=12, (8
the global features are geometrically handled in terms of a Jw

connection 1-form over a nontrivial principle bundle on the o _
world volume which is intrinsically introduced in the formu- Whered, denotes derivatives with respect to the local coor-
lation. dinates of the world volume whiltl2= €3Y9 11, is a zwei-

The Hamiltonian for the double compactifi@=11 su-  vein defined from the minimal solution of the Hamiltonian of
permembrane was obtained [ih6,17] starting from the La- the theory. It satisfies

grangian formulation of th&® =11 supermembrane. It was

important to follow step by step the dualization procedure in €SI e, = YW (9)

order to show that the nontrivial winding of the supermem- ree '

brane was indeed described by the nontrivial bundle ovegquivalently

which the gauge field, dual to the compactified coordinates,

is defined. Having that geometrical structure one may intro- {ﬁr vﬁs}zllznesr- (10)

duce in an intrinsic way a symplectic structure on the world

volume. One finally may formulate the double compactified e consider now an expansion of the geometrical objects

D=11 supermembrane as a symplectic noncommutativéh the formulation in terms of an orthonormal basis in the

gauge theory16,17. The final form of the Hamiltonian is  spacel.? or functions over the world volume. They are uni-

form functions over the manifold. Th¥" P,, may be ex-

H:J' 1 [(P™)2+ (T1,)2+ 1/2W{X™ XM 2 pressed in the standard way since they are uniform maps

2w from the world volumeX, to the target space,
WD XM+ LN+ | (187 XM(ot,02,7)= 3 XAV p(orh, ),
1 11
A@IHX P -5 [ W E @ P (oL o?r) =S JWPA(HYA(oho?)
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The multivalued maps defining the nontrivial winding of the  We considerY, to be a complete basis of eigenfunctions
membrane are now expressed in terms of the connection arad the operatoD,D, . Then we have
its conjugate momenta. In this sector we impose the global

condition DD/ Ya=waYa, (20
where no summation in the indéxis performed. We assume
L\/W*]:: 0. (12 without losing generality that

If F were the curvature of & (1) connection 1-form, this Ya=Yoa, (22)

condition would imply the connection has no transitions on hereY. denotes th | ‘ugate Ya . Wi "
theU(1) bundle. However, we have a symplectic connection}(’r‘: efre” A O€notes te C?mp %X c_:ongpggg @. We notice
A, instead. We will assume that has no transitions ovex, € following property ot the dervatives, -
which of course implies Eq(12) since yW* F is a total i ab
derivative. The central charg& of the supersymmetric Dsﬁr:_sﬁaﬁrzf_abﬁs(gaﬁr:{ﬁs,f[r}:E.
(SUSY) algebra becomes then Jw Jw 2
(22)

2= L\/V—VES'{H“HS}ZnXMeaE' 13 ﬁ, may be identified with the angles of the compactified

directions of the target space.

We may now decomposé, and its canonical conjugate  \ye may introducell, as local coordinates ovet. We

momenta under the same basis as before: will assume from now or® to be of genus 1, although ev-
erything can be extended to arbitrary genus. We then have

Ar(o-lao-sz) = Z Af\( T)YA(O-lio-z)!

Y =gl
(14) )
rp 1 2 N rA 1 2 n? n2
I'(o%,0%7)= 2 WII"A(1)Y (ot 0). wn=— o A2= - (A2 A, 23
There is, however, a main difference betweéhand A% . It
is their transformation law under the symmetry generated by A\C =iA EE SS=\, 06,
the first class constraint. To analyze this point we introduce ATIspsTATT

as in[6] the structure constan . . . .
[6] gny where 4, ,r=1,2 is a pair of integral numbers associated to

€S Y. The structure functions may then be expressed as
{Ya,Ye}=——DiYaDsYe=0xsYc, (19 ]
Cc _ C
whereY, is a complete orthonormal basis of functions over 9ne 2 (AXB)o%+e (29
the spatial part of the world volume, an are the struc-
ture constants associated with the group of area-preserving
diffeomorphisms in this basis. That is

A= —i g(v,xA) 5%, (25
Ohe= J o W{Ya, Ye}Yc., (16)
(1,0, r=1
where we use the normalization condition = (0,1, r=2. 26
| dtoWveYo=sa.c. azn Then
Na= _ig\(;, (A-V,) (27)

We then have the infinitesimal gauge transformations
and also satisfies
SXC=2 gRpe’XE,

AB 2 Sr c _.C
(18) € Maksedap=9ae
s
e with dS,= f A2 WY, YsYe, (28)
where\, is defined by

c with d$; related to the invariant symmetric three index ten-
DiYa=AnYc. (19 sor of SUN).

045023-3



M. P. GARCIA DEL MORAL AND A. RESTUCCIA
The Hamiltonian may then be expressed apli8:
H=Hyosonict Hrermionic

1 1
H BOSOnicZE( pOmPr(L_'_ PAumA) +Z(g§BXmAXnB)2

1 1
+5 (N aX™MA+ g APX™ )24+ 5 (AT

1
+107°m1, %)+ Z[()\rAs_)\SAr)A

1
+(gBcArAS P+ §n2+ ACAgR(XMBP
+ ABII™C) + \ AT,

Heermionic™ — ggc\lf(_/‘\) Y- VmeB“PC

+ ggBArA‘p(_c)'yf 'Vr\PB"— )\rB\I’(_B)')’f '}’r\PB

~gacAT Ay VE, (29
where (,¥ is understood as
(%, 0)2=(*,0)(*,0)=(x,0)A(x,0)"A (30

Using the following definitionsHy,,s0nic caN be directly

PHYSICAL REVIEW D 66, 045023 (2002

in the literature there are some minor misprints that we
would like to avoid.

The relevant Hilbert spacd(I") of functions on a torus
I'=CIL of complex modulusr= 7, +i7, with integer lattice
L={m;+ rm,|(m;,m,) e ZXx Z} is defined as the space of
functions of complex argumemnt=o,+io,

f(2)= E Cneiw(n2)+277(inz) (33
neZ
with the norm
2= [ e i (a4
)

The subspacél(T") of H(T") is defined by the periodicity
condition
Cn: Cn+N (35)

for a fixed natural numbeN. In the subspacél(I') the
discrete Heisenberg group with generatBrand Q,

Qf(z2)= >, C,emn/Ng?minz+ 7T(in27')’

reexpressed in a simpler way, which may be useful to com-

pare with Eq.(3):
D=\ +[ AL,
Fr=NarAS = Np AP+ A AJY  with
N (Ya)=NaYa nosummation over indea,
[*, 0 1A=ggc*r O (3D

Then the bosonic part of the Hamiltonian appears as
1 1 1
HBosonic:_ PomP%Jr _( PAmPr;]A) + _[Xm,xn]z
2 2 4
1 1 1
TR YMA2,, T A2, T qropp -0
+2(DrX )+8n +21'[ I1,

1 1
+5 AL A 2 (F7)?
+AAX™ P+ D ,) A, (32

where summation over th& index is performed.

Ill. THE HEISENBERG-WEYL GROUP AND
THE N—oo LIMIT

We follow in the first part of this section standard results
concerning the Heisenberg-Weyl groli®?]. We do so since

neZ
(36)
Pf(z)= 2 CnileZWin+7r(in22)_
neZ
They satisfy the Weyl relatiofil9]:
QP=xkPQ wherexk=exp2mi/N). (37)
The Heisenberg group elements are defined by
T s=N&2°PQs, (38)

They are SUKN) matrices which satisfy the following re-
lations:

T;r,s:Tfr,fsv
(Tr,S)N:NNeiﬂ.rS(Nil)!INXN1

trT, ¢=0,
(39
Tr,s,Tr’,s’:NKUZ(r srs )Tr+r’,s+s’ )

Tr+N,s: eiTrSTr,s )
Tr,s+ NT eierr,s .

The SUN) algebra may be realized in terms of the base
T, with A=(a;,a,)=(r,s) with a;,a,=0,... N with
(0,0) excluded. We includ&,= NIy« to have a complete
set of matrices which close under multiplicatifl,

(AX B)w)

[Ta,Tg]=—2iN sin( (40

A+B >
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where[, ] is simply the commutatofdo not confuse with the IV. THE SU(N) FORMULATION OF THE THEORY
[,] symbol used in the preceding sectiofihe structure con-
stants are then We may now introduce an SBI) canonical Lagrangian
1 which in the limit N—c converges to the formulation of
fEBEjtf([TA,TB],T—c) Sec. Il describing the dual of the double compactified

=11 supermembrane. The coordina¥&sas well as the con-
nection. 4, and their canonical conjugate momenta are val-
— _9iN i (AXB)7| ued over the SUY) algebra. The Lagrangian contains un-
=—2iN sin ey (41 N . .
N usual terms which indeed are necessarydjf is going to
] ) converge to a connection in tid—co limit. In fact, a con-
When N—o one obtains the Poisson algebra of areanection of a principle bundle allows us to translate the geo-

preserving diffeomorphisms metrical objects in the horizontal direction; however, in the
ni n SU(N) model all the dependence on the world volume coor-
EfABcagABCEE(AX B)Saig_c- (42)  dinates has been removed. We then expect some unusual

terms which in theN—o limit allow that property of the
) -5 ) ) connection 1-form to be recovered.
We introduceh, as a particular choice of the structure  \\e gre going to consider the Hamiltonié29) in a par-

constants associated with the finite group: ticular gauge. Since the first class constraint has been ex-
- B pressed as a generalized Gauss law, these are several inter-
)‘rA:_'er(A—Vr) (43 esting conditions we may impose. We will consider the
_ gauge condition:
with
— — A8
Na=Rind%. (44) A=A Na0,
_ (46)
\ converges to A2=A‘;‘1’a2Yal,a2, a,#0.
M (i, Yol —iAL 45
A AT a={Tlr Ya} =iAs7 €rs. A SUN) model we introduce is the following:
|
1 om 0 ro -0 m\ 2 2 ? m yni2 n2 i m m ?
H=tr R[P ToPOTo+ I OTII, OTo+ (P™M) +(H)r]+16w2N3[X X" RPSENE LTV XMToy, —[ A X
2 i 21, . i
+ o | LA AU ATy = [Ty ATy |+ g —— AL X7 Pl = Gl Ty, Ty,
n — — — i —
+[~AraHr]) + 4WN3<‘1’77m[Xm,\I’]—‘Pv%[Ar PIHA[Py- W=V - %[Tvr,\I’]Tv,> (47)
|
subject to 1 1
— = rpomp0 my27.. "~ 0170 2
A1=A(lal'0)T(a ) H=tr 2N3[P P+ (P™ ]+2N3(HrH,+(H )9)
l’ 1
Ap=AFrT with a, 0 9 n m X2+ 2(D, XM 2+ (F )2
2= 2 (al’az) 2 ! +16/n'2N3{[X !X] +2(Drx ) +(‘7:I’S)}
where we used the following definitions: 1
“h2 m ™
Xm:XmATA, pM= PmATA, +8n +47TN3A([X ,Pm]+DrHr)
A=A, T'=TI"AT,, (49 in _ _
+ NgA([‘I’v_.‘I’]Jr‘I’V-vm[Xm.‘I’]
[TBlTC]:féCTA- 77
It may be expressed in the form +15,‘l_fy_ W), (50
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where the identification of the terms in EGO) are obvious ~MUSt be satisfied. They impose severe res_trictior%"t@nd_

from Eq. (47). A" which eliminates the possibility of having the stringlike
Each term of the above Hamiltonian density converges t&onfigurations. In fact, the conditiaf;s=0 yields

the corresponding one in the formulation of the supermem- _ _

brane of Sec. II. The conditio@8) in the SUN) model also k~V2VXAY AR | VRVAY AR R ABAS=0

converges to the gauge fixing conditi¢#6) of the super- (54
membrane.
and using the gauge fixing conditiga8) we obtain, for any
V. ON THE SPECTRUM OF THE HAMILTONIAN A
. I X
There are two properties of the Hamiltonian of tbe k= Y2(ViXAN sin M) /;
=11 supermembrane on a Minkowski target sgajevhich
render the spectrum of the associated mass operator continu- «
ous. — Kk V2(Vax AN sin( W) 'f

(i) The existence of local stringlike configurations which

may even change the topology of the membrane without (DViXA) T\ 1 oAby
changing its energy. This is a property of the bosonic sector +iN sin( T) 1A, =0,
of the supermembrane.

(ii) Supersymmetry. The supersymmetry cancels an effec- (55

tive potential coming from the quantization of the model. It )
is related to the zero point energy of the harmonic oscillatordNereb; are integers.
which is different from zero in the bosonic case and zero in N particular, forA=1V; we get
the supersymmetric one. " o
We will show in this section that there are no local string- A =A7=0, (56)
like configurations with zero energy density associated with
the Hamiltonian of our SU{) model(47). It is important to  hence
come back to the global condition which was imposed in
order to obtain the Hamiltoniafsee the comment after Eq. A/i\:O. (57
(12)] of the model under consideration. It was

We then obtain from Eq55) and the gauge fixing condition
J.Jﬂﬁfso. (51)
s

A5=0. (58)
The annihilation of that terni51), which is perfectly valid

when we formulate our model over a fixed nontrivial line The conditionD X™=0 now reduces to

bundle, has important consequences with respect to the non- 5

existence of the local stringlike configurations with zero en- AaX™=0, r=1,2. (59
ergy density. To analyze this point let us see first what occurs

for the compactified membrane without that assumptionThat is,
Without the assumptioisl), there are local stringlike con-

figurations arising from the following configurations: N sinl Vllil(A aXMA=Q,
Xm=Xm(X(O'1,O'2)), (60)
) (52 (VoxAy
A= =1L +,(X(01,02)). N sin| —g— | 7X™"=0,

These configurations depend on an arbitrary uniform mapyhich yields
X(oq,05,). After some calculations one can show that the
Hamiltonian density of Eq(3) over those configurations be- XMA= (61)
comes zero. Hence the compactified supermembrane allows '

local stringlike spikes with zero energy. Let us now dISCUSSCons:equently, there are no local stringlike configurations
the sector of the theory arising from the imposition of theWith zero energy density for the SNJ model of Sec. IV.
global condition(51). In the SUN) model of Sec. IV, the 9y y T
singular configurationé2) do not arise becausé, is single

valued in distinction td1, which is necessarily multivalued
over 3. More precisely, in order to have zero local energy e proposed a model described by $ly(algebra valued

VI. CONCLUSIONS

density, the conditions geometrical objects which provides a regularization of the
D,X=0, dual of the double compactifidd =11 supermembrane with
(53) nontrivial winding or the equivalently noncommutative

Fis=0 super-Maxwell theory over a Riemann surface of genus 1. It
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describes a supermembrane over a world volume of genus &ector is described by a global condition which eliminates
with fixed windingn+0 on a target spacelgxX S'X St We  completely the local stringlike spikes.

showed explicitly the existence of local stringlike spikes in

the general formulation of compactified supermembranes, in

agreement wit5]. We then proved that in the proposed ACKNOWLEDGMENTS
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