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Spectrum of a noncommutative formulation of theDÄ11 supermembrane with winding
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A regularized model of a noncommutative formulation of the double compactifiedD511 supermembrane
with nontrivial winding in terms of SU(N) valued maps is obtained. The condition of nontrivial winding is
described in terms of a nontrivial line bundle introduced in the formulation of the compactified supermem-
brane. The multivalued geometrical objects of the model related to the nontrivial wrapping are described in
terms of a SU(N) geometrical object, which in theN→` limit converges to the symplectic connection related
to the area-preserving diffeomorphisms of the recently obtained noncommutative description of the compac-
tified D511 supermembrane@I. Martı́n, J. Ovalle, and A. Restuccia, Phys. Rev. D64, 096001~2001!#. The
SU(N) regularized canonical Lagrangian is explicitly obtained. The spectrum of the Hamiltonian of the double
compactifiedD511 supermembrane is discussed. Generically, it contains local string such as spikes with zero
energy. However, the sector of the theory corresponding to a principle bundle characterized by the winding
numbern5” 0, described by the SU(N) model we propose, is shown to have no local stringlike spikes and
hence the spectrum of this sector should be discrete.

DOI: 10.1103/PhysRevD.66.045023 PACS number~s!: 11.10.Kk
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I. INTRODUCTION

The matrix model for bosonic membranes was first int
duced in@1#, and its study was extended to the supersymm
ric case in@2#. In that work it was shown that the supermem
brane theory could also be understood as a supersymm
gauge theory of the infinite group of area-preserving diffe
morphisms which appeared as a residual symmetry of
supermembrane in the light cone gauge. They also foun
satisfactory SU(N) regularization of the model. The spe
trum of the quantized model was found to be continuous@3#,
and was afterwards interpreted in terms of a multiparti
theory @4#.

The D511 supermembrane with winding was first an
lyzed in @5# in terms of multivalued maps from the worl
volume to the target space. Part of their study was base
a previous work on the area-preserving diffeomorphisms
@6#. In @5# the Hamiltonian of the theory was explicitly ob
tained. Its analysis in terms of a finiteN regularization was
performed, with the conclusion that the SU(N) regulariza-
tion of the model, which was essential in the analysis of
spectrum of the noncompactified supermembrane in aD
511 Minkowski target space@3#, was not possible becaus
the structure constants associated with the presence o
nonexact modes did not fit in an SU(N) description of the
model. It was also argued in@5# that the spectrum of the
compactifiedD511 supermembrane should also be contin
ous since the instability, caused by the stringlike spikes
also present in the compactified case. The stringlike sp
are singular physical configurations~the determinant of the
induced metric is zero at some points or open sets of
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world volume! which may even change the topology of th
world volume without changing the energy of the syste
Together with the supersymmetry they render the spect
of theD511 supermembrane continuous from zero to infi
ity. A complete analysis of the spectrum for the compactifi
case similar to the one in@3#, for the noncompactified case
has not been yet presented.

The analysis of the compactified D-brane was first a
proached from the matrix model point of view in@7#. The
matrix models@8,9# describe the dynamics of the membran
in the light cone gauge in the approximation of finite numb
of oscillations modes. They provide an equivalent desc
tion, to the one in@5# of the supermembrane in terms o
D0-branes. The formulation of compactified D-branes in@7#
was done by considering the universal covering of the co
pactified target space. In that simply connected space
matrix model may be directly formulated in terms of th
infinite set of the copies of the D-brane system restricted
the symmetry generated by the covering group. An intere
ing result was obtained in@10#. It was shown that the matrix
model on a noncommutative torus is equivalent to M-the
compactified in a constant antisymmetric background fie
The noncommutative geometry of the supermembrane
terms of matrix models was also described in several pap
see@11# and references therein, in particular in@12# and@13#.
In @14,15# the analysis of the compactifiedD511 super-
membrane was performed following the original descripti
@2# but the analysis emphasizes the global structure ass
ated with the nontrivial wrapping of the supermembrane
terms of an associated principal bundle which is natura
constructed from the nontrivial central charge of the sup
symmetric algebra. This analysis is best performed in
dual formulation of the theory. The double compactifiedD
511 supermembrane dual directly introduces the connec
1-form associated to the nontrivial principal bundle. In t
©2002 The American Physical Society23-1
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formulation in@16,17# the canonical Lagrangian is express
as a noncommutative gauge theory. The geometrical mea
of the noncommutativity was explained in that work in term
of symplectic fibrations over the world volume. The sym
plectomorphisms on the fibers are generated by the a
preserving diffeomorphisms on the world volume.

In this paper we present an SU(N) regularization of that
formulation. All the multivalued objects related to the no
trivial wrapping are handled by the connections 1-form.
the theory is restricted to a principle bundle characterized
the winding numbern, any connection on that bundle may b

expressed in terms of a fix oneP̂ plus a uniform 1-formA:

Â5P̂1A. ~1!

We considerP̂ to be the connection 1-form which minimize
the Hamiltonian of the double compactified supermembra
AlthoughA is a uniform 1-form it has a transformation law
under the gauge symmetry of the theory,

A→A1de1$A,e%5A1De, ~2!

corresponding to a symplectic connection preserving
symplectic structure of the fibers under holonomies. Its re
larization in terms of SU(N) valued objects has consequen
a very different behavior compared to the geometrical
jects in the other approaches.

II. THE HAMILTONIAN OF THE COMPACTIFIED DÄ11
SUPERMEMBRANE

In this section we describe the Hamiltonian of the co
pactifiedD511 supermembrane on (R93S13S1). It seems
that the best approach, from a global point of view, is
consider its dual formulation since as discussed previou
the global features are geometrically handled in terms o
connection 1-form over a nontrivial principle bundle on t
world volume which is intrinsically introduced in the formu
lation.

The Hamiltonian for the double compactifiedD511 su-
permembrane was obtained in@16,17# starting from the La-
grangian formulation of theD511 supermembrane. It wa
important to follow step by step the dualization procedure
order to show that the nontrivial winding of the superme
brane was indeed described by the nontrivial bundle o
which the gauge field, dual to the compactified coordina
is defined. Having that geometrical structure one may in
duce in an intrinsic way a symplectic structure on the wo
volume. One finally may formulate the double compactifi
D511 supermembrane as a symplectic noncommuta
gauge theory@16,17#. The final form of the Hamiltonian is

H5E
S

1

2AW
@~Pm!21~P r !

211/2W$Xm,Xn%2

1W~D rX
m!211/2W~Frs!

2#1E
S
@1/8AWn2

2L~D rP
r1$Xm,Pm%!#2

1

4ES
AWn* F ~3!
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together with its supersymmetric extension

E
S
AW@2 ūG2G rDru1 ūG2Gm$Xm,u%1L$ūG2 ,u%#

~4!

in terms of the original Majorana spinors of theD511 for-
mulation, which may be decomposed in terms of a comp
8-component spinor ofSO(7)3U(1).

m51, . . . ,7 are theindexes denoting the scalar field
once the supermembrane is formulated in the light co
gauge.r ,s51,2 are the indexes related to the two compac
fied directions of the target space, whereS is the spatial part
of the world volume which is assumed to be closed Riema
surface of topologyg. PM andP r are the conjugate moment
to XM and the connection 1-formAr , respectively. The co-
variant derivative is

Dr5Dr1$Ar ,% ~5!

and the field strength

Frs5DrAs2DsAr1$Ar ,As%. ~6!

The bracket$,% is defined as

$*, L%5
2esr

n
~Dr* !~DsL !, ~7!

where n denotes the integer which characterizes the n
trivial principle bundle under consideration.Dr is a tangent
space derivative

DrL5
P̂ r

a]aL

AW
5$P̂ r ,L%, r ,s51,2, a51,2, ~8!

where]a denotes derivatives with respect to the local co

dinates of the world volume whileP̂ r
a5eau]uP r is a zwei-

vein defined from the minimal solution of the Hamiltonian
the theory. It satisfies

e rsP̂ r
aP̂s

beab5nAW, ~9!

equivalently

$P̂ r ,P̂s%51/2nesr . ~10!

We consider now an expansion of the geometrical obje
in the formulation in terms of an orthonormal basis in t
spaceL2 or functions over the world volume. They are un
form functions over the manifold. TheXM,PM may be ex-
pressed in the standard way since they are uniform m
from the world volumeS to the target space,

Xm~s1,s2,t!5( XmA~t!YA~s1,s2!,

~11!

Pm~s1,s2,t!5( AWPm
A~t!YA~s1,s2!.
3-2



e
a
b

on
io

e

b
c

e

vi

ns

e

ed

-
ve

to

n-

SPECTRUM OF A NONCOMMUTATIVE FORMULATION OF . . . PHYSICAL REVIEW D 66, 045023 ~2002!
The multivalued maps defining the nontrivial winding of th
membrane are now expressed in terms of the connection
its conjugate momenta. In this sector we impose the glo
condition

E
S
AW* F50. ~12!

If F were the curvature of aU(1) connection 1-form, this
condition would imply the connection has no transitions
theU(1) bundle. However, we have a symplectic connect
A, instead. We will assume thatA has no transitions overS,
which of course implies Eq.~12! since AW* F is a total
derivative. The central chargeZ of the supersymmetric
~SUSY! algebra becomes then

Z5E
S
AWesr$P̂ r ,P̂s%5n3areaS . ~13!

We may now decomposeAr and its canonical conjugat
momenta under the same basis as before:

Ar~s1,s2,t!5( A r
A~t!YA~s1,s2!,

~14!

P r~s1,s2,t!5( AW P r ,A~t!YA~s1,s2!.

There is, however, a main difference betweenXA andA r
A . It

is their transformation law under the symmetry generated
the first class constraint. To analyze this point we introdu
as in @6# the structure constantsgAB

C

$YA ,YB%5
2e sr

n
DrYADsYB5gAB

C YC , ~15!

whereYA is a complete orthonormal basis of functions ov
the spatial part of the world volume, andgAB

C are the struc-
ture constants associated with the group of area-preser
diffeomorphisms in this basis. That is

gAB
C 5E d2sAW$YA ,YB%Y2C , ~16!

where we use the normalization condition

E d2sAWYCYB5dB1C . ~17!

We then have the infinitesimal gauge transformations

dXC5(
A,B

gAB
C eAXB,

~18!

dA r
C52l rA

C eA2(
A,B

gAB
C A r

AeB,

wherel rA
C is defined by

DrYA5l rA
C YC . ~19!
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We considerYA to be a complete basis of eigenfunctio
of the operatorDrDr . Then we have

DrDrYA5vAYA , ~20!

where no summation in the indexA is performed. We assum
without losing generality that

ȲA5Y2A , ~21!

whereȲA denotes the complex conjugate toYA . We notice
the following property of the derivativesDr :

DsP̂ r5
P̂s

a

AW
]aP̂ r5

eab

AW
]bP̂s]aP̂ r5$P̂s ,P̂ r%5

ne rs

2
.

~22!

P̂ r may be identified with the angles of the compactifi
directions of the target space.

We may introduceP̂ r as local coordinates overS. We
will assume from now onS to be of genus 1, although ev
erything can be extended to arbitrary genus. We then ha

YA5eiArP̂r,

vA52
n2

4
Ar

252
n2

4
~A1

21A2
2!, ~23!

l rA
C 5 iAs

n

2
esrdA

C[l rAdA
C ,

whereAr ,r 51,2 is a pair of integral numbers associated
YA . The structure functions may then be expressed as

gAB
C 5

n

2
~A3B!dA1B

C ~24!

and

l rA
C 52 i

n

2
~Vr3A!dA

C , ~25!

Vr5H ~1,0!, r 51

~0,1!, r 52.
~26!

Then

l rA
C 52 igVr ,(A2Vr )

C ~27!

and also satisfies

2

n
esrl rAlsBdAB

C 5gAB
C

with dAB
C 5E d2sAWYAYBȲC , ~28!

with dAB
C related to the invariant symmetric three index te

sor of SU(N).
3-3
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M. P. GARCÍA DEL MORAL AND A. RESTUCCIA PHYSICAL REVIEW D 66, 045023 ~2002!
The Hamiltonian may then be expressed as in@18#:

H5Hbosonic1HFermionic,

HBosonic5
1

2
~P0mPm

0 1PAmPm
2A!1

1

4
~gAB

C XmAXnB!2

1
1

2
~l rAXmA1gBC

A A r
BXmC!21

1

2
~P rAP r

2A

1P r0P r
20!1

1

4
@~l rAs2lsAr !

A

1~gBC
A A r

BA s
C!#21

1

8
n21L (2A)@gBC

A ~XmBPm
C

1A r
BP rC!1l rAP rA#,

HFermionic52gBC
A C̄ (2A)g2gmXmBCC

1gAB
C A r

Ac̄ (2C)g2g rC
B1l rBC̄ (2B)g2g rC

B

2gBC
A L (2A)C̄Bg2CC, ~29!

where (,)2 is understood as

~!,L !25~!,L !~!,L)5~!,L !A~!,L !2A. ~30!

Using the following definitions,Hbosonic can be directly
reexpressed in a simpler way, which may be useful to co
pare with Eq.~3!:

D̃r5l r1@Ar ,#,

F rs
A 5lArA s

A2lsAA r
A1@Ar ,As#

A with

l r~YA![l rAYA no summation over indexA,

@!,L#A[gBC
A ! r

BLs
C. ~31!

Then the bosonic part of the Hamiltonian appears as

HBosonic5
1

2
P0mPm

0 1
1

2
~PAmPm

2A!1
1

4
@Xm,Xn#2

1
1

2
~D̃rX

mA!21
1

8
n21

1

2
P r0P r

20

1
1

2
P rAP r

2A1
1

4
~F rs

A !2

1LA~@Xm,Pm#1D̃rP r !
2A, ~32!

where summation over theA index is performed.

III. THE HEISENBERG-WEYL GROUP AND
THE N\` LIMIT

We follow in the first part of this section standard resu
concerning the Heisenberg-Weyl group@12#. We do so since
04502
-

in the literature there are some minor misprints that
would like to avoid.

The relevant Hilbert spaceH(G) of functions on a torus
G5C/L of complex modulust5t11 i t2 with integer lattice
L5$m11tm2u(m1 ,m2)PZ3Z% is defined as the space o
functions of complex argumentz5s11 is2

f ~z!5 (
nPZ

Cneip(n2)12p( inz) ~33!

with the norm

i f i25E
S
d2se22p(y2)/t2u f ~z!u2. ~34!

The subspaceHN(G) of H(G) is defined by the periodicity
condition

Cn5Cn1N ~35!

for a fixed natural numberN. In the subspaceHN(G) the
discrete Heisenberg group with generatorsP andQ,

Q f~z!5 (
nPZ

Cne2p in/Ne2p inz1p( in2t),

~36!

P f~z!5 (
nPZ

Cn21e2p in1p( in2z).

They satisfy the Weyl relation@19#:

QP5kPQ wherek5exp~2p i /N!. ~37!

The Heisenberg group elements are defined by

Tr ,s5Nk1/2rsPrQs. ~38!

They are SU(N) matrices which satisfy the following re
lations:

Tr ,s
† 5T2r ,2s ,

~Tr ,s!
N5NNeiprs(N21)!IN3N ,

tr Tr ,s50,
~39!

Tr ,sTr 8,s85Nk1/2(r 8s2rs8)Tr 1r 8,s1s8 ,

Tr 1N,s5eipsTr ,s ,

Tr ,s1N5eiprTr ,s .

The SU(N) algebra may be realized in terms of the ba
TA with A5(a1 ,a2)5(r ,s) with a1 ,a250, . . . ,N with
(0,0) excluded. We includeT05NIN3N to have a complete
set of matrices which close under multiplication@6#,

@TA ,TB#522iN sinS ~A3B!p

N DTA1B , ~40!
3-4
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where@ ,# is simply the commutator~do not confuse with the
@ ,# symbol used in the preceding section!. The structure con-
stants are then

f AB
C [

1

N3
tr~@TA ,TB#,T2C!

522iN sinS ~A3B!p

N D dA1B
C . ~41!

When N→` one obtains the Poisson algebra of are
preserving diffeomorphisms

ni

4p
f ABC→gABC[

n

2
~A3B!dA1B2C . ~42!

We introducel rA
B̃ as a particular choice of the structu

constants associated with the finite group:

l rA
B̃ 52 i f Vr (A2Vr )

B ~43!

with

l rA
B̃ 5l̃ rAdA

B . ~44!

l̃ converges to

ni

4p
l rÃ→l rA5$P̂ r ,YA%5 iAs

n

2
e rs . ~45!
04502
-

IV. THE SU „N… FORMULATION OF THE THEORY

We may now introduce an SU(N) canonical Lagrangian
which in the limit N→` converges to the formulation o
Sec. II describing the dual of the double compactifiedD
511 supermembrane. The coordinatesXm as well as the con-
nectionAr and their canonical conjugate momenta are v
ued over the SU(N) algebra. The Lagrangian contains u
usual terms which indeed are necessary ifAr is going to
converge to a connection in theN→` limit. In fact, a con-
nection of a principle bundle allows us to translate the g
metrical objects in the horizontal direction; however, in t
SU(N) model all the dependence on the world volume co
dinates has been removed. We then expect some unu
terms which in theN→` limit allow that property of the
connection 1-form to be recovered.

We are going to consider the Hamiltonian~29! in a par-
ticular gauge. Since the first class constraint has been
pressed as a generalized Gauss law, these are several
esting conditions we may impose. We will consider t
gauge condition:

A15A 1
a1,0Ya1,0 ,

~46!

A25A 2
a1 ,a2Ya1 ,a2

, a25” 0.

The SU(N) model we introduce is the following:
H5trF 1

2N3
@P0mT0Pm

0 T01P r0T0P r
20T01~Pm!21~P!r

2#1
n2

16p2N3
@Xm,Xn#21

n2

8p2N3 S i

N
@TVr

,Xm#T2Vr
2@Ar ,Xm# D 2

1
n2

16p2N3 S @Ar ,As#1
i

N
~@TVs

,Ar #T2Vs
2@TVr

,As#T2Vr
! D 2

1
1

8
n21

n

4pN3
LS @Xm,Pm#2

i

N
@TVr

,P r #T2Vr

1@Ar ,P r # D1
in

4pN3 S C̄g2gm@Xm,C#2C̄g2g r@Ar ,C#1L@C̄g2 ,C#2
i

N
C̄g2g r@TVr

,C#T2Vr D G ~47!
subject to

A15A 1
(a1,0)T(a1,0) ,

~48!
A25A 2

(a1 ,a2)T(a1 ,a2) with a25” 0,

where we used the following definitions:

Xm5XmATA , Pm5PmATA ,

Ar5A r
ATA , P r5P rATA , ~49!

@TB ,TC#5 f BC
A TA .

It may be expressed in the form
H5trS 1

2N3
@P0mPm

0 1~Pm!2#1
1

2N3
~P r

0P r
01~P r !2!

1
n2

16p2N3
$@Xm,Xn#212~D̂rX

m!21~F̃rs!
2%

1
1

8
n21

n

4pN3
L~@Xm,Pm#1D̂rP r !

1
in

4pN3
L~ @C̄g2 ,C#1C̄g2gm@Xm,C#

1D̂rC̄g2g rC!D , ~50!
3-5
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where the identification of the terms in Eq.~50! are obvious
from Eq. ~47!.

Each term of the above Hamiltonian density converges
the corresponding one in the formulation of the superme
brane of Sec. II. The condition~48! in the SU(N) model also
converges to the gauge fixing condition~46! of the super-
membrane.

V. ON THE SPECTRUM OF THE HAMILTONIAN

There are two properties of the Hamiltonian of theD
511 supermembrane on a Minkowski target space@3# which
render the spectrum of the associated mass operator con
ous.

~i! The existence of local stringlike configurations whi
may even change the topology of the membrane with
changing its energy. This is a property of the bosonic se
of the supermembrane.

~ii ! Supersymmetry. The supersymmetry cancels an ef
tive potential coming from the quantization of the model.
is related to the zero point energy of the harmonic oscillat
which is different from zero in the bosonic case and zero
the supersymmetric one.

We will show in this section that there are no local strin
like configurations with zero energy density associated w
the Hamiltonian of our SU(N) model~47!. It is important to
come back to the global condition which was imposed
order to obtain the Hamiltonian@see the comment after Eq
~12!# of the model under consideration. It was

E
S
AW* F50. ~51!

The annihilation of that term~51!, which is perfectly valid
when we formulate our model over a fixed nontrivial lin
bundle, has important consequences with respect to the
existence of the local stringlike configurations with zero e
ergy density. To analyze this point let us see first what occ
for the compactified membrane without that assumpti
Without the assumption~51!, there are local stringlike con
figurations arising from the following configurations:

Xm5Xm
„X~s1 ,s2!…,

~52!
Ar52P̂ r1 f r„X~s1 ,s2!….

These configurations depend on an arbitrary uniform m
X(s1 ,s2). After some calculations one can show that t
Hamiltonian density of Eq.~3! over those configurations be
comes zero. Hence the compactified supermembrane al
local stringlike spikes with zero energy. Let us now discu
the sector of the theory arising from the imposition of t
global condition~51!. In the SU(N) model of Sec. IV, the
singular configurations~52! do not arise becauseAr is single

valued in distinction toP̂ r which is necessarily multivalued
over S. More precisely, in order to have zero local ener
density, the conditions

DrX50,
~53!Frs50
04502
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must be satisfied. They impose severe restrictions toXA and
A r

A which eliminates the possibility of having the stringlik
configurations. In fact, the conditionFrs50 yields

k21/2(Vr3A)l̃ rAA s
A2k21/2(Vs3A)l̃sAA r

A1 f BC
A A r

BA s
C50

~54!

and using the gauge fixing condition~48! we obtain, for any
A

k21/2(V13A)N sinS ~V13A!p

N DA 2
A

2k21/2(V23A)N sinS ~V23A!p

N DA 1
A

1 iN sinS ~b1V13A!p

N DA 1
b1,0A 2

A2b1V150,

~55!

whereb1 are integers.
In particular, forA5 lV1 we get

A 1
lV1[A 1

l ,050, ~56!

hence

A 1
A50. ~57!

We then obtain from Eq.~55! and the gauge fixing condition

A 2
A50. ~58!

The conditionD rX
m50 now reduces to

l̃ rAXmA50, r 51,2. ~59!

That is,

N sinS V13A

N DpXmA50,

~60!

N sinS V23A

N DpXmA50,

which yields

XmA50. ~61!

Consequently, there are no local stringlike configuratio
with zero energy density for the SU(N) model of Sec. IV.

VI. CONCLUSIONS

We proposed a model described by SU(N) algebra valued
geometrical objects which provides a regularization of
dual of the double compactifiedD511 supermembrane with
nontrivial winding or the equivalently noncommutativ
super-Maxwell theory over a Riemann surface of genus 1
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describes a supermembrane over a world volume of genu
with fixed windingn5” 0 on a target spaceM93S13S1. We
showed explicitly the existence of local stringlike spikes
the general formulation of compactified supermembranes
agreement with@5#. We then proved that in the propose
SU(N) model for supermembranes with fixed windin
which is only one sector of the full theory, there are
stringlike spikes and hence this sector should have disc
spectrum. We will analyze in more detail the properties
the spectrum elsewhere. It is important to remark that
-
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1,
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sector is described by a global condition which elimina
completely the local stringlike spikes.
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