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Light-front formulation of the standard model
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Light-front ~LF! quantization in the light-cone~LC! gauge is used to construct a renormalizable theory of the
standard model. The framework derived earlier for QCD is extended to the Glashow-Weinberg-Salam~GWS!
model of electroweak interaction theory. The Lorentz condition is automatically satisfied in LF-quantized QCD
in the LC gauge for the free massless gauge field. In the GWS model, with the spontaneous symmetry breaking
present, we find that the ’t Hooft condition accompanies the LC gauge condition corresponding to the massive
vector boson. The two transverse polarization vectors for the massive vector boson may be chosen to be the
same as found in QCD. The nontransverse and linearly independent third polarization vector is found to be
parallel to the gauge direction. The corresponding sum over polarizations in the standard model, indicated by
Kmn(k), has several simplifying properties similar to the polarization sumDmn(k) in QCD. The framework is
unitary and ghost free~except for the ghosts atk150 associated with the light-cone gauge prescription!. The
massive gauge field propagator has well-behaved asymptotic behavior. The interaction Hamiltonian of elec-
troweak theory can be expressed in a form resembling that of covariant theory, plus additional instantaneous
interactions which can be treated systematically. The LF formulation also provides a transparent discussion of
the Goldstone boson~or electroweak! equivalence theorem, as the illustrations show.

DOI: 10.1103/PhysRevD.66.045019 PACS number~s!: 11.10.Gh, 12.10.Dm, 12.38.Lg
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I. INTRODUCTION

The quantization of relativistic field theory at fixed ligh
front time t5(t2z/c)/A2, which was proposed by Dira
@1#, has found important applications@2–5# in gauge field
theory, string theory@6#, and M theory@7#, and it has become
a useful alternative tool for the analysis of nonperturbat
problems in quantum chromodynamics@8#. Light-front quan-
tization has been employed in the non-Abelian bosoniza
@9# of the field theory ofN free Majorana fermions. The
~non-perturbative! degenerate vacuum structures, t
u-vacua in the Schwinger model and their absence in
chiral Schwinger model, were shown@10,11# to follow trans-
parently in thefront form theory, along with the natura
emergence in the former case of their continuum normal
tion. Also the requirement of the microcausality@12# implies
that the LF framework is more appropriate for quantizi
@13# the self-dual~chiral boson! scalar field.

LF quantization is especially useful for quantum chrom
dynamics, since it provides a rigorous extension of ma
body quantum mechanics to relativistic bound states:
quark, and gluon momenta and spin correlations of a had
become encoded in the form of universal proce
independent, Lorentz-invariant wave functions@2#. The LF
quantization of QCD in its Hamiltonian form thus provide
an alternative to lattice gauge theory for the computation
nonperturbative quantities such as the spectrum as we

*Deceased.
†Email address: sjbth@slac.stanford.edu
0556-2821/2002/66~4!/045019~19!/$20.00 66 0450
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the LF Fock state wave functions of relativistic bound sta
@3#.

We have recently presented a systematic study@14# of
light-cone~LC! gauge LF-quantized QCD theory followin
the Dirac method@15,16# and constructed the Dyson-Wic
S-matrix expansion based on LF-time-ordered products.
our analysis@14# one imposes the light-cone gauge conditi
as a linear constraint using a Lagrange multiplier, rather t
a quadratic form. We then find that the LF-quantized fr
gauge theory simultaneously satisfies the covariant ga
condition]•A50 as an operator condition as well as the L
gauge condition. The resulting Feynman rule for the gau
field propagator in the LC gauge is doubly transverse

^0uT„Aa
m~x!Ab

n~0!…u0&5
idab

~2p!4E d4ke2 ik•x
Dmn~k!

k21 i e
~1!

where

Dmn~k!52gmn1
nmkn1nnkm

~n•k!
2

k2

~n•k!2
nmnn ,

nmDmn5kmDmn50,

and nm is the null four-vector, gauge direction. Thus on
physical degrees of freedom propagate.

The remarkable properties of~the projector! Dnm provide
much simplification in the computations of loop amplitude
In the case of tree graphs, the term proportional tonmnn

cancels against the instantaneous gluon exchange term
our previous paper@14#, we showed how the double-pol
©2002 The American Physical Society19-1
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contribution to the gauge propagator enters into calculati
of Feynman loop amplitudes. The renormalization consta
in the non-Abelian theory were shown to satisfy the iden
Z15Z3 at one-loop order, as expected in a theory with o
physical gauge degrees of freedom. The QCDb function
computed in the noncovariant LC gauge agrees with the c
ventional theory result@17,18#. Dimensional regularization
and the Mandelstam-Leibbrandt prescription@19–21# for LC
gauge were used to define the Feynman loop integrat
@22#. There are no Faddeev-Popov or Gupta-Bleuler gh
terms.

It is well known that the light-cone gauge itself is n
completely defined until one specifies a prescription for
poles of the gauge propagator atn•k50. The Mandelstam-
Liebbrandt prescription has the advantage of preserving
sality and analyticity, as well as leading to proofs of t
renormalizability and unitarity of Yang-Mills theories@23#.

The ghost contributions introduced by the Mandelsta
Liebbrandt procedure can be considered as quantized
namical degrees of freedom which appear in the free ga
propagator as well as the nonlocal interactions. They app
in the single and double-pole contributions to the gau
propagator as well as the instantaneous interactions. Fu
discussion may be found in Refs.@24–26#. In the case of tree
graphs, the double-pole contributions and the correspon
instantaneous interactions cancel. The ghosts which ap
in association with the Mandelstam-Liebbrandt prescript
from the single poles have vanishing residue in absorp
parts, and thus do not disturb the unitarity of the theory.

Other acausal prescriptions for light-cone gauge can
considered, such as the CPV~Cauchy principal value! and
the Kovchegov@27# ~K! prescriptions, although the reno
malization structure in these cases is not completely un
stood. The CPV prescription is obtained naturally in t
light-front Hamiltonian theory. The K prescription has be
used to advantage for analyzing smallx and nuclear prob-
lems in QCD@28,29#. Different prescriptions for light-cone
gauge are related to each other by residual gauge transfo
tions @30#, and thus, formally, the induced pole contributio
at n•k50 will eventually cancel because of current cons
vation. This has been explicitly verified for the ML, CP
and K prescriptions through two loops for a specific calcu
tion in Ref. @31#.

In this paper we shall extend our LC gauge–LF quanti
tion analysis to the Glashow-Weinberg-Salam~GWS! model
of electroweak interactions based on the non-Abelian ga
group SU(2)W3U(1)Y @32#. It contains a non-Abelian
Higgs sector which triggers spontaneous symmetry brea
~SSB!. A convenient way of implementing SSB and the~tree
level! Higgs mechanism in thefront form theory is known
@33–35#. One separates the quantum fluctuation fields fr
the correspondingdynamical bosonic condensate~or zero-
longitudinal-momentum-mode! variables, before applying
the Dirac procedure in order to construct the Hamilton
formulation.1 This procedure by itself should determine in

1See Appendix A and Ref.@3# for references to other alternativ
discussions on SSB.
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front form theory if the condensate variable is ac or a q
number~operator!. In the description of SSB they are show
to be background constants. In the Schwinger model, in c
trast, it is shown@10# to be an operator. Its occurrence in th
model is crucial for showing, also in the LF framework,th
degenerate vacuum structure (u-vacua!, known in the con-
ventional theory for a long time.

The tree-level Lagrangian of the GWS model written
terms of the set of~tree level! parameters, for example
(e,mW ,mZ ,mh ,mu ,md) is constructed and quantized on th
LF. The model has the underlying initial gauge symme
even after we rewrite it such that it bestows quadratic m
terms to some of the vector bosons. One is thus require
fix the gauge even when quantizing the theory in its spon
neously broken symmetry phase. For example, in the uni
gauge the Goldstone fields are gauged away, leaving be
only physical degrees of freedom. The resulting mass
gauge field then carries the Proca propagator for wh
Dmn(k)→@2gmn1kmkn/M2# in Eq. ~1!. Because of the
growing momentum dependence of the gauge propagator
power counting renormalizability of the theory becomes ve
difficult to verify in this gauge. ’t Hooft, however, demon
strated it by inventing the renormalizableRj gauges@36,37#
and employing gauge-symmetry-preserving dimensio
regularization. This framework, however, requires one to
clude in the theory Faddeev-Popov ghost fields, even in A
lian theory, where the ghost fields couple to a physical Hig
field as well. Several additional parametersjg,jZ,jW are in-
troduced in the theory. Their renormalization must also
taken into account and the physicalS-matrix elements should
be shown not to depend on them.

In contrast, in the LC gauge LF-quantized theory fram
work for the GWS model, no ghosts appear~except for the
induced poles introduced by the Mandelstam-Liebbrandt p
scription for light-cone gauge!, neither in the Abelian nor in
the non-Abelian case. The massive gauge field propag
has good asymptotic behavior in accordance with a ren
malizable theory, and the massive would-be Goldstone fie
can be taken as physical degrees of freedom.

We start by considering in Sec. II the simpler case of
Abelian Higgs model. The ingredients introduced here w
be used later in the quantization of the non-Abelian GW
model. The tree level Higgs Lagrangian when rewritten
terms of the chosen tree level parameterse,M , andmh still
has the underlying gauge symmetry. We construct the
Hamiltonian framework in the LC gauge,A250, following
closely the procedure adopted in our paper on QCD. In
present case, where the gauge field massM is generated by
the Higgs mechanism, we find that the operator ’t Ho
condition, ]•A5Mh, where h is the would-be Goldstone
field which also acquires the same mass, accompanies si
taneously the LC gauge condition. This is in contrast to
case of massless QCD where we have correspondingly
Lorentz condition.

The polarization vectors of the gauge field, which are
physical, are constructed, and their simplifying properties
discussed in detail. The interaction Hamiltonian which c
ries also an instantaneous term~derived in Appendix B! in
the LF-quantized theory is constructed. The Fourier tra
9-2
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LIGHT-FRONT FORMULATION OF THE STANDARD MODEL PHYSICAL REVIEW D66, 045019 ~2002!
form of the free gauge field, the propagators of the mass
vector boson, the would-be Goldstone field, and the Hi
boson are derived. The LF quantization of the GWS mod
which contains a non-Abelian Higgs sector, is considered
Sec. III.

Appendix B discusses a systematic procedure for c
structing the instantaneous interaction terms required in
LF quantized field theory. It is illustrated by considering t
Yukawa theory, Abelian Higgs model, and QCD. In our L
framework A1 and c2 are nondynamical and depende
field components. While taking care of the dependency,
without removing these variables, we are able to recast
interaction Hamiltonian in a form close to that of covaria
gauge theory. Despite a few additional instantaneous term
is straightforward to handle them in the Dyson-Wick expa
sion constructed in the LF-quantized theory. The nice pr
erties of the gauge propagator turn it into a practical com
tational framework.

The Goldstone boson~or electroweak! equivalence theo-
rem @38# becomes transparent in our framework. Its cont
is illustrated by the computation of Higgs bosons and
quark decays in Sec. IV. The computation of muon de
shows the relevance of the instantaneous interactions fo
covering the manifest Lorentz invariance in the physi
gauge@39# theory framework.

A new aspect of LF quantization is that the third polariz
tion of the quantized massive vector fieldAm with four mo-
mentumkm has the formEm

(3)5nmM /n•k. Sincen250, this
nontransverse polarization vector has zero norm. Howe
when one includes the constrained interactions of the G
stone particle, the effective longitudinal polarization vec
of a produced vector particle isEeff m

(3) 5Em
(3)2kmk•E(3)/k2

which is identical to the usual polarization vector of a ma
sive vector with normEeff

(3)
•Eeff

(3)521. Thus, unlike the con-
ventional quantization of the standard model, the Goldst
particle only provides part of the physical longitudinal mo
of the electroweak particles.

II. THE QUANTIZATION OF THE ABELIAN HIGGS
MODEL IN LC GAUGE

The implementation of spontaneous symmetry break
and the tree level Higgs mechanism on the LF have b
understood for some time. A convenient description of SS
which is useful for constructing@34# the tree-level Lagrang
ian in the Higgs model, is reviewed in Appendix A. Th
relevant differences in the LF quantized theory in the pr
ence of SSB, when compared with the conventional the
treatment, may already be seen in the Abelian Higgs mo
discussed below. The results obtained here will be utiliz
later in the quantization of the GWS model which carries
it a non-Abelian Higgs sector~Sec. III!.

The Abelian theory is described by

L52
1

4
FmnFmn1uD mfu22V~f†f! ~2!

where f is a complex scalar field,Dm5(]m1 ieAm), and
V(f)5m2f†f1l(f†f)2 with l.0 and m2,0. We
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choose the bosonic condensate,^0ufu0&5v/A2, to be real
and separate it from the fluctuation fieldw,

f~x!5
1

A2
v1w5

1

A2
„@v1h~x!#1 ih~x!…, ~3!

such that the real fieldsh(x) and h(x) carry vanishing
vacuum expectation values.

The tree-level Lagrangian, when the SSB is present, m
be rewritten as

L52
1

4
FmnFmn1

1

2
M2AmAm1

1

2
~]mh!21M Am]mh

1
1

2
~]mh!22

1

2
mh

2h21e~h]mh2h]mh!Am

1e M AmAmh1
e2

2
~h21h2!AmAm2

e mh
2

2M
~h21h2!h

2
l

4
~h21h2!21const ~4!

where e,M , and mh indicate the tree level parameters d
fined byM5e v, mh

252lv2522m2 indicating the physical
squared mass of the Higgs fieldh(x), 2lv5e mh

2/M , and
2l5e2mh

2/M2. We note the presence of the mixed biline
term involving the Goldstone fieldh and the gauge field.

In view of the underlying localU(1) gauge symmetry,
one possible choice of the gauge may be taken to be s
that the Goldstone modeh is eliminated, the so-called ‘‘uni-
tary ~or unitarity! gauge,’’ where only the physical fields ap
pear in the Lagrangian. The gauge field is massive and
~Proca! propagator falls off more slowly than 1/k2 for large
k. The perturbation theory renormalizability in this gauge
then not simple to demonstrate. The alternative of ‘‘ren
malizability’’ or Rj gauges were introduced by ’t Hooft@36#.
The gauge-fixing term is here assumed to beLGF52(]•A
2jMh)2/(2j). The bilinear mixing ofh and Am is then
eliminated, and for any finite value ofj, all of the propaga-
tors in this class of gauges fall off as 1/k2. The theory may
also be shown@41# to be perturbatively renormalizable. W
note, however, that in the Faddeev-Popov quantization p
cedure we are required to introduce also the auxiliary gh
fields in the theory with the corresponding piece in the L
grangianLGhost5 c̄@2]•]2jM2(11h/v)#c, which contains
the coupling of ghost fields with the physical Higgs field.
the non-Abelian theory there are, in addition, the coupling
ghosts with the gauge field resulting from the ter
c̄a(2]•D)abc

b.
In what follows we will quantize thefront form theory

described by the Lagrangian~3! in the LC gauge where the
Faddeev-Popov and Gupta-Bleuler ghost fields are see
decouple in both the non-Abelian and Abelian theories. T
LF coordinates are defined asxm5(x15x25(x0

1x3)/A2, x25x15(x02x3)/A2,x'), where x'5(x1,x2)
5(2x1 ,2x2) are the transverse coordinates andm52,
1,1,2. The coordinatex1[t will be taken as the LF time,
9-3
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while x2 is regarded as the longitudinal spatial coordina
The LF components of any tensor, for example, the ga
field, are similarly defined, and the metric tensorgmn may be
read from AmBm5A1B21A2B12A'B'. Also k1 indi-
cates the longitudinal momentum, whilek2 is the corre-
sponding LF energy. Note that the LF Minkowski space c
ordinates are not related to the conventional on
(x0,x1,x2,x3), by a finite Lorentz transformation.

We follow the arguments given in Ref.@14# and introduce
auxiliary Lagrange multiplier fieldB(x) carrying the canoni-
cal dimension three. Thelinear gauge-fixing term (BA2)
along with the ghost termc̄(2]•D2)c are added to the La
grangian~4! such as to ensure the Becchi-Rouet-Stora@40#
symmetry of the action. The relevant free field propagat
are thus determined from the following bilinear terms in t
action:

E d2x'dx2H 1

2
@~F12!22~F12!

212F1'F2'#1BA2

1
1

2
M2~2A1A22A'A'!1M ~A1]2h1A2]1h

2A']'h!1~]1h!~]2h!2
1

2
]'h]'h1~]1h!~]2h!

2
1

2
]'h]'h2

1

2
mh

2h21•••J ~5!

where we note that the fieldsA1 as well asB have no kinetic
terms, and they enter in the action as auxiliary Lagran
multiplier fields.

The canonical momenta following from Eq.~5! are p1

50, pB50, p'5F2' , p25F125(]1A22]2A1), ph
5(]2h1MA2), andph5]2h, which indicate that we are
dealing with a constrained dynamical system. The Dirac p
cedure @1# will be followed in order to construct a self
consistent Hamiltonian theory framework, which is use
for the canonical quantization and in the study of the rela
istic invariance. The canonical Hamiltonian density is

Hc5
1

2
~p2!21

1

2
~F12!

22A1~]2p21]'p'1M2A2

1M]2h!1
1

2
M2A'A'1MA']'h1

1

2
]'h]'h

1
1

2
mh

2h21
1

2
]'h]'h2BA21•••. ~6!

The primary constraints arep1'0, pB'0 and x'[p'

2]2A'1]'A2'0, xh[ph2]2h2MA2'0, and xh
[ph2]2h'0, where' stands for theweakequality rela-
tion. We now require the persistency int of these constraints
employing the preliminary Hamiltonian, which is obtaine
by adding to the canonical Hamiltonian the primary co
straints multiplied by undetermined Lagrange multipl
fields. In order to obtain Hamilton’s equations of motion, w
04501
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assume initially the standard Poisson brackets for all the
namical variables present in the theory.

We are then led to the following secondary constraints

F[]2p21]'p'1M]2h'0,

A2'0 ~7!

which are already present in Eq.~5! multiplied by Lagrange
multiplier fields. Requiring also the persistency ofF andA2

leads to another secondary constraint

C[p21]2A1'0. ~8!

The procedure stops at this stage, and no more constr
are seen to arise, since further repetition leads to equat
which would merely determine the multiplier fields.

We analyze now the nature of the LF phase space c
straints derived above. In spite of the introduction of t
gauge-fixing term, there still survives a first class constra
pB'0, while the other ones are second class. An inspec
of the equations of motion shows that we may add@15# to the
set found above an additional external constraintB'0. This
would make the whole set of constraints in the theory sec
class. Dirac brackets satisfy the property such that we can
the constraints asstrongequality relations inside them. Th
equal-t Dirac bracket$ f (x),g(y)%D which carries this prop-
erty is straightforward to construct@15,16#. Hamilton’s equa-
tions now employ the Dirac brackets rather than the Pois
ones. The phase space constraints on the light front:p1

50, A250, x'50, xh50, xh50, F50, C50, pB50,
andB50 thus effectively eliminateB and all the canonica
momenta from the theory. The surviving dynamical variab
in LC gauge are found to beh, h and A' , while A1 is a
dependent variable which satisfies]2(]2A12]'A'2Mh)
50.

The canonical quantization of the theory at equal-t is per-
formed via the correspondence i $ f (x),g(y)%D
→@ f (x),g(y)#, where the latter indicates the commutator~or
anti-commutator! among the corresponding field operato
The equal-LF-time commutators of the transverse com
nents of the gauge field are found to be

@A'~t,x2,x'!,A'8~t,y2,y'!#5 id''8K~x,y!

where K(x,y)52(1/4)e(x22y2)d2(x'2y'). The com-
mutators are nonlocal in the longitudinal coordinate, b
there is no violation@13# of the microcausality principle on
the LF. At equal LF time, (x2y)252(x'2y')2,0, is non-
vanishing for x'Þy', but d2(x'2y') vanishes for such
spacelike separation.The commutators of the transverse c
ponents of the gauge fields are physical, having the sa
form as the commutators of scalar fields in thefront form
theory. We find also

@h~t,x2,x'!,h~t,y2,y'!#5 iK ~x,y!

@h~t,x2,x'!, A'~t,y2,y'!#50 ~9!

and some other nonvanishing ones
9-4
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@]2A1~t,x2,x'!,h~t,y2,y'!#5 iMK ~x,y!

@]2A1~t,x2,x'!,A'~t,y2,y'!#5 i ]'K~x,y!

@h~t,x2,x'!,h~t,y2,y'!#5 iK ~x,y!.
~10!

The structure of the commutators found in the LC gau
quantized theory on the LF indicates that in our framew
the ’t Hooft ~gauge! condition, ]•A2Mh50, is simulta-
neously incorporated as an operator equation, along with
LC gauge conditionA250. This is parallel to the resul
shown@14# in the earlier work on~massless! QCD where the
Lorentz condition was found to be automatically incorp
rated. It gave rise there to the doubly transverse gauge
propagator which simplified greatly the computations of lo
corrections and allowed for a transparent discussion of
renormalization and unitarity relations in the physical L
gauge. The renormalization procedure in LC gauge is
cussed in detail in Refs.@40,22#.

Thereducedfree LF Hamiltonian density in LC gauge, o
making use of the constraints above, is shown to be

H0
LF5

1

2
~]'A'8!~]'A'8!1

1

2
M2A'A'1

1

2
~]'h!~]'h!

1
1

2
M2h21

1

2
~]'h!~]'h!1

1

2
mh

2h2 ~11!

where the bi-linear cross terms are eliminated due to
presence of the ’t Hooft condition in the framework.

The Hamilton’s equations are found to lead to (]•]
1M2)Am50, (]•]1M2)h50 and (]•]1mh

2)h50. Taking
into consideration the commutators among the field opera
as derived above,we may write the momentum space ex
sions of the free~or interaction representation! field opera-
tors. Following the procedure parallel to that employed
Ref. @14# we may write

Am~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1 (
(a)

E(a)
m~k!

3@a(a)~k1,k'!e2 ik•x1a(a)
† ~k1,k'!eik•x#

~12!

and

h~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@b~k1,k'!e2 ik•x

1b†~k1,k'!eik•x#. ~13!

Here k25M2, (')5(1),(2), (a)5('),(3), a(a)(k)
5a(a)(k), a(3)(k)52 ib(k), and the nonvanishing commu
tator @a(a)(k),a†

(b)( l )# 5dab d2(k'2 l') d(k12 l 1).
The three physical polarization vectorsE(a)

m (k)
5E(a)m(k) of the massive gauge field~the mass arising
through Higgs mechanism!, satisfyingE2

(a)(k)50, are con-
04501
e
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structed as follows. The two which are transverse tokm may
be taken to be the same as defined in the earlier work
QCD, viz.

E(')
m ~k!5E(')m~k!52D'

m~k! ~14!

with

Dmn~k!5Dnm~k!52gmn1
nmkn1nnkm

~n•k!
2

k2

~n•k!2
nmnn ,

~15!

where the null four-vectornm indicates the gauge direction
whose components have been chosen conveniently to bnm

5dm
1 , nm5dm

2 . We note thatE1
(')5k'/k1, E

'8
(')

5g''8
52d''8 . They are also transverse to the gauge direct
nm . The doubly transverse property@14# was very useful in
the loop computations in QCD. We have

(
(')51,2

Em
(')~k!En

(')~k!5Dmn~k!,

gmnEm
(')~k!En

('8)~k!5g''8 ~16!

kmEm
(')~k!50, nmEm

(')[E2
(')50 ~17!

such that they arespacelike4-vectors. The linearly indepen
dent nontransverse third polarization vector for the mass
vector boson, in our LC gauge framework, is anull 4-vector
parallel to the gauge direction

Em
(3)~k!5E(3)m~k!52

M

k1
nm ,

q•E(3)~k!52M
q1

k1
,

k•E(a)~k!52Md (a)(3) , E(3)~k!•E(a)~q!50 ~18!

such that

Eeff m
(3) ~k![E(3)T5Em

(3)~k!2„k•E(3)~k!…~km /k2!

5Em
(3)~k!1M ~km /k2! ~19!

is spacelikeand transverse tokm with Eeff
(3)(k)•Eeff

(3)(k)5
2M2/k2521.

The sum over the three physical polarizations is given
Kmn:

Kmn~k!5(
(a)

Em
(a)En

(a)5Dmn~k!1
M2

~k1!2
nmnn

52gmn1
nmkn1nnkm

~n•k!
2

~k22M2!

~n•k!2
nmnn ,

~20!
9-5
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which satisfies kmKmn(k)5(M2/k1)nn and kmknKmn(k)
5M2. We recall also@14#

Dml~k!Dl
n~k!5Dm'~k!D'

n~k!52Dmn~k!,

kmDmn~k!50, nmDmn~k![D2n~k!50,

Dlm~q!Dmn~k!Dnr~q8!52Dlm~q!Dr
m~q8!. ~21!

The expansion of the transverse components of the ga
field is then rewritten as

A'~x!52A'

52
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@a(')~k!e2 ik•x

1a(')
† ~k!eik•x# ~22!

which, together with the independent~would be Goldstone!
field h, describe the massive gauge field. It is convenien
also define the dependent gauge field component,A1 , by
using the ’t Hooft condition,]•AuA2505Mh, incorporated
in our LC gauge framework. We find

A1~x!52
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@a(1)~k!e2 ik•x

1a(1)
† ~k!eik•x# ~23!

if a(1)5a(1) is defined such that

k1a(1)~k!5@k'a(')~k!2 iMb~k!#

5@k'a(')~k!1Ma(3)#, ~24!

while we seta(2)(k)5a(2)(k)50 in view of A250. The
following nonvanishing commutator is straightforward to d
rive:

@a(m)~k!,a(n)
† ~ l !#5Kmn~k!d2~k'2 l'!d~k12 l 1! ~25!

wherem,n52,1,'. Following the standard procedure, th
free propagator of the massive gauge fieldAm is found to be

^0uT„Am~x!An~y!…u0

5
i

~2p!4E d4k
Kmn~k!

~k22M21 i e!
e2 ik•(x2y). ~26!

It does not have the bad high energy behavior found in
~Proca! propagator in the unitary gauge formulation, whe
the would-be Nambu-Goldstone boson is gauged away.
M→0 it reduces to the doubly transverse propagator fo
04501
ge

o

-

e

or
d

@14# in connection with the LF quantized QCD in the L
gauge.

The Higgs fieldh(x) commutes with other field operators
and its propagator isi /(k22mh

21 i e). The commutation re-
lations in Eq.~8! imply that the fieldh has an off-diagonal
nonvanishing propagator with the componentA1 , viz.
^0uT„h(x)A1(y)…u0&Þ0. The hh propagator is given by
i /(k22M21 i e). If we use the ML prescription to handle th
1/k1 singularity along with the dimensional regularizatio
the general power-counting analysis becomes available@14#.
The propagators in the framework have good asymptotic
havior; the divergences encountered are no worse tha
QED. The proof of perturbative renormalizability in the L
gauge in thefront form quantized theory presented he
should thus be closely related to the proof of renormaliza
ity of conventional@41# equal-time theory. In view of the
simplifying properties ofKmn ~and Dmn), the absence of
Faddeev-Popov ghost fields, and the availability of the pow
counting rules, when we employ the dimensional regulari
tion along with ML prescription, the effort required in ou
framework is comparable, as in the case of the previous w
on QCD, to that in the conventional theory computations

Some comments on the polarization vectors in LC gau
are in order. With the restrictionE2

(a)50 there are only three
linearly independent polarization vectors2 as discussed
above.Em

(')(k) are transverse with respect to bothnm andkm

while the nontransverseEm
(3)(k) is parallel to the gauge di

rectionnm , being equal to the sum of a transverse piece~T!
([Eeff) and a longitudinal one~L!, when referred to the
4-vectorkm :

Em
(a)T~k!5S gmn2

kmkn

k2 D E(a)n~k!,

k•E(a)T~k!50

Em
(a)L~k!5

km

k2
„k•E(a)~k!…52M

km

k2
d (a)(3) ,

k•E(a)L~k!5k•E(a)~k!52Md (a)(3) ,

E(a)T~k!•E(b)L~k!50 ~27!

such that Em
(')T(k)5Em

(')(k), Em
(')L(k)50, Em

(3)L(k)5

2M (km /k2), Em
(3)T(k)5M (km /k22nm /k1), and

E2
(3)L,T(k)Þ0, E(3)L(k)•E(3)L(k)5M2/k2511.
The following analogous decomposition ofKmn is useful

in computations:

Kmn~k!5Kmn
T ~k!1Kmn

L ~k! ~28!

2It is easily shown thatnm , nm* , Em
(')(k), wherenm* 5dm

2 is the
null vector dual tonm5dm

1 , constitute a convenient basis fo
4-vectors in the LF theory.
9-6
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where3

Kmn
L ~k!5S M2

k2 D dmn~k!

Kmn
T ~k!5Kmn~k!2Kmn

L ~k!

5Dmn~k!1M2S nmnn

~n•k!2
2

dmn~k!

k2 D
5~k22M2!Fdmn~k!

k2
2

nmnn

k12 G ~29!

where

dmn~k!52gmn1
nmkn1nnkm

~n•k!
,

kmdmn~k!5
k2

k1
nn , kmkndmn~k!5k2. ~30!

They are symmetric and some interesting properties
Km2

L (k)5Km2
T (k)5dm2(k)50, km Kmn

T (k)50, kn Kmn
T (k)

50, km Kmn(k)5km Kmn
L (k)5(M2/k1)nn , and

kmkn Kmn(k)5kmkn Kmn
L (k)5M2. From the properties o

Dmn(k) we easily derive

Kmr~k!Kn
r~k!5dmr~k!dn

r~k!52Dmn~k! ~31!

and

Kmr
L ~k!Kn

Tr~k!52
M2~k22M2!

~k2!2
Dmn~k!,

Kmr
L ~k!Kn

Lr~k!52
M4

~k2!2
Dmn~k!,

Kmr
T ~k!Kn

Tr~k!52
~k22M2!2

~k2!2
Dmn~k!. ~32!

For completeness we note that

(
(a)

@Em
(a)L En

(a)L1Em
(a)L En

(a)T1Em
(a)T En

(a)L#

5Kmn
L ~k!1

M2

k2 S gmn2
kmkn

k2 D ~33!

while

(
(a)

Em
(a)T~k!En

(a)T~k!5Kmn
T ~k!2

M2

k2 S gmn2
kmkn

k2 D .

~34!

3 Kmn
L (k)Þ( (a)Em

(a)L(k)En
(a)L(k).
04501
re

The interaction Hamiltonian

The interaction Hamiltonian, in LC gaugeA250, is de-
rived to be

2Hint5Lint

5e M AmAm h2
e mh

2

2 M
~h21h2!h

1e~h ]mh2h ]mh!Am1
e2

2
~h21h2!AmAm

2
l

4
~h21h2!22

e2

2 S 1

]2
j 1D S 1

]2
j 1D ~35!

where j m5(h ]mh2h]m h). The last term here is the add
tional quartic instantaneous interaction in the LF theo
quantized in the LC gauge~Appendix B!. No new instanta-
neous cubic interaction terms are introduced. The mas
gauge field, when the mass is generated by the Higgs me
nism, is described in our LC gauge framework by the ind
pendent fieldsA' andh; the componentA1 is a dependent
one.

III. THE GWS MODEL OF ELECTROWEAK
INTERACTIONS

A. The quantization of the SU„2…‹U„1… non-Abelian Higgs
model in LC gauge

A condensed review of the GWS model will be give
below to define our notation. The model constructs a unifi
description of the electromagnetic and weak interactions
employing the spontaneously broken gauge theory base
the non-Abelian gauge groupSUW(2)^ UY(1), the direct
product of theweak isospin and the Abelianhypercharge

groups. The corresponding Hermitian generators are (tW and
tY) respectively withtW5(t1 ,t2 ,t3), and tY5Y I. Here tW are
isospin generators,I is the identity matrix, andY indicates
the hypercharge. For the spontaneous breaking a compl
scalar field, Higgs doubletF, in the iso-spinor representa
tion, with t51/2, tW5sW /2, is introduced

F5S G1

xo D . ~36!

The valueY(F)51/2 is assigned to it by convention suc
that the upper componentG1 corresponds to the unit eigen
value of the@U(1)em or charge# generatorQ5(t31Y) and
the lower one to the value zero. UnderSUW(2)^ UY(1) it
transforms as

F~x!→eig tW•aW (x) eig8 tYaY(x) F~x! ~37!

whereg and g8 indicate the two gauge coupling constan
while aa(x) are the gauge transformation parameters. T
gauge covariant derivative may be defined as

Dm5~ I ]m2 ig AW m• tW2 ig8 Y I Bm! ~38!
9-7
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whereAW m andBm are real valued gauge fields.
The non-Abelian gauge theory Lagrangian is written a

L52
1

4
Fmn

a Fa
mn2

1

4
Fmn

Y FY
mn1~DmF!†DmF2V~F†F!

~39!

where the gauge invariant scalar potential contains, at m
quartic terms inF, so that the theory is renormalizable

V~F!5m2F†F1l~F†F!2 ~40!

wherel.0 andm2,0. The gauge field strengths areFmn
a

5]mAn
a2]nAm

a 1g fabcAm
b An

c where a,b,c51,2,3 are the
SU(2) gauge group indices,f abc[eabc , while Fmn

Y 5]mBn

2]nBm .
The description@33# of SSB in the Abelian case~Appen-

dix A! can be extended to the non-Abelian one straightf
wardly. It may be shown@34# here too that none of the sym
metry generators break the LF vacuum symmetry, but
expression which counts the number of Goldstone boson
found to be identical to the one in the conventional the
@37#. On the LF the tree level theory of the non-Abelia
Higgs mechanism is straightforward to construct@34#. Its
quantization in the LC gauge parallels closely to that of
Abelian Higgs theory.

It is convenient again to introduce real field
h, f1 , f2 , f3[Go which have vanishing vacuum expect
tion values and write

G1[2 i f252
i

A2
„f1~x!2 i f2~x!…

xo5
v

A2
1

1

A2
„h~x!1 i Go~x!… ~41!

wherev5A2m2/l. In other wordsF5Fcl1w such that
04501
st,

r-

e
is

y

e

Fcl[^0uFu0&5
1

A2
S 0

v D ~42!

which is taken to be the classical vacuum configuration4 in
the SSB case whenm2,0. This parametrization ofFcl can
always be assumed if we make use of the~global! symmetry
of the action underSUW(2) and UY(1). We verify that
ta FclÞ0 butQFcl[(t31Y)50 where the linear combina
tion Q is the generator of the unbroken residualU(1)em sym-
metry. We note also thatF†F5„f1

21f2
21f3

21s2
…/2 where

s5(v1h(x)). The potentialV defined above is invarian
under the largerO(4)'SU(2)3SU(2) symmetry, which is
broken by the fields when it acquires a nonzero vacuu
expectation value.

The gauge field combinations (Wm
6 , Z) and photonAm

~see below! are useful

Wm
65

1

A2
~Am

1 7 i Am
2 !

Zm5~Am
3 cosuW2BmsinuW!

Am5~BmcosuW1Am
3 sinuW!. ~43!

Here uW is the Weinberg angle such thatg sinuW
5g8 cosuW5e ande is the electronic charge. The gauge c
variant derivative may be conveniently re-expressed as

Dm5]m2 i
g

A2
~Wm

1 t11Wm
2 t2!

2 i
g

cosuW
Zm~ t32Q sin2 uW!2 i e Q Am ~44!

whereQ5(t31Y) indicates the electric charge andt65(t1
6 i t 2)5(s16 i s2)/2. We find
DmF5S ]mG12 imWWm
12 i Fg cos~2uW!

2 cosuW
Zm1eAmGG12

ig

2
Wm

1~h1 iGo!

1

A2
]m~h1 iGo!1

ig

A2
mZ Zm2

ig

A2
Wm

2G11
ig

A2

1

2 cosuW
Zm~h1 iGo!

D ~45!

4The stability of the asymmetric solution while the instability of the symmetric one may be inferred from the study of the dynamical~partial
differential! equations of motion as usual.
9-8
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while

~D mF!†DmF5U]mG12 imWWm
12 i Fg cos~2uW!

2 cosuW
Zm

1eAmGG12
ig

2
Wm

1~h1 iGo!U2

1
1

2 U]m~h1 iGo!1 igmZZm2 igWm
2G1

1 ig
1

2 cosuW
Zm~h1 iGo!U2

. ~46!

Also

V5
1

2
mh

2 h212lvFG1G21
1

2
~Go21h2!Gh

1lFG1G21
1

2
~Go21h2!G2

5lFG1G21
1

2
~Go21h2!1vh1

v2

2
1

m2

2lG2

~47!

where we setmW5gv/2,mZ5mW /cosuW indicating the vec-
tor boson masses. Interaction vertices are the cubic and q
tic terms in these expressions. For example, the cubic H
boson interaction with charged vector bosons is

Fg mWWm
2W1m2 i

g

2
@~]mG2!W1m2~]mG1!W2m#

12lv G1G2Gh. ~48!

The quadratic terms in the bosonic Lagrangian which
fine the free theory are

2
1

4
~]mAn2]nAm!22

1

4
~]mZn2]nZm!21

1

2
mZ

2ZmZm

1
1

2
~]mGo!]mGo1mZ Zm]mGo2

1

2
~]mWn

12]nWm
1!

3~]mW2n2]nW2m!1mW
2 Wm

2W1m1~]mG2!]mG1

2 i mW@~]mG2!W1m2~]mG1!W2#1
1

2
~]mh!]mh

2
1

2
mh

2h2. ~49!

No mass terms arise for the~Goldstone! fields G6 and
Go or for the photon fieldAm . We note thetree level
relations (mh /mW)258l/g2 and mh

2/mW5(4/g)l v,
mW

2 /(mZ
2 cos2 uW)51, (v/A2)5(A8GF)21/2'174 GeV, and
04501
ar-
gs

-

GF /A25g2/(8mW
2 )51/(2 v2). The bi-linear terms corre-

sponding to the charged fields may be rewritten in terms
the real field components as5

2
1

4
~]mAn

12]nAm
1 !21

1

2
mW

2 Am
1 A1m1

1

2
~]mf1!]mf1

1mWAm
1 ]mf12

1

4
~]mAn

22]nAm
2 !21

1

2
mW

2 Am
2 A2m

1
1

2
~]mf2!]mf21mWAm

2 ]mf2 . ~51!

The quantization in the LC gauge,A25Z25W2
650, is

now straightforward. We take over the discussion in Sec
on the Abelian Higgs theory and the one given in the ear
paper@14# on QCD for the massless gauge field. For co
parison, we recall that the conventionalRj gauges in the
equal-time framework requires us to include in the theo
also the ghost fields, which interact with the Higgs boson a
other physical fields. Moreover,Wm , Zm , andAm may carry
different parametersjW, jZ, and jg respectively in the
gauge-fixing terms. The renormalization of these parame
also has to be taken into consideration, and it is required
show that the physical amplitudes do not depend on th
The ’t Hooft conditions corresponding to the massive vec
bosons read as]•W656 i mWG6, ]•Z5mZGo, while for
the massless field we obtain@14# the Lorentz condition
]•A50. The momentum space expansions of the quanti
field operators are easily found to be

Am~x!5
1

A~2p!3
E d3k

u~k1!

A2k1 (
(')

E(')
m ~k!

3@a(')~k!e2 ik•x1a(')
† ~k!eik•x#

Wm
1~x!5

1

A~2p!3
E d3k

u~k1!

A2k1 (
(a)

E(a)
m ~k!

3@a(a)
W ~k!e2 ik•x1b(a)

W†~k!eik•x#

Zm~x!5
1

A~2p!3
E d3k

u~k1!

A2k1 (
(a)

E(a)
m ~k!

3@a(a)
Z ~k!e2 ik•x1a(a)

Z† ~k!eik•x# ~52!

whered3k[d2k'dk1, (')5(1),(2), and (a)5('),(3).

5 1

A2
~Fmn

1 7 i F mn
2 !5]mWn

62]nWm
66 i g~Wm

6An
32Wn

6Am
3 !

Fmn
Y 5@~]mAn2]nAm!cosuW2~]mZn2]nZm!sinuW!]

~]mAn
32]nAm

3 !5@~]mZn2]nZm!cosuW1~]mAn2]nAm!sinuW!].
~50!
9-9
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For completeness, we collect here the cubic and qua
self interactions of the gauge fields arising from theFmn

a Famn

term

ig@~]mWn
12]nWm

1!W2m2~]mWn
22]nWm

2!W1m#A3n

1 igWm
1Wn

2~]mA3n2]nA3m!1g2F1

4
~Wm

1Wn
22Wn

1Wm
2!2

2Wm
1Wn

2Ar
3As

3~gmngrs2grmgsn!G ~53!

where Am
3 5@AmsinuW1Zm cosuW#. Note that the complete

W1W2g coupling, for example, includes the interactio
terms carryingG6 fields arising from theuD mFu2 term.

B. Fermionic fields

The LC gauge LF quantization when the fermionic fiel
are also present is done by following closely the discuss
@14,42# given in QCD. The fermionic matter content of th
GWS model has three generations with each one contai
quarks and leptons. The left-handed components of the
mion fields are assigned to the iso-spinor representa
while the right-handed components are assigned to the
glet of SU(2)W . For example, in the first generation wit
quarks (u,d) and leptons (ne ,e2) we make the following
assignments:

cL :S ne

e2D
L

, S u

dD
L

Pt5
1

2
, ~uR ,dR ,eR

2! Pt50.

~54!

Here cL5@(12g5)/2#c, c̄L5c̄L@(11g5)/2#, cR5@(1
1g5)/2#c, g55g5

† , g5
25I etc. Each left-handed doublet

assigned a value of the hyperchargeY similar to that of the
Higgs doublet. For example,Y(uR)5Q(uR)5Q(uL)
5Q(u)5(Y11/2) andQ(d)5(Y21/2)5Y(dR), whereY
5Y(uL)5Y(dL). We recallY(eL

2)521/2 andY(uL)51/6.
We base our discussion below on a single pair of gen

fields c[(u,d)T with its left-handed components carryin
the hyperchargeY. It may stand for (ne ,e2), (t,b), (c,s),
etc. The gauge invariant weak interaction Lagrangian
massless fermions may be written as

c̄LigmDmcL1ūRigmDmuR1d̄RigmDmdR . ~55!

The assignments of the chiral components to distinct re
sentations ofSUW(2) and the requirement of the gauge i
variance do not allow one to introduce directly the fermion
mass terms in the Lagrangian. Such terms may, howeve
generated through SSB if the following gauge invaria
Yukawa interaction is added to the theory:

2ld~ c̄LF!dR2lu~ c̄Lis2F* !uR1H.c. ~56!

Herelu ,ld , are real couplings, without any connection wi
the weak interaction coupling constant, and we us
Y(F* )521/2. We find the generation of the mass term
04501
ic

n

ng
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2(muūu1mdd̄d), where we set ldv5A2md , luv
5A2mu . The Yukawa interaction terms are

2
g

A2
S md

mW
D F ū

~11g5!

2
d G11d̄

~12g5!

2
u G21

1

A2
d̄d h

1
i

A2
d̄g5d GoG2

g

A2
S mu

mW
D F2ū

~12g5!

2
d G1

2d̄
~11g5!

2
u G21

1

A2
ūu h2

i

A2
ūg5u GoG ~57!

adding thereby additional parameters in the model.
The full fermionic Lagrangian is obtained from Eqs.~55!

and~56!. Besides the Yukawa interactions in Eq.~57! it con-
tains also the following terms:

ū@ i gm
„]m2 ieQ~u!Am…2mu#u1d̄@ igm

„]m2 ieQ~d!Am…

2md#d1g~Wm
1JW

m11Wm
2JW

m21ZmJZ
m! ~58!

where

JW
m15

1

A2
~ c̄Lgmt1cL!5

1

2A2
ūgm~12g5!d

JW
m25

1

A2
~ c̄Lgmt2cL!5

1

2A2
d̄gm~12g5!u

Jem
m 5Q~u!ūgmu1Q~d!d̄gmd

JZ
m5

1

cosuw
@c̄Lgmt3cL2sin2uWJem

m #

5
1

cosuw
F1

4
ūgm~12g5!u2

1

4
d̄gm~12g5!d

2sin2 uWJem
m G ~59!

such that at the tree level there are no flavor changing neu
currents. The survivingU(1)em gauge symmetry is also
manifest.

The construction above gives the tree level description
the GWS model in terms of the set of tree level parame
(e,mW ,mZ ,mh ,mu ,md) or alternatively
(e,sinuW,v,mh ,mu ,md). The Kobayashi-Maskawa~KM ! ma-
trix can be incorporated easily in our discussion. The
quantization of the GWS model is performed following th
discussions in Sec. II, Ref.@14#, and the discussion in Ap
pendix B. The procedure closely follows the one adopted
connection with the discussion@14# in LC gauge LF quan-
tized QCD. In the GWS model we also have to take care
addition of Yukawa interactions. Besides the tree level int
actions written above, in the LF quantized theory we a
have instantaneous interaction inH int

LF ~see Appendix B!.
They are responsible for the restoration of the Lorentz co
9-10
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riance in the computation of physical matrix elements e
The LF propagators of the fields in the LC gauge quanti
GWS model are collected in Appendix C.

IV. ILLUSTRATIONS

A. Decayh\W ¿ W

This decay is interesting also in connection with the Go
stone boson or electroweak equivalence theorem. It is c
from the expressions of the relevant interaction vertices
Secs. II and III that it suffices to consider the Abelian theo
The A A h interaction term gives the decay into two tran
verse vector bosons. The matrix element is

M15~ ieM!2 E(a)~k!•E(b)~k8!522ieM E'
(a)~k!E'

(b)~k8!.

~60!

wherePm5km1km8 is the 4-momentum of the Higgs particle
The h2 h interaction term produces longitudinal bosons
the Higgs decay. The corresponding matrix element is

M252 i
lv

M2
2„ik•E(a)~k!…„ik8•E(b)~k8!…

5 i e
mh

2

M
d (a)(3)d (b)(3) . ~61!

Finally, theh A h vertex gives

M352 i
e

M
2@kmkn1k8mk8n1kmk8n#Em

(a)~k!En
(b)~k8!.

~62!

The total matrix element is

M(a)(b)52 i e MFgmn1
1

2

mh
2

M4
kmkn8

2
1

M2
~kmkn1k8mk8n1kmk8n!G

3Em
(a)~k!En

(b)~k8!. ~63!

Using mass-shell conditions we may rewrite

M(a)(b)52 i e M@gmn1a kmkn8

1b~kmkn1k8mk8n!#Em
(a)~k!En

(b)~k8! ~64!

wherea5(k•k8)/M4 andb521/M2. It is straightforward
04501
.
d

-
ar
n
.

to compute the sum over polarizations of the squared ma
element.6 We find

(
(a)

(
(b)

uM(a)(b)u25~2 e M!2F21
~k•k8!2

M4 G ~65!

which agrees, as it should, with the result found when we
the unitary~or Proca! gauge.

The discussion in the non-Abelian theory of the Hig
decays into gauge boson pairW1W2 is parallel to that of the
Abelian theory as can be seen from the expressions in E
~35! and~48! of the corresponding Higgs couplings. We ne
only to replacee→g/2 andM→mW in the discussion above
We find

(
(a)

(
(b)

uM(a)(b)u25
g2mh

4

4 mW
2 F114

mW
2

mh
4 ~3mW

2 2mh
2!G .

~66!

In the limit mh@mW the leading term is the first one. I
derives solely fromM2, e.g., from the decay to the would-b
Goldstone particleh, as if we set the gauge field as vanis
ing in the interaction Lagrangian. Similar discussions
other two body decays of the Higgs boson may be given

The additional contributions to the matrix element comi
from the would-be Goldstone bosons are found to be ma
festly displayed. The matrix elementM2, which derives
solely from the would-be Goldstone field, receives, co
pared to the others, an (mh /mW)2 enhancement factor. Th
result is general and has been given the name of the G
stone boson or electroweak equivalence theorem@38#. In the
LF quantized theory it is revealed transparently, and
physics of the longitudinal gauge bosons and Higgs field
be described, under certain conditions, very well in terms
the scalar self-interactions present in the initial Lagrang
while ignoring the gauge fields. This would not be true in t
decay under discussion if the mass of the Higgs boso
found, as currently expected, to be around 115 GeV. In f
@ . . . #'@110.91# for mW /mh'0.699.

B. Muon decay

The cancellation of the noncovariant terms in the previo
illustration is seen easily also in muon decay, where the n
covariant gauge propagator is involved. However, in t
case we must also take into account a contribution from
instantaneous interaction.

The terms in the interaction Lagrangian density resp
sible for the process are read, from Eqs.~57!, ~58!, and~59!,

6We use the simplifying properties ofKmn , the relation
km knKmn(k8)52M212(k•k8)k1/k81, and the mass-shell condi
tions.
9-11
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g

2A2
F n̄m2~11g5!S g•W11

i mm

mW
2

]•W1D m21m̄2

3S g•W22
imm

mW
2

]•W2D ~12g5!nm21~m→e!1•••G
1quartic instantaneous interaction. ~67!

Here we have made use of the ’t Hooft conditions,G65
7 i (]•W6)/mW , for convenience. The matrix element fo
the muon decay in momentum space, excluding the insta
neous interaction contribution, reads as
va

ib

o
ily
in
ri

04501
ta-

S ig

2A2
D 2

ū~nm!~11g5!S gm2
mm

mW
2

kmD
3u~m!

Kmn~k!

~k22mW
2 1 i e!

ū~e!S gn2
me

mW
2

knD ~12g5!v~ n̄e!

~68!

where Kmn(k) is given in Eq. ~20!. On using simplifying
properties ofKmn(k) ~Sec. II! it reduces to~suppressing the
constant factor!
ū~nm!~11g5!gmu~m!
Kmn~k!

~k22mW
2 1 i e!

ū~e!gn~12g5!v~ n̄e!

2
mm

~k22mW
2 1 i e!k1

ū~nm!~11g5!u~m!ū~e!g1~12g5!v~ n̄e!

2
me

~k22mW
2 1 i e!k1

ū~nm!~11g5!g1u~m!ū~e!~12g5!v~ n̄e!

1
mmme

~k22mW
2 1 i e!mW

2
ū~nm!~11g5!u~m!ū~e!~12g5!v~ n̄e!. ~69!
he
inor

be
y
ak
fer-

ple.
ari-
Consider the contributions from the first term. The nonco
riant terms carrying the 1/k1 dependence inKmn cancel the
second and the third terms. Also an instantaneous contr
tion comes from the last term in the expression ofKmn

2
1

k12
ū~nm!~11g5!g1u~m!ū~e!g1~12g5!v~ n̄e!.

~70!

It gets compensated by the additional quartic instantane
interaction term in our LC gauge framework, which is eas
derived by following the straightforward procedure given
Appendix B. The final result agrees with the covariant mat
element found in the unitary gauge.

C. Decayt\b¿W¿

The relevant interaction terms in the present case are

g

2A2
b̄Fg•W2~12g5!1S ~mt2mb!

mW
1

~mt1mb!

mW
g5DG2G t

1H.c. ~71!
-

u-

us

x

The matrix element may be written as

ig

2A2
ū(r )~b!Fgm~12g5!2

mt

mW
2

km~11g5!Gu(s)~ t !Em
(a)

5
ig

2A2
ū(r )~b!Fg•E(a)~k!~12g5!

1
mt

mW
d (a)(3)~11g5!Gu(s)~ t !. ~72!

Here we have setmb50 for simplicity, and we recall that
(a)5('),(3) indicate the three polarization states of t
massive vector boson as discussed in Sec. II. For the sp
field we follow the notation of Ref.@14#. The mt enhance-
ment of the matrix element containing solely the would-
Goldstone bosonsG1 is similar to that in the Higgs deca
described above. It is another illustration of the electrowe
equivalence theorem. Since the Higgs boson couples to
mion mass, the heavy fermion contributions do not decou
The sum over spins and polarizations of the squared inv
ant matrix element here is found to be proportional to
9-12
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Fqmpn1qnpm2~q•p!gmn1S mt

mW
D 2

3S q•p
kmkn

mW
2

2qmkn2qnkmD GKmn~k!

5@qmpn1qnpm2~q•p!gmn#dmn~k!

1S mt

mW
D 2S q•p22mW

2 q1

k1 D ~73!

where the mass-shell conditions such as 2k•q5(mt
22mW

2 ),
2k•p5(mt

21mW
2 ), q250 have been used. Collecting to

gether the noncovariant terms, we rewrite it as

52@qmpn1qnpm2~q•p!gmn#gmn1
1

k1
~2q•kp1

12k•pq122q•p22mt
2q1!1S mt

mW
D 2

q•k

52@qmpn1qnpm2~q•p!gmn#gmn1S mt

mW
D 2

q•k

5S 2gmn1
kmkn

mW
2 D @qmpn1qnpm2~q•p!gmn#. ~74!

The noncovariant terms cancel out giving the covariant re
of the unitary gauge.7

V. CONCLUSIONS

The canonical quantization of LC gauge GWS ele
troweak theory in thefront form has been derived by usin
the Dirac procedure to construct a self-consistent LF Ham
tonian theory. Combining this with our previous work o
QCD, we obtain an attractive new formulation of the sta
dard model of the strong and electroweak interactions wh
does not break the physical vacuum and has well-contro
ultraviolet behavior. The only ghosts which appear in t
formalism are then•k50 modes of the gauge field assoc
ated with regulating the light-cone gauge prescription.

The interaction Hamiltonian of the standard model h
been obtained in a compact form by retaining the depend
componentsA1 andc2 in the formulation. Its form closely
resembles the interaction Hamiltonian of covariant theo
except for the presence of a few additional instantane
interactions. Their derivation is given in Appendix B. Th
resulting Dyson-Wick perturbation theory expansion ba
on equal-LF-time ordering is also constructed, allowing o
to perform higher-order computations in a straightforwa
fashion. In contrast, in the conventional equal-time fram
work utilizing Rj gauges, one is required to retain Fadde
Popov ghost fields which interact with the physical field
Moreover,Wm , Zm , andAm can carry different parameter

7 G5(GFmt
3/8A2p)(12mW

2 /mt
2)2

„112(mW
2 /mt

2)….
04501
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jW, jZ, andjg, respectively, in the gauge-fixing terms. Th
renormalization of these parameters then also has to be t
into consideration, and it is required to show that the phy
cal amplitudes do not depend on them. In view of the ad
tional simplifying properties ofKmn and the~projector! Dmn ,
computations in our framework require an effort compara
to that of conventional covariant gauge theory.

In our LC gauge LF framework, the free massive gau
fields in the electroweak theory satisfy simultaneously the
Hooft conditions as an operator equation. In the limit of va
ishing mass of the vector boson, the gauge field propag
goes over to the doubly transverse gauge,@nmDmn(k)
5kmDmn(k)50#, the propagator found@14# in QCD, in
view of the Lorentz condition in the theory. As discussed
Sec. II, the factorKmn(k) in the gauge propagator also ca
ries important simplifying properties, similar to the ones a
sociated with the projectorDmn(k). The transverse polariza
tion vectors for massive or massless vector bosons ma
taken to beE(')

m (k)[2D'
m(k), whereas the nontransvers

third one in the massive case is found to be parallel to the
gauge directionEm

(3)(k)52(M /k1)nm . Its projection along
the direction transverse tokm shares the spacelike vecto
property carried byE(')

m (k).
The Goldstone boson or electroweak equivalence theo

@38# becomes transparent in our formulation. Its conten
illustrated in Sec. IV by considering Higgs boson and t
quark decays. The computation of muon decay shows
relevance of the instantaneous interactions for recove
manifest Lorentz invariance in the physical gauge@39#
theory framework. They also correspond@14# to the semi-
classical~or nonrelativistic! limit frequently employed in the
conventional equal-time quantized theory.

The singularities in the noncovariant pieces of the fie
propagators may be defined using the causal ML prescrip
for 1/k1 when we employ dimensional regularization, as w
shown also in our earlier work on QCD. The power-counti
rules in LC gauge then become similar to those found
covariant gauge theory.

We recall the explicit demonstration@14# of the simplify-
ing equality Z15Z3 in QCD in our LC gauge framework
Similar Ward identities are expected in the GWS model
well. These Ward identities simplify the task of computin
higher-loop corrections to physical processes.

Our light-front formulation of the standard model als
provides the basis for an ‘‘event amplitude generator’’@43#
for high energy physics reactions where each particle’s fi
state is completely labeled in momentum, helicity, and pha
The application of the light-front time evolution operatorP2

to an initial state will systematically generate the tree a
virtual loop graphs of theT matrix in light-front time-ordered
perturbation theory. In our light-cone gauge framework,
virtual loop integrals only involve integration over the m
menta of particles with physical polarization and physic
phase space)d2k' idki

1 . Renormalized amplitudes can b
explicitly constructed by subtracting from the diverge
loops amplitudes with nearly identical integrands cor
sponding to the contribution of the relevant mass and c
9-13
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pling counterterms~the ‘‘alternating denominator method’’!
@44#.
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APPENDIX A: SPONTANEOUS SYMMETRY BREAKING
DESCRIPTION ON THE LF

We first consider, due to its relevance to the discussio
Sec. II, the Abelian case where the scalar theory Lagran
with U(1) symmetry is given by

L5]1f†]2f1]2f†]1f2]'f†]'f2V~f†f!
~A1!

whereV(f)5m2f†f1l(f†f)2 with l.0 andm2,0. To
canonically quantize the theory we must construct a Ham
tonian framework for the constrained dynamics described
the above Lagrangian. The Dirac procedure@15# is conve-
nient to use.Beforeapplying it, however, we make@33# the
separation8

f~t,x2,x'!5v~t,x'!1w~t,x2,x'!.

The fieldw indicates the quantum fluctuations above thedy-
namical condensate~or zero-longitudinal-momentum-mode!
variablev(t,x'). The LF Hamiltonian framework is found
to contain in it also a~second class! constraint equation@33#,
which relates the condensate variables with the fluctua
fields. The variablev is shown@33–35# to have vanishing
Dirac brackets with itself and withw. It is thus ac number
~background field! in the quantized theory.9 The constraint
equations10 in the present case are

E d2x'dx2F ]']'f2
dV

df†G50,

8Such a decomposition may also be shown to follow@5# as an
external@15# gauge-fixing condition, corresponding to a first cla
constraint in the theory, when we apply the Dirac procedure.
note that *d2x'dx2w50 such that w has vanishing zero-
longitudinal momentum mode.

9In the Schwinger model it is shown@10# to be aq number or an
operator and where its presence gives rise to thechiral and theu or
condensatevacua. In the case of the chiral Schwinger modelv may
be eliminated from the theory by a field redefinition resulting in
different degenerate vacuum structure.

10They may @33# also be obtained by integrating the Lagran
equations but we must construct LF Hamiltonian framework to
nonically quantize the theory.
04501
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E d2x'dx2F]']'f†2
dV

dfG50. ~A2!

In the following discussion we only consider the case wh
]'v50. At the classical~tree! level, since the fluctuationsw
are assumed bounded, it follows@33,34# that dV/dfuf5v

5dV/df†uf5v50. This coincides with the result in the con
ventional equal-time framework. It is obtained there af
imposing additional constraints, which are based on phys
considerations~seemingly not available or evident on th
LF!. The possible values ofv are v50 or v†v5
2m2/(2l). The stability of these solutions may be studi
as usual from the Lagrange equations; the nonvanishinv
gives rise to stable solutions in the Nambu-Goldstone ph
under study. The~classical! vacuum state is degenerate a
characterized by a fixed value ofv5A2m2/(2l)eid where
d is real and arbitrary. In view of the invariance of the acti
under the phase symmetry transformations,w→eiaw, v
→eiav, we may, without any loss of generality, conv
niently assumev[v/A2 wherev5A2m2/l is a fixed real
constant. A phase transformation would not leave this cla
cal vacuum state invariant, and the symmetry is said to
broken spontaneously~see also Sec. II A!.

At the quantum level, on the other hand, the LF fie
theoretic generator ofU(1) symmetry annihilates the LF
vacuum state, independent of the broken symmetry or
The symmetry transformations always leave the LF vacu
invariant, while the SSB is manifested, for example, in t
nonconservation of some of the symmetry currents@34,35#.
These features are true in general.

The Dirac procedure is straightforward to apply, and t
quantized theory is obtained by invoking the corresponde
of the Dirac brackets with the commutators of the cor
sponding quantized field operators. In the LF quantiz
theory we find the following nonvanishing equal-x1 commu-
tator:

@w~x1,x2,x'!,w~y1,y2,y'!#ux15y1

52
i

4
e~x22y2!d2~x'2y'! ~A3!

which does not violate the principle of microcausality on t
LF, in spite of the non-locality present in it along thex2

direction. The Hermitian symmetry field theoretic genera
is constructed straightforwardly

G~x1!5E d2x'dx2 j 2 , where

j m5 i @w†]mw2w]mw†# ~A4!

such that @w(x),G#5w, @w(x)†,G#52w†. The on-shell
conserved Noether symmetry current is given by

Jm5 i @f†]mf2f]mf†#, ]mJm50 ~A5!

which shows that the symmetry current (f5v/A21w)

e

-
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j m5Jm2
iv

A2
]m~w2w†!

]m j m5
iv

A2
]•]~w2w†! ~A6!

is not conserved in the broken phase. In the LF quanti
theory, the two currentsj m andJm , however, give rise to the
same charge or generator, if the surface terms may be
nored.

The LF commutator may be realized by the followin
momentum space expansion:

w~x!5
1

A~2p!3
E d2k'dk1

u~k1!

A2k1
@a~k!e2 ik•x1b†~k!eik•x#

~A7!

where the nonvanishing commutators are@a(k),a†( l )#
5@b(k),b†( l )#5d2(k'2 l') d(k12 l 1). The symmetry
generator in momentum space is found to be

G5E d2k'dk1u~k1!@a†~k!a~k!2b†~k!b~k!#. ~A8!

In the LF quantized theory only this term is present. It
already normal ordered and annihilates the LF vacuum. T
is in contrast to the case of equal-time quantized conv
tional theory, where there is an additional term11 in the field
theoretic symmetry generator which does not annihilate
corresponding conventional vacuum state. The LF vacu
thus remains invariant under the symmetry transformati
independent of the SSB in the theory. The broken symm
manifests@34# itself in the nonconservation of~some! sym-
metry currents or in the operator LF Hamiltonian.

Higgs mechanism in LF quantized theory†34‡

The description below is relevant to thefront form theory
of the GWS model in Sec. III which has a non-Abelia
Higgs sector.

The SSB of continuous symmetry in the non-Abelian ca
is discussed in Refs.@34,35# by considering an isospin
multiplet f i , i 51,2, . . . , of real scalar fields. We separa
first thedynamical zero modesor condensatesfrom the quan-
tum fluctuations, f i(t,x2,x')5v i(t,x')1w i(t,x2,x').
Then the Hamiltonian framework is constructed followin
the Dirac method. We find in it, in addition to the commut
tors and the Hamiltonian, a set of coupled constraint eq
tions. At the tree level they yieldVi8(v)2]']'v i50. For

11In the equal-time quantized theory we have instead] t(w2w†)
in the expression ofj 0 in Eq. ~A6!. It does not drop out upon
coordinate space integration, and there is an additional term in
corresponding generator which may not annihilate the vacu
state. The description of SSB@35# is thus somewhat different in th
two formsof the theory.
04501
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space independentv we find the same expression as found
the conventional theory.

It was also shown that the presence, in the case of c
tinuous SSB, of the transverse directions was crucial
showing that the~dynamical! zero modes have vanishin
Dirac brackets with the nonzero ones. This furnishes u
new simple proof of theColeman theoremon the absence o
Goldstone bosons in two dimensions, when we discuss
SSB on the LF.

The field theoretic generators are nowGa5
2 i *dx'dx2(]2w i)(ta) i j w j . It is easily checked to be al
ready normal ordered, as in the Abelian case, and we n
not impose it. The symmetry generators on the LF thus
nihilate the LF vacuum independent of the form of the sca
potential and its symmetry is not broken. We fin
@w i(x),Ga#5(ta) i j w j , @v i ,Ga#50, and @Ga ,Gb#
5 i f abcGc which is consistent with the generators annihila
ing the LF vacuum. Not all the generators, however, co
mute with the Hamiltonian when SSB is present, say, wh
v i are determined from (lv iv i2m2)50. There may sur-
vive a residual unbroken symmetry if a set of linearly ind
pendent generators still commutes with the LF Hamiltoni
Such generators may be found by solving (t̃ a) i j v j50 where
t̃ a are appropriate linearly independent combinations,
pending on the iso-vectorv5$v i% chosen, of the matrix
generatorsta of the initial symmetry group. The correspond
ing generatorsG̃a commute with the Hamiltonian written in
terms of w i and fixed constantsv i . The counting of the
number of Goldstone bosons is thus done as in the con
tional theory. The tree level Higgs Lagrangian is rewritten
the same procedure as in the conventional theory dis
sions, as done also in Sec. III. The quantized theories of
Higgs model though are different in the twoforms of the
theory as seen in Secs. II and III.

APPENDIX B: INSTANTANEOUS INTERACTIONS
IN LF QUANTIZED THEORY

The additional instantaneous interactions in our LC gau
LF theory framework in the GWS model may be foun
straightforwardly by following the procedure indicated
Ref. @14#. Such nonlocal terms are also required, as sho
there, in order to restore the Lorentz covariance of phys
matrix elements. It is worth stressing that they are a
present infront form Yukawa theory, which is not even
gauge theory, as is shown below. Some other illustrati
related to the Abelian Higgs model, QCD, and the Yuka
couplings in the GWS model are also briefly described. T
instantaneous interactions arise when we take into acc
the fact that the nondynamical field componentsc2 andA1

are not independent fields. Thefront form theory framework,
however, permits us to re-express the interaction Ham
tonian in terms of the full spinor and gauge fields, as pre
ously shown in QCD. It results in an alternative and practi
framework, in view of the Dyson-Wick expansion, for th
computations in the standard model.

LF quantized Yukawa theory

The LF quantization of the free spinor field was discuss
in Ref. @42# and the LF propagator of its dynamical comp

he
m

9-15
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nent derived; it was also shown not to contain any instan
neous term in it. We recall that in thefront form theory the
spinor field12 is naturally decomposed into a dynamical fie
componentc1[L1c and a nondynamical auxiliary field
c2[L2c, c5c11c2 , whereL6, with L11L251, are
Hermitian projection operators. Written in the LF coord
nates, the free Dirac Lagrangian may, in fact, be rewritten

L o5c̄~ ig•]2m!c

5c̄~L11L2!
]L o

]c̄
→c̄L2

]L o

]c̄
U

L1(]L o/]c̄)50

5c̄1~ ig•]2m!c

where g1~ ig•]2m!c50

5c̄1ig1]1c11c̄1~ ig']'2m!c2 . ~B1!

Here we used L6g•]5(g7]7L71g'
•]'L6) which

shows that onlyc1 is a dynamical and independent field.c2

carries no kinetic term and is a dependent field. In fact,
taking the variation ofL o with respect to the auxiliary field
c̄2 we derive the constraint equation

L1
]L o

]c̄
50, or g1~ ig•]2m!c50 ~B2!

which givesc2

c25
1

2i ]2
~ ig']'1m!g1c1 ~B3!

showing it to be a dependent field component.
Consider now theYukawa theorydescribed by

L5c̄~ ig•]2m!c1
1

2
~]mf!22

1

2
M2f21gc̄cf

5c̄~L11L2!
]L
]c̄

1
1

2
~]mf!22

1

2
M2f2

→c̄1L2
]L
]c̄

U
L1(]L/]c̄)50

1
1

2
~]mf!22

1

2
M2f2.

~B4!

The nondynamical componentc2 is now determined from
the constraint equation

L1
]L
]c̄

[L1@~ ig•]2m!c1S#

50 or g1@~ ig•]2m!c1S#50 ~B5!

12x1 is taken as the LF time while (x2,x') indicate spatial coor-
dinates. See, Refs.@42,14,5# for notation and discussion on the L
spinors. We noteL65

1
2 g7g6, g1c250, etc.
04501
-

s

n

whereS5gfc. We find

c2[L2c5c2
o 2

1

2i ]2
g1S ~B6!

where we define

c2
o 5

1

2i ]2
~ ig']'1m!g1c1 . ~B7!

Clearly,

co5c11c2
o , ~B8!

wherec1
o [c15L1c satisfies the free field Dirac equation

Also

c5c11c25co2
1

2i ]2
g1S. ~B9!

The front formYukawa theory Lagrangian reads as

L5c̄1L2@~ ig•]2m!c1S#1•••

5c̄1
o ~ ig•]2m!co2c̄1

o ~ ig•]2m!

3
1

2i ]2
g1S1c̄1

o S1•••

5L o1Lint ~B10!

where

L o5c̄1
o ~ ig•]2m!co1

1

2
~]mf!22

1

2
M2f2

Lint52c̄1
o ~ ig•]2m!

1

2i ]2
g1S1c̄1

o S

52c̄o~ ig']'2m!
1

2i ]2
g1S1c̄oL2S

→c̄oL1S1c̄oL2S5c̄oS

5gc̄oFco2
1

2i ]2
g1SGf

5gc̄ocof2g2c̄of
1

2i ]2
g1cof. ~B11!

In order to re-express the first term, we have performed
tegrations by parts over the spatial coordinatesx2,x' in the
Lagrangian; theg1]1 term drops out sinceg1250. The
interaction, when expressed in terms of the free fieldco,
contains an additional instantaneous term. The LF quant
tion may be performed straightforwardly and Dyson-Wi
perturbation theory expansion can be constructed. It is wo
recalling that the LF fermionic propagator is also differe
from the one found in theinstant formquantized theory. The
instantaneous terms are necessary, for example, in resto
the Lorentz invariance in the computation of the mes
9-16
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nucleon scattering in the Yukawa theory. Ignoring it wou
lead to disagreement in the calculations of the nucleon s
energy in the LF and conventionally quantized theori
Their importance in LF quantized QCD in LC gauge w
also discussed in our earlier paper.

We remark that the expression ofg1S in Yukawa theory
contains only the dynamicalc1 component. In the case o
gauge theory,c2 would occur also on the right-hand side
Eq. ~B6! if we do not use the LC gauge, sinceg1g•A,c
52A2c21g1g'A'c1 .

Abelian Higgs model

Next, we consider the derivation of the instantaneous
teraction terms in the Abelian Higgs model discussed in S
II. From the Lagrangian written in LF coordinates it is cle
that A1 is nondynamical since there is no corresponding
netic term. It is also a dependent component. Consider
equation of motion for the gauge field

2]•]Am1]m~]•A!5
]L
]Am

. ~B12!

We found significant simplifications in the fermionic sect
of LF quantized gauge theory if we adopt the LC gauge. T
underlying gauge symmetry in the Higgs model allows o
to adopt this gauge,A250. From the expression of the La
grangian~4! it then follows that

~]•A2Mh!U
A250

5e
1

]2
K1

where

K15
1

e

]L
]A1

U
A250,M50

5~h]2h2h]2h!. ~B13!

Thus the free theory carries in it simultaneously the ’t Ho
condition, as was also demonstrated in the Hamilton
framework~and in the quantized theory!. When the SSB is
present and the mass of the gauge field is generated by
Higgs mechanism in our framework, the massive gauge fi
is described by the independent field componentsA' andh.
We may define, as in the fermionic case, the dependent
field componentA1

o by the ’t Hooft condition

]2A1
o 5]'A'1Mh. ~B14!

It follows from Eq. ~B13! that

A15A1
o 1e

1

~]2!2
K1. ~B15!

Expressed in terms of the componentsA' ,h,A1
o and h the

Lagrangian contains also instantaneous nonlocal interac
terms. They are indicated below on the right-hand side of
arrow corresponding to the term which gives rise to it
04501
lf-
.

-
c.

-
e

e
e

t
n

the
ld

ee

on
e

M ~A•]!h→2eMh
1

]2
K1

e~h]mh2h]mh!Am→e2K1
1

~]2!2
K1

2
1

4
FmnFmn→eMh

1

]2
K12e2

1

2
K1

1

~]2!2
K1

~B16!

where integrations by parts in the Lagrangian were fre
used as in the fermionic case. We observe that the cu
nonlocal interaction terms cancel leaving behind only
quartic term.

LC gauge LF quantized QCD

In the fermionic piece we have now

Si5gmAm
a ~ ta! i j co j

and

c i5coi2g
1

2i ]2
g1SiU

A
2
a 50

. ~B17!

For the non-Abelian gauge field theory we follow closely t
above discussion for the Higgs model. We have

A1
a 5A1

oa1g
1

~]2!2
j 1a ~B18!

where in the massless case we define]2A1
oa5]'A' and

j 1a5
1

g

]L
]A1

a U
A

2
a 50

5 f abcA'
b ]2A'

c 1c̄ ig1~ ta! i j c j

5 f abcA'
b ]2A'

c 1c̄oig1~ ta! i j co j

[@Ka1La#. ~B19!

The field componentsA1
a andc2

i are again dependent var
ables. The fermionic piece contributes an instantane
seagull interaction as in the Yukawa theory. There arises
another type of instantaneous interaction

g2La
1

~]2 !2
@Ka1La#. ~B20!

A similar contribution coming from the gauge field sector

2
1

4
FamnFamn5

1

2 FFa12Fa1212Fa1'Fa2'

2
1

2
Fa''8Fa''8G ~B21!
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is found to be

g2Ka
1

~]2 !2
@Ka1La#2

1

2
g2@Ka1La#

1

~]2 !2
@Ka1La#.

~B22!

The interaction Hamiltonian in QCD follows@14#:

Hint52Lint

52gc̄ igm~ ta! i j c jAm
a 1

g

2
f abc~]mAa

n2]nAa
m!AbmAcn

1
g2

4
f abcf adeAbmAdmAcnAen

2
g2

2
c̄ ig1gmAm

a ~ ta! i j
1

i ]2
gnAn

b~ tb! jkck

2
g2

2 S 1

i ]2
j a

1D S 1

i ]2
j a

1D ~B23!

where

j a
15c̄ ig1~ ta! i j c j1 f abc~]2Abm!Acm ~B24!

and a sum over distinct quark and lepton flavors, not writ
explicitly, is understood in Eqs.~B23! and ~B24!.

GWS model

In the electroweak sector of the standard model, ‘‘S’’ con-
tains terms such asgmZmc etc. Only in the LC gauge, with
A25Z25W2

650, theg1S will contain solely the dynami-
cal ‘‘1 ’’ component of the fermionic fields involved. Th
discussion in the GWS model in LC gauge follows close
the one given in QCD.

APPENDIX C: FEYNMAN RULES AND PROPAGATORS

The Dyson-Wick perturbation theory expansion on the
can be realized in momentum space by employing the F
rier transform of the fields and the propagators discusse
Secs. II, III, and in Ref.@14#.

In the following, a light-cone gauge prescription for th
singularities atn•k50, such as the Mandelstam-Liebbran
procedure, is understood. The ML prescription for the
propagator poles will give rise to extra independent abso
tive contributions. However, these gauge-dependent co
butions do not appear in the final results for physical obse
ables.

Many of the rules of the Feynman diagrams, for examp
the symmetry factor 1/2 for gluon loop, a minus sign as
ciated with fermionic loops etc., are the same as those fo
in the conventional covariant framework. There are so
differences: for example, the external quark line now carr
a factor u(p1)Am/p1; the external boson line carries th
04501
n

u-
in

t
e
-

ri-
-

,
-
d

e
s

factor u(q1)/A2q1; and the Lorentz invariant phase spa
factor is *d2p'dp1u(p1)/(2p1). The external massive
vector boson line carries the polarization vectorEm(a)(q). Its
properties and the sum over the polarization states are g
in Sec. II. The notation for the quark field is as given in Re
@42,14#. The instantaneous interactions in electroweak the
may be found using Appendix B. The momentum space v
tices can be derived straightforwardly employing the Four
transforms of the fields given in the text and illustrated
Ref. @14# in QCD. The free propagators are:

Fermionic propagator:

id i j

N~p!

p22m21 i e
, with N~p!5~p”1m!2~p22m2!

g1

2p1
,

e.0,

where pm is the quark 4-momentum andi and j are color
indices. The noncovariant second term on the right-hand
is present only in the propagator of the dependent fieldc2 .
Also N(p)5(p” on1m) wherepon :„(m21p'

2 )/2p1,p1,p'
….

Photon propagator:

i
Dmn~q!

q21 i e
, with Dmn~q!5S 2gmn1

nmqn1qmnn

n•q

2
q2

~n•q!2
nmnnD ,

whereqm is the photon 4-momentum andnm is the gauge
direction. We choosenm[dm

1 andnm* [dm
2 , the dual ofnm .

Vector boson propagators:

^Wm
1~q!Wn

2~2q!&5 i
Kmn~q!

q22mW
2 1 i e

,

where

Kmn~q!5S 2gmn1
nmqn1qmnn

n•q
2

~q22mW
2 !

~n•q!2
nmnnD ,

where qm is the vector boson 4-momentum andnm is the
gauge direction. We choosenm[dm

1 and nm* [dm
2 , the dual

of nm . For the neutralZ vector bosonmW is substituted by
mZ .

The scalar fieldsG6,Go andh have the standard covar
ant propagatorsi /(q22M2) whereM5mW ,mZ and mh re-
spectively.

It is worth recalling@14# the procedure for computing th
discontinuity or imaginary parts of any Feynman diagra
employing the Cutkosky rules in our LF framework. F
each cut, replace 1/(p22m21 i e)→22p id(p22m2) and
then perform the loop integrals. We note that (p2

2m2)d(p22m2)50 such that last term in each ofN(p),
Dmn(q), andKmn(q) gives a vanishing contribution.
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