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Light-front (LF) quantization in the light-con@.C) gauge is used to construct a renormalizable theory of the
standard model. The framework derived earlier for QCD is extended to the Glashow-WeinbergcS#&n
model of electroweak interaction theory. The Lorentz condition is automatically satisfied in LF-quantized QCD
in the LC gauge for the free massless gauge field. In the GWS model, with the spontaneous symmetry breaking
present, we find that the 't Hooft condition accompanies the LC gauge condition corresponding to the massive
vector boson. The two transverse polarization vectors for the massive vector boson may be chosen to be the
same as found in QCD. The nontransverse and linearly independent third polarization vector is found to be
parallel to the gauge direction. The corresponding sum over polarizations in the standard model, indicated by
K,..(K), has several simplifying properties similar to the polarization gym(k) in QCD. The framework is
unitary and ghost freéexcept for the ghosts & =0 associated with the light-cone gauge prescriptidihe
massive gauge field propagator has well-behaved asymptotic behavior. The interaction Hamiltonian of elec-
troweak theory can be expressed in a form resembling that of covariant theory, plus additional instantaneous
interactions which can be treated systematically. The LF formulation also provides a transparent discussion of
the Goldstone bosofor electroweakequivalence theorem, as the illustrations show.
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[. INTRODUCTION the LF Fock state wave functions of relativistic bound states
[3].

The quantization of relativistic field theory at fixed light- We have recently presented a systematic stuldy] of
front time 7=(t—z/c)/\2, which was proposed by Dirac light-cone(LC) gauge LF-quantized QCD theory following
[1], has found important applicatiof@—5] in gauge field the Dirac method 15,16 and constructed the Dyson-Wick
theory, string theory6], and M theon[7], and it has become Smatrix expansion based on LF-time-ordered products. In
a useful alternative tool for the analysis of nonperturbativeoUr analysig14] one imposes the light-cone gauge condition
prob|ems in quantum Chromodynam[@_ Light-front guan- as a linear constraint using a Lagrange muItipIier, rather than
tization has been employed in the non-Abelian bosonizatio@® quadratic form. We then find that the LF-quantized free
[9] of the field theory ofN free Majorana fermions. The gauge theory simultaneously satisfies the covariant gauge
(non_perturbativje degenerate vacuum structures, theCOﬂditionﬁ~A:O as an operator condition as well as the LC
g-vacua in the Schwinger model and their absence in th@auge condition. The resulting Feynman rule for the gauge
chiral Schwinger model, were shoyh0,11] to follow trans-  field propagator in the LC gauge is doubly transverse
parently in thefront form theory, along with the natural . ab
emergence in the former case of their continuum normaliza- a b — 15 f app ik x Dur(K)

: : : A (0| T(A%,(x)A”,(0))[0) a| d'ke 2
tion. Also the requirement of the microcausalify2] implies a (2m) k+ie
that the LF framework is more appropriate for quantizing (1)
[13] the self-dual(chiral boson scalar field.

LF quantization is especially useful for quantum chromo-Where
dynamics, since it provides a rigorous extension of many-
body quantum mechanics to relativistic bound states: the
guark, and gluon momenta and spin correlations of a hadron
become encoded in the form of universal process- n“D,,=k"D,,=0,
independent, Lorentz-invariant wave functiord. The LF
quantization of QCD in its Hamiltonian form thus provides and n,, is the null four-vector, gauge direction. Thus only
an alternative to lattice gauge theory for the computation ophysical degrees of freedom propagate.
nonperturbative quantities such as the spectrum as well as The remarkable properties @he projectoy D, provide

much simplification in the computations of loop amplitudes.

In the case of tree graphs, the term proportionahim,
*Deceased. cancels against the instantaneous gluon exchange term. In
"Email address: sjbth@slac.stanford.edu our previous papefl14], we showed how the double-pole

Nk, Nk, k? -
(n-k) (n-k)z2 "

D,uv(k) == gMV+

0556-2821/2002/6@)/04501919)/$20.00 66 045019-1 ©2002 The American Physical Society



PREM P. SRIVASTAVA AND STANLEY J. BRODSKY PHYSICAL REVIEW D66, 045019 (2002

contribution to the gauge propagator enters into calculationfont form theory if the condensate variable iscaor a q
of Feynman loop amplitudes. The renormalization constantsumber(operatoy. In the description of SSB they are shown
in the non-Abelian theory were shown to satisfy the identityto be background constants. In the Schwinger model, in con-
Z,=Z4 at one-loop order, as expected in a theory with onlytrast, it is showr{10] to be an operator. Its occurrence in the
physical gauge degrees of freedom. The Q@BOfunction  model is crucial for showing, also in the LF framework,the
computed in the noncovariant LC gauge agrees with the cordegenerate vacuum structuré-yacug, known in the con-
ventional theory resulf17,18. Dimensional regularization ventional theory for a long time.
and the Mandelstam-Leibbrandt prescriptjd®—21] for LC The tree-level Lagrangian of the GWS model written in
gauge were used to define the Feynman loop integratiorierms of the set ofitree level parameters, for example,
[22]. There are no Faddeev-Popov or Gupta-Bleuler ghoste,my,,m;,my,m,,my) is constructed and quantized on the
terms. LF. The model has the underlying initial gauge symmetry
It is well known that the light-cone gauge itself is not even after we rewrite it such that it bestows quadratic mass
completely defined until one specifies a prescription for theerms to some of the vector bosons. One is thus required to
poles of the gauge propagatorratk=0. The Mandelstam- fix the gauge even when quantizing the theory in its sponta-
Liebbrandt prescription has the advantage of preserving caureously broken symmetry phase. For example, in the unitary
sality and analyticity, as well as leading to proofs of thegauge the Goldstone fields are gauged away, leaving behind
renormalizability and unitarity of Yang-Mills theori¢23]. only physical degrees of freedom. The resulting massive
The ghost contributions introduced by the Mandelstam-gauge field then carries the Proca propagator for which
Liebbrandt procedure can be considered as quantized d¥,,(k)—[—9,,+ k“k’/M?] in Eq. (1). Because of the
namical degrees of freedom which appear in the free gauggrowing momentum dependence of the gauge propagator, the
propagator as well as the nonlocal interactions. They appegower counting renormalizability of the theory becomes very
in the single and double-pole contributions to the gaugadifficult to verify in this gauge. 't Hooft, however, demon-
propagator as well as the instantaneous interactions. Furthstrated it by inventing the renormalizali®y gaugeq 36,37
discussion may be found in Ref24-26. In the case of tree and employing gauge-symmetry-preserving dimensional
graphs, the double-pole contributions and the correspondingegularization. This framework, however, requires one to in-
instantaneous interactions cancel. The ghosts which appeelude in the theory Faddeev-Popov ghost fields, even in Abe-
in association with the Mandelstam-Liebbrandt prescriptiorlian theory, where the ghost fields couple to a physical Higgs
from the single poles have vanishing residue in absorptivdield as well. Several additional parameté?sé?, ¢ are in-
parts, and thus do not disturb the unitarity of the theory.  troduced in the theory. Their renormalization must also be
Other acausal prescriptions for light-cone gauge can b&aken into account and the physi&inatrix elements should
considered, such as the CR€Zauchy principal valueand be shown not to depend on them.
the Kovchegov[27] (K) prescriptions, although the renor-  In contrast, in the LC gauge LF-quantized theory frame-
malization structure in these cases is not completely undemwork for the GWS model, no ghosts appéeakcept for the
stood. The CPV prescription is obtained naturally in theinduced poles introduced by the Mandelstam-Liebbrandt pre-
light-front Hamiltonian theory. The K prescription has beenscription for light-cone gaugeneither in the Abelian nor in
used to advantage for analyzing smaland nuclear prob- the non-Abelian case. The massive gauge field propagator
lems in QCD[28,29. Different prescriptions for light-cone has good asymptotic behavior in accordance with a renor-
gauge are related to each other by residual gauge transformiaralizable theory, and the massive would-be Goldstone fields
tions[30], and thus, formally, the induced pole contributions can be taken as physical degrees of freedom.
at n- k=0 will eventually cancel because of current conser- We start by considering in Sec. Il the simpler case of the
vation. This has been explicitly verified for the ML, CPV, Abelian Higgs model. The ingredients introduced here will
and K prescriptions through two loops for a specific calcula-be used later in the quantization of the non-Abelian GWS
tion in Ref.[31]. model. The tree level Higgs Lagrangian when rewritten in
In this paper we shall extend our LC gauge—LF quantizaterms of the chosen tree level parameteid, andm, still
tion analysis to the Glashow-Weinberg-Sal&@WS) model  has the underlying gauge symmetry. We construct the LF
of electroweak interactions based on the non-Abelian gaugelamiltonian framework in the LC gaugé,_ =0, following
group SU(2)wxU(1)y [32]. It contains a non-Abelian closely the procedure adopted in our paper on QCD. In the
Higgs sector which triggers spontaneous symmetry breakingresent case, where the gauge field mésis generated by
(SSB. A convenient way of implementing SSB and tiieee  the Higgs mechanism, we find that the operator 't Hooft
level) Higgs mechanism in th&ont form theory is known condition, - A=M 5, where 7 is the would-be Goldstone
[33-35. One separates the quantum fluctuation fields fronfield which also acquires the same mass, accompanies simul-
the correspondinglynamical bosonic condensater zero- taneously the LC gauge condition. This is in contrast to the
longitudinal-momentum-modevariables, before applying case of massless QCD where we have correspondingly the
the Dirac procedure in order to construct the HamiltonianLorentz condition.
formulation! This procedure by itself should determine in a  The polarization vectors of the gauge field, which are all
physical, are constructed, and their simplifying properties are
discussed in detail. The interaction Hamiltonian which car-
1See Appendix A and Ref3] for references to other alternative ries also an instantaneous tefderived in Appendix B in
discussions on SSB. the LF-quantized theory is constructed. The Fourier trans-
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form of the free gauge field, the propagators of the massivehoose the bosonic condensat@|$|0)=v/+/2, to be real
vector boson, the would-be Goldstone field, and the Higgaind separate it from the fluctuation fietd

boson are derived. The LF quantization of the GWS model,

which contains a non-Abelian Higgs sector, is considered in 1 1

Sec. |Il. (ﬁ(X):TU+€D=7([U+h(X)]+i7I(X)), 3

Appendix B discusses a systematic procedure for con- 2 2
structing the instantaneous interaction terms required in the . .
LF quantized field theory. It is illustrated by considering theSUCh that the re_al f|elld$1(x) and #(x) carry vanishing
Yukawa theory, Abelian Higgs model, and QCD. In our LF vacuum expectation values. .
framework A, and ¢_ are nondynamical and dependent The t.ree-level Lagrangian, when the SSB is present, may
field components. While taking care of the dependency, buli‘)e rewritten as
without removing these variables, we are able to recast the
interaction Hamiltonian in a form close to that of covariant £=—
gauge theory. Despite a few additional instantaneous terms, it
is straightforward to handle them in the Dyson-Wick expan- 1 1
sion constructed in the LF-quantized theory. The nice prop- + E(ﬁﬂh)z—zmﬁh2+ e(hd,n—mna,h)A*
erties of the gauge propagator turn it into a practical compu-
tational framework. e? ent

The Goldstone bosofor electroweak equivalence theo- +eMA A*h+ §(h2+ %) A AF— W( 7°+h?)h
rem[38] becomes transparent in our framework. Its content
is illustrated by the computation of Higgs bosons and top A
quark decays in Sec. IV. The computation of muon decay —Z(n2+ h?)2+ const (4)
shows the relevance of the instantaneous interactions for re-
covering the manifest Lorentz invariance in the physical
gauge[39] theory framework.

A new aspect of LF quantization is that the third polariza-
tion of the quantized mas(%ive vector figdd with four mo-
mentumk* has the formE{*=n M/n-k. Sincen?=0, this ; . ) .
nontransverse polarizatioﬂn ve:tor has zero norm. HoweveF?rm |n.voIV|ng the Goldstgne fielgy and the gauge field.
when one includes the constrained interactions of the Gold- " View of the_underlylng localJ(1) gauge symmetry,
stone particle, the effective longitudinal polarization vectoro"€ possible choice of the gauge may be taken 1o “be .SUCh
of a produced vector particle iESf)M:EEf)—k,,Lk' EG)/K2 that the qudgtone mod? is eliminated, the so.—callgd uni-
which is identical to the usual polarization vector of a mas—tary (c_)r qutarltw gauge, wrrllere only tfhel phyS|caI f[elds ap-
s vector i L) £6)—— L. Thus,unk e con- 12 1 LAgrangen, e gauge el s st and
ventional quantization of the standard model, the Goldston - The perturbation theory renormalizability in this gauge is

particle only provides part of the physical longitudinal modethen not simple to demonstrate. The alternative of “renor-

of the electroweak particles. malizability” or R, gauges were introduced by 't HogR6].
The gauge-fixing term is here assumed tofkg=—(d-A
II. THE QUANTIZATION OF THE ABELIAN HIGGS — &M ,7)2/(25). The bilinear mixing of» and /_\M is then
MODEL IN LC GAUGE eliminated, and for any finite value &t all of the propaga-

The implementation of spontaneous symmetry breakind®'s In this class of gauges fall off aski/ The theory may
and the tree level Higgs mechanism on the LF have beefl!SO be showr41] to be perturbatively renormalizable. We

understood for some time. A convenient description of SSBNOte, however, that in the Faddeev-Popov quantization pro-
which is useful for constructinf34] the tree-level Lagrang- qedur(_a we are requwgd to introduce als_o the_ aUX|_I|ary ghost
ian in the Higgs model, is reviewed in Appendix A. The fields in the thegry with the corresponding piece in the La-
relevant differences in the LF quantized theory in the presgrangiangpose= c[ — - d— éM?(1+h/v)]c, which contains
ence of SSB, when compared with the conventional theoryhe coupling of ghost fields with the physical Higgs field. In
treatment, may already be seen in the Abelian Higgs moddhe non-Abelian theory there are, in addition, the coupling of
discussed below. The results obtained here will be utilize@hosts with the gauge field resulting from the term
later in the quantization of the GWS model which carries inc3(—g- D) ,,c°.

1 1
v 2 2
TR PR SMPA AR (3,7 M ARG,

where e,M, and mj, indicate the tree level parameters de-
fined byM =ev, m2=2\v?= —2u? indicating the physical
squared mass of the Higgs fieldx), 2Av=e nﬁ/M, and
2\x=e’m?/M?. We note the presence of the mixed bilinear

it a non-Abelian Higgs sectdiSec. Il)). In what follows we will quantize thdront form theory
The Abelian theory is described by described by the LagrangidB) in the LC gauge where the
Faddeev-Popov and Gupta-Bleuler ghost fields are seen to
1 decouple in both the non-Abelian and Abelian theories. The
__ = v 2__ t
L= 4FM,,F“ +|D#¢| V(¢'¢) (2) LF coordinates are defined asx*=(x"=x_=(x°

+x3)/2, x =%, =(x°=x%/y2 x"), where x* = (x%,x?)
where ¢ is a complex scalar fieldp,=(d,+ieA,), and =(—Xx;,—Xp) are the transverse coordinates ane —,
V(p)=u’dp dp+N(pTp)? with x>0 and w?<0. We +,1,2. The coordinate™= 7 will be taken as the LF time,
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while x™ is regarded as the longitudinal spatial coordinateassume initially the standard Poisson brackets for all the dy-
The LF components of any tensor, for example, the gaugeamical variables present in the theory.

field, are similarly defined, and the metric tenggy, may be We are then led to the following secondary constraints:
read from A*B,=A"B"+A B —A'B". Also k™ indi- -

cates the longitudinal momentum, while is the corre- d=g_m +d 7 +Md_7=0,

sponding LF energy. Note that the LF Minkowski space co-

ordinates are not related to the conventional ones, A_=~0 (7)

(x%x1,x2,x%), by a finite Lorentz transformation.

We follow the arguments given in Rdfl4] and introduce
auxiliary Lagrange multiplier field(x) carrying the canoni-
cal dimension three. Thénear gauge-fixing term BA_)

along with the ghost terra(—4-D_)c are added to the La- V=7"+9_A,~0. (8)

grangian(4) such as to ensure the Becchi-Rouet-S{ai@]

symmetry of the action. The relevant free field propagatorsthe procedure stops at this stage, and no more constraints

are thus determined from the following bilinear terms in theare seen to arise, since further repetition leads to equations

action: which would merely determine the multiplier fields.
We analyze now the nature of the LF phase space con-
o]l ) ) straints derived above. In spite of the introduction of the
f A dx{ S[(F._)°=(F1p)?+2F. F_ ]+ BA. gauge-fixing term, there still survives a first class constraint
mg~0, while the other ones are second class. An inspection
of the equations of motion shows that we may &t to the

set found above an additional external constr8ist0. This

would make the whole set of constraints in the theory second

class. Dirac brackets satisfy the property such that we can set
the constraints astrong equality relations inside them. The
equal+ Dirac brackef f(x),g(y)}p which carries this prop-

5) erty is straightforward to construft5,16. Hamilton's equa-
tions now employ the Dirac brackets rather than the Poisson
ones. The phase space constraints on the light frerit:

where we note that the fields, as well asB have no kinetic =0, A_=0, x*=0, x,=0, x"=0, ®=0, ¥=0, m5=0,

terms, and they enter in the action as auxiliary Lagrang@ndB=0 thus effectively eliminatd and all the canonical
multiplier fields. momenta from the theory. The surviving dynamical variables
The canonical momenta following from E¢g) are #*  in LC gauge are found to bk, » andA, , while A, is a

=0, mg=0, ' =F_,, 7 =F,_=(3;A_—d_A}), m, dependent variable which satisfies(d_A, —d, A, —Mn)

=(d_n+MA_), and 7= d_h, which indicate that we are =0.

dealing with a constrained dynamical system. The Dirac pro- The canonical quantization of the theory at equé-per-

cedure[1] will be followed in order to construct a self- formed via the  correspondence i{f(x),g(y)}p

consistent Hamiltonian theory framework, which is useful—[f(x),9(y)], where the latter indicates the commutzor

for the canonical quantization and in the study of the relativ-anti-commutator among the corresponding field operators.

istic invariance. The canonical Hamiltonian density is The equal-LF-time commutators of the transverse compo-

nents of the gauge field are found to be

which are already present in E¢p) multiplied by Lagrange
multiplier fields. Requiring also the persistencydfandA
leads to another secondary constraint

1
+ §M2(2A+A,—ALAL)+M(A+(9, n+A_d, 7

1
—Ad, )+ (dn)(d-n)— E(ﬂ nd, n+(d h)(d_h)

1

1
_EaLh(?lh_ 2

ché(w*)2+%(F12)2—A+(a_w*+ami+|v|2A_ [AL(7,x7,x5), AL (ry "y )]=i8, 1 K(xy)
1 1 where K(x,y)=—(1/4)e(x —y )&% (x* —y*). The com-
+Mda_n)+=M?A A, +MA,d, n+=d,hd h mutators are nonlocal in the longitudinal coordinate, but
2 2 there is no violatiof 13] of the microcausality principle on
1 1 the LF. At equal LF time,X—y)2= — (x* —y*)?<0, is non-
+§mﬁh2+ 50.md = BA 4. (6)  vanishing forx:#y*, but §°(x*—y") vanishes for such
spacelike separation.The commutators of the transverse com-
ponents of the gauge fields are physical, having the same
The primary constraints arer"~0, mg~0 and x'=7"  form as the commutators of scalar fields in thent form
—d-A +d A ~0, x,=m,—d_n—MA_~0, and x, theory. We find also
=m,—J_h~0, where~ stands for theveakequality rela-

tion. We now require the persistency#rof these constraints [9(7,x",x5), p(7,y ,yH]=iK(x,y)
employing the preliminary Hamiltonian, which is obtained
by adding to the canonical Hamiltonian the primary con- [n(7,x",x5), A (r,y",y")]=0 9

straints multiplied by undetermined Lagrange multiplier
fields. In order to obtain Hamilton’s equations of motion, we and some other nonvanishing ones
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[O_A,(m,x X)), p(m,y " ,yH)]=IMK(X,y) structed as follows. The two which are transvers& tanay
be taken to be the same as defined in the earlier work on
[a—A-%—(T!X_!XL)!AJ_(TYy_lyL)]:i&LK(le) QCD’ VIZ.
[h(mx~ X5, h(my Y5 ]=iK (x.y). Ef)) (k) =EW#(k)=—DH(k) (14)
(10 .
with

The structure of the commutators found in the LC gauge 5
quantized theory on the LF indicates that in our framework 1y o0 +nﬂky+ nk, Kk -
the 't Hooft (gauge condition, 9-A—M =0, is simulta- my Ve G (n-k) (n-k)2 “ "
neously incorporated as an operator equation, along with the (15)
LC gauge conditionA_=0. This is parallel to the result
shown[14] in the earlier work orimasslessQCD where the  where the null four-vecton , indicates the gauge direction,
Lorentz condition was found to be automatically incorpo-whose components have been chosen conveniently tg, be
rated. It gave rise there to the doubly transverse gauge field 5; , n*=38*_. We note thatE(")=k'/k*, E(j,):gu,
propagator which simplified greatly the computations of loop— — 5, They are also transverse to the gauge direction

corrections and allowed for a transparent discussion of thg  The doubly transverse propeity4] was very useful in
renormalization and unitarity relations in the physical LC e loop computations in QCD. We have

gauge. The renormalization procedure in LC gauge is dis-
cussed in detail in Ref$40,22. W W
Thereducediree LF Hamiltonian density in LC gauge, on > , E,.(KE;’(k)=D,,(k),

making use of the constraints above, is shown to be =t
T 1, 1 g’“’EEf)(k)ES}/)(k):gM' (16)
Ho :E(alAl')(alAy)"' EM ALA + E(al 7)(d.7m)
k'El(k)=0, n*E()=EY)=0 (17)
1 1
2
+§M2772+ 5 (dLh)(a. h)+ zmhhz (1D such that they arepaceliked-vectors. The linearly indepen-

dent nontransverse third polarization vector for the massive

where the bi-linear cross terms are eliminated due to th&ector boson, in our LC gauge framework, isall 4-vector
presence of the 't Hooft condition in the framework. parallel to the gauge direction

The Hamilton's equations are found to lead té-4
+M?)A,=0, (9-9+M?)5=0 and ¢- 9+ m)h=0. Taking
into consideration the commutators among the field operators
as derived above,we may write the momentum space expan-
sions of the fregor interaction representatipfield opera- n
tors. Following the procedure parallel to that employed in q.EG)(k)=—M q_,
Ref. [14] we may write k*

M
E®(k)=E(),(k)=——n

Kkt

1 o(k™) k-E@(K)=—M&, 3, E®(K)-E@(q)=0 18
A (x)= \/—3f d?k-dk* NG > E*(K) (k) (@(3) (k) (a) (18)
(2m 2k @ such that

+ L Lya—ik-x T + elyaik-x
X[a(a)(k ke "r‘a(a)(k k)e™ ] Eg?f)lu(k)EE(s)T:Ef’)(k)_(k'E(s)(k))(k,u/kz)
(12

=EQ(k) +M(k, k) (19

and
is spacelikeand transverse t&, with EGP(k)-ES)(k)=
-M?/k*=—1.
The sum over the three physical polarizations is given by

+

)[b(k-%—,kl)e—ikd(

1
= d?ktdk" —
7%) \/(277)3J’ V2k*

. Kot
+bT (k" kH)ekx]. (13
M2
Here K?=M?, (1)=(1),(2), (@)=(1),(3), aw(K) Kin(k) = 2 EVELY =D, ()4 S5,
=a(*(k), as)(k)=—ib(k), and the nonvanishing commu- (@) (k)
tator[ag,(k),a' (g (] = 8ap 8*(k —1,) 8(k*=17). nk,+nk, (k—M?)
The three physical polarization vectors€f,, (k) ==0ut n-k k)2 n,n,,
=E®~(k) of the massive gauge fieltthe mass arising (n-k)
through Higgs mechanismsatisfyingE‘®)(k) =0, are con- (20)
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which satisfiesk#K ,,(k)=(M?/k*)n,
=M?. We recall alsd14]

and k#k’K,,(K)
D, (k)D*,(k)=D,, (k)D*(k)=—D,,(k),
D,,(k)=0, n#D,,(k)=D_,(k)=0,

Dy (@)D" (K)D,,(q")=—Dy,(@)D5(q"). (21)

The expansion of the transverse components of the gau

field is then rewritten as

A (x)=—At

+af, (k)]

which, together with the independefwould be Goldstone

PHYSICAL REVIEW D66, 045019 (2002

[14] in connection with the LF quantized QCD in the LC
gauge.

The Higgs fieldh(x) commutes with other field operators,
and its propagator iy(kz—mﬁﬂe). The commutation re-
lations in Eq.(8) imply that the fieldn has an off-diagonal
nonvanishing propagator with the componeft, , viz.
(O] T(n(xX)AL(y))|0)#0. The nn propagator is given by
i/(k*—=M?+ie). If we use the ML prescription to handle the
1/k* singularity along with the dimensional regularization,
the general power-counting analysis becomes availde
'Igwe propagators in the framework have good asymptotic be-

g#1awor the divergences encountered are no worse than in

QED. The proof of perturbative renormalizability in the LC
gauge in thefront form quantized theory presented here
should thus be closely related to the proof of renormalizabil-
ity of conventional[41] equal-time theory. In view of the
simplifying properties ofK ,, (and D,,), the absence of
Faddeev-Popov ghost fields, and the availability of the power
counting rules, when we employ the dimensional regulariza-
tion along with ML prescription, the effort required in our
framework is comparable, as in the case of the previous work
on QCD, to that in the conventional theory computations.

field », describe the massive gauge field. It is convenient to Some comments on the polarization vectors in LC gauge

also define the dependent gauge field compon&nt, by
using the 't Hooft conditiong- A5 —o=M 5, incorporated

in our LC gauge framework. We find

+

1 o( )
A, (X)=— fd%dk*—[a (kye~ ik
: J2m)? N
+al,) (ke (23)
if a..y=al*) is defined such that
kTai(k)=[k, ag)(k)—iMb(k)]
=[kia(l)(k)+Ma(3)], (24)

while we seta _)(k)=a'")(k)=0 in view of A_=0. The

following nonvanishing commutator is straightforward to de-

rive:

[ag,y(K),al,,(N1=K (k) 8%k, —1,)a(k" =17) (25)

whereu,v=—,+,1. Following the standard procedure, the

free propagator of the massive gauge fialdis found to be
(OIT(AL()A,(Y))[0

= ! f de(k).e—ik-(x—y)_
(2m)* (k2—=M?+ie€)

(26)

are in order. With the restrictioe® =0 there are only three
linearly mdependent polarization vectbrsas discussed
above. E(l (k) are transverse with respect to bath andk ,
while the nontransvers (k) is parallel to the gauge 'di-
rectionn,,, being equal to the sum of a transverse pi€de
(=E¢r) and a longitudinal ondlL), when referred to the
4-vectork, :

k, k
a)T _ mv a)v
EW <k>—(gw— - )E‘ "(k),

k-E@T(k)=0

K k
B (k) = 5 (K ECHO)= =M 2 5,

k-E@L(k)=k-E@(K)=—M 84 3).
E@T(k)-EBL(k)=0 2

such that EQ)T(k)=E(k), ELN(k)=0, EQM(k)=

—M (k,/k?), E<3>T(k) M(k, "e—n LK), and
E(3)LT(k)¢0 E(3>L(k) ECIL (k)= ‘M2/k2= +1,
The following analogous decomposition Kf,, is useful
in computations:
—_ kT L
Ku(K) =K (k) + K (k) (28)

It does not have the bad high energy behavior found in the——
(Proca propagator in the unitary gauge formulation, where 2t is easily shown than,,
the would-be Nambu-Goldstone boson is gauged away. Fatull vector dual ton —5+

“ ,
M—0 it reduces to the doubly transverse propagator found-vectors in the LF theoryﬂ

(L) * _ o
E;; (k), wheren#_— s, is Fhe
constltute a convenient basis for
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wheré The interaction Hamiltonian
M2 The interaction Hamiltonian, in LC gauge_ =0, is de-
K/';V(k)= —2) d,.(k) rived to be
—Hint= Lint
Ko (K) =K (k) = K, (K) ent
—eMAAMh— 1 ¢ 7°+h?)h
o[ NNy dy,(K)
WM e e
+e(hd,n—nd,h)A*+ 7(h2+ 7°)A, AH
_ /.LV(k) n/.rnv 29
( ) k+2 ( ) A 2 h2 2 e2 1 HE 1 Hes 35
rAkAnnin e el A (395
where
wherej ,=(hd,n—nd,h). The last term here is the addi-
d. (K)=—g,,+ n.k,+nk, tional quartic instantaneous interaction in the LF theory
wy G (n-k) guantized in the LC gaug@ppendix B. No new instanta-
neous cubic interaction terms are introduced. The massive
k2 gauge field, when the mass is generated by the Higgs mecha-
kid,,(K)= pral® kik"d,,, (k) =k?. (300 nism, is described in our LC gauge framework by the inde-

pendent field#A, and »; the componenA, is a dependent

They are symmetric and some interesting properties ar@"®:
KL (K=K, _(k)=d,_(k)=0, k*K] (k)=0, kK, (k)

—O k“K (k) K~ KL (k)= (lek+)n and Ill. THE GWS MODEL OF ELECTROWEAK
KEK"K (k) = k“k? K& (k)= M. From the properties of INTERACTIONS
D#,,(k) we easily derlve A. The quantization of the SU(2)®U (1) non-Abelian Higgs

K (KPK=d. (Kd(K D (K 31) model in LC gauge
ro(KIG() =0 (K)di(k) =D (k) A condensed review of the GWS model will be given

and below to define our notation. The model constructs a unified
description of the electromagnetic and weak interactions by
2(k2—M?) employing the spontaneously broken gauge theory based on
D .u(K), the non-Abelian gauge groufUy(2)®Uy(1), the direct
product of theweakisospin and the Abeliamypercharge

M4 groups. The corresponding Hermitian generators ﬁrar‘(d
K;p(k)K';P(k)=—?D,w(k), ty) respectively Wltht—(tl,tz t3), andty=Y L. Heret are
(k%) isospin generatord, is the identity matrix, and¥ indicates

the hypercharge For the spontaneous breaking a complex

KL (KK (k)= —

k2_ MZ 2 . H . eA_eni _
KT (OKTP (k)= ( ) D, (K. 32 sealar .field, Higgs deuble@_, in the iso-spinor representa
(k?)2 tion, with t=1/2, t=o0/2, is introduced
For completeness we note that G*
b= N (36)
E [E(a)L (oL L pla)L ()T 4 ()T E(Q)L]
@ 7 g B The valueY(®)=1/2 is assigned to it by convention such
) that the upper compone@* corresponds to the unit eigen-
_KL (k)+ 9 K,k (33) value of the[U(1).,, or chargé generatoiQ=(t;+Y) and
A2 the lower one to the value zero. Und8iy(2)®Uy(1) it
transforms as
while
e B (x)— el ta gl tyay() @ (x) (37)
K.k,
()T ()T 1) = _
% E.(KE, (k)_K oK) (%v K2 ) whereg and g’ indicate the two gauge coupling constants
(34) while a4(Xx) are the gauge transformation parameters. The
gauge covariant derivative may be defined as
3 KL (K)# 5 E@ (K EWH (k). D,=(13d,~igA,-t—ig' Y1B,) (38)
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whereﬂﬂ andB,, are real valued gauge fields. 1/0
The non-Abelian gauge theory Lagrangian is written as (DC|E<O|(D|O>:E ; (42
L=- ZFZVF“”—ZF;VF“M(DMCD)TDMCI)—V(CDTQD) which is taken to be the classical vacuum configurdtion

the SSB case whep?<0. This parametrization ob., can
always be assumed if we make use of (gbal) symmetry
of the action underSUy(2) and Uy(1). We verify that
where the gauge invariant scalar potential contains, at mosta ®ci#0 butQ®¢=(t;+Y)=0 where the linear combina-

quartic terms ind, so that the theory is renormalizable tion Qs the generator of the unbroken reS|dU4I1)em sym-
metry. We note also thab'd = (¢3+ ¢35+ ¢5+ o?)/2 where

o=(v+h(x)). The potentialV defined above is invariant
V(®)=u?dTd+ N (TD)? (400 under the large©(4)~SU(2) X SU(2) symmetry, which is
broken by the fieldo when it acquires a nonzero vacuum

expectation value.

_5 Aa_& Aa+g fabcA AC where a,b,c=1,2,3 are the (See be|oWare useful

SU(2) gauge group mdmesf,abc— €abc, While F) =4,B,

(39

~9,B,.
Thg descriptiori33] of SSB in the Abelian cas€Appen- T
dix A) can be extended to the non-Abelian one straightfor- W, = E(A”H A

wardly. It may be showip34] here too that none of the sym-
metry generators break the LF vacuum symmetry, but the
expression which counts the number of Goldstone bosons is
found to be identical to the one in the conventional theory
[37]. On the LF the tree level theory of the non-Abelian
Higgs mechanism is straightforward to constr(i84]. Its 3.
quantization in the LC gauge parallels closely to that of the Au=(B,costy+A,sinby). (43
Abelian Higgs theory.

It is convenient again to introduce real fields
h, ¢4, ¢,, p3=G° which have vanishing vacuum expecta-
tion values and write

=(AScosfy—B,,sin fy)

Here 6y, is the Weinberg angle such that siné,
=g’ cosh,=e ande is the electronic charge. The gauge co-
variant derivative may be conveniently re-expressed as

+—=_; —:_i_ —i
G'=—i¢ ﬁ(dq(X) i (X)) D=, —i (W't + W, t)

V2

x°= —(h(x)+i G°(x)) (42) cosa

e

Z,(t3-Qsif o) —ieQA, (44

whereQ=(t;+Y) indicates the electric charge ahd=(t;
wherev = \/— u?/\. In other wordsd =®,+ ¢ such that *ity)=(o1xi 0,)/2. We find

| g cos26w) ig :
(9MG —ImWW+ WZ#+EAM G+—?W;(h+IGO)
yn . .
g 19
d,(h+iG%+ — W G+
\/— 7

1
\/_ Zu~ \/— Wi 2 2 costy,

Z,(h+iG°)

“The stability of the asymmetric solution while the instability of the symmetric one may be inferred from the study of the dy(zartical
differential) equations of motion as usual.
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while
, .| gcog26y)
k)t = +_ | =~
(D*P)'D,P=|3,G" —imyW, —i 2 costy 2+
A IV b
+eA, |G —?W#(h+|G)
1 TC0) i ; ot
+§ 3,(h+iG°) +igmzZ,—igW,G
2
—I—igmzﬂ(h—kiGo) (46)
Also
1 2.2 v Lo 2
szmhh +2\v| GG +§(G° +h%) |h
1 2
A GG+ 5(G¥+h?)
1 w2 w22
_ +h— 1 (024 K2 o "
NGTG +2(G +h)+vh+2+2)\ (47)

where we sein,=guv/2,mz=m,/cosé, indicating the vec-

PHYSICAL REVIEW D66, 045019 (2002

Gg/\2=g?%/(8m3)=1/(2v?). The bi-linear terms corre-
sponding to the charged fields may be rewritten in terms of
the real field components %s

1 1 1
= 70 A = 9 AP SIGAL AT S (9 $1) 3, by

1 1
+ WA, i = 7(9,AT= 9,A7) %+ S M AL AR

1
+ 5 (04 ¢2) 3, b+ MWALI b (51)

The quantization in the LC gaugd,_=Z_=W~=0, is
now straightforward. We take over the discussion in Sec. Il
on the Abelian Higgs theory and the one given in the earlier
paper[14] on QCD for the massless gauge field. For com-
parison, we recall that the conventiomd} gauges in the
equal-time framework requires us to include in the theory
also the ghost fields, which interact with the Higgs boson and
other physical fields. MoreoveW, , Z,,, andA, may carry
different parameters™, &, and &” respectively in the
gauge-fixing terms. The renormalization of these parameters
also has to be taken into consideration, and it is required to
show that the physical amplitudes do not depend on them.
The 't Hooft conditions corresponding to the massive vector

tor boson masses. Interaction vertices are the cubic and quagpsons read ag-W* = +imyG*, 9-Z=m,G°, while for
tic terms in these expressions. For example, the cubic Higdhe massless field we obtaiii4] the Lorentz condition

boson interaction with charged vector bosons is
[g mWW;W“‘—ig[(&MG’)W*“—(&MGUW’“]

+2\v GG |h, (48

d-A=0. The momentum space expansions of the quantized
field operators are easily found to be

The quadratic terms in the bosonic Lagrangian which de-

fine the free theory are

1 , 1 , 1,
= (0 A= AP = F(9,2, 0,2,)%+ 5 m3Z, 2"

1 meo o] Mmoo 1 + +
+5(04G®)3,G°+m; Z,0"GO= 5 (9,W, =, W,,)
X (WP = "W H) + mgW, W' +(9,G7)g*G™

—imyl[(d,G )W #—(4,GHHW ]+ %(aﬂh)auh

1
— Emﬁhz.

(49)

No mass terms arise for th&oldstong fields G* and
G° or for the photon fieldA,. We note thetree level
relations  (n,/my)?=8\/g> and mZ/my=(4/g)\v,

ma,/(m32 cos )=1, (v/\2)=(/8Gg) Y?>~174 GeV, and

AK(X) = ! d3k0(k+) > EXL(K)
J2n)? Yokt @
X[ag) (ke **+al  (ke* ]
N o(k+)
W"(X):J(zwﬁ d3k\/2k+ % Efy(K)

x[ally (ke **+ bl (k)e* ]

1 (k")
ZHM(x)= d3k EA (K
0 \/(277)3f NS % (ot

X[af, (ke **+afl (ke ] (52)

whered3®k=d?k*dk*, (1)=(1),(2), and &)=(L),(3).

1 1 —i 2 PR - 3 A3
E(Fmﬁrl Fi)=0,W, —d,W, =i g(W,A;-W, A7)
N

Fr,=[(d,A,~d,A,)COS8y—(d,Z,—3,Z,)SIN G)]

@M-0,,)=1(3,2,~2,2,)C08 b+ (9, A,— 3, A,)SIN Ay)].
(50
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For completeness, we collect here the cubic and quartic- (m,uu+mydd), where we set Ago=+2my, A

self interactions of the gauge fields arising from BfgF2+"  — J2m, . The Yukawa interaction terms are
term
. _ _ g (mg)|—<1+7ys) —1-vys) —
+ N\~ _ +up3v - — * =
i9[(3,W; — 3,W, )W #—(3,W, — a,W, W #]A ﬁ( mW) U d G +d UG+ \/Edd h
1
+HigW, W, (9#A% = "A%) + g% — (W W, =W W, )? i g (my\| —(1-ys
4 +—dysd G° ——(—) - dG*
2 2\mal[ Y2
_WZW;AiAi(g,uvgpo_ gpug(ry)} (53) (149 L -
—d UG + —uuh— —uysu G° 5
2 \/E \/E Vs ( 7)

where Aiz[AMsin 6w+Z,cosi,). Note that the complete
W*W"y coupling, for example, includes the interaction aqding thereby additional parameters in the model.

terms carryingG™ fields arising from theD ,®|* term. The full fermionic Lagrangian is obtained from E{55)
and(56). Besides the Yukawa interactions in E§7) it con-
B. Fermionic fields tains also the following terms:

The LC gauge LF quantization when the fermionic fields —. . —. .
are also present is done by following closely the discussion uli y*(d,—1eQ(u)A,) —m,Ju+d[iy*(9,—ieQ(d)A,)
[14,42 given in QCD. The fermionic matter content of the —mgld+g(W, 36" + W, 3t +2,3%) (59)
GWS model has three generations with each one containing
quarks and leptons. The left-handed components of the fefyhere
mion fields are assigned to the iso-spinor representation
while the right-handed components are assigned to the sin- 1 1
glet of SU(2),,. For example, in the first generation with J%+:E(¢L7Mt+¢L): ﬁuy"(l—%)d
quarks (,d) and leptons ¢.,e”) we make the following
assignments:

1 — 1
J\lfv_:ﬁ('/fLY#t—l/fL): _\/—d)’”(l_ ys)u

| Ve u 21 - _ 2.2
l//L.<e_)L, (d)L Et—E, (UR,dR,eR) et=0. B B
(59) Jem=Q(u)uy*u+Q(d)dy*d
Here v =[(1— )2, v =i l(1+s)/2], Ye=[(1 R .
+v5)/214, ys=7y&, vi=| etc. Each left-handed doublet is ‘JIZL:Cosgw[‘/’LVMt?r‘pL_s'nzaW‘ng]

assigned a value of the hyperchargsimilar to that of the

Higgs doublet. For example,Y(ug)=Q(ug)=Q(u.) 1

=Q(u)=(Y+1/2) andQ(d)=(Y—1/2)=Y(dg), whereY = cod

=Y(u)=Y(d,). We recallY(e_ )=—1/2 andY(u_)=1/6. "
We base our discussion below on a single pair of generic

fields ¢=(u,d)T with its left-handed components carrying

the hypercharge. It may stand for ¢.,e™), (t,b), (c,s),

etc. The gauge invariant weak interaction Lagrangian foisuch that at the tree level there are no flavor changing neutral

1 1
Zuv"(l— 75)U—Zdy“(1— vs)d

—sir? 9Wng} (59

massless fermions may be written as currents. The survivingJ(1)., gauge symmetry is also
o N N manifest.
P iy* D, +Url ¥*D,Uug+dgi ¥*D, dg. (55 The construction above gives the tree level description of
the GWS model in terms of the set of tree level parameters
The assignments of the chiral components to distinct reprete,my,mz,my,my,my) or alternatively

sentations ofSUy,(2) and the requirement of the gauge in- (e,sinfy,v,m,,m,,my). The Kobayashi-Maskawd{M) ma-
variance do not allow one to introduce directly the fermionictrix can be incorporated easily in our discussion. The LF
mass terms in the Lagrangian. Such terms may, however, luantization of the GWS model is performed following the
generated through SSB if the following gauge invariantdiscussions in Sec. Il, Ref14], and the discussion in Ap-
Yukawa interaction is added to the theory: pendix B. The procedure closely follows the one adopted in
connection with the discussidi4] in LC gauge LF quan-
~Ng(P P)dr— Ny(Li o, ®* ug+H.c. (56) tized QCD. In the GWS model we also have to take care in
addition of Yukawa interactions. Besides the tree level inter-
Heren,, Ny, are real couplings, without any connection with actions written above, in the LF quantized theory we also
the weak interaction coupling constant, and we usedave instantaneous interaction %, (see Appendix B
Y(®*)=—1/2. We find the generation of the mass termsThey are responsible for the restoration of the Lorentz cova-

045019-10



LIGHT-FRONT FORMULATION OF THE STANDARD MODEL PHYSICAL REVIEW D66, 045019 (2002

riance in the computation of physical matrix elements etcto compute the sum over polarizations of the squared matrix
The LF propagators of the fields in the LC gauge quantize@dlement We find
GWS model are collected in Appendix C.

(k-k')?

IV. ILLUSTRATIONS 2+ =3 ] (65)

A. Decayh—W + W () (B)

| May(p)|?=(2 € M)?

This decay is interesting also in connection with the Gold-
stone boson or electroweak equivalence theorem. It is clear, . . .
from the expressions of the relevant interaction vertices iﬁ"’h'Ch agrees, as it should, with the result found when we use
Secs. Il and Il that it suffices to consider the Abelian theory.the unitary(or Proca gauge.

The A A h interaction term gives the decay into two trans-d The Q'SCUSS'OH l;n the nac;trl—\,lb\vtze_llan thﬁolry OI] thef I—nggs
verse vector bosons. The matrix element is ecays into gauge boson p is parallel to that of the

My=(ieM)2E@(k)-EP(k")=—2ieM E(K)EP (K').
(60)

WhereP

the Higgs decay. The corresponding matrix element is

My=—i %Z(ik E@(k))(ik"-EP (k"))

mp
=ie 9a3)98)3)- (62)

Finally, the » A h vertex gives

. €
Ma=—ir2[ ki + kK ke MED(KEP (K.

(62
The total matrix element is
2
M(a)(5)=2ieM g,uv_l—_ 4kMk1,/
1 MV ! Ul ! v Ml TV
—W(kkJrk k'’ +kHk'?)
XEOHREP (). (63

Using mass-shell conditions we may rewrite

Myp=2ieM[g,,+ak,k,
+b(kHk"+ k' #k ) JEW(KEP (k) (69

wherea=(k-k’)/M* andb=—1/M?. It is straightforward

=k, +k;, is the 4-momentum of the Higgs particle.
The 7 h mteractlon term produces longitudinal bosons in

Abelian theory as can be seen from the expressions in Egs.
(35 and(49) of the corresponding Higgs couplings. We need
only to replacee— g/2 andM — m,, in the discussion above.
We find

2 4 m2
1+4—(3mW mh)
mé

h

|M a | -
@@ OP e,

(66)

In the limit my>m, the leading term is the first one. It
derives solely fromM\,, e.g., from the decay to the would-be
Goldstone particley, as if we set the gauge field as vanish-
ing in the interaction Lagrangian. Similar discussions of
other two body decays of the Higgs boson may be given.
The additional contributions to the matrix element coming
from the would-be Goldstone bosons are found to be mani-
festly displayed. The matrix elementt,, which derives
solely from the would-be Goldstone field, receives, com-
pared to the others, amn,/my,)? enhancement factor. The
result is general and has been given the name of the Gold-
stone boson or electroweak equivalence thedrésh In the
LF quantized theory it is revealed transparently, and the
physics of the longitudinal gauge bosons and Higgs field can
be described, under certain conditions, very well in terms of
the scalar self-interactions present in the initial Lagrangian
while ignoring the gauge fields. This would not be true in the
decay under discussion if the mass of the Higgs boson is
found, as currently expected, to be around 115 GeV. In fact,
[...]=[1+0.97] for my,/my~0.699.

B. Muon decay

The cancellation of the noncovariant terms in the previous
illustration is seen easily also in muon decay, where the non-
covariant gauge propagator is involved. However, in this
case we must also take into account a contribution from an
instantaneous interaction.

The terms in the interaction Lagrangian density respon-
sible for the process are read, from E€7), (58), and(59),

SWe use the simplifying properties oK,,, the relation
k, k,K#(k')=—=M?+2(k-k')k*/k’*, and the mass-shell condi-
tions.
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. . 2
g |— im R ig | — m
——|v,-(1+ W+ —Eo W | u+ — | u(v,)(1+ ——T
WA (I+ys)| ¥ 2, ot (2@) (v )(1+7ys)| ¥ 2
X | y- W~ im"a W™ | (1= ys) v, +( )+ X u( )—K’”(k) u(e) Me (1= y5)v(ve)
v W ——=9- —y5)V,-t(u—e)+--- u u(e)| v'— "1 (1=ys)v(v
mg, o a (kK>—ma+ie) ’ mg, eluive
+ quartic instantaneous interaction. (67) (68)

Here we have made use of the 't Hooft conditio®s; =
Fi(d-W*)/my, for convenience. The matrix element for where K ,,(k) is given in Eqg.(20). On using simplifying
the muon decay in momentum space, excluding the instantgroperties oK ,,(k) (Sec. 1) it reduces tosuppressing the

neous interaction contribution, reads as constant factor
. KMV(k) — v —
U(v,)(1+ys) Y*u(p) —————u(e)y"(1— ys)v(ve)
(ke—miyytie)
my

- (kz_msvﬂf)kjw#)mn)u(@ﬁe)y*(l—y5>v<7e)

- (kz_mrzniie)kj<vu><1+n)y*uwﬁ(e)(l—y5>v<7e>
W

m,Me

(kz—m\2,v+ie)m\2Nu(V“)(1+ ys)u(uiu(e)(1—ys)v(ve). (69)

Consider the contributions from the first term. The noncova-The matrix element may be written as
riant terms carrying the &/ dependence i ,, cancel the
second and the third terms. Also an instantaneous contribu-
tion comes from the last term in the expressiorkof,

9500 7L y0) k(1 y5) | WO
. 2\2 mg, o
heriCME ys)y u(pu(e)y" (1= ys)v(ve). ig
==, CE(@) _
70 L (b)[y ECK)(1-5)
my
+— + ©(t).
It gets compensated by the additional quartic instantaneous My Oe@ 1+ ys) U(L) (72)

interaction term in our LC gauge framework, which is easily
derived by following the straightforward procedure given in
Appendix B. The final result agrees with the covariant matrix

element found in the unitary gauge. Here we have sem,=0 for simplicity, and we recall that

(a)=(L),(3) indicate the three polarization states of the
massive vector boson as discussed in Sec. Il. For the spinor
C. Decayt—b+W* field we follow the notation of Ref[14]. The m, enhance-
The relevant interaction terms in the present case are ment of the matrix element containing solely the would-be
Goldstone boson&™* is similar to that in the Higgs decay
described above. It is another illustration of the electroweak
iB{y-W_(l— o+ (Mg—my) +(mt+ M) y )G‘}t equivalence theorem. Since the Higgs boson couples to fer-
2\/5 5 My My s mion mass, the heavy fermion contributions do not decouple.
The sum over spins and polarizations of the squared invari-
+H.c. (71 ant matrix element here is found to be proportional to
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m, | 2 &V £2 and &7, respectively, in the gauge-fixing terms. The
g“p"+q”p*—(q-p)gt”+ (m—) renormalization of these parameters then also has to be taken
w into consideration, and it is required to show that the physi-

KAKY cal amplitudes do not depend on them. In view of the addi-
X ( q-p——— gk’ = q"k* | | K, (k) tional simplifying properties oK ,, and the(projectoy D ,,,,
My computations in our framework require an effort comparable

to that of conventional covariant gauge theory.
In our LC gauge LF framework, the free massive gauge
2 + fields in the electroweak theory satisfy simultaneously the 't
( q-p— 2m\2,\,—+) (73 Hooft conditions as an operator equation. In the limit of van-
k ishing mass of the vector boson, the gauge field propagator
goes over to the doubly transverse gaugeiD ,,(k)
=k“D,,(k)=0], the propagator found14] in QCD, in
view of the Lorentz condition in the theory. As discussed in
Sec. II, the factoK ,,(k) in the gauge propagator also car-
1 ries important simplifying properties, similar to the ones as-
=—[g*p"+q"p*—(q-p)g*"19,,+ —+(2q-kp+ sociated with the projectdd ,, (k). The transverse polariza-
k tion vectors for massive or massless vector bosons may be

=[g*p”+q"p“—(q-p)g”"1d,,(k)
m
+ (—t
My
where the mass-shell conditions such &s@=(m?—m3),

2k~p=(mt2+m$\,), g’=0 have been used. Collecting to-
gether the noncovariant terms, we rewrite it as

m \ 2 taken to beE(| ,(k)=—D/(k), whereas the nontransverse
+ 2+ t : . : :
+2k-pq—2q-p—2mq”)+ m_) q-k third one in the massive case is found to be parallel to the LC
W gauge directiorEY)(k) = — (M/k")n,, . Its projection along
TP+ qnk— g+ m 2 K the direction transverse tk, shares the spacelike vector
=@+ a"p = (a-P)g™1u, My 9 property carried byEf; (k).
The Goldstone boson or electroweak equivalence theorem
Ml V . . .
[38] becomes transparent in our formulation. Its content is
= — v vk _(q. v
( Gpr* m\ZN)[q pr+a’pt=(a-p)g™]. (74) illustrated in Sec. IV by considering Higgs boson and top

quark decays. The computation of muon decay shows the
The noncovariant terms cancel out giving the covariant resultelevance of the instantaneous interactions for recovering

of the unitary gaugé. manifest Lorentz invariance in the physical gaui9]
theory framework. They also correspofitd] to the semi-
V. CONCLUSIONS classical(or nonrelativisti¢ limit frequently employed in the

conventional equal-time quantized theory.

The canonical quantization of LC gauge GWS elec- The singularities in the noncovariant pieces of the field

troweak theory in thdront form has been derived by using . . .
the Dirac procedure to construct a self-consistent LF HamilPropagators may be defined using the causal ML prescription

tonian theory. Combining this with our previous work on fof LK™ when we employ dimensional regularization, as was
QCD, we obtain an attractive new formulation of the stan-SNown also in our earlier work on QCD. The power-counting
dard model of the strong and electroweak interactions whichules in LC gauge then become similar to those found in
does not break the physical vacuum and has well-controlle§ovariant gauge theory.
ultraviolet behavior. The only ghosts which appear in the We recall the explicit demonstratidi4] of the simplify-
formalism are then-k=0 modes of the gauge field associ- ing equalityZ;=Z3 in QCD in our LC gauge framework.
ated with regulating the light-cone gauge prescription. Similar Ward identities are expected in the GWS model as
The interaction Hamiltonian of the standard model haswell. These Ward identities simplify the task of computing
been obtained in a compact form by retaining the dependeritigher-loop corrections to physical processes.
component® , and_ in the formulation. Its form closely Our light-front formulation of the standard model also
resembles the interaction Hamiltonian of covariant theoryprovides the basis for an “event amplitude generafet3]
except for the presence of a few additional instantaneoufor high energy physics reactions where each particle’s final
interactions. Their derivation is given in Appendix B. The state is completely labeled in momentum, helicity, and phase.
resulting Dyson-Wick perturbation theory expansion basedhe application of the light-front time evolution operafr
on equal-LF-time ordering is also constructed, allowing ongo an initial state will systematically generate the tree and
to perform higher-order computations in a straightforwardvirtual loop graphs of th& matrix in light-front time-ordered
fashion. In contrast, in the conventional equal-time frame-erturbation theory. In our light-cone gauge framework, the
work utilizing R, gauges, one is required to retain Faddeev-virtual loop integrals only involve integration over the mo-
Popov ghost fields which interact with the physical fields.menta of particles with physical polarization and physical
Moreover,W,, Z,,, andA, can carry different parameters phase spacéld?®k, ;dk’ . Renormalized amplitudes can be
explicitly constructed by subtracting from the divergent
loops amplitudes with nearly identical integrands corre-
" I'=(GemdI8y2m) (1—m3/m?)2(1+2(m/m?)). sponding to the contribution of the relevant mass and cou-

Mmoo
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pling countertermgthe “alternating denominator methog” SV
[44]. J d’* dx7| 9,0, "= —|=0. (A2)
o
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as usual from the Lagrange equations; the nonvanishing
APPENDIX A: SPONTANEOUS SYMMETRY BREAKING gives rise to stable solutions in the Nambu-Goldstone phase
DESCRIPTION ON THE LF under study. Théclassical vacuum state is degenerate and

, . . . . characterized by a fixed value af=+/— ©%/(2\)e'® where
We first consider, due to its relevance to the dlscussmn_n‘s is real and arbitrary. In view of the invariance of the action

stietﬁ'lljl’;hesArt:ﬁgzg C?Ssei\\’/\/:r?f the scalar theory I‘agr"’mg"”lﬂnd'er the phase symmetry transformatiogs,>e' %, o

(1) sy yisg y —€'?», we may, without any loss of generality, conve-
niently assumeo=uv/2 wherev=\/— u?/\ is a fixed real
constant. A phase transformation would not leave this classi-

(A1) . . : ;
cal vacuum state invariant, and the symmetry is said to be

e V(D) AT N A0 andui< To | PIOUSE SO 900 S LR
canonically quantize the theory we must construct a Hamil- " qu ut \t/J 1 i r 'h'I’ tes th LIF
tonian framework for the constrained dynamics described b eoretic generator otJ(1) symmetry annihilates the

the above Lagrangian. The Dirac proced{ité] is conve- acuum state, independen_t of the broken symmetry or not.
nient to useBeforeapplying it, however, we maki83] the _The symmetry transformqtlons a_lways leave the LF vacuum
separatioh invariant, while the SSB is manifested, for example, in the

nonconservation of some of the symmetry currde,35.
These features are true in general.

The Dirac procedure is straightforward to apply, and the
quantized theory is obtained by invoking the correspondence
of the Dirac brackets with the commutators of the corre-
sponding quantized field operators. In the LF quantized
theory we find the following nonvanishing equél-commu-

L=0.¢"0_¢p+d_¢'9. =0, 0", p—V(¢' )

d(7,x" xH)=w(7,x)+e(7,x,x).

The field ¢ indicates the quantum fluctuations above dye
namical condensatéor zero-longitudinal-momentum-moyde
variable w(7,x*). The LF Hamiltonian framework is found
to contain in it also dsecond clagsconstraint equatiof33], ator
which relates the condensate variables with the fluctuation
fields. The variablav is shown[33-35 to have vanishing

Dirac brackets with itself and witkp. It is thus ac number Lo x7 x5 ), @(y Ty Ty ) et =y+
(background fieldl in the quantized theory.The constraint i
equationd’ in the present case are =-2 e(x =y )& (xt—yth) (A3)
a2 dx- oV | which does not violate the principle of microcausality on the
X“AX1 9,0, _5751 R LF, in spite of the non-locality present in it along tixe

direction. The Hermitian symmetry field theoretic generator
is constructed straightforwardly

8Such a decomposition may also be shown to foll&} as an
external[15] gauge-fixing condition, corresponding to a first class
constraint in the theory, when we apply the Dirac procedure. We
note that fd®x'dx ¢=0 such that¢ has vanishing zero-
longitudinal momentum mode. St +

%n the Schwinger model it is showi10] to be ag number or an Ju=ile'dup—@d o] (A4)
operator and where its presence gives rise tcctiml and thed or such that[¢(x),G]= e, [go(x)*,G] _ goT. The on-shell

condensateacua. In the case of the chiral Schwinger madehay d Noeth t tis qi b
be eliminated from the theory by a field redefinition resulting in gLonserve oether symmetry current IS given by

different degenerate vacuum structure.

G(x*):fdzxidx*j_, where

%They may[33] also be obtained by integrating the Lagrange JﬂZi[dﬁ&M(ﬁ—(ﬁ&Md)T], d,J#=0 (A5)
equations but we must construct LF Hamiltonian framework to ca-
nonically quantize the theory. which shows that the symmetry currerb€v/\2+ ¢)
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space independent we find the same expression as found in

iv .
j,=3,— —=d. (00" the conventional theory. _
V2 It was also shown that the presence, in the case of con-
tinuous SSB, of the transverse directions was crucial for
) showing that the(dynamical zero modes have vanishing
. t Dirac brackets with the nonzero ones. This furnishes us a
Hj=—=d-de—¢") (A6) -
o2 new simple proof of th&€€oleman theoreron the absence of

Goldstone bosons in two dimensions, when we discuss the

is not conserved in the broken phase. In the LF quantize®SB on the LF.

theory, the two currentg, andJ,,, however, give rise to the __TZe ldﬁ§|d the:)retic Iq[e.nerato{s harek dn?WGba: I
same charge or generator, if the surface terms may be i%- ifdx-dx”(d-ei)(ta)ije; - It is easily checked to be al-
nored. eady normal ordered, as in the Abelian case, and we need
The LF commutator may be realized by the following "ot IMPOse it. The symmetry generators on the LF thus an-
momentum shace expansion: nihilate the LF vacuum independent of the form of the scalar
P P ' potential and its symmetry is not broken. We find

Kt [‘Rif(x)vga]:h(_tegij@ja [o ,Ga]iohy and [Ga'Gl_aE]_l
X) = 2kl gkt ——Ta(k)e~ kx4 ptk)eik-* =if ,pG. Which Is consistent with the generators annihilat-
¢(X) \/(277)3J \/2k+[ (k) (k) ] ing the LF vacuum. Not all the generators, however, com-

(A7)  mute with the Hamiltonian when SSB is present, say, when
w; are determined fromNw;w;—m?)=0. There may sur-
where the nonvanishing commutators afa(k),a’(I)]  vive a residual unbroken symmetry if a set of linearly inde-
=[b(k),b"(1)]=6%k, —1,) &(k*—1T). The symmetry pendent generators still commutes with the LF Hamiltonian.
generator in momentum space is found to be Such generators may be found by solvinig)(;w; =0 where

t, are appropriate linearly independent combinations, de-

pending on the iso-vectow={w;} chosen, of the matrix
sz d?k-dk* ok )[a’(k)a(k) —bT(k)b(k)]. (A8)  generators, of the initial symmetry group. The correspond-

ing generatorss, commute with the Hamiltonian written in

In the LF quantized theory only this term is present. It isterms of ¢; and fixed constants);. The counting of the
already normal ordered and annihilates the LF vacuum. Thigumber of Goldstone bosons is thus done as in the conven-
is in contrast to the case of equal-time quantized conventional theory. The tree level Higgs Lagrangian is rewritten by

tional theory, where there is an additional t&him the field ~ the same procedure as in the conventional theory discus-
ions, as done also in Sec. lll. The quantized theories of the

theoretic symmetry generator which does not annihilate the del thoudh i in the tui ‘i
corresponding conventional vacuum state. The LF vacuuny'99S model though are dilferent in the tworms of the
eory as seen in Secs. Il and lll.

thus remains invariant under the symmetry transformation
independent of the SSB in the theory. The broken symmetry

manifests34] itself in the nonconservation gsomé sym- APPENDIX B: INSTANTANEOUS INTERACTIONS
metry currents or in the operator LF Hamiltonian. IN'LF QUANTIZED THEORY
The additional instantaneous interactions in our LC gauge
Higgs mechanism in LF quantized theory[34] LF theory framework in the GWS model may be found

The description below is relevant to tfrent form theory straightforwardly by following the procedure indicated in
of the GWS model in Sec. Il which has a non-Abelian R€f- [14]. Such nonlocal terms are also required, as shown
Higgs sector. there, in order to restore the Lorentz covariance of physical

The SSB of continuous symmetry in the non-Abelian casdnatrix elements. It is worth stressing that they are also
is discussed in Refs[34,35 by considering an isospin- present infront form Yukawa theory, which is no_t even a
multiplet ¢;, i=1,2, ..., ofreal scalar fields. We separate 92U9€ theory, as is shown below. Some other illustrations

first thedynamical zero modex condensatesom the quan-  '¢latéd to the Abelian Higgs model, QCD, and the Yukawa
tum  fluctuations, &;(7,x",x")=w,(7,x")+ ¢ (7x",x"). couplings in the GWS model are also briefly described. The

Then the Hamiltonian framework is constructed foIIowing instantaneous interactions arise when we take into account

the Dirac method. We find in it, in addition to the commuta- the fact that the nondynamical field componets andA .

tors and the Hamiltonian, a set of coupled constraint equa@'® NOt independent fields. Thent form theory framework,

tions. At the tree level they yiel®¥| (w)—d, d, w;=0. For owever, permits us to re-express the mtgracuon Ham|_l-
tonian in terms of the full spinor and gauge fields, as previ-

ously shown in QCD. It results in an alternative and practical

framework, in view of the Dyson-Wick expansion, for the

Yn th I-ti tized th have instége— o' o
n the equal-time quantized theory we have instéde ¢ ) computations in the standard model.

in the expression of, in Eqg. (A6). It does not drop out upon
coordinate space integration, and there is an additional term in the
corresponding generator which may not annihilate the vacuum
state. The description of S§B5] is thus somewhat different in the The LF quantization of the free spinor field was discussed
two formsof the theory. in Ref.[42] and the LF propagator of its dynamical compo-

LF quantized Yukawa theory
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nent derived; it was also shown not to contain any instantawhereS=g¢. We find

neous term in it. We recall that in tHeont form theory the

spinor field? is naturally decomposed into a dynamical field A 1 +g (B6)
componenty,=A"y and a nondynamical auxiliary field v- p=y2- 2ig_

Y_=AN", =, +_, whereA™, with A" +A =1, are

Hermitian projection operators. Written in the LF coordi- Where we define

nates, the free Dirac Lagrangian may, in fact, be rewritten as

— °= d,+m) B7
£°=¢(Iyﬁ—m)¢ ¢ 2|(97 ’yL 1 7 ¢+ ( )
— oL — aL° Clearly,
—UATFA ) —= A —
ai I A+ (AL 0199)=0 Y=y +y2, (B8)
=g (iy-a—m)yy whereyS =, = A" satisfies the free field Dirac equation.
Also

where y*(iy-9—m)y=0
_ _ 1
=gy oty iy o —my_. (B1) b=¢+h=y° T 2ig ’S. (B9)

Here we usedA=y-9=(y d-A"+y -9, AF) which

shows that only/, is a dynamical and independent fielfl. The front form Yukawa theory Lagrangian reads as

carries no kinetic term and is a dependent field. In fact, on L=0 A T(iv-d—ms+S]+---

t_aking the variation ofZ ° with respect to the auxiliary field i+ Ly )lﬁ ]

_ we derive the constraint equation =¢S5 (iy-9—m)y°—yS(iy-9—m)

9L 1
At ﬂzo, or y'(iy-a—-my=0 (B2 Xy S+YS St

=L+ L; B10

which givesy_ nt (B10)

where
Vo= iy o, my (83)

0_ 0 (; o 1 2 + 242
LO= Y iy a—m) g +5(3,4)*— M
showing it to be a dependent field component.

Consider now thevukawa theondescribed by o 1 .
Ling=—9%(iy-9—m)5—y " S+yiS
_ 1 1 - 2id_

L= ¢(|7'3—m)¢+§(%¢)2— §M2¢2+9¢¢¢ B
—y°>iyta9, —m) 2|a TS+ YCATS

=g(AT+A )—£+ (a $)2— =M?¢? _ _ -
Y — y°A TS+ YPATS=y°S

— 1
aL 1 1 =qiy° y°— —— "
U A E + 50,002 SM2G2 9v [‘” oig_ 7 S|
(MI A*(aLlap)=0 B4 1
(B R e R P R (B11)
The nondynamical componegt_ is now determined from
the constraint equation In order to re-express the first term, we have performed in-
tegrations by parts over the spatial coordinatesx* in the
aL . Lagrangian; they™ g, term drops out sincey"?=0. The
+ — A+ ) +
AT ==A"[(iy-9—m)y+3] interaction, when expressed in terms of the free figh

v contains an additional instantaneous term. The LF quantiza-

=0 or y'[(iy-9—m)y+S]=0 (B5 tion may be performed straightforwardly and Dyson-Wick
perturbation theory expansion can be constructed. It is worth
recalling that the LF fermionic propagator is also different
12+ is taken as the LF time whilex(",x") indicate spatial coor-  from the one found in th@stant formquantized theory. The
dinates. See, Reff42,14,9 for notation and discussion on the LF instantaneous terms are necessary, for example, in restoring
spinors. We note\ * =3y y*, y"¢_=0, etc. the Lorentz invariance in the computation of the meson
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nucleon scattering in the Yukawa theory. Ignoring it would 1
lead to disagreement in the calculations of the nucleon self- M(A-9) 77—>—53|\/|77(9—K+
energy in the LF and conventionally quantized theories. B
Their importance in LF quantized QCD in LC gauge was 1
also discussed in our earlier paper. e(hd, n—7d,h)A—e?K+t ——K*

We remark that the expression ¢f S in Yukawa theory (9_)?
contains only the dynamical, component. In the case of
gauge theoryys_ would occur also on the right-hand side of , 1, ,1 .1 .
Eqg. (B6) if we do not use the LC gauge, singe y-A,y ~gFwF —eMy——K T —e"5K 2 )2K
=2A_y_+y VALY, N
(B16)
Abelian Higgs model where integrations by parts in the Lagrangian were freely

. L . . used as in the fermionic case. We observe that the cubic
Next, we consider the derivation of the instantaneous in-

. . : . ) X nonlocal interaction terms cancel leaving behind only the

teraction terms in the Abelian Higgs model discussed in Sec ; g y
i ; ; ; N guartic term.

[l. From the Lagrangian written in LF coordinates it is clear

thatA, is nondynamical since there is no corresponding ki-

netic term. It is also a dependent component. Consider the

equation of motion for the gauge field In the fermionic piece we have now

LC gauge LF quantized QCD

L S'=yHAL(t) Ty
— - 0A,+0,(9-A)= —. (B12)
oA and

We found significant simplifications in the fermionic sector o i
. . =y —g=—7y*S . (B17)

of LF quantized gauge theory if we adopt the LC gauge. The y=¢"-9 29 Y A

underlying gauge symmetry in the Higgs model allows one AZ=0

to adopt this gauged_=0. From the expression of the La-

grangian(4) it then follows that For the non-Abelian gauge field theory we follow closely the

above discussion for the Higgs model. We have

1
. —_— = — + -
((9 A M?])A S e&_K Ai:Aia—’_g 21+a (818)
- (d-)

where where in the massless case we defind%°=¢, A, and

1 9L 1

t=— A =(hd_n—md_h). (B13 jra== oL

€ IALla —om=o 90A% | a_,
Thus the free theory carries in it simultaneously the 't Hooft —f bcAb 9. AS +$,y+(ta)ij o
condition, as was also demonstrated in the Hamiltonian abe -
framework (and in the quantized theoryWhen the SSB is = fap AP I_AS + 40y (12)1] O]
present and the mass of the gauge field is generated by the
Higgs mechanism in our framework, the massive gauge field =[Ka+L?]. (B19

is described by the independent field compondntsand ». . a i ) )
We may define, as in the fermionic case, the dependent freEne field componentd’. and ¢ are again dependent vari-

field componen®\% by the 't Hooft condition ables. The fermionic piece contributes an instantaneous
" seagull interaction as in the Yukawa theory. There arises also
I_A2=3 A +M7. (B14) another type of instantaneous interaction
It follows from Eq. (B13) that gzLa(al )Z[Ka+|_a]_ (B20)
A, =A% +e 5 K. (B15) A similar contribution coming from the gauge field sector,
(-
1 apv
Expressed in terms of the componens, ,A% andh the 2P Faw =5 | Far—Far -+ 2Fai [ Fa )

Lagrangian contains also instantaneous nonlocal interaction
terms. They are indicated below on the right-hand side of the
arrow corresponding to the term which gives rise to it

ZFMLIFMLI

(B21)
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is found to be factor 6(q*)/y2q"; and the Lorentz invariant phase space
factor is [d?p‘dpté(p*)/(2pT). The external massive
(K24 L] vector boson line carries the polarization vedi#(q). Its
: properties and the sum over the polarization states are given
(822  inSec. Il. The notation for the quark field is as given in Refs.
[42,14. The instantaneous interactions in electroweak theory
The interaction Hamiltonian in QCD followfd4]: may be found using Appendix B. The momentum space ver-
tices can be derived straightforwardly employing the Fourier

2ira 1 a a 12 a a
g°K _)2[K+L]—§g[K+L]

(9 (9—)2

Hint=—Lint transforms of the fields given in the text and illustrated in
o g Ref.[14] in QCD. The free propagators are:
= —gy' Yy (1) T PAL+ Efabc( d,A%,—3d,A%,)APLACY Fermionic propagatar
2 . N(p) . s 2 YV
+ngabcfadeAb#AdMACVAeV |5iim' with N(p)=(p+m)—(p*—m )2p+,
2 €>0,

9 Tt oupa i 1 b ibyjk, Kk
- = AS (N ——y AL (1)
2 VYA ig_ 7 v wherep,, is the quark 4-momentum aridandj are color

gz( 1 )( 1 ) indices. The noncovariant second term on the right-hand side

> (B23) is present only in the propagator of the dependent fijeld

Also N(p) = (Bon+m) wherep,,:((m*+p?)/2p*,p*,p*).
Photon propagatar

Bl | B
ig Jallig la

where
c+ i1 D n,g,+q.n
A UN LR W CN Y TN (-7 N 7L Y PR ) PO
qP+ie n-q
and a sum over distinct quark and lepton flavors, not written
explicitly, is understood in EqgB23) and (B24). q® )
———n,n, |,
(n-q)? "

GWS model

In the electroweak sector of the standard modsf,¢on- ~ Wherea, is the photon_4-+momen*tu_m any, is the gauge
tains terms such ag“Z,, etc. Only in the LC gauge, with direction. We choose, =4, andn, =4, , the dual ofn,, .
A_=Z =W>=0, they"S will contain solely the dynami- VECtor boson propagators
cal “+" component of the fermionic fields involved. The K..(q)
discussion in the GWS model in LC gauge follows closely (W;(q)W;(—q»:i 2+
the one given in QCD. gc—mytie

APPENDIX C: FEYNMAN RULES AND PROPAGATORS where

2
The Dyson-Wick perturbation theory expansion on the LF n,d,+d.n, (g*~ Miy)

can be realized in momentum space by employing the Fou- Kul@=| =Gunt n-q (n-q)? Nl [
rier transform of the fields and the propagators discussed in
Secs. Il, Ill, and in Ref[14]. whereq,, is the vector boson 4-momentum ang is the

In the following, a light-cone gauge prescription for the gauge direction. We choosvﬂza;j andny =4, , the dual
singularities ain- k=0, such as the Mandelstam-Liebbrandt of n,. For the neutraZ vector bosormm,, is substituted by
procedure, is understood. The ML prescription for thesem,.
propagator poles will give rise to extra independent absorp- The scalar field$s=,G° andh have the standard covari-
tive contributions. However, these gauge-dependent contrant propagators/(g>—M?) whereM =my,,m, andmy, re-
butions do not appear in the final results for physical observspectively.
ables. It is worth recalling[14] the procedure for computing the

Many of the rules of the Feynman diagrams, for examplediscontinuity or imaginary parts of any Feynman diagram,
the symmetry factor 1/2 for gluon loop, a minus sign asso-employing the Cutkosky rules in our LF framework. For
ciated with fermionic loops etc., are the same as those foundach cut, replace ¢—m?+ie)— —27id(p>—m?) and
in the conventional covariant framework. There are somehen perform the loop integrals. We note thap?(
differences: for example, the external quark line now carries- m?) §(p>—m?)=0 such that last term in each &f(p),

a factor 6(p™) ym/p*; the external boson line carries the D,.(q), andK ,,(q) gives a vanishing contribution.

o
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