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Testing spatial noncommutativity via the Aharonov-Bohm effect

H. Falomir! J. Gambo&, M. Loewe? F. Mendez? and J. C. Rojds
LIFLP-Departamento de Bica, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, Argentina
°Departamento de Bica, Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile
SFacultad de Esica, Pontificia Universidad Calica de Chile, Casilla 306, Santiago 22, Chile
(Received 1 April 2002; published 20 August 2002

The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We
show that, if space is nhoncommutative, the holonomy receives nontrivial kinematical corrections that will
produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formu-
lated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and
the boundd~[10 TeV| 2 is found. If this bound holds, then noncommutative effects could be explored in
scattering experiments measuring differential cross sections for small angles. The bound state Aharonov-Bohm
effect is also discussed.
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I. INTRODUCTION (GUTy) [8]. More precisely, using our noncommutative dif-
ferential cross section, we are able to find a bound for the
There are arguments in string theory suggesting thatheta parameter which is in full agreement with other estima-
spacetime could be noncommutat{id. Although this prop-  tions[9].
erty might be an argument in favor of new renormalizable The paper is organized as follows: in Sec. I, the noncom-
effective field theorie$2], it represents also trouble because Mutative Aharonov-Bohm effect is discussed and a formula
we need to explain the transition between the commutativéor the holonomy is derived; in Sec. Ill we explain the non-
and noncommutative regimes. commutative corrections to the bound state Aharonov-Bohm
If the noncommutative effects are important at very higheffect. The general Schdinger equation and the scattering
energieS, then one could posit a decoup"ng mechanism pr@roblem in a noncommutative space are considered in Sec.
ducing the standard quantum field theory as an effective fieldV; in Sec. V, we study the first order noncommutative cor-
theory having no memory about noncommuta‘tive eﬂ:ectsrections to the Scattering amplltude, in Sec. VI, we estimate a
However’ our experience in atomic and molecular physicé)ound for the noncommutative parameter and we analyze the
[3] Strong'y Suggests that the decoup”ng IS never Comp|etéxperimental pOSSibi”ties for detecting noncommutative rel-
and the high energy effects appear in the effective action a§s and, finally, Sec. VIl contains the conclusions. Two Ap-
topological remnantg4]. pendixes containing a discussion on the commutative
Following this idea we would like to consider an example,Aharonov-Bohm effect at high energy and some technical
related to topological aspects, where the appearance of nof€tails are included.
commutative effects could be relevant. A natural candidate is

the Aharonov-Bohm effedts] where, as we know, the rela- IIl. THE NONCOMMUTATIVE AHARONOV-BOHM
tivistic corrections do not change the qualitative behavior of EFFECT
the fringe patteri6]. A. The Schradinger equation

As we will see, if the space is noncommutative the total . . ) .
holonomy contains—as we will show below—a term depen- [N the commutative case, the Sctimger equation with
dent on the velocity of the electrons, which tends to shift the2" €xternal gauge potential is solved by
line spectrum. Moreover, a new effect is produced by non- o
commutativity: Particles are scattered even when the mag- y=elcX g, (1)
netic flux is quantized. . . - .

Our conc?usions are reinforced by studying the boundWhereqp Is the squt|o_n ofjthe.fre.e Schunger equa.ltlon, and
state Aharonov-Bohm effed@]. In this case, although the theU(1) holonomy,e'/c®*4i,is in general a non-integrable
Schrainger equation cannot be exactly solved, one can extactor, i.e., it depends on the integration p&th
tract information through perturbation theory singe <1. ~ Although Eq.(1) solves formally the Schringer equa-

As a bonus of the previous results, one finds—using pertion, the holonomy involves in a nontrivial way the dynamics
turbation theory—an explicit expression for the scattering®f the gauge potential, hiding all the complications related to
amplitude and a formula for the differential cross section ofA- Our goal below will be to find an approximate expression
the noncommutative Aharonov-Bohm effect. for the holonomy, valid for small values of the fundamental

There is, however, another interesting conclusion that caRohcommutative parameter o
be extracted from our research. The quantum mechanical !N the following we assume that wave functions in the
Aharonov-Bohm effect is also a relevant mechanism to expPlane belong to a noncommutative algebra characterized by
plain other high energy phenomena. In this sense, our calctibe Moyal product, defined as
lations allow us to extract conclusions for other high energy 20l f1 42
processes, e.g., cosmic strings and grand unfied theories (AxB)(x)=e b A(Xl)B(X2)|X1:X2:X' 2
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The Schrdinger equation in this noncommutative space
is

1 1
H*zp— D *Djx = m Kik; i, (3
where k; are the eigenvalues of the operatds=—id,
+A;, i.e

we are assuming, of course, that the magnetic field is zero

everywhere except in the origin.
In order to solve Eq(4) we use the ansatz

y=eF. (5)

As we are assuming that noncommutative effects are small, i
we expand the Moyal product retaining only linear terms in

01

DJ*lp: _|(7J eF+A]'*eF

. i
F _|(?]F+AJ+ Eeflm(éﬁAj)

X (mF) } .
Then Eq.(4) becomes

i
—iF+ A+ 5 06 (01A) (9nF) =k - (6)

Now, one can solve Ed6) perturbatively expanding and
A, in powers ofg, i.e.,

F=FO 4+ gpM4... (7)

A=AD+gAMD+... (8)
At zero order iné, Eq. (6) gives
—ig;FO+AL=k;, 9)

from which the following expression fd¥ (%) is obtained:

X
F(O):ikj(x—xo)j—if deAJ(O). (10)
X0

The first term in the right-hand sid&HS) is just the free
particle solution if we interprek; as the wave number, and
the second term is theg (1) hoIonomy for the commutative
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o [* w_ [ | (0)
F( ):_|f dXJA] _Ej dX]'Em km(9|A]
Xo Xo

i [x
+5 L dx;e™ARD G A (12
0

The first term in the RHS of Eq12) is an additive cor-
rection to the commutative holonomy which, together with

the second term in the RHS of E@.O) gives

X
—i f dx; (A9 + 9AM). (13
X0

The second in the RHS of E@12) is a velocity dependent
term, which can be written §40-12

X i X
deEmIkm07|AJ(O): — —mf de(VX VAI(O))s
2 )x, 2 Jxo
(14

For the last term our calculation yields
L[ 1A 5 a0 L [* 0 (0)
EfxodxjemAm A :Efxodxj(N IXVA?);. (15

Thus, at this order i, the nonconmutative holonomy is
given by

W(X,x0)=exp| U dx;A; + ef dx[m(vx VA),

—(AODXVAO®),] (16)

Now, we analyze the different terms in E4.6). The first
one in the exponential is the usual holonomy, corrected to
order 6, which classifies the different homotopy classes. The
term in Eq.(15) is a noncommutative correction to the vortex
decaying as 1#, which does not contribute to the line spec-
trum. Finally, the term in Eq(14) is a velocity dependent
correction insensitive to the topology of the manifold.

In the commutative Aharonov-Bohm effect, the presence
of the flux produces a shift in the interference pattern, which
is maximum for®d = (2n+1)w(%cl/e), withne Z. In such a
case, for a given value af, the position of maxima and
minima are interchanged due to a changerah the phase.
However, in the noncommutative case, this change of posi-
tions of maxima and minima might not occur. Indeed, the
velocity dependent correction modifies the phase shift which,
for suitable values of velocity, could even become fr a

case. Thus, at zero order we reproduce the solution of thgivenn.

commutative case Schiimger equation.
If we retain first order terms i, the following differen-
tial equation is obtained:

.p) F(1)+A(1)+ Im(a A(O))( F(O))zo, (11

which by integration gives

We finalize this section emphasizing two importants as-
pects of our results:

The above results are a general property of the noncom-
mutative Aharonov-Bohm effect, depending only on the total
flux @ (if the electrons cannot penetrate into the solenoid

If the magnetic fluxe®d/hc is an integer there is no
Aharonov-Bohm effect for the commutative case, as is well
known [5,13]. However, in the noncommutative case the
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term (14) is different from zeroeven in the case where 1)
ed/hc is an integerThis is a quite nontrivial characteristic C1= = Ba®.
of the noncommutative Aharonov-Bohm effect that could be

experimentally measured. Notice that Eq.(21) requiresBg<1.

The final expression for the gauge potential becomes
B. The gauge potentials

In this section we will evaluate the gauge potential for a A=X,
finite radius solenoid orthogonal to a noncommutative plane.
The field tensor in the noncommutative plane is

® ®2 )

—0 +...
2m(X3+%5)  8mA(XE+X5)?

Flu=0,A,— A, +iA A, —IAxA,.  (17)

A e o* +

=—X — 6 e,

2 M 2md+xd)  8mA(x2+x2)?

Expanding the Moyal product and retaining only the lin- (24)

ear term inf, we have where®=Ba? is the magnetic flux enclosed into the so-

lenoid.
We finally give the gauge potential expressed in terms of

We must construct a gauge potential such that the magRolar coordinates,

Fo=d,A,—d,A,+0ePd,N,d5A,. (18

netic field B;=F,, vanishes everywhere, except inside the A, =0,
solenoid. We proceed as in the commutative case, starting
with the ansatZwhere the ordinary product is understpod o ®2
A,=——0———+0(6?),
A= —x,f(r?), ¢ 2@ gg?rs
(25
Ay=x4f(r?), 19 e o - o
2=x1(r%) (19 which will be useful in solving the Schdinger equation in
for r>a, the radius of the solenoid. the next sections.
We impose the conditiorB3:l312=0 outside the sole-
noid, implying that Ill. BOUND STATES FOR THE NONCOMMUTATIVE

AHARONOV-BOHM EFFECT

21 +2r%1" 4+ 6(f2+ 2r*f ) =0, (20 In this section we will solve the noncommutative Schro
wheref’ =df/dr2. d!nger _equation(3) for an eIec_tron moving in a t\_/vo-
dimensional manifold parametrized by polar coordinates
(r,e), with r>a and O< p<27r.

Before doing this, it is necessary to explain an important
11 technical point: The Moyal produd®) is implicitly written
f=— 14— in Cartesian coordinates. Therefore, in order to solve(BQ.

6 0 in polar coordinates, one must express shproduct in the
general case.
.6 C§92 ] We find the following expression for the Moyal product

This differential equation can be easily integrated, yield-
ing the following solutions:

up to first order in6:

2D i0 ,
o . F()*p(x)=f(X)p(X)+ —=€#"a,td,p+O(6?),
wherec; is an integration constant. P P 2\/6 w1 0P
From Eg. (21) we see that the commutative limit is (26)

smooth for the plus sign in the above equation, then we ) ) .
adopt whereg is the determinant of the metric.

At this order ing, the Schrdinger equation becomes
2
P U (22 (Flo+ AW =K, @7
2r2  grt
whereH, andH, can be identified by replacing E(5) in
We determine the integration constant by imposing theEg. (3), and taking into account that the covariant derivative
Stokes theorem at zero order 6 becomes

B-dS=d= ¢ A®.dT, (23) D=—i (28)
J'] $

getting We get
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) 1 P 2
Ho—ar+rar+r—2 To=1 9= 51 (29
L1 o\ 1) o, @,
Hl—r—3 _I&q:_ﬂ <9r+r—4 —Iﬂ(P—;é'(P

2 (I)B
+i—d,+ — 30
w2 ¢ 8 30
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noncommutative effects are important only at small distances
~ /6, one would expect some relevant consequences in the
high energy regionk~ 1/y/6.

Equation(31) contains the commutative Aharonov-Bohm
effect as a particular case, fé=0. The Oth order solution
can be written as

Xg(r):AgJV(kr)‘l‘B(YV(kr), (35)

with v=|¢ —®/2m|. The constant#\,, B, and the Hamil-
tonian eigenvalueg, o= k? can be obtained—as usual—by

As 6 is very small, one can use perturbation theory forimposing the boundary conditions an(r),

computing the eigenvalues and eigenfunctions of the Hamil-

tonianH =Hy+ 6H ;.

Xxe¢(a)=0=x,(b), (36)

spectrum for the bound state Aharonov-Bohm effect.

A. The noncommutative bound state Aharonov-Bohm effect

The bound state Aharonov-Bohm effect is a result due to
Peshkinet al. [7], which establishes the flux and angular
momentum dependence of the energy spectrum, a meas
able quantity in principle. In this effect one considers an
electron constrained to move between two impenetrable co
centric cylinders with outer and inner radiosinda, respec-
tively, and in the presence of a magnetic fldx contained

inside the inner one.

In the noncommutative space, the Sdalinger radial

equation at first order i@ is given by

€ it € @)’
, “Tanl| G
02p (P2 P3
B —
™ 272 8#°
+ 2 Xe(T)
r
= (hg ot 00y D xe(r)=K2x,(r), (31)
where we have called
hy o= — 97 1a+1 ¢ ® ) 32
{,0_ r r r r2 277_ 1 ( )
L1 D 1 , €
hf’l__r_:’) f_ﬂ (9r+r—4 { _T
(D% @3 33
272 873/’

and the following ansatz has been used for the wave func-

tion:

w(r,q»):gz eex(r). (34)

Although this equation cannot be solved exactly, one can
use perturbation theory in the small parameter Since

tion,
fb,\/e(r)zrdr=1. (37)

Notice that the eigenvalues depend on the angular mo-
mentum¢ only throughv. Therefore, degeneracy will occur

%) ¢, — d/2a|=|¢,— d/27|, which is possible only b/

is an integer. For simplicity, to be able to apply perturbation

r1heory in its simplest form, in this section we will avoid

these particular values of the flux.

Taking into account Eq(36), the mean value dﬁm can
be straightforwardly cast in the form

b ~
E/1= L Xe(NDhexe(Nrdr=P€,®)(r %,, (398

whereP(£,®) is a cubic polynomial,

2

, ¢ 2720 — 3
e

(I)Z
P ﬁ‘1)+T |

(39
and

2
(r‘4>(=fbxe(4r)rdr (40)
r

a

is a function ofv,a,b andk only.

Since noncommutative effects are expected to occur at
high energiesK a>1), it is enough to use in Eq35) the
first terms in the asymptotic expansions of Bessel functions
for large arguments. We will retain just the first two terms in
these expansions, i.e.,

3 [ 2 av  w\ 4rP-1
(2)— ECO 2—7—— -

4 8z
s TV T
Sin| z 7 Z s
v 2 mv  w\ 4r?2-1
e Rk Ly B>
X L 41
cos z 5 7] |- (42

Using Eq.(41) in Egs.(37) and(40), we get
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128a3%k>

-4\ _ _ 5,2 31 _ 2\2 4314 2_ 371 _ 2\2 2
(r %) D(v,a,b,k)x 768a6b3k4(512ak+8a(1 4v°)°+128a"b°k*(4v°—9) + b (1—4v°)(7+4v°)

cog2(a—b)k]

+(2a2b3k?) (11602 + 4814 — 6415—31))—
( ) ) 768a°b*k*

(b(2b%k?>—1)(1—41v?)°—64a’bk?(41v°—9)

sif2k(a—b)]
153@°b*k>
X (4v°— 9)] —64a2k2[3— 1212+ 2b%k?(4v°— 9)]— 32abl?(—1+2b%k?)(9—40v°+ 16v%))

X (2b%k?—1)+8a(4v?—1)[3— 1202+ 2b%k?(41>—9)]) + (1-4v?)?[3— 1202+ 2b%Kk?

+ Ci2ak)| cog2ka) 16v*—400°+9 +sin(2ka) (4v%—9)[64a’k?>— (1—41?)?] +Cic2bl| sin(2ka)
I(Za CcO a)| ———————— Sl a | Sl a
2a° 192a3%k
(412 -9)[—64a%k?+ (1-4v%)?] 16v*— 4002+ 9 , , 16v*— 4002+ 9
X —cog2ka)| ———————| | +Si(2ak)| sin(2ka) ———————
192a%k 2a° 12a®
(4% —9)[ —64a%k*+ (1—41?)?] , (4v%—9)[64ak?>— (1—41v?)?]
+coq2ka) +Si(2bk)| coqg2ka)
192a3%k 19223k
in(2k )16V4—40V2+9 (42)
—SlI a)————— y
12a®

where
(a—b)[64a%k?+ (1—41?)?]
2

[64a2K2— (1— 412)2]si 2(a— b)K]
+ 2K

D(v,a,b,k)=8k| —4a(—1+4v?)— +4a(—1+4v?)cog2(a—b)k]

+ (4v?—1)[Ci(2ak) (16ak( — 1+ 4v?)cog 2ak) + [ 64ak>— (1

—4v?)?]sin(2ak))+ Ci(2bk) (— 16ak(4v?>—1)cog 2 a k) +[ — 64ak?+ (1—4v?)?]sin(2 a k)) —[Si(2 a k)

—Si(2b k)][(64a%k®— (1—4v?)?)cog2 ak)+16a k(1—4 v?)sin(2ak)]] (43
|
and Therefore, even though the Oth order spectrum depends
only on v=|¢—®/27]|, the first order ¢') correction de-
=cogt) pends separately on the fldx and the angular momentufi
Ci(z):_f : dt, introducing a shift in the eigenvalues sensitive to the sign
z of €.
0.08¢
. zsin(t)

Si(z)= OTdt' 0 06l
Despite this aspectr ~*) is a slowly varying function of, Q.04
as can be seen in Fig. 1. Moreover, for a given(r %)
rapidly approaches a constant value wHegrows up, as 0.02¢
shown in Fig. 2.

Consequently, it is the coefficient f ~4) in Eq. (38), the s 10 -5 5 10 15

cubic polynomialP(€¢,®), which governs the shift produced
on the eigenvalues. Notice that, for given flbxand angular -0.02r
momentumy, the successivéarge eigenvalues of the radial
equation(31) are all shifted by the same constant. In particu- -0.04t
lar, for large|¢|, this constant does not change sign. FIG. 1. (r %), as a function ofv, for b/a=10 andk a=40.
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0.04r ‘l’o(a,(,D):O,
0.038¢ ) alkr
Wo(r—o, @)~ %)+ f(p k) —. (48)
Jr
o.osew
The first equation guarantees that the electron never reaches
0.034} the regionr <a, while the second one is the usual scattering
condition.
o 032 The formal solution in Eq(47) is given by
\Pl(x)=—f dx’ G(x,x" YH  Wo(x), (49
30 40 50 60
FIG. 2. (r™%, as a function ofk a, for b/a=10 and v=7 where G(x,x’) is the Green function of the unperturbed
— problem, that is
Finally, we would like to add some comments related to " 2 VISP / /
. . Ho—k9)G(r,o;r',¢")==8(r—r")é(¢—¢"). (50
the relativistic case. Although in this paper we solve the (Ho JG(reir’,e") r ( )ole=¢"). (50

Schralinger equation, our conclusions are valid in the rela-
tivistic case too, indeed, as the Aharonov-Bohm interaction
is static, the Schidinger and Klein-Gordon equations are ]
related byEg.— E2— m2. However, a delicate point is the e Propose a solution for E¢S0) of the form

B. The Green function

following: as we are thinking in electrons, one should use the 1
Dirac gquation_instead of the Sch'rodinger.one. In syph a case G(r,o;t',¢')= > 2 eif(wcp’)g((r'r . (51)
there is a critical subspace which admits nontrivial self- ez

adjoint extension§14—16§. , . , )
In our case the boundary conditions ensure that the eigerRePacing this in Eq(S0) and using an appropriate represen-

functions have a finite limit for —0. This could correspond tation for the delta function, we obtain

to a possible self-adjoint extension. In any case, for first or- 1

der corrections, as we have done, everything is consistent. (hy o=k ge(r,r')==8(r—r"), (52

For the perturbatior{33), the problem is defined far=a, ’ r

which ruled out the case=0. In spite of this constraint, one

can consider the case—0, but the boundary conditiof36)

ensures the self-adjoint properties, as, e.g., in quantum m

chanics.

whereg,(r,r’') must also satisfy the appropriate boundary
gonditions,

ikr

ge(a,r'>a)=0, ge(r—o,r’)~
IV. SCATTERING STATES FOR THE NONCOMMUTATIVE \/_r
AHARONOV-BOHM EFFECT

(53

Forr#r’, Eq. (52) is just the Schrdinger equation for

A. The perturbative solution the commutative Aharonov-Bohm effect, whose solutions are
In order to compute the scattering states we look for solinear combinations of Bessel functions, as in E2p). Let
lutions of Eq.(27) in the form us introduce two linearly independent solutions of this ho-
mogeneous equation, satisfying the boundary condition at
V=U+0V,+---, (44  =a andr—x, respectively,
implying that XA (=Y, (ka)d,(kr)—Y,(kr)J,(ka),
oW o=k, (45) XU =3,(kn)+iY, (k) =HD(kn), (54)
(Fo— k)W, =—F,W,. (46)  whereH{Y(2) is the Hankel functions.

The continuity ofg,(r,r’) at r=r’, together with the

Therefore, the correction to the wave function at first order indiscontinuity in its first derivative implied by the RHS of Eq.
perturbation theory results in (52), lead to

Uo(r,0)=—(Ho—k?) A, Wy, (47) XX, r<r’

r,r'y=C_C (o0 , 55
e )=Co X )X% )(r) F>r, (55

where the Oth order wave function satisfies the boundary
conditions where the constar® is given by
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1 The solution to the set of equatiofs9), (61) and(62) is
Co= , 56
T W X)) 0 v
R _ J(ka)
. . : Ag=ie (A7(r=20 (63)
with W[ f,g]=f g’ —f'g being the Wronskian. H(Y(ka)
C. The free solution and the commutative case scattering J,(ka)
theory B,=—ie (Am(r=20 —(Vl) : (64)
The last ingredient we need for computing E4Q) is to Hy (ka)
express appropriately , satisfying the boundary conditions
(48). We write e i(m/4) , H®)(ka)
fo=— 1+e 170 ———|
A 27k H(Y(ka)
Wo(r @)= 2, e xn), (57) (65)
with where theH(}?(z) are the Hankel functions.
From Eq. (65 one can easily extract the phase shifts.
Xy =[Ad,(kr)+B,Y,(kn)]. (58)  Indeed, from scattering theof$9], one knows that the scat-
tering amplitude for the/th partial wave is
For convenience, in what follows we will develop a par-
tial waves analysis of the scattering amplitude, a$18). e i(m4)
There are other treatments of this problem in the literature fo= (e?9%—1). (66)
(see, for exampld5,17] and[18]) leading to results differing 2wk
in the forward scattering term, but having the same scattering
amplitude for nonvanishing angles. This justifies our ap-Then, in the present case
proach to the cross section fer# 0.
The first condition in Eq(48) implies that H(z)(ka)
2i6p — (+1ln—imv__ YV
et=(-1)""e _ (67)
AJ,(ka)+B,Y, (ka)=0. (59 H(Y(ka)

In the second condition, one can develop in Fourier series t
scattering amplitudef (¢,k)==,_,€'‘?f,, and the plane
wave e’ (which can be written in terms of Bessel func-

N&hich provides an exact expression for tBenatrix [13].
One can check the consistency of our approach by evalu-
ating the limita—0. In this casé, reduces to

tions):
_ aikr iz
eikr cos(¢)+f((P K) — for= [ef'w(yia—l], (68)
' \/F ' k
. _ e|kr ivalentl
:E glte ||”J|(‘(kr)+f€— or, equivalently,
teZ \/F
an
ikr [ i]¢ = (l¢]—
Nz ei(qo i( Il | e—i(77|€\/2+71'/4)+f€ 5{/ 2(|€| V)' (69)
lez \/F 2wk
Zikr [ il Equations(67)—(69) are in agreement with other derivations
€ : ol (mlel/2+ mi4) (60) found in the literaturg¢13,20. Notice that the phase shifs
Jr L 2mk ’ do not tend to 0 fo — *=oo; instead, they approach nonva-

nishing constantgsee the discussion ii7]).
where we have replaced the asymptotic expression of Bessel In order to compute the differential cross section one must
functions inside the series. get, first, the total scattering amplitude, i.e., we must evaluate
Comparing the terms in E460) with the asymptotic ex- the sum
pression ofy(?(r) in Eq. (57) for large values ok r [see Eq.

(41)] we get the following equations: * '
flo.k)= > fee e (70)
ile‘e*i(ﬂlf‘/2+ﬁ/4)+ \/mfez(A{}_iBe)efi(wvl2+7T/4), {=—o
(61)

_ . The explicit calculation of Eq(70) involves several tech-
iltlei(mltizemit = (p, +iB,)e! (T2t ) nical and conceptual difficulties which have been a source of
(62)  controversy in the pasel].
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First, let us consider the case=0. Making use of Eq. tation of the forward scattering term in E(4), in the con-
(68), the total amplitude becomes text of the construction of the scattering matrix, is considered
in that reference. Many authors have discussed the presence
e " S, L . or not of this forward scattering singular term in the total
fole,k)= 27k 6:2_00 e (-1+e ™(=1)"). scattering amplitudésee, for examplgl7)). It is not present
(71) in the original derivation by Aharonov and Bohfs], and
can be also avoided making use of an analytic regularization

The first term in Eq(71) is as in[18]. However, as previously pointed out, in the present
work we are interested in the calculation of the differential
o-ilmla) o i(wla) cross section for scattering angles different from zero, where
> ele(—1)=— 27 ¢] different approaches coincide. This justifies the partial waves
27K (=== V2mk analysis we performed.
5 The calculation of the differential cross section is now
p . .
__ Wé[go]. (72) immediate. Indeed, fop#0 we have
For the second one we gétee Appendix B for details Sird 9}
do
= 2t 4
eif(p e*iﬂrrv -1 14 TKSIN| =
ok ( (=1 2
e (™4 o @\ |ellotDe L . . .
= 277cos( _) N e]+2i sin( _>p -, which is the usual Aharonov-Bohm differential cross section
V2mk 2 2 1-e'? [5], vanishing for® = 24n, with n integer.
(73 If the radius of the solenoid is different from zera (

>0), one can similarly isolate the singular contributions to
the total scattering amplitud€ ¢,k), coming from large val-
ues of ¢ (or equivalently, from large values af). Using
appropriate large order expansions for the Hankel functions,
one finds that the coefficierft, is given in this case by the
RHS of Eq.(68) plus terms rapidly decreasing with which

) lead to absolutely convergent serissmming up to continu-
C°5< E) _1}5[4’] ous functions ofe). Therefore, the singular terms found in

Eq. (74) for fo(¢,k) (those containing| ¢] andP[i/¢]) are

wherel, is the integer part ofb/27 and P[F(¢)] denotes
the principal value of(¢).
Finally, the scattering amplitude becomes

(2T

i ®\ |ellorDe also present irf(¢,k).
+ —sin = |P _
™ ( 2) 1—¢'® ]
V. FIRST ORDER NONCOMMUTATIVE CORRECTIONS
— A /2_77{ COS( 9) _ l} 5] TO THE SCATTERING AMPLITUDE
ik 2
i @ i dillot e In this section we calculate the first ordef'] perturba-
+—sin( _) p[_ + _ ) ] . (74)  five correction to the scattering amplitu@igp, k). This will
T 2 ¢ 1-e¢ o allow us to find the first noncommutatisingula) correc-
tions to the differential cross section.
Notice thatfy(¢,k) vanishes ford=4sn, with n integer. In doing so, we must evaluat&,(x) in Eq. (49), with
For these flux values the particles are not scattered at all by o(X) given in Egs(57), (63) and(64), andG(x,x’) given
the zero radius solenoid in the commutative case. in Egs. (51), (59 and(56). .
This formula coincides with Eq4.11) of [13], where it Taking into account thatly andH, are diagonal irt, we

was obtained following a different procedure. The interpre-can Write‘l’l(r,(p)=2€ei€"’)(%1)(r) to get

xPry=- fawg.q(r,s)(ﬁe,lx%‘”(s))s ds

= —co{xfé”’(r) f ;x%”(s)(ﬁf,lx%")(s))s dst+ x{(r) f fx%@(s)(ﬁe,lx%“(s))s ds, (76)
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with x{)(r) andx{?(r) given in Eq.(54), andh, , given in
Eq. (33).

PHYSICAL REVIEW D 66, 045018 (2002

0 fim .
Hfl!:Z’ ITel(qa/z)ks/z

1+¢+O€*2 83
577 (€ °)]. (83

Since we are interested in the noncommutative correc-
tions to the scattering amplitude, we should consider the

asymptotic behavior o,ffgl)(r) for r —o. The expansions for

large arguments of Bessel function in E4l) allow us to

Multiplying this expression bye'‘¢ and summing or¢
from €4+ 1 to<, we obtain the following contribution to the

see that the second term in the brackets in the RHS of Ecattering amplitude:
(76) decreases faster than the first one, and can be discarded.

For arbitrarya>0, the integrand in the first term is too

complicated to give a closed solution to this integral, and ¢ [im (@23
some simplification is necessary. For this reason, we will 2V 2¢ o]+ P

analyze it only in thea—0 limit.
In this limit, straightforward calculations lead to

@) i
Coxy (r)ﬂaﬂo—7\]v(kr) (77

and

( _ 1)€e7(1/2)ifrrv

he X (s)—a 0 {m?(4me

873t
—P)k s, 1(ks)—J,_1(ks))+ (873
— 872D+ 4wt D2— D3I (ks)}, (78

while x{*)(r) does not depend oa
Then, forv>1 [22] the coefficient ofy!”)(r) in the RHS
of Eq. (76) reduces in this approximation to

i
1672

( _ 1)697(”2)77”'(2

y (8733 —87%(°D -8 + 47l D*+ 27°D — D3)

4v(v?-1) ’
(79
an expression in which we must distinguish two cases,
namely
€>E and Esz. (80

If €=1y+1>d/27 (where |y is the integer part of

®/27), thenv=+€—®/27, and Eq.(79) becomes

. 1 @
i(—1)fe” (MEm=®) 7 kZ( st Tec ™t (’)(6‘2)) :
(81)

Now, taking into account that, far—oo,

2 eikr
(©)ry=pH(@D) A | D ai(m2) (- DR2m) —i(wlE) Z
x¢(r)=H;"”(kr) \/Wke N

r
(82

we get the first perturbative correction tp in Eq. (70) as

(DI 1
1—gl¢ _EOQ[

—ellere]y .|, (84)

where thee— 0" limit is understood, and the dots stand for
continuous functions ob.

For the casd <{,;<®/2 7, we haver=®/2 7—(, and a
similar calculation(\where the sum o# is taken from—o to
{,) leads to the following contribution to the scattering am-

plitude:
0 fim i 1
v —i(®/2)1,3/2 _
4\/ > € k (775[47] P 1—e_i‘P}
, (89

b o
] —e i(miete)1 ...
5 log[1—e 1+

where, again, the limit—0" is understood and the dots
represent continuous functions @f

Therefore, at first order ir# the scattering amplitude is
corrected by the addition of

0 i ®
0f(1)(<p,k)=z gkw 2wcos<§)5[<p]

+‘°°ﬁ<®;¢)7’ Sm(l )

_ %efi(q)/Z)log[l_ e*i(*ieJrcp)]

N6

~ zgei(ib/2)|og[1_ eiliera] ...
a

(86)

In conclusion, as the incident particles are very energetic
and the scattering angle is very small, the main contributions

to the total scattering amplitudd ¢,k) are given by 23]
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21
V ik |

o i b
o — 3 _
+05\ 5K 2005<2

[2 (@
- HSIH

2

2

1) physics experiments involving energies between 200 and 300
COS{ ) - 1} GeV, if the present bound fof is correct.
In order to estimate a bound for tlfeparameter, first we
note that, since noncommutative effects are tiny, the correc-
]5[90] tions to the differential cross section could be, typically, of
the order of the cross section for neutrino eveatsd 3 nb.

fle. k)=

i fim o If we choose the scattering angle between 1 and 2 degrees,
+ 95 7" “co 2 P — and take an energy 200 GeV as the highest possible pres-
ently available for electrons, then we find

+

(87
0 i 3 )] 8902 do 12
2V 2K 24)005(5 log(¢) 0= |~ g,| ~110 TV (9D
+ continuous functions ofp. (89

Notice that the most singular terms in the scattering ampliwhich is in agreement with the bound given[®).
tude, which are~k %2, are corrected by noncommutative Thus, precise measurements of the differential cross sec-

terms ~ 9 k¥2. Moreover, for®=4xn, with n integer, the tion for small angles could give us information about spatial
Oth order singular terms in the amplitude vanish, contrary td10oncommutativity.
the noncomutative corrections, which are different from

zero.

For small anglesp#0, the dominant term in the ampli- VIl. CONCLUSIONS
tude is~1/p. Then, for the differential cross section we have .

Three relevant properties of the remarkable phenomenon

q 5 @ K o\ 1 of noncommutative Aharonov-Bohm effect have been found

—Uzl—sinz = |+ 6sin(®) + 0zzk3co§(—)}— in the present paper: e

de |7k 2 2 8 2/ g2 Pattern fringes can appear even when the magnetic flux is

] quantized, contrary to the commutative case.
+less singular terms. (89 The differential cross section, given by E§0), is differ-
ent from zero when the magnetic flux is quantized.

Now, if the magnetic flux is quantized ds=2n, with n Our results allow for an estimation of a bound for the
integer, the differential cross section at small angles is dominoncommutative parameter, which is in agreement with
nated by noncommutative effects, [9].

The first property, in principle, could be verified in a
do 27T|(3 ) Tonomura like experiment, if an appropriate incident elec-
do 0 8—(p2+less singular terms. (90 tron beam is available. Our estimations suggest, however,

that the incident electron beam energy should be much larger

. . than the energy reached in these experimg2fs Thus, an
Itis mterestmg_ to note that, contrar_y to the usual Aharonqv'experimental verification should be searched in high energy
Bohm effect, in the noncommutative case the differential

: e physics experiments and, specially, by measuring differential
sca_tterlng'cross sgctlon is different from zero when the Mag:, Jss sections for small angles.
netic flux is quantized.

Apparently, this correction  6?) could be relevant at

high energies. This simple formula will allow us to extract

interesting physical information, as we will see in the next ACKNOWLEDGMENTS
section. This work has been partially supported by the grants
1010596, 1010976, 7010976 and 3000005 from Fondecyt-
VI. PHENOMENOLOGICAL ESTIMATIONS FOR SPATIAL Chile, and also by the grantC-13398/6 from Fundacion
NONCOMMUTATIVE EFFECTS Andes. H.F. also acknowledges support from CONICET

(grant 0459/98and UNLP(grant 11/X298, Argentina.
As mentioned in the Introduction, the Aharonov-Bohm

effect is an important mechanism to explain other physical
phenomena. This point of view has been used in the past, and
some applications of this idea are cosmic strings and GUT
[8], anyons[24] and also three-dimensional grav{i30].

In this section we will analyze experimental possibilities In this appendix, we would like to discuss some implica-
of detecting noncommutative signals via the Aharonov-tions of the relativistic Aharonov-Bohm effect.
Bohm effect. Our numerical estimations—as we will see From Ref.[6] one can see that the Green’s function asso-
below—show that these relics could be explored in particleciated to the usual Aharonov-Bohm effect is given by

APPENDIX A: NOTE ON THE RELATIVISTIC
AHARONOV-BOHM EFFECT
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Glxx']= 2 (=)™ “lexd —i(n+®)]Fjnsa,
(A1)

where® is the magnetic flux and the functidf, , 4| for the
nonrelativistic case is

m 2mi
Flnvaj=5 _—exg—(r"+r'%)

mrr’
XJ|n+q)(T) , (A2)

PHYSICAL REVIEW D 66, 045018 (2002

APPENDIX B: DERIVATION OF EQ. (73)

In this appendix we show that

[

P eie‘Fe_i”V(—l)‘f:quco{%)5[<p]

® el (Co+1)e
+2isin(— P

2

1—¢l®
(B1)

wherer=t—t’ andJ, are Bessel functions. For the relativ- Where ¢ I(S the |€nte€geqr)/2part ofb/27. First, notice that
istic case the calculation is similar. Indeed, after using thee ' 7"(—1)¢=¢' I~ 7, since the exponents commde

proper-time gauge the functidf, . | becomes
2 ” H T 2 2
Finrao= | dp . dTex |pMAx“—§(p +m?)

rr’
Xjn+af| 7

whereT=N(0)(t—t") with N(0) the einbein.

(A3)

If we use the Poisson summation formula, then in both the

modulo 27. Moreover, if €>€ +1 then [ —®/27|=
—®/27, while if ¢<¢{, then|{— <I>/27r| —{+ D27,
Therefore, we can split the series in EB1) to write

S itegin(ltl-le-@rm)
{=—o

Lo

= 3 gilegrin@rn 3

(= =0y+1

©

gl ( ogi m(®/2m)

relativistic as well as in the nonrelativistic case, the Green'’s

function is

G[X,X/]: 2 eZiﬂTr‘IﬂDKn )

n=-—ow

(A4)
whereK, is defined as

Kn:f do(—i)lele 1Pk, (A5)

and, as a consequence, the wave function becomes

o]

p)= 2 €M), (A6)

with

en(X)= f dyGi[x,y]i(y), (A7)

being ¢, and G, [ x,y], respectively, the wave and Green'’s
functions for thenth homotopy clas$26].

Thus, from Eq.(A6) one sees that the relativistic charac-
ter of the system is contained iq, and only the exponential

factor, which does not depend on the energy, is responsible
for the fringe pattern. This result reflects the topological na-
ture of the commutative Aharonov-Bohm effect. However,

our formula (14) shows us that the noncommutative

[

=g (PR)ailo?|im E e l(e—ie) 4 gl (P2)gi(lot1)e
e—0t=0

oo

X lim ) lteria)

e—0l=0

(B2)

where we have introduced the positive paramet&s prop-
erly define these sums.

Now, the evaluation goes in the standard way. For the first
series we have

[

e 1(@2)gitorfim S g-itle=ie)

e—0t=0
i((I>/2)ei€0(p
= Iim .
e~>01_ e—l((p—le)

_ _ie—i(®/2)ei(€0+1)qo( i wé[i(l—ei“’)]

|

= e (@) 5] o] @i @D

1

+P| ———
i(1-€'%)

i(Co+1)o

1—1 "9

Ahararonov-Bohm effect is radically different because the
fringe pattern must change when the electrons are getting

higher energies.

where?[ - - -] means principal value.
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The second series in the RHS of EB2) is evaluated in _ _ el (ot 1)e
a similar way, = 7e!(*2 5[ o]+ €' (*2P — (B4
el(®)ei o+ Dejim 3 gite+ie)
_of=0 . ) .
«0 Collecting both results one finally obtains
el (P12)gi(Co+1)e
=lm—————
cns0 1_el((p+lé) -
2 elf(pe—MTV(_l)(’
{=—
:iei(CI)IZ)ei(foJrl)zp( —ir 5[i(1_ei<p)]
1) 1) gl(fot1)e
_ @ 42 sin —
L 2#00{2)ﬂ¢] msm<2)P-I:;ﬁ—
i(1—¢€'?) (B5)
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