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Testing spatial noncommutativity via the Aharonov-Bohm effect
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The possibility of detecting noncommutative space relics is analyzed using the Aharonov-Bohm effect. We
show that, if space is noncommutative, the holonomy receives nontrivial kinematical corrections that will
produce a diffraction pattern even when the magnetic flux is quantized. The scattering problem is also formu-
lated, and the differential cross section is calculated. Our results can be extrapolated to high energy physics and
the boundu;@10 TeV#22 is found. If this bound holds, then noncommutative effects could be explored in
scattering experiments measuring differential cross sections for small angles. The bound state Aharonov-Bohm
effect is also discussed.
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I. INTRODUCTION

There are arguments in string theory suggesting
spacetime could be noncommutative@1#. Although this prop-
erty might be an argument in favor of new renormaliza
effective field theories@2#, it represents also trouble becau
we need to explain the transition between the commuta
and noncommutative regimes.

If the noncommutative effects are important at very hi
energies, then one could posit a decoupling mechanism
ducing the standard quantum field theory as an effective fi
theory having no memory about noncommutative effec
However, our experience in atomic and molecular phys
@3# strongly suggests that the decoupling is never compl
and the high energy effects appear in the effective action
topological remnants@4#.

Following this idea we would like to consider an examp
related to topological aspects, where the appearance of
commutative effects could be relevant. A natural candidat
the Aharonov-Bohm effect@5# where, as we know, the rela
tivistic corrections do not change the qualitative behavior
the fringe pattern@6#.

As we will see, if the space is noncommutative the to
holonomy contains—as we will show below—a term depe
dent on the velocity of the electrons, which tends to shift
line spectrum. Moreover, a new effect is produced by n
commutativity: Particles are scattered even when the m
netic flux is quantized.

Our conclusions are reinforced by studying the bou
state Aharonov-Bohm effect@7#. In this case, although th
Schrödinger equation cannot be exactly solved, one can
tract information through perturbation theory sinceu,,1.

As a bonus of the previous results, one finds—using p
turbation theory—an explicit expression for the scatter
amplitude and a formula for the differential cross section
the noncommutative Aharonov-Bohm effect.

There is, however, another interesting conclusion that
be extracted from our research. The quantum mechan
Aharonov-Bohm effect is also a relevant mechanism to
plain other high energy phenomena. In this sense, our ca
lations allow us to extract conclusions for other high ene
processes, e.g., cosmic strings and grand unfied the
0556-2821/2002/66~4!/045018~13!/$20.00 66 0450
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~GUTs! @8#. More precisely, using our noncommutative d
ferential cross section, we are able to find a bound for
theta parameter which is in full agreement with other estim
tions @9#.

The paper is organized as follows: in Sec. II, the nonco
mutative Aharonov-Bohm effect is discussed and a form
for the holonomy is derived; in Sec. III we explain the no
commutative corrections to the bound state Aharonov-Bo
effect. The general Schro¨dinger equation and the scatterin
problem in a noncommutative space are considered in S
IV; in Sec. V, we study the first order noncommutative co
rections to the scattering amplitude; in Sec. VI, we estima
bound for the noncommutative parameter and we analyze
experimental possibilities for detecting noncommutative r
ics and, finally, Sec. VII contains the conclusions. Two A
pendixes containing a discussion on the commuta
Aharonov-Bohm effect at high energy and some techn
details are included.

II. THE NONCOMMUTATIVE AHARONOV-BOHM
EFFECT

A. The Schrödinger equation

In the commutative case, the Schro¨dinger equation with
an external gauge potential is solved by

c5ei *CdxjAjw, ~1!

wherew is the solution of the free Schro¨dinger equation, and
the U(1) holonomy,ei *CdxjAj , is in general a non-integrabl
factor, i.e., it depends on the integration pathC.

Although Eq.~1! solves formally the Schro¨dinger equa-
tion, the holonomy involves in a nontrivial way the dynami
of the gauge potential, hiding all the complications related
A. Our goal below will be to find an approximate expressi
for the holonomy, valid for small values of the fundamen
noncommutative parameteru.

In the following we assume that wave functions in t
plane belong to a noncommutative algebra characterized
the Moyal product, defined as

~A!B!~x!5ei /2ue i j ] i
(1)] j

(2)
A~x1!B~x2!ux15x25x . ~2!
©2002 The American Physical Society18-1
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The Schro¨dinger equation in this noncommutative spa
is

Ĥ!c5
1

2m
D j!D j!c5

1

2m
kjkjc, ~3!

where kj are the eigenvalues of the operatorD j52 i ] j
1Aj , i.e.,

D j!c5kjc, ~4!

we are assuming, of course, that the magnetic field is z
everywhere except in the origin.

In order to solve Eq.~4! we use the ansatz

c5eF. ~5!

As we are assuming that noncommutative effects are sm
we expand the Moyal product retaining only linear terms
u,

D j!c52 i ] j eF1Aj!eF

5eFF2 i ] jF1Aj1
i

2
ue lm~] lAj !

3~]mF !G .
Then Eq.~4! becomes

2 i ] jF1Aj1
i

2
ue lm~] lAj !~]mF !5kj . ~6!

Now, one can solve Eq.~6! perturbatively expandingF and
Aj in powers ofu, i.e.,

F5F (0)1u F (1)1••• ~7!

Aj5Aj
(0)1u Aj

(1)1•••. ~8!

At zero order inu, Eq. ~6! gives

2 i ] jF
(0)1Aj

(0)5kj , ~9!

from which the following expression forF (0) is obtained:

F (0)5 ik j~x2x0! j2 i E
x0

x

dxjAj
(0) . ~10!

The first term in the right-hand side~RHS! is just the free
particle solution if we interpretkj as the wave number, an
the second term is theU(1) holonomy for the commutative
case. Thus, at zero order we reproduce the solution of
commutative case Schro¨dinger equation.

If we retain first order terms inu, the following differen-
tial equation is obtained:

2 i ] jF
(1)1Aj

(1)1
i

2
e lm~] lAj

(0)!~]mF (0)!50, ~11!

which by integration gives
04501
ro

ll,

e

F (1)52 i E
x0

x

dxjAj
(1)2

i

2Ex0

x

dxje
mlkm] lAj

(0)

1
i

2Ex0

x

dxje
mlAm

(0)] lAj
(0) . ~12!

The first term in the RHS of Eq.~12! is an additive cor-
rection to the commutative holonomy which, together w
the second term in the RHS of Eq.~10! gives

2 i E
x0

x

dxj~Aj
(0)1uAj

(1)!. ~13!

The second in the RHS of Eq.~12! is a velocity dependen
term, which can be written as@10–12#

2
i

2Ex0

x

dxje
mlkm] lAj

(0)52
i

2
mE

x0

x

dxj~v3“Aj
(0)!3 .

~14!

For the last term our calculation yields

i

2Ex0

x

dxje
mlAm

(0)] lAj
(0)5

i

2Ex0

x

dxj~A(0)3“Aj
(0)!3 . ~15!

Thus, at this order inu, the nonconmutative holonomy i
given by

W~x,x0!5expH 2 i F E
x0

x

dxjAj1
u

2 Ex0

x

dxj@m~v3“Aj
(0)!3

2~A„0…3“Aj
(0)!3#G J . ~16!

Now, we analyze the different terms in Eq.~16!. The first
one in the exponential is the usual holonomy, corrected
orderu, which classifies the different homotopy classes. T
term in Eq.~15! is a noncommutative correction to the vorte
decaying as 1/r 3, which does not contribute to the line spe
trum. Finally, the term in Eq.~14! is a velocity dependen
correction insensitive to the topology of the manifold.

In the commutative Aharonov-Bohm effect, the presen
of the flux produces a shift in the interference pattern, wh
is maximum forF5(2n11)p(\c/e), with nPZ. In such a
case, for a given value ofn, the position of maxima and
minima are interchanged due to a change ofp in the phase.
However, in the noncommutative case, this change of p
tions of maxima and minima might not occur. Indeed, t
velocity dependent correction modifies the phase shift wh
for suitable values of velocity, could even become 2p for a
given n.

We finalize this section emphasizing two importants
pects of our results:

The above results are a general property of the nonc
mutative Aharonov-Bohm effect, depending only on the to
flux F ~if the electrons cannot penetrate into the solenoid!.

If the magnetic fluxeF/hc is an integer there is no
Aharonov-Bohm effect for the commutative case, as is w
known @5,13#. However, in the noncommutative case t
8-2
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term ~14! is different from zeroeven in the case wher
eF/hc is an integer. This is a quite nontrivial characteristi
of the noncommutative Aharonov-Bohm effect that could
experimentally measured.

B. The gauge potentials

In this section we will evaluate the gauge potential fo
finite radius solenoid orthogonal to a noncommutative pla

The field tensor in the noncommutative plane is

F̂mn5]mAn2]nAm1 iAm!An2 iAn!Am . ~17!

Expanding the Moyal product and retaining only the li
ear term inu, we have

F̂mn5]mAn2]nAm1ueab]aAm]bAn . ~18!

We must construct a gauge potential such that the m
netic field B35F̂12 vanishes everywhere, except inside t
solenoid. We proceed as in the commutative case, sta
with the ansatz~where the ordinary product is understood!

A152x2f ~r 2!,

A25x1f ~r 2!, ~19!

for r .a, the radius of the solenoid.
We impose the conditionB35F̂1250 outside the sole-

noid, implying that

2 f 12r 2f 81u~ f 212r 2f f 8!50, ~20!

where f 85d f /dr2.
This differential equation can be easily integrated, yie

ing the following solutions:

f 52
1

u
6

1

u
A11

c1u

r 2

52
1

u
6

1

u F11
c1u

2r 2
2

c1
2u2

8r 4
1•••G ,

~21!

wherec1 is an integration constant.
From Eq. ~21! we see that the commutative limit i

smooth for the plus sign in the above equation, then
adopt

f 5
c1

2r 2
2

c1
2u

8r 4
1•••. ~22!

We determine the integration constant by imposing
Stokes theorem at zero order inu,

E E BW •dSW 5F5 R AW (0)
•d lW, ~23!

getting
04501
e

e.

g-

ng

-

e

e

c15
F

p
5Ba2.

Notice that Eq.~21! requiresBu!1.
The final expression for the gauge potential becomes

A15x2S F

2p~x1
21x2

2!
2u

F2

8p2~x1
21x2

2!2
1••• D ,

A252x1S F

2p~x1
21x2

2!
2u

F2

8p2~x1
21x2

2!2
1••• D ,

~24!

whereF5Bpa2 is the magnetic flux enclosed into the s
lenoid.

We finally give the gauge potential expressed in terms
polar coordinates,

Ar50,

Aw5
F

2pr
2u

F2

8p2r 3
1O~u2!,

~25!

which will be useful in solving the Schro¨dinger equation in
the next sections.

III. BOUND STATES FOR THE NONCOMMUTATIVE
AHARONOV-BOHM EFFECT

In this section we will solve the noncommutative Schr¨-
dinger equation~3! for an electron moving in a two-
dimensional manifold parametrized by polar coordina
(r ,w), with r .a and 0,w,2p.

Before doing this, it is necessary to explain an importa
technical point: The Moyal product~2! is implicitly written
in Cartesian coordinates. Therefore, in order to solve Eq.~3!
in polar coordinates, one must express the! product in the
general case.

We find the following expression for the Moyal produ
up to first order inu:

f ~x!!p~x!5 f ~x!p~x!1
iu

2Ag
emn]m f ]np1O~u2!,

~26!

whereg is the determinant of the metric.
At this order inu, the Schro¨dinger equation becomes

~Ĥ01uĤ1!C5k2C, ~27!

whereH0 andH1 can be identified by replacing Eq.~25! in
Eq. ~3!, and taking into account that the covariant derivati
becomes

DW 52 i F r̂ ] r1ŵS ]w

r
2 iAwD G . ~28!

We get
8-3
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Ĥ05] r
21

1

r
] r1

1

r 2 S ]w
22 i

F

p
]w2

F2

4p2D , ~29!

Ĥ15
1

r 3 S 2 i ]w2
F

4p D ] r1
1

r 4 S 2 i ]w
32

F

p
]w

2

1 i
F2

2p2
]w1

F3

8p3D . ~30!

As u is very small, one can use perturbation theory
computing the eigenvalues and eigenfunctions of the Ha
tonianĤ5Ĥ01uĤ1.

In the following subsections, we find explicitly the energ
spectrum for the bound state Aharonov-Bohm effect.

A. The noncommutative bound state Aharonov-Bohm effect

The bound state Aharonov-Bohm effect is a result due
Peshkinet al. @7#, which establishes the flux and angul
momentum dependence of the energy spectrum, a me
able quantity in principle. In this effect one considers
electron constrained to move between two impenetrable c
centric cylinders with outer and inner radiusb anda, respec-
tively, and in the presence of a magnetic fluxF contained
inside the inner one.

In the noncommutative space, the Schro¨dinger radial
equation at first order inu is given by

2x,9~r !2S 1

r
1

uS ,2
F

4p D
r 3

D x,8~r !1S S ,2
F

2p D 2

r 2

1

uS ,32
,2F

p
1

,F2

2p2
2

F3

8p3D
r 4

D x,~r !

5~ ĥ,,01uĥl ,1!x,~r !5k2x,~r !, ~31!

where we have called

ĥ,,052] r
22

1

r
] r1

1

r 2 S ,2
F

2p D 2

, ~32!

ĥ,,152
1

r 3 S ,2
F

4p D ] r1
1

r 4 S ,32
,2F

p

1
,F2

2p2
2

F3

8p3D , ~33!

and the following ansatz has been used for the wave fu
tion:

c~r ,w!5 (
,PZ

ei ,wx,~r !. ~34!

Although this equation cannot be solved exactly, one
use perturbation theory in the small parameteru. Since
04501
r
il-

o

ur-

n-

c-

n

noncommutative effects are important only at small distan
;Au, one would expect some relevant consequences in
high energy region,k;1/Au.

Equation~31! contains the commutative Aharonov-Boh
effect as a particular case, foru50. The 0th order solution
can be written as

x,~r !5A,Jn~kr !1B,Yn~kr !, ~35!

with n5u,2F/2pu. The constantsA, , B, and the Hamil-
tonian eigenvaluesE,,05k2 can be obtained—as usual—b
imposing the boundary conditions onx,(r ),

x,~a!505x,~b!, ~36!

together with the normalization condition for the eigenfun
tion,

E
a

b

x,~r !2rdr 51. ~37!

Notice that the eigenvalues depend on the angular
mentum, only throughn. Therefore, degeneracy will occu
if u,12F/2pu5u,22F/2pu, which is possible only ifF/p
is an integer. For simplicity, to be able to apply perturbati
theory in its simplest form, in this section we will avoi
these particular values of the flux.

Taking into account Eq.~36!, the mean value ofĥ,,1 can
be straightforwardly cast in the form

E,,15E
a

b

x,~r !ĥ,,1x,~r !r dr 5P~,,F!^r 24&, , ~38!

whereP(,,F) is a cubic polynomial,

P~,,F!5F,32
,2F

p
1,S F2

2p2
21D 1

2p2F2F3

8p3 G ,

~39!
and

^r 24&,5E
a

bx,
2~r !

r 4
r dr ~40!

is a function ofn,a,b andk only.
Since noncommutative effects are expected to occu

high energies (k a@1), it is enough to use in Eq.~35! the
first terms in the asymptotic expansions of Bessel functi
for large arguments. We will retain just the first two terms
these expansions, i.e.,

Jn~z!→A 2

zpFcosS z2
pn

2
2

p

4 D2
4n221

8z

3sinS z2
pn

2
2

p

4 D G ,
Yn~z!→2A 2

zpFsinS z2
pn

2
2

p

4 D1
4n221

8z

3cosS z2
pn

2
2

p

4 D G . ~41!

Using Eq.~41! in Eqs.~37! and ~40!, we get
8-4
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^r 24&,5
128a3k5

D~n,a,b,k!
3H 2

1

768a6b3k4
„512a5k218a3~124n2!21128a4b3k4~4n229!1b3~124n2!2~714n2!

1~2a2b3k2!~116n2148n4264n6231!…2
cos@2~a2b!k#

768a3b4k4
„b~2b2k221!~124n2!2264a2bk2~4n229!

3~2b2k221!18a~4n221!@3212n212b2k2~4n229!#…1
sin@2k~a2b!#

1536a3b4k5
„~124n2!2@3212n212b2k2

3~4n229!#264a2k2@3212n212b2k2~4n229!#232abk2~2112b2k2!~9240n2116n4!…

1Ci~2ak!S cos~2ka!F16n4240n219

12a2 G1sin~2ka!F ~4n229!@64a2k22~124n2!2#

192a3k
G D 1Ci~2bk!S sin~2ka!

3F ~4n229!@264a2k21~124n2!2#

192a3k
G2cos~2ka!F16n4240n219

12a2 G D 1Si~2ak!S sin~2ka!
16n4240n219

12a2

1cos~2ka!
~4n229!@264a2k21~124n2!2#

192a3k
D 1Si~2bk!S cos~2ka!

~4n229!@64a2k22~124n2!2#

192a3k

2sin~2ka!
16n4240n219

12a2 D J , ~42!

where

D~n,a,b,k!58kS 24a~2114n2!2
~a2b!@64a2k21~124n2!2#

2
14a~2114n2!cos@2~a2b!k#

1
@64a2k22~124n2!2#sin@2~a2b!k#

4k D1~4n221!†Ci~2ak!„16ak~2114n2!cos~2ak!1@64a2k22~1

24n2!2#sin~2ak!…1Ci~2bk!„216ak~4n221!cos~2 a k!1@264a2k21~124n2!2#sin~2 a k!)2@Si~2 a k!

2Si~2 b k!#@„64a2k22~124n2!2
…cos~2 a k!116a k ~124 n2!sin~2 a k!#‡ ~43!
d

l
u

nds

ign
and

Ci~z!52E
z

`cos~ t !

t
dt,

Si~z!5E
0

zsin~ t !

t
dt.

Despite this aspect,^r 24& is a slowly varying function ofn,
as can be seen in Fig. 1. Moreover, for a givenn, ^r 24&
rapidly approaches a constant value whenk grows up, as
shown in Fig. 2.

Consequently, it is the coefficient of^r 24& in Eq. ~38!, the
cubic polynomialP(,,F), which governs the shift produce
on the eigenvalues. Notice that, for given fluxF and angular
momentum,, the successive~large! eigenvalues of the radia
equation~31! are all shifted by the same constant. In partic
lar, for largeu,u, this constant does not change sign.
04501
-

Therefore, even though the 0th order spectrum depe
only on n5u,2F/2pu, the first order (u1) correction de-
pends separately on the fluxF and the angular momentum,,
introducing a shift in the eigenvalues sensitive to the s
of ,.

FIG. 1. ^r 24&, as a function ofn, for b/a510 andk a540.
8-5
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Finally, we would like to add some comments related
the relativistic case. Although in this paper we solve t
Schrödinger equation, our conclusions are valid in the re
tivistic case too, indeed, as the Aharonov-Bohm interact
is static, the Schro¨dinger and Klein-Gordon equations a
related byESch→EKG

2 2m2. However, a delicate point is th
following: as we are thinking in electrons, one should use
Dirac equation instead of the Schrodinger one. In such a c
there is a critical subspace which admits nontrivial se
adjoint extensions@14–16#.

In our case the boundary conditions ensure that the eig
functions have a finite limit forr→0. This could correspond
to a possible self-adjoint extension. In any case, for first
der corrections, as we have done, everything is consis
For the perturbation~33!, the problem is defined forr>a,
which ruled out the caser 50. In spite of this constraint, on
can consider the casea→0, but the boundary condition~36!
ensures the self-adjoint properties, as, e.g., in quantum
chanics.

IV. SCATTERING STATES FOR THE NONCOMMUTATIVE
AHARONOV-BOHM EFFECT

A. The perturbative solution

In order to compute the scattering states we look for
lutions of Eq.~27! in the form

C5C01uC11•••, ~44!

implying that

Ĥ0C05k2C0 , ~45!

~Ĥ02k2!C152Ĥ1C0 . ~46!

Therefore, the correction to the wave function at first orde
perturbation theory results in

C1~r ,w!52~Ĥ02k2!21Ĥ1C0 , ~47!

where the 0th order wave function satisfies the bound
conditions

FIG. 2. ^r 24&, as a function ofk a, for b/a510 and n57
2Ap.
04501
e
-
n

e
se
-

n-

r-
nt.

e-

-

n

ry

C0~a,w!50,

C0~r→`,w!;eikr cos(w)1 f ~w,k!
eikr

Ar
. ~48!

The first equation guarantees that the electron never rea
the regionr ,a, while the second one is the usual scatteri
condition.

The formal solution in Eq.~47! is given by

C1~x!52E dx8G~x,x8!H 1̂C0~x8!, ~49!

where G(x,x8) is the Green function of the unperturbe
problem, that is

~Ĥ02k2!G~r ,w;r 8,w8!5
1

r
d~r 2r 8!d~w2w8!. ~50!

B. The Green function

We propose a solution for Eq.~50! of the form

G~r ,w;r 8,w8!5
1

2p (
, PZ

ei ,(w2w8)g,~r ,r 8!. ~51!

Replacing this in Eq.~50! and using an appropriate represe
tation for the delta function, we obtain

~ ĥ,,02k2!g,~r ,r 8!5
1

r
d~r 2r 8!, ~52!

where g,(r ,r 8) must also satisfy the appropriate bounda
conditions,

g,~a,r 8.a!50, g,~r→`,r 8!;
eikr

Akr
. ~53!

For rÞr 8, Eq. ~52! is just the Schro¨dinger equation for
the commutative Aharonov-Bohm effect, whose solutions
linear combinations of Bessel functions, as in Eq.~35!. Let
us introduce two linearly independent solutions of this h
mogeneous equation, satisfying the boundary conditionr
5a and r→`, respectively,

x,
(a)~r !5Yn~ka!Jn~kr !2Yn~kr !Jn~ka!,

x,
(`)~r !5Jn~kr !1 iYn~kr !5Hn

(1)~kr !, ~54!

whereHn
(1)(z) is the Hankel functions.

The continuity of g,(r ,r 8) at r 5r 8, together with the
discontinuity in its first derivative implied by the RHS of Eq
~52!, lead to

g,~r ,r 8!5C0H x,
a~r !x,

(`)~r 8!, r ,r 8

x,
a~r 8!x,

(`)~r ! r .r 8,
~55!

where the constantC0 is given by
8-6
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C05
1

rW@x,
(a)~r !,x,

(`)~r !#
, ~56!

with W@ f ,g#5 f g82 f 8g being the Wronskian.

C. The free solution and the commutative case scattering
theory

The last ingredient we need for computing Eq.~49! is to
express appropriatelyC0 satisfying the boundary condition
~48!. We write

C0~r ,w!5 (
,PZ

ei ,wx,
(0)~r !, ~57!

with

x,
(0)~r !5@A,Jn~kr !1B,Yn~kr !#. ~58!

For convenience, in what follows we will develop a pa
tial waves analysis of the scattering amplitude, as in@13#.
There are other treatments of this problem in the literat
~see, for example,@5,17# and@18#! leading to results differing
in the forward scattering term, but having the same scatte
amplitude for nonvanishing angles. This justifies our a
proach to the cross section forwÞ0.

The first condition in Eq.~48! implies that

AlJn~ka!1B,Yn~ka!50. ~59!

In the second condition, one can develop in Fourier series
scattering amplitudef (w,k)5(,PZei ,w f , , and the plane
wave eikx ~which can be written in terms of Bessel fun
tions!:

eikr cos(w)1 f ~w,k!
eikr

Ar

5 (
,PZ

ei ,wF i u,uJu,u~kr !1 f ,

eikr

Ar
G

; (
,PZ

ei ,wFeikr

Ar
S i u,u

A2pk
e2 i (pu,u/21p/4)1 f ,D

1
e2 ikr

Ar
S i u,u

A2pk
ei (pu,u/21p/4)D G , ~60!

where we have replaced the asymptotic expression of Be
functions inside the series.

Comparing the terms in Eq.~60! with the asymptotic ex-
pression ofx l

(0)(r ) in Eq. ~57! for large values ofk r @see Eq.
~41!# we get the following equations:

i u,ue2 i (pu,u/21p/4)1A2pk f,5~A,2 iB,!e2 i (pn/21p/4),
~61!

i u,uei (pu,u/21p/4)5~A,1 iB,!ei (pn/21p/4).
~62!
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The solution to the set of equations~59!, ~61! and ~62! is

A,5 i e2( i /2)p(n22 ,)
Yn~ka!

Hn
(1)~ka!

, ~63!

B,52 i e2( i /2)p(n22 ,)
Jn~ka!

Hn
(1)~ka!

, ~64!

f ,52
e2 i (p/4)

A2pk
F11e2 ip(n2,)

Hn
(2)~ka!

Hn
(1)~ka!

G ,

~65!

where theHn
(1,2)(z) are the Hankel functions.

From Eq. ~65! one can easily extract the phase shif
Indeed, from scattering theory@19#, one knows that the scat
tering amplitude for the,th partial wave is

f ,5
e2 i (p/4)

A2pk
~e2id,21!. ~66!

Then, in the present case

e2id,5~21!,11e2 ipn
Hn

(2)~ka!

Hn
(1)~ka!

, ~67!

which provides an exact expression for theS-matrix @13#.
One can check the consistency of our approach by ev

ating the limita→0. In this casef , reduces to

f 0,,5
e2 i

p
4

A2pk
@e2 ip(n2,)21#, ~68!

or, equivalently,

d,5
p

2
~ u,u2n!. ~69!

Equations~67!–~69! are in agreement with other derivation
found in the literature@13,20#. Notice that the phase shiftsd,

do not tend to 0 for,→6`; instead, they approach nonva
nishing constants~see the discussion in@17#!.

In order to compute the differential cross section one m
get, first, the total scattering amplitude, i.e., we must evalu
the sum

f ~w,k!5 (
,52`

`

f ,ei , w. ~70!

The explicit calculation of Eq.~70! involves several tech-
nical and conceptual difficulties which have been a source
controversy in the past@21#.
8-7
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First, let us consider the casea50. Making use of Eq.
~68!, the total amplitude becomes

f 0~w,k!5
e2 i (p/4)

A2pk
(

,52`

`

ei ,w
„211e2 ipn~21!,

….

~71!

The first term in Eq.~71! is

e2 i (p/4)

A2pk
(

,52`

`

ei ,w~21!52
e2 i (p/4)

A2pk
2pd@w#

52A2p

i k
d@w#. ~72!

For the second one we get~see Appendix B for details!

e2 i (p/4)

A2pk
(

,52`

`

ei ,w
„e2 ipn~21!,

…

5
e2 i (p/4)

A2p k
H 2p cosS F

2 D d@w#12i sinS F

2 DPFei (,011)w

12eiw G J ,

~73!

where l 0 is the integer part ofF/2p andP@F(w)# denotes
the principal value ofF(w).

Finally, the scattering amplitude becomes

f 0~w,k!5A2p

ik H FcosS F

2 D21Gd@w#

1
i

p
sinS F

2 DPFei ( l 011)w

12eiw G J
5A2p

ik H FcosS F

2 D21Gd@w#

1
i

p
sinS F

2 D S PF i

wG1Fei ( l 011)w

12eiw
2

i

wG D J . ~74!

Notice that f 0(w,k) vanishes forF54pn, with n integer.
For these flux values the particles are not scattered at a
the zero radius solenoid in the commutative case.

This formula coincides with Eq.~4.11! of @13#, where it
was obtained following a different procedure. The interp
04501
by

-

tation of the forward scattering term in Eq.~74!, in the con-
text of the construction of the scattering matrix, is conside
in that reference. Many authors have discussed the pres
or not of this forward scattering singular term in the to
scattering amplitude~see, for example@17#!. It is not present
in the original derivation by Aharonov and Bohm@5#, and
can be also avoided making use of an analytic regulariza
as in@18#. However, as previously pointed out, in the prese
work we are interested in the calculation of the different
cross section for scattering angles different from zero, wh
different approaches coincide. This justifies the partial wa
analysis we performed.

The calculation of the differential cross section is no
immediate. Indeed, forwÞ0 we have

ds

dw
5u f 0~w,k!u25

sin2FF2 G
2pk sin2Fw2G , ~75!

which is the usual Aharonov-Bohm differential cross sect
@5#, vanishing forF52pn, with n integer.

If the radius of the solenoid is different from zero (a
.0), one can similarly isolate the singular contributions
the total scattering amplitudef (w,k), coming from large val-
ues of , ~or equivalently, from large values ofn). Using
appropriate large order expansions for the Hankel functio
one finds that the coefficientf , is given in this case by the
RHS of Eq.~68! plus terms rapidly decreasing with,, which
lead to absolutely convergent series~summing up to continu-
ous functions ofw). Therefore, the singular terms found
Eq. ~74! for f 0(w,k) ~those containingd@w# andP@ i /w#) are
also present inf (w,k).

V. FIRST ORDER NONCOMMUTATIVE CORRECTIONS
TO THE SCATTERING AMPLITUDE

In this section we calculate the first order (u1) perturba-
tive correction to the scattering amplitudef (w,k). This will
allow us to find the first noncommutative~singular! correc-
tions to the differential cross section.

In doing so, we must evaluateC1(x) in Eq. ~49!, with
C0(x) given in Eqs.~57!, ~63! and~64!, andG(x,x8) given
in Eqs.~51!, ~55! and ~56!.

Taking into account thatĤ0 andĤ1 are diagonal in,, we
can writeC1(r ,w)5(,ei ,wx,

(1)(r ) to get
x,
(1)~r !52E

a

`

g,~r ,s!„ĥ,,1x,
(0)~s!…s ds

52C0Fx,
(`)~r !E

a

r

x,
(a)~s!„ĥ,,1x,

(0)~s!…s ds1x,
(a)~r !E

r

`

x,
(`)~s!„ĥ,,1x,

(0)~s!…s dsG , ~76!
8-8



e
th

E
rd
o
n
wi

e

or

-

s

etic
ons

TESTING SPATIAL NONCOMMUTATIVITY VIA TH E . . . PHYSICAL REVIEW D 66, 045018 ~2002!
with x,
(`)(r ) andx,

(a)(r ) given in Eq.~54!, andĥ,,1 given in
Eq. ~33!.

Since we are interested in the noncommutative corr
tions to the scattering amplitude, we should consider
asymptotic behavior ofx,

(1)(r ) for r→`. The expansions for
large arguments of Bessel function in Eq.~41! allow us to
see that the second term in the brackets in the RHS of
~76! decreases faster than the first one, and can be disca

For arbitrarya.0, the integrand in the first term is to
complicated to give a closed solution to this integral, a
some simplification is necessary. For this reason, we
analyze it only in thea→0 limit.

In this limit, straightforward calculations lead to

C0x,
(a)~r !→a→02

ip

2
Jn~kr ! ~77!

and

ĥ,,1x,
(0)~s!→a→0

~21!,e2(1/2)ipn

8p3s4
$p2~4p,

2F!k s„Jn11~ks!2Jn21~ks!…1~8p3,3

28p2,2F14p,F22F3!Jn~ks!%, ~78!

while x,
(`)(r ) does not depend ona.

Then, forn.1 @22# the coefficient ofx,
(`)(r ) in the RHS

of Eq. ~76! reduces in this approximation to

i

16p2
~21!,e2( i /2)pnk2

3F ~8p3,328p2,2F28p3,14p,F212p2F2F3!

4n~n221!
G ,

~79!

an expression in which we must distinguish two cas
namely

,.
F

2p
and ,<

F

2p
. ~80!

If ,> l 011.F/2p ~where l 0 is the integer part of
F/2p), thenn5,2F/2p, and Eq.~79! becomes

i ~21!,e2( i /4)(2p,2F)p k2S 1

8
1

F

16p,
1O~,22! D .

~81!

Now, taking into account that, forr→`,

x,
(`)~r !5Hn

(1)~kr !;A 2

pk
e2 i (p/2)(,2F/2p)2 i (p/4)

eik r

Ar
,

~82!

we get the first perturbative correction tof , in Eq. ~70! as
04501
c-
e

q.
ed.

d
ll

s,

u f 1,,5
u

4
Ai p

2
ei (F/2)k3/2S 11

F

2p,
1O~,22! D . ~83!

Multiplying this expression byei ,w and summing on,
from ,011 to `, we obtain the following contribution to the
scattering amplitude:

u

4
Aip

2
ei (F/2)k3/2S p d@w#1PF 1

12eiwG2
F

2 p
log@1

2ei ( i e1w)#1••• D , ~84!

where thee→01 limit is understood, and the dots stand f
continuous functions ofw.

For the case,<,0<F/2p, we haven5F/2p2,, and a
similar calculation~where the sum on, is taken from2` to
,0) leads to the following contribution to the scattering am
plitude:

u

4
Aip

2
e2 i (F/2)k3/2S pd@w#2PF 1

12e2 iwG
2

F

2 p
log@12e2 i (2 i e1w)#1••• D , ~85!

where, again, the limite→01 is understood and the dot
represent continuous functions ofw.

Therefore, at first order inu the scattering amplitude is
corrected by the addition of

u f (1)~w,k!5
u

4
Aip

2
k3/2H 2p cosS F

2 D d@w#

1 i cosS F2w

2 DPF 1

sinS w

2 D G
2

F

2 p
e2 i (F/2)log@12e2 i (2 i e1w)#

2
F

2p
ei (F/2)log@12ei ( i e1w)#1•••J .

~86!

In conclusion, as the incident particles are very energ
and the scattering angle is very small, the main contributi
to the total scattering amplitudef (w,k) are given by@23#
8-9
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f ~w,k!5HA2p

ik FcosS F

2 D21G
1u

p

2
Aip

2
k3/2cosS F

2 D J d@w#

1H 2A 2

ipk
sinS F

2 D1u
i

2
Aip

2
k3/2cosS F

2 D J PF 1

w G
~87!

2
u

4
A i

2p
k3/2FcosS F

2 D log~w!

1continuous functions ofw. ~88!

Notice that the most singular terms in the scattering am
tude, which are;k21/2, are corrected by noncommutativ
terms;u k3/2. Moreover, forF54pn, with n integer, the
0th order singular terms in the amplitude vanish, contrary
the noncomutative corrections, which are different fro
zero.

For small angleswÞ0, the dominant term in the ampli
tude is;1/w. Then, for the differential cross section we ha

ds

dw
5H 2

pk
sin2S F

2 D1u
k

2
sin~F!1u2

p

8
k3cos2S F

2 D J 1

w2

1 less singular terms. ~89!

Now, if the magnetic flux is quantized asF52pn, with n
integer, the differential cross section at small angles is do
nated by noncommutative effects,

ds

dw
5u2

pk3

8w2
1 less singular terms. ~90!

It is interesting to note that, contrary to the usual Aharon
Bohm effect, in the noncommutative case the differen
scattering cross section is different from zero when the m
netic flux is quantized.

Apparently, this correction (;u2) could be relevant a
high energies. This simple formula will allow us to extra
interesting physical information, as we will see in the ne
section.

VI. PHENOMENOLOGICAL ESTIMATIONS FOR SPATIAL
NONCOMMUTATIVE EFFECTS

As mentioned in the Introduction, the Aharonov-Boh
effect is an important mechanism to explain other phys
phenomena. This point of view has been used in the past,
some applications of this idea are cosmic strings and G
@8#, anyons@24# and also three-dimensional gravity@20#.

In this section we will analyze experimental possibiliti
of detecting noncommutative signals via the Aharono
Bohm effect. Our numerical estimations—as we will s
below—show that these relics could be explored in part
04501
i-
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physics experiments involving energies between 200 and
GeV, if the present bound foru is correct.

In order to estimate a bound for theu parameter, first we
note that, since noncommutative effects are tiny, the cor
tions to the differential cross section could be, typically,
the order of the cross section for neutrino events;1023 nb.
If we choose the scattering angle between 1 and 2 degr
and take an energy;200 GeV as the highest possible pre
ently available for electrons, then we find

u5F S 8w2

pk3D ds

dwG 1/2

;@10 TeV#22, ~91!

which is in agreement with the bound given in@9#.
Thus, precise measurements of the differential cross

tion for small angles could give us information about spa
noncommutativity.

VII. CONCLUSIONS

Three relevant properties of the remarkable phenome
of noncommutative Aharonov-Bohm effect have been fou
in the present paper:

Pattern fringes can appear even when the magnetic flu
quantized, contrary to the commutative case.

The differential cross section, given by Eq.~90!, is differ-
ent from zero when the magnetic flux is quantized.

Our results allow for an estimation of a bound for th
noncommutative parameteru, which is in agreement with
@9#.

The first property, in principle, could be verified in
Tonomura like experiment, if an appropriate incident ele
tron beam is available. Our estimations suggest, howe
that the incident electron beam energy should be much la
than the energy reached in these experiments@25#. Thus, an
experimental verification should be searched in high ene
physics experiments and, specially, by measuring differen
cross sections for small angles.
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APPENDIX A: NOTE ON THE RELATIVISTIC
AHARONOV-BOHM EFFECT

In this appendix, we would like to discuss some implic
tions of the relativistic Aharonov-Bohm effect.

From Ref.@6# one can see that the Green’s function as
ciated to the usual Aharonov-Bohm effect is given by
8-10
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G@x,x8#5 (
n52`

`

~2 i ! un1wuexp@2 i ~n1F!#F un1Fu ,

~A1!

whereF is the magnetic flux and the functionF un1Fu for the
nonrelativistic case is

F un1Fu5
m

2p i
expF2mi

t
~r 21r 82!G

3Jun1FuS mrr8

t D , ~A2!

wheret5t2t8 andJa are Bessel functions. For the relativ
istic case the calculation is similar. Indeed, after using
proper-time gauge the functionF un1Fu becomes

F un1Fu5E d2pE
0

`

dTexpF ipmDxm2
T

2
~p21m2!G

3Jun1FuS rr 8

T D , ~A3!

whereT5N(0)(t2t8) with N(0) the einbein.
If we use the Poisson summation formula, then in both

relativistic as well as in the nonrelativistic case, the Gree
function is

G@x,x8#5 (
n52`

`

e2ipnFKn , ~A4!

whereKn is defined as

Kn5E
2`

`

dv~2 i ! uvue2 ivFF uvu , ~A5!

and, as a consequence, the wave function becomes

c~x!5 (
n52`

`

e2ipnFwn~x!, ~A6!

with

wn~x!5E dyGn@x,y#c~y!, ~A7!

being wn and Gn@ x,y#, respectively, the wave and Green
functions for thenth homotopy class@26#.

Thus, from Eq.~A6! one sees that the relativistic chara
ter of the system is contained inKn and only the exponentia
factor, which does not depend on the energy, is respons
for the fringe pattern. This result reflects the topological n
ture of the commutative Aharonov-Bohm effect. Howev
our formula ~14! shows us that the noncommutativ
Ahararonov-Bohm effect is radically different because
fringe pattern must change when the electrons are ge
higher energies.
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APPENDIX B: DERIVATION OF EQ. „73…

In this appendix we show that

(
,52`

`

ei ,we2 ipn~21!,52pcosS F

2 D d@w#

12isinS F

2 DPFei (,011)w

12eiw G ,

~B1!

where ,0 is the integer part ofF/2p. First, notice that
e2 ipn(21),5eip(u,u2u,2F/2pu), since the exponents coincid
modulo 2p. Moreover, if ,>,011 then u,2F/2pu5,
2F/2p, while if ,<,0 then u,2F/2pu52,1F/2p.

Therefore, we can split the series in Eq.~B1! to write

(
,52`

`

ei ,weip(u,u2u,2F/2pu)

5 (
,52`

,0

ei ,we2 ip(F/2p)1 (
,5,011

`

ei ,weip(F/2p)

[e2 i (F/2)ei ,0w lim
e→0

(
,50

`

e2 i ,(w2 i e)1ei (F/2)ei (,011)w

3 lim
e→0

(
l 50

`

ei ,(w1 i e), ~B2!

where we have introduced the positive parametere to prop-
erly define these sums.

Now, the evaluation goes in the standard way. For the fi
series we have

e2 i (F/2)ei ,0w lim
e→0

(
,50

`

e2 i ,(w2 i e)

5 lim
e→0

e2 i (F/2)ei ,0w

12e2 i (w2 i e)

52 ie2 i (F/2)ei (,011)wS ipd@ i ~12eiw!#

1PF 1

i ~12eiw!
G D

5pe2 i (F/2)d@w#2e2 i (F/2)PFei (,011)w

12eiw G , ~B3!

whereP@•••# means principal value.
8-11
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The second series in the RHS of Eq.~B2! is evaluated in
a similar way,

ei (F/2)ei (,011)w lim
e→0

(
,50

`

ei ,(w1 i e)

5 lim
e→0

ei (F/2)ei (,011)w

12ei (w1 i e)

5 iei (F/2)ei (,011)wS 2 ip d@ i ~12eiw!#

1PF 1

i ~12eiw!
G D
rg

il
.

B
d

,
hy

2;
y,

an

y

04501
5pei (F/2) d@w#1ei (F/2)PFei (,011)w

12eiw G . ~B4!

Collecting both results one finally obtains

(
,52`

`

ei ,we2 ipn~21!,

52p cosS F

2 D d@w#12i sinS F

2 DPFei (,011)w

12eiw G .

~B5!
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