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Perturbative computation of the gluonic effective action via Polyakov’s world-line path integral

S. D. Avramis,* A. I. Karanikas,† and C. N. Ktorides‡
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The Polyakov world-line path integral describing the propagation of gluon field quanta is constructed by
employing the background gauge fixing method and is subsequently applied to analytically compute the
divergent terms of the one~gluonic! loop effective action to fourth order in perturbation theory. The merits of
the proposed approach are that, to a given order, it reduces to performing two integrations, one over a set of
Grassmann and one over a set of Feynman-type parameters, through which one manages to accommodate all
Feynman diagrams entering the computation at once.
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I. INTRODUCTION

Improved methods, in comparison to the Feynman d
grammatic ones, for expediting perturbative calculations
QCD have emerged, within the past decade or so, thro
the adoption of first-quantization-based approaches. The
ter involve either string or world-line agents through whi
one describes the field theoretical system. The original
forts in this direction were string-inspired and were based
realizations, made in the late 1980s@1–5#, regarding the re-
lation between string and non-Abelian gauge field theorie
the limit of an infinite string tension. Following their ow
involvement in such studies, Bern and Kosower@6# estab-
lished a set of rules expediting efficient one loop compu
tions in non-Abelian gauge theories. Through them o
could encompass contributions of a host of Feynman
grams at once. Further extensions of the string-inspired
proach were subsequently carried out in Refs.@7–12#.

World-line based methodologies aiming at the same go
soon followed through the work of Strassler@13# who pro-
posed suitably defined~one-dimensional! path integrals for
the various quantum field systems he considered. Exten
use was made of supersymmetric one-dimensional par
coordinates@14–16# ‘‘living’’ on the paths. Focusing on the
computation of perturbative contributions to the effective
tion at the one loop level, the results of Ref.@13# achieved
the reproduction of Bern-Kosower type rules at the level
one particle irreducible~1PI! diagrams. Strassler’s approac
was further pursued in Refs.@17–19#, where computations
pertaining to multiloop configurations in QED as well
effective actions involving constant, external~chromo!elec-
tric and ~chromo!magnetic fields were undertaken.

Now, the world-line casting of relativistic quantum sy
tems is an old story, which goes back to Fock@20#, Feynman
@21# and Schwinger@22#. Notably, relevant contributions fol
lowed by several authors@23–26#, the latter of which
sparked our original interest in the subject@27,28#. What
particularly attracted our attention was the geometrical
ting underlying the construction of Polyakov’s~world-line!
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path integral. Within this context we pursued the problem
tracing the field theory origins of Polyakov’s spin factor, i
troduced by him to properly account for the propagation o
free, spin-1/2 particlelike entity on a closed~Euclidean!
space-time contour. In Ref.@28# we established, via a well
defined procedure, the emergence of the spin factor thro
the recasting of the spin-1/2 matter field sector of a ga
field theory from a functional to a~world-line! path integral,
entering as an appropriate weight to account for spin. At
same time, the field theoretical interaction term@35#

c̄gmcAm is replaced by a ‘‘factorized’’ Wilson line~or loop!
which accounts for the effect of the gauge field on the wor
line paths, equivalently describes its interaction with the m
ter particles. Our first applications turned in the direction
considering situations when it is justified to set the spin f
tor to unity—an occurrence which facilitates a factorizati
of the infra-red sector of the gauge field theory, in its pert
bative version@29#.

More recently, we have tested the possible merits ste
ming from the aformentioned disentanglement between s
factor and Wilson line~loop!, inherent in the Polyakov
~world-line! path integral for spin-1/2 particlelike entities, a
far as the task of facilitating effective, perturbative compu
tions in QCD is concerned@30,31#. In the first of these pa-
pers the emphasis was placed on extending the world-
methodology toopen fermionic lines. At the same time we
established a procedure by which Strassler’s path inte
expression for spin-1/2 matter particles, entering an~interact-
ing! gauge field theory and which contains the terms•F in
the action, can be recast into the Polyakov form which c
ries, in its place, the spin factor. Our subsequent manip
tions were expedited by the presence of the spin factor
produced, as a bonus, the following physical picture: No
trivial spin-factor contributions come precisely at tho
points where a gauge field quantum is emitted or absor
by the fermionic world-line path. Moreover, each such o
currence signifies the presence of a derivative discontin
on the path as a four-momentumkm is locally injected. This
is, indeed, a nice intuitive picture as it connects the ma
ematical fact pertaining to the dominance of no
differentiable paths on the one hand, with the physical
curence of emission and absorption of quanta on the othe
the second paper we focused our attention on the more p
matic goal of developing algorithms, always for spin-1/2 p
©2002 The American Physical Society17-1
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ticle ~open! world lines, which lead to efficient perturbativ
computations in QCD pertaining to Green’s functions a
amplitudes. Two different alternatives were arrived at
cording to whether the execution of the particle path integ
precedes or follows the considerations involving the Wils
line ~loop!: ~a! The Feynman diagrammatic logic is direct
visible and comprehensively dealt with;~b! a novel organi-
zation of the perturbative expansion is achieved which
tains the space-time description all the way. Strategy~a!
leads to a neat organization of the resulting perturbative
pression which reduces the computation to two straight
ward steps. The first pertains, basically, to the spin factor
amounts to a simple integration over a set of Grassm
variables, as many in number as the perturbative order c
sidered. The second integration is over a set of proper t
parameters inherited from the expansion of the Wilson ex
nential. Possible practical merits of alternative~b! constitute
an open issue.

Encouraged by the fact that the Polyakov path integral
spin-1/2 particle entities leads to computational procedu
which, both logistically and intuitively, seem to present a
vantages of their own, we undertake, in the present paper
task of extending the application of the relevant method
ogy to the gluonic sector of QCD. Such an effort enta
among other things, the determination of the spin factor p
taining to the propagation of a spin-1 particlelike entity. Th
issue is confronted in Sec. II where we consider the p
gauge field sector of a Yang-Mills system and utilize tec
niques associated with the background gauge fixing pro
dure. Focusing on effective action terms at the one glu
loop level, hence to 1PI diagrams in the Feynman cont
we proceed, in Sec. III, to produce a master expression
nishing theM th perturbative order contribution. The overa
structure of these terms corresponds to a gluonic world-
loop on which ‘‘vertex operators,’’ in the form of plan
waves, are attached. As in our previous work@31#, pertaining
to open fermionic world lines, the overall calculation reduc
to an integration over a Grassmann set of parameters
lowed by one over a set of Feynman-type parameters,
number of variables for each of the two sets being fixed
the perturbative order. At the end of the section we brie
discuss the extension of our approach to Green’s function
amplitudes where tree type configurations attached to lo
must also be taken into account. Direct applications of
master formulas are worked out in Sec. IV, where we a
lytically compute the divergent parts of the second, third, a
fourth ~perturbative! order one-gluon-loop contributions t
the effective action. From the specific manipulations it b
comes obvious that the world-line configuration accomm
dates, to a given order, the totality of the contributing Fe
man diagrams. Moreover, it can be easily surmised from
master expressions that no divergent terms make their
pearance above the fourth order. Finally, in Sec. V we su
marize our findings and formulate our conclusions, while
the Appendix we trace the main steps involved in bring
the spin factor to its final, ready to apply form.

Let us close our introductory discussion with the follow
ing two comments. First, as far as the finite contributions
the effective action terms are concerned, we are in the
04501
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cess of finalizing tests of numerical procedures that h
been devised for their evaluation. Second, concerning
particle reducible diagrams~in the Feynman sense!, a sys-
tematic way to include them into our scheme is to emplo
classical field theory perturbation expansion~tree diagrams!
associated with the background gauge field. We intend
report the details on both of these matters in a forthcom
paper@32#.

II. POLYAKOV WORLD-LINE PATH INTEGRAL
FOR THE GLUON SECTOR OF QCD

The successful transcription of the fermionic sector o
gauge field theory into its Polyakov path integral@36# form
utilizes the fact that the corresponding functional integra
of a Gaussian type@28#. For the gluon sector, of course, suc
is not the case. Following Refs.@13# and@19#, we proceed by
employing the background gauge fixing procedure accord
to which the gauge fieldAm splits into a dynamical compo
nent, to be denoted byam , and a background fieldBm .
Given that we shall restrict, ourselves, in the present pa
to the computation of effective action terms, the backgrou
field will be considered as classical. Let us finally menti
that we shall keep our formalism Euclidean throughout o
analysis. Transcription of our final results to Minkows
space-time will be made in the end. In this respect, cha
terizations such as ‘‘Lorentz generators,’’ ‘‘Lorentz trace
etc. will be employed by abuse of language.

The quadratic part of the~pure! gauge field action read
~in the Feynman gauge!

S25
1

2
am

a
†2~D2!abdmn2@Dm ,Dn#ab2 igFmn

ab
‡an

b

1 c̄a@~D2!ab#cb, ~1!

whereDm
ab5Dm

ab(B)5]mdab1g fabcBm
c is the covariant field

derivative in the adjoint representation, whilec, c̄ are the
ghost fields. Obviously,Fmn entering Eq.~1! is the Maxwell
tensor for the background gauge field, i.e.

Fmn
ab5Fmn

ab~B!52 i f abcFmn
c ~B!

52 i f abc~]mBn
c2]nBm

c 2g fcdeBm
d Bn

e!.
~2!

Introducing the Lorentz generators under which fou
vectors transform, namely

~Jrs!mn5 i ~drmdsn2drndsm!, ~3!

we rewrite Eq.~1! as follows:

S25
1

2
am

a @2~D2!abdmn2g~J•F !mn
ab #an

b1 c̄a@~D2!ab#cb.

~4!

In the one loop approximation, to which we shall restr
our considerations in this work, the effective action, as
functional of the background field, is given by
7-2
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PERTURBATIVE COMPUTATION OF THE GLUONIC . . . PHYSICAL REVIEW D 66, 045017 ~2002!
G1@B#5
1

2
Tr ln~2D22gJ•F !2Tr ln~2D2!

[G1,gluons@B#1Gghosts@B#. ~5!

In what follows it suffices to work withG1,gluons@B# as
Gghosts@B# is simply given by the first of the two terms en
tering the gluon contribution to the effective action, mul
plied by (22).

Employing Schwinger’s parametrization formula@22#, we
write ~trace on ‘‘Lorentz’’ and color indices!

G1,gluons@B#52
1

2E0

`dT

T E dDx Tr K~x,x;T!, ~6!

where

K~y,x;T!mn
ab[^yue2T(2D22gJ•F)ux&mn

ab ~7!

corresponds to the~dynamical! gauge field propagator kerne
in the background field.

The world-line path integral forK(y,x;T)mn
ab results

through standard procedures~see, e.g., Ref.@30#! and reads

K~y,x;T!mn
ab5E

x(0)5x

x(T)5y

Dx~ t !expF2
1

4E0

T

dtẋ2~ t !G
3P expF igE

0

T

dtẋ•B1gE
0

T

dtJ•FG
mn

ab

.

~8!

As already established in Refs.@30,31#, the Polyakov path
integral results once we apply the ‘‘area derivative’’ opera
@33,34# given by

d

dsmn~ t !
[ lim

«→0
E

2«

«

ds s
d2

dxmS t1
s

2D dxnS t2
s

2D ~9!

and use, at the same time, the identities

d

dsmn~ t !
P expS igE

0

T

dtẋ•BD ab

5P expS igE
t

T

dtẋ•BD
mr

aa1

„2 igF@x~ t !#…rs
a1a2

3P expS igE
0

t

dtẋ•BD
sn

a2b

~10!

and

E
0

T

dt
d

dsmn~ t !
expS 2

1

4E0

T

dtẋ2D
5

1

2E0

T

dt vmn@ ẋ~ t !#expS 2
1

4E0

T

dtẋ2D , ~11!
04501
r

wherevmn expresses the rotation of the vector tangent to
trajectory @26# and, for paths described by differentiab
functions, assumes the form

vmn@ ẋ#5
T

2
~ ẍmẋn2 ẋmẍn!. ~12!

A more careful discussion pertaining to the spin factor
conducted in the Appendix.

Once performing a partial integration, Eq.~8! assumes its
Polyakov path-integral form which reads

K~y,x;T!mn
ab5E

x(0)5x

x(T)5y

Dx~ t !expS 2
1

4E0

T

dtẋ2D
3P expS i

2E0

T

dtJ•v D
mn

3PexpS igE
0

T

dtẋ•BD ab

. ~13!

In turn, the corresponding expression for the effective acti
including the contribution from the ghost term, becomes

G1@B#52
1

2E0

`dT

T E
P
Dx~ t !expS 2

1

4E0

T

dtẋ2D
3$TrLF [1]@ ẋ#22%TrcP expS igE

0

T

dtẋ•BD ,

~14!

where the subscriptP denotes the periodic boundary cond
tions, x(0)5x(T), imposed on the path integration, whi
the indices on the traces stand for ‘‘Lorentz’’~L! and ‘‘color’’
(c). Furthermore, we have introduced the spin-factor expr
sion @37#

F [1]@ ẋ#mn[P expF i

2E0

T

dtJ•v@ ẋ~ t !#G
mn

~15!

which is the appropriate weight pertaining to the descript
of the propagation of a spin-1 particlelike entity~gluon! in
~Euclidean! space-time. It is not difficult to see that the sp
factor has a restricted dependence on a path’s profile.
argued in Ref.@30# and further deliberated on in the Appen
dix, contributions of the spin factor to the path integral com
solely from points where a four-momentum is appli
through an emission or absorption of a gauge field quant
Roughly speaking, this has to do with the fact that the
pectation valuê ẍmẋn&2^ẋmẍn&, as computed through th
path integral, vanishes unless a four-momentumkm is im-
parted at the pointx.

For the sake of comparison we give the correspond
expression for the one fermionic loop expression which c
tributes to the effective action@28#. It reads~color matrices
in the fundamental representation!
7-3
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G1,f@B#5
1

2E0

`dT

T E
P
Dx~ t !expS 2

1

4E0

T

dtẋ2D
3TrLF [1/2]@ ẋ#TrcP expS igE

0

T

dtẋ•BD ~16!

with the spin factor now given by

F [1/2]@ ẋ#[P expF i

2E0

T

dt S•v@ ẋ~ t !#G ~17!

and where the corresponding Lorentz generators belon
the spinor representation, i.e.

Smn5
1

2
smn5

i

4
@gm ,gn#. ~18!

Generally put, the Polyakov path integral recasting of a re
tivistic quantum field theoretical system provides a unifi
basis for the description of the propagating particlelike
tity; one simply has to adjust the weight provided by the s
factor to its particular form. Thus, for a spin-zero particle t
relevant weight factor is, simply, unity~note, in this regard,
that ghosts fall into this class irrespective of the anticomm
04501
to

-

-
n

-

tation relations, cf. minus sign, they obey! while for spin-1/2
and spin-1 particlelike entities the corresponding weights
provided by Eqs.~17! and ~15!, respectively.

For completeness let us mention that the path integ
expression for the gluonic Green’s function, namely

iG~y,x!mn
ab5E

0

`

dTK~y,x;T!mn
ab , ~19!

is determined once the substitution from Eq.~13! is made for
the propagation kernel.

III. THE ONE GLUON LOOP, M-POINT EFFECTIVE
ACTION

In this section we shall perform a number of manipu
tions through which we shall arrive at ready-to-apply mas
expressions for the computation of one-loop effective act
terms. Let us commence our efforts by giving to the, clas
cal, background fieldB the plane wave form, i.e. we set@38#
Bm(x)5tG

an«m
aneipn•x, where the indexn tracks the various

gauge fields entering theM th order term in the expansion o
the Wilson exponential in Eq.~14!. We obtain
ts of

tion can
ll
G1
(M )~p1 , . . . ,pM !52

1

2
~ ig !MTrC~ tG

aM . . . tG
a1!E

0

`dT

T F )
n5M

1 E
0

T

dtnGu~ tM , . . . ,t1!E
P
Dx~ t ! )

n5M

1

«n
• ẋ~ tn!

3$TrLF [1]@ ẋ#22%expF2
1

4E0

T

dtẋ21 i (
n51

M

pn•x~ tn!G1permutations, ~20!

whereu(tM , . . . ,t1)5)n5M21
1 u(tn112tn) and where the indication ‘‘permutations’’ refers to all possible rearrangemen

the tn and thetG
an associated with the,M in number, background gauge fields.

Our computational strategy for confronting the above quantity coincides with the one employed in Ref.@31#. It relies on a
move to recast the spin-factor expression into an explicitly path-independent form. Once this is done the path integra
be immediately performed given that the ‘‘action functional’’ is a simple Gaussian~with a linear term!. Subsequently, we sha
deal with the spin factor.

Following the procedure employed in the aformentioned reference we introduce the Grassmann variablesj̄n andjn through
which the«n

• ẋ(tn) factors in Eq.~20! are elevated into exponentials according to@13#

i«n
• ẋ~ tn!5E dj̄ndjnexp@ i j̄njn«n

• ẋ~ tn!#. ~21!

After substituting in Eq.~20! we obtain

G1
(M )~p1 , . . . ,pM !52

1

2
gMTrC~ tG

aM . . . tG
a1!E

0

`dT

T F )
n5M

1 E
0

T

dtnGu~ tM , . . . ,t1!F )
n5M

1 E djndj̄nG
3E

P
Dx~ t !$TrLF [1]@ ẋ#22%expF2

1

4E0

T

dtẋ21 i (
n51

M

k̂~ tn!•x~ tn!G1permutations, ~22!

having set

k̂m~ tn![pn,m1 j̄njn«m
n ]

]tn
. ~23!
7-4
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Recalling the original specification of the spin factor, which utilizes the employment of the area derivative, let us
Eq. ~22! in the specific form which takes into account the fact that the gauge potentials entering the expansion of the
exponential are plane waves. For theM th order term we write

TrLF [1]@ k̂#[expF2 i (
n51

M

k̂~ tn!•x~ tn!G FTrLP expS 2 i E
0

T

dtJ•
d

dsD GexpF i (
n51

M

k̂~ tn!•x~ tn!G . ~24!

The above expression illustrates in an immediate, albeit formal, manner the path independence of the spin factor: One
that the area derivative acting on the exponential will produce delta functions entering the parametric integration, cf.~9!,
entering the definition of the area derivative operator. A well defined argument leading to this result is provided
Appendix.

Returning to the case at hand, we write

G1
(M )~p1 , . . . ,pM !52

1

2
gMTrC~ tG

aM . . . tG
a1!E

0

`dT

T F )
n5M

1 E
0

T

dtnGu~ tM , . . . ,t1!F )
n5M

1 E djndj̄nG
3$TrLF [1]@ k̂#22%E

P
Dx~ t !expF2

1

4E0

T

dtẋ21 i (
n51

M

k̂~ tn!•x~ tn!G1permutations. ~25!

The first task we shall carry out is to perform the, basically Gaussian, path integral. Straightforward manipulations
displayed in the Appendix, lead to the result

E
x(0)5x(T)

Dx~ t !expF2
1

4E0

T

dtẋ2~ t !1 i (
n51

M

k̂~ tn!•x~ tn!G
5~2p!Dd (D)S (

n51

M

pnD 1

~4pT!D/2
expF (

n,m
pn•pmG~ tn ,tm!1 (

nÞm
j̄njn«n

•pm]nG~ tn ,tm!

1
1

2 (
nÞm

j̄njnj̄mjm«n
•«m]n]mG~ tn ,tm!G . ~26!

One notes contributions pertaining solely to the points of attachment of external gauge field on the loop contour. In th
expression the following Green’s function@13# has been employed:

G~ t,t8!5ut2t8uF12
ut2t8u

T G . ~27!

It corresponds@39# to the motion of a one-dimensional particle moving on a closed contour, i.e.

1

2

]2

]t2
G~ t,t8!52d~ t2t8!1

1

T
~28!

and obeys the boundary conditionsG(0,t8)5G(T,t8) andĠ(0,t8)5Ġ(T,t8).
Introducing the dimensionless parametersui according tot i5Tui ,i 51, . . . ,n, the interim result forG1

(M )(p1 , . . . ,pM)
reads

G1
(M )~p1 , . . . ,pM !52

1

2
gM~2p!Dd (D)S (

n51

M

pnDTrC~ tG
aM
•••tG

a1!
1

~4p!D/2E0

`

dTTM2D/221F )
n5M

1 E
0

1

dunG
3u~uM , . . . ,u1!F (M )~u1 , . . . ,uM ;T!expFT (

n,m
pn•pmG~un ,um!G1permutations, ~29!

whereG(un ,um)5uun2umu@12uun2umu# satisfies the additional properties

]nG~un ,um![Ġ~un ,um!5sgn~un2um!22~un2um!52Ġ~um ,un! ~30!

and
045017-5
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2]n]mG~un ,um!5]n
2G~un ,um![G̈~un ,um!52@d~un2um!21#. ~31!

Finally, in Eq. ~29! we have set

F (M )~u1 , . . . ,uM ;T!5F )
n5M

1 E djndj̄nG ~TrLF [1]@ k̂#22!expF (
nÞm

j̄njn«n
•pm]nG~un ,um!

1
1

2T (
nÞm

j̄njnj̄mjm«n
•«m]n]mG~un ,um!G . ~32!

The spin factor can now be brought into a ready-to-apply form through a series of manipulations that are outline
Appendix. The following result is arrived at:

Fmn
[1]@ k̂#5P expF i

2 (
n51

M

J•f~n!G
mn

5dmn1
i

2
~Jrs!mn (

n51

M

frs~n!1S i

2D 2

~Jr2s2
!ml~Jr1s1

!ln

3 (
n251

M

(
n151

n221

fr2s2
~n2!fr1s1

~n1!1••• ~33!
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fmn~n!52j̄njn~«m
n pn,n2«n

npn,m!

1
4

T
j̄n11jn11j̄njn~«m

n11«n
n2«n

n11«m
n !

3d~un112un! ~34!

and where we have designated thatj̄M115jM1150.
Two observations of practical interest can be made in c

nection with the above expression for the spin factor. Firs
is clear that the number of terms in the expansion of
exponential in Eq.~33! terminates atM as the saturation
point of the Grassmann variables is by then reached. Sec
the delta-function-containing term in Eq.~33! implies that
for a given ordering there is a contribution from coincidin
points,un andun11 in this case. This occurrence signifies t
presence of a ‘‘four-gluon vertex’’ which is automatical
included in a given perturbative calculation, along with t
~derivative-dependent! ‘‘three-gluon vertices’’ represented b
the first term. One thereby concludes that theM th order per-
turbative contributions to the effective action are classifi
via the spin factor, exclusively by the number of the points
gluon ~single or pairwise! attachments on the closed world
line contour, in all possible permutations. Accordingly, t
computation of theM-point effective action term will collect
all M th order, 1PI Feynman diagrams.

We mention in passing that fermionic loop contributio
to the effective action easily follow by referring to Eq
~16!–~18!. One simply has to make the substitutio
frs(Jrs)mn→Smnfmn in Eqs.~33! and~34! and use the fun-
damental representation of the group.

Given the expressions we have arrived at, what remain
be carried out, as far as 1PI configurations are concerned
the integrations over the Grassmann variables as well as
parametric integrations entering Eq.~29!. Numerical meth-
04501
-
it
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d,
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ods have been developed for this purpose whose repo
forthcoming@32#. For the rest of this paper we restrict ou
selves to the computation of the divergent part of the eff
tive action. In this regard, let us observe, by looking at E
~32!, that ultraviolet divergences will occur only for terms o
order M52,3,4. Specifically, by focusing on the terms th
have the minimum number ofpn,m factors one determines
through dimensional considerations, that they should ca
the compensating factorT22M for M52,3,4. The latter com-
bines withTM212D/2 in Eq. ~29! to produce divergent term
;G(22D/2). Further inspection shows that no such ter
arise forM>5, a fact that directly complies with the reno
malizability of the theory.

Concerning our earlier statement that the classical, ba
ground fieldB takes, for the present purposes, the form
plane waves we offer the following comment. Suppose
become completely general and set

Bm~x!5tG
a E dDq

~2p!D
eiq•x«̃m

a ~q!. ~35!

Then, the only resulting difference is that our master expr
sion, given by Eq.~29!, would include integrations over th
momenta. The plane-wave representation employed in
present paper has been made entirely for reasons
economy, coupled with the fact that we shall be focusing
the divergent contributions to the effective action. Referri
to Eq.~35!, we have chosen«̃m

a (q)5(2p)Dd(q2p)«m
a , with

p•«50. Let us also point out that in our subsequent com
tations we shall, for IR protection purposes, set the glu
four-momenta topn

25l2, n51,2, . . . ,with l2.LQCD
2 .

Let us finally remark that the master formula can also
employed for the purpose of computing Green’s functions
amplitudes where one particle reducible diagrams, in the
guage of the Feynman organization of perturbation theo
7-6
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also enter. To this end it is sufficient to represent the class
background field in the form it would assume had we solv
the equation

DmFmn~B!50 ~36!

via the classical field perturbation theory. We would, the
write

«̃m
a 5~2p!Dd~q2p1!«m

a 1g~2p!Dd~q2p12p2!

3~ tG
a !a1a2

«1
•p2«m

2

~p11p2!2
1O~g2!, ~37!

which furnishes an attachment of a tree diagram with a th
gluon vertex. One could similarly proceed to determi
terms corresponding to attachments of higher order. With
help of the series implied in Eq.~37! and employing the
expression given by Eq.~35!, we can use the master formu
given by Eq.~29! to compute~one-loop! amplitude terms. As
mentioned earlier, these matters will be dealt with in a for
coming paper@32#.

IV. COMPUTATION OF DIVERGENT ONE-LOOP
EFFECTIVE ACTION TERMS TO FOURTH ORDER

In this section we shall apply our comprehensive formu
given by Eqs.~29! and~32!–~34! towards the computation o
the divergent contributions to theM52,3,4 terms in the ex-
pansion of the effective action—in fact, the only terms whi
exhibit ultra-violet divergences. We leave the task of co
puting finite contributions, to the same order, to a futu
paper where numerical methods will be applied.

A. The two gluon contribution „MÄ2… to the effective action

The present calculation pertains to the classes of Feyn
diagrams displayed in Fig. 1 as~a! and ~b!. Our master ex-
pression accommodates the two depicted classes plus
ghost contribution. From Eqs.~33! and ~34! we determine,
for M52,

TrLF [1]5D28j̄1j1j̄2j2«1
•«2p1•p2 . ~38!

Upon substituting in Eq.~32! and performing the Grassman
integrations we obtain

FIG. 1. Second order, one-loop gluon contribution to the eff
tive action. Depicted to the left is the ‘‘world-line diagram’’ repre
senting theM52 master formula. To the right, the classes of Fey
man diagrams, accommodated by the world-line one, are displa
The ghost loop Feynman diagram has not been drawn.
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F (M52)~u1 ,u2 ;T!52
1

T
~D22!«1

•«2G̈~u1 ,u2!

28«1
•«2p1•p2 . ~39!

One notes that the delta function entering the specificatio
G̈(u1 ,u2) accommodates the contribution coming from t
class of Feynman diagrams wherein the two~truncated! ex-
ternal gluons attach themselves to the loop through a fo
point vertex.

The above result when substituted in Eq.~32! gives, after
an integration by parts which results in the replacem
G̈(u1 ,u2)→2Tp1•p2Ġ2(u1 ,u2),

G1
(M52)~p1 ,p2!52

1

2
~2p!4d (4)~p11p2!TrC~ tG

a2tG
a1!

3
g2

~4p!D/2
«1
•«2p1•p2

3E
0

`

dTT12D/2E
0

1

du2E
0

u2
du1

3@~D22!Ġ2~u1 ,u2!28#

3exp@2Tl2G~u1 ,u2!#1permutations,

~40!

where the infra-red cutoffl has been introduced by going o
shell. The integrations in the last equation can be easily
formed and lead to the final result

G1
(M52)~p1 ,p2!52

1

2
~2p!4d (4)~p11p2!Nda2a1

g2

~4p!2

3S 4p
m2

l2 D 22D/2

«1
•«2p1•p2

3GS 22
D

2 D1127~22D/2!

322~22D/2!

3BS D

2
21,

D

2
21D , ~41!

where the adjustmentg2→gD
2 5g2m42D was made in order

to restore dimensional consistency. The term ‘‘permutatio
in Eq. ~29! has been duly taken care of by taking into a
count all the rearrangements of indices~1,2! and dividing by
2! in order to comply with boson non-distinguishability.

From Eq. ~41! we verify, once returning to Minkowsk
space-time, the well known result~which does not take into
account the contribution from the fermionic loop!

Zg512
1

2

g2

~4p!2
N

11

3

1

22D/2
. ~42!

It is of interest to observe, by referring to Eqs.~13!, ~19! and
as has been explicitly demonstrated in Refs.@30,31#, that the

-

-
d.
7-7
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corresponding formulas resulting from Polyakov’s path in
gral for open lines have the same basic structure with
ones that have resulted from the present considerations
taining to loops. It then becomes a straightforward matte
surmise the validity of the Ward identityZB

1/2Zg51 which is
known to hold in the framework of the background gau
fixing method.

B. The three gluon contribution „MÄ3… to the effective action

We now turn our attention toG1
(M53) which summarizes

the contributions from the classes of Feynman diagrams
04501
-
e
er-
o

e-

picted in Fig. 2~plus ghost ones!. Again, our first task is to
compute the corresponding expression for the spin fac
Equations~33! and ~34! now give

FIG. 2. Same as in Fig. 1 for third order contributions (M
53).
,
be

ific
TrLF [1]5D18j̄2j2j̄3j3~«2
•p3«3

•p22«2
•«3p2•p3!18j̄1j1j̄3j3~«1

•p3«3
•p12«1

•«3p1•p3!18j̄1j1j̄2j2~«1
•p2«2

•p1

2«1
•«2p1•p2!1

16

T
j̄1j 1j̄2j2j̄3j3@~«1

•«2«3
•p12«1

•«3«2
•p1!d~u32u2!1~«1

•«3«2
•p32«2

•«3«1
•p3!

3d~u22u1!1T«1
•p3«2

•p1«3
•p2#. ~43!

The integration over the Grassmann variables can be systematically performed, yielding the result

F1
(M53)~u1 ,u2 ,u3 ;T!52

D22

T
$«1

•«2@«3
•p1Ġ~u3 ,u1!1«3

•p2Ġ~u3 ,u2!#G̈~u1 ,u2!1«1
•«3@«2

•p1Ġ~u2 ,u1!

1«2
•p3Ġ~u2 ,u3!#G̈~u1 ,u3!1«2

•«3@«1
•p2Ġ~u1 ,u2!1«1

•p3Ġ~u1 ,u3!#G̈~u2 ,u3!%

1
16

T
~«1

•«2«3
•p12«1

•«3«2
•p1!d~u32u2!1

16

T
~«1

•«3«2
•p32«2

•«3«1
•p3!d~u22u1!1 f .t.,

~44!

wheref.t. stands for ‘‘terms with finite contribution.’’ Obviously the latter involve terms withT to the 0th power or higher
equivalently, they involve more than one~external! momentum variables. Let us reiterate that the finite terms should
computable through numerical methods that are currently being developed.

Substituting the above result in Eq.~29! we obtain

G1
(M53)~p1 ,p2 ,p3!52

1

2
~2p!4d (4)S (

i 51

3

pi DTrc~ tG
a3tG

a2tG
a1!

g3

~4p!D/2E0

`

dTT12D/2E
0

1

du3E
0

u3
du2E

0

u2
du1$4~D22!

3@«1
•«2«3

•p2~u22u1!1«1
•«3«2

•p1„12~u32u1!…#1@«2
•«3«1

•p3~u32u2!#216~«1
•«2«3

•p2

1«1
•«3«2

•p1!d~u32u2!216~«1
•«3«2

•p11«2
•«3«1

•p3!d~u22u1!1 f .t.%expH 2
Tl2

2
@~u22u1!

3„12~u22u1!…1~u32u2!„12~u32u2!…1~u32u1!„12~u32u1!…#J 1permutations. ~45!

It is easy to see that the first term in the curly brackets takes care of the Feynman diagrams represented by Fig. 2~a! while the
other two, which carry the delta functions, collect the contributions from diagrams depicted by Fig. 2~b!. To further guide the
reader let us also mention that use was made of Eqs.~30! and ~31!. Accordingly, the above expression refers to the spec
ordering which enters these equations and underlies the particular integrations over the parametersu1 , u2, and u3, an
occurrence that will be rectified shortly. Finally, in the exponential factor we have set

p1
25p2

25p3
25l2, 2p1•p252p1•p352p2•p352l2. ~46!

Next, we make the variable changeu22u15x2 andu32u15x3 which casts Eq.~45! into the form
7-8
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G1
(M53)~p1 ,p2 ,p3!52

1

2
~2p!4d (4)S (

i 51

3

pi DTrc~ tG
a3tG

a2tG
a1!g

g2

~4p!2 S 4p
m2

l2 D 22D/2

$24~D22!aD~«1
•«2«3

•p21«1
•«3«2

•p1

1«2
•«3«1

•p3!18bD~«1
•«2«3

•p213«1
•«3«2

•p112«2
•«3«1

•p3!%GS 22
D

2 D1 f .t.1permutations,

~47!

where we have introduced

aD5222D/2E
0

1

dx3E
0

x3
dx2x2@x2~12x2!1~x32x2!~12x31x2!1x3~12x3!#D/222 ~48!

and

bD5E
0

1

dx3„x3~12x3!…D/222. ~49!

Obviouslya45 1
6 andb451.

In order to obtain the final result we need to take into account contributions coming from all permutations of the va
u1 , u2 , u3 and divide by 3! to compensate for boson indistinguishability. The result can be easily obtained using the
properties of the trace. One, finally, obtains

G1
(M53)~p1 ,p2 ,p3!5

1

2
~2p!4d (4)S (

i 51

3

pi DTrc~ tG
a3tG

a2tG
a1!g

g2

~4p!2 S 4p
m2

l2 D 22D/2

$4~D22!aD~«1
•«2«3

•p21«1
•«3«2

•p1

1«2
•«3«1

•p3!216bD~«1
•«2«3

•p21«1
•«3«2

•p11«2
•«3«1

•p3!%GS 22
D

2 D1 f .t. ~50!

in agreement with the known result.

C. The four gluon contribution „MÄ4… to the effective action

The computation in the present subsection pertains to a ‘‘world-line’’ diagram which collectively accommodates
classes of the contributing Feynman diagrams, i.e. with zero, one and two four-vertices~plus, of course, contributions from
ghost diagrams! ~see Fig. 3!. As our present analytic computations refer to the divergent part, let us isolate the re
contribution~terms with the factor 1/T2) entering the expression for the spin factor. We find

TrLF [1]5D1
32

T2
j̄4j4j̄3j3j̄2j2j̄1j1~«1

•«4«2
•«32«1

•«3«2
•«4!d~u42u3!d~u22u1!1 f .t. ~51!

Integration over the Grassmann variables is a straightforward matter and gives

F (M54)~u4 ,u3 ,u2 ,u1 ;T!5
D22

T2
@«1

•«2«3
•«4G̈~u1 ,u2!G̈~u3 ,u4!1«1

•«3«2
•«4G̈~u1 ,u3!G̈~u2 ,u4!

1«1
•«4«2

•«3G̈~u1 ,u4!G̈~u2 ,u3!#1
32

T2
~«1

•«4«2
•«32«1

•«3«2
•«4!

3d~u42u3!d~u22u1!1 f .t. ~52!

FIG. 3. Same as in Fig. 1 for fourth order contributions (M54).
045017-9
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Substituting the above expression into Eq.~29! we get

G1
(M54)~p1 ,p2 ,p3 ,p4!52

1

2
~2p!4d (4)S (

i 51

4

pi DTrc~ tG
a4tG

a3tG
a2tG

a1!
gD

4

~2p!D/2
GS 22

D

2 D E
0

1

du4E
0

u4
du3E

0

u3
du2

3E
0

u2
du1$4~D22!~«1

•«2«3
•«41«1

•«3«2
•«41«1

•«4«2
•«3!24~D22!«1

•«2«3
•«4@d~u22u1!

1d~u42u3!#24~D22!«1
•«4«2

•«3d~u32u2!14~D22!«1
•«2«3

•«4d~u22u1!d~u42u3!

132~«1
•«4«2

•«32«1
•«3«2

•«4!d~u22u1!d~u42u3!%F (
n51

4

(
m5n11

4

pn•pmG~un ,um!GD/222

1 f .t.1permutations. ~53!

One can easily verify that the first term inside the curly brackets represents contributions corresponding to the F
diagrams with no four-vertices, the next two to those with one and the last to those with two. Of course, the above ex
pertains to a particular ordering of the variablesu1 , u2 , u3 , u4 as reflected in the explicit delta functions which make th
entrance.

Performing the parametric integrations, in the specific ordering that appears in Eq.~53!, one obtains

G1
(M54)~p1 ,p2 ,p3 ,p4!52

1

2
~2p!4d (4)S (

i 51

4

pi DTrc~ tG
a4tG

a3tG
a2tG

a1!
gD

4

~2p!D/2
GS 22

D

2 D $4~D22!AD~«1
•«2«3

•«41«1
•«3«2

•«4

1«1
•«4«2

•«3!24~D22!~BD2CD!«1
•«2«3

•«424~D22!DD«1
•«4«2

•«3132CD~«1
•«4«2

•«3

2«1
•«3«2

•«4!%1 f .t.1permutations, ~54!

where we have set

AD[E
0

1

du4E
0

u4
du3E

0

u3
du2E

0

u2
du1G D/222,

BD[E
0

1

du4E
0

u4
du3E

0

u3
du2E

0

u2
du1@d~u22u1!1d~u42u3!#G D/222,

CD[E
0

1

du4E
0

u4
du3E

0

u3
du2E

0

u2
du1d~u22u1!d~u42u3!G D/222,

DD[E
0

1

du4E
0

u4
du3E

0

u3
du2E

0

u2
du1d~u32u2!G D/222, ~55!

with

G[ (
n51

4

(
m5n11

4

pn•pmG~un ,um!. ~56!

One trivially findsA45 1
6 , B45 3

4 , C45 1
2 andD45 1

4 .
The remaining step is to perform all reorderings of theu variables and divide by 4!. In this way one arrives at the fin

expression
045017-10
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G1
(M54)~p1 ,p2 ,p3 ,p4!52

1

2
~2p!4d (4)S (

i 51

4

pi DTrc~ tG
a4tG

a3tG
a2tG

a1!
gD

4

~2p!D/2
GS 22

D

2 D $4~D22!AD~«1
•«2«3

•«41«1
•«3«2

•«4

1«1
•«4«2

•«3!22~D22!~BD2CD1DD!~«1
•«2«3

•«41«1
•«4«2

•«3!116CD~«1
•«2«3

•«4

1«1
•«4«2

•«3!232CD«1
•«3«2

•«4%1 f .t., ~57!
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which is in full agreement with the known results.

V. CONCLUDING COMMENTS

Given the schemes pioneered by Bern and Kosower@6#
and reformulated by Strassler@13# based on string and
world-line agents, respectively, and which aim at expedit
perturbative computations in QCD both economically a
efficiently, it becomes important to assess the relevant me
of yet another competitive proposal advanced in the pre
paper which utilizes the Polyakov world-line path integr
Directing, to begin with, our comments towards maki
comparisons with Strassler’s approach we could say that
basic difference between the two world-line based sche
is how the disentanglement, between the weight factor
taining to the spin of the propagating particlelike object o
given path and the dynamical factor represented by the W
son line~loop!, is accomplished. In Strassler’s case this ta
is confronted by using super-particle degrees of freed
~one dimensional! and generates a term in the correspond
Lagrangian of the formcmFmncn. In the Polyakov~world-
line! version, on the other hand, the issue is addressed via
introduction of the spin factor. We believe that the sepa
tion, featured by the latter scheme, between ‘‘geometric
characteristics of paths on the one hand and dynamics
embodied in the Wilson line~loop! factor—on the other,
leads to an organization of the path integral expression wh
further facilitates the ‘‘efficiency factor’’ for performing per
turbative computations. In particular, it offers a unified ba
for treating spinors, gauge fields and ghosts; all one has t
is adjust the master formula, which yields the computatio
rules, to the appropriate spin factor. Moreover, it lends its
to straightforward extensions for applications to proces
involving openfermionic world lines, as established in Ref
@30,31#. Referring, finally, to the string-based approach
Bern and Kosower, we remark that, modulo the pending@32#
detailed demonstration of how one particle reducible c
nected configurations are handled through the applicatio
the classical perturbative expansion, our master formulas
bypass the aformentioned authors’ pinching rules as t
lead directly to perturbative calculations in QCD. We exp
to further demonstrate the virtues of the Polyakov world-l
path integral scheme toward the calculation of two glu
loop contributions to the effective action by generating
corresponding master formulas.
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APPENDIX

In this appendix we shall pay closer attention to the s
factor with respect to both carrying out the path integral
Eq. ~22! and establishing the result encoded in Eqs.~33! and
~34!. Looking at the identity given by Eq.~11! we present the
proper ~regularized! expression for the tensorvmn reads as
follows:

E
0

T

dtvmn@ ẋ~ t !#5 lim
«→0

1

4E2«

«

dsE
0

T

dt2E
0

T

dt1@ ẍm~ t2!ẋn~ t1!

2 ẍn~ t2!ẋm~ t1!#d~ t22t12s!. ~A1!

Now, if the functions~on the line! xm(t) are infinitely differ-
entiable, then we can, once taking into account thatut22t1u
,«, write ẍm(t2)5 ẍm(t1)1O(s) as well asẋn(t1)5 ẋn(t2)
1O(s) and immediately conclude that

E
0

T

dtvmn@ ẋ~ t !#5
T

2E0

T

dt@ ẍm~ t !ẋn~ t !2 ẍn~ t !ẋm~ t !#.

~A2!

Otherwise, one should use the limiting expression accord
to Eq. ~A1! when performing manipulations that involve th
spin factor.

Let us proceed with the computation of the path integ
entering Eq.~25!. We set

I mn5E d4aE
x(0)5x(T)5a

Dx~ t !F [1]@ ẋ~ t !#mn

3exp$2S@x#%, ~A3!

where the translational zero mode has been explicitly se
rated and where

S@x#5
1

4E0

T

dtẋ2~ t !2 i (
n51

M

k̂~ tn!•x~ tn!. ~A4!

To computeI mn we make the variable changex→x1xcl,
wherexcl is a solution of the classical equation of motio
resulting from the above action. Specifically, we have
7-11
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ẍm
cl~ t !522i (

n51

M

k̂~ tn!d~ t2tn!

⇒xm
cl~ t !

52i (
n51

M

k̂~ tn!D~ t,tn!1a, ~A5!

where we have employed the Green’s function

D~ t,t8!5
t~T2t8!

T
u~ t82t !1

t8~T2t !

T
u~ t2t8!,

D~0,t8!5D~T,t8!50. ~A6!

The new action functional is now specified by

S@x#→ 1

4E0

T

dtẋ2~ t !1S@xcl#, ~A7!

where

S@xcl#5 (
n51

M

(
m51

M

k̂~ tn!• k̂~ tm!D~ tn ,tm!2 i (
n51

M

pn•a.

~A8!

We immediately observe that integration overa leads to mo-
mentum conservation which enters Eq.~26!. The rest of the
expression forS@xcl# produces the terms entering the exp
nential factor in the same equation.

Turning our attention to the spin factor we first note th
the variable changex→x1xcl leads to

E
0

T

dtvmn@ ẋ#→E
0

T

dtvmn@ ẋcl#1
T

2E0

T

dt@ ẍm~ t !ẋn~ t !

2 ẍn~ t !ẋm~ t !#, ~A9!

having taken into account that the contoursx(t) are to be
integrated with respect to a quadratic action functional@cf.
Eq. ~A7!#, which implies, cf. Eqs.~A1! and~A5!, that mixed
terms inx andxcl drop out. Let us finally note that for path
04501
-

t

that are infinitely differentiable, in which case Eq.~A2!
strictly holds true, the integration of the spin factor wi
respect to the quadratic action functional yields unity. All th
leads to the following result, as far as performing the p
integral in Eq.~A3! is concerned:

I mn5~2p!Dd (D)S (
n51

M

pnD 1

~4pT!D/2
F [1]@ ẋcl#mn

3expF (
n,m

pn•pmG~ tn ,tm!

1 (
nÞm

j̄njn«n
•pm]nG~ tn ,tm!

1
1

2 (
nÞm

j̄njnj̄mjm«n
•«m]n]mG~ tn ,tm!G .

~A10!

The above result explicitly demonstrates our assertion
the overall contribution from the spin factor is exclusive
determined by those points on a given path where a mom
tum is imparted via the action of an external gauge field.

The final result is obtained once we substitute Eq.~A5!
into Eq. ~A1!. We get

E
0

T

dtvmn@ ẋcl#522(
n51

M

j̄njn~«m
n pn,n2«n

npn,m!

1 (
n50

M

(
m50

M

j̄njnj̄mjm~«m
n «n

m2«n
n«m

m!

3E
2«

«

ds
]

]tn
d~ tn2tm2s!. ~A11!

The correct handling of the last term follows once we ta
into consideration that, first,mÞn on account of the Grass
mann variables and, second, it is to be integrated in con
tence with the time ordering implicit in Eq.~20! of the text.
Specifically, we have
. . . E
0

T

dtn11E
0

T

dtnE
0

T

dtn21u~ tn112tn!u~ tn2tn21!E
2«

«

ds
]

]tn
d~ tn2tm2s! . . .

5 . . . E
0

T

dtn11E
0

T

dtnE
0

T

dtn21u~ tn112tn!u~ tn2tn21!@2dn11,md~ tn112tn!22dm,n21d~ tn2tn21!# . . . ,

~A12!

which allows us to return to Eq.~A11! and infer that

E
0

T

dtvmn@ ẋcl#52
i

2E0

T

dt~J•vcl!mn522(
n50

M

j̄njn~«m
n pn,n2«n

npn,m!24(
n51

M

j̄n11jn11j̄njn~«m
n11«n

n2«n
n11«m

n !d~ tn112tn!.

~A13!

With the above results in place, Eqs.~33! and ~34! in the text follow directly.
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The careful course of reasoning we have followed in this appendix can be circumvented by the more formal
procedure adopted in the text. Thus, the validity of the aformentioned equations can be established once we observ

expF2 i (
n51

M

k̂~ tn!•x~ tn!G E
0

T

dt
d

dsmn~ t !
expF i (

n51

M

k̂~ tn!•x~ tn!G
52 lim«→0E

0

T

dt(
n51

M

(
m51

M E
2«

«

dssk̂m~ tn!dS tn2t2
s

2D k̂n~ tm!dS tm2t1
s

2D
5

1

4
lim
«→0

E
0

T

dtE
2«

«

dssẍm
clS t1

s

2D ẍn
clS t2

s

2D
5 lim

«→0

1

8E2«

«

dsE
0

T

dt2E
0

T

dt1@ ẍm~ t2!ẋn~ t1!2 ẍn~ t2!ẋm~ t1!#d~ t22t12s!. ~A14!
ys
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