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Perturbative computation of the gluonic effective action via Polyakov’s world-line path integral
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The Polyakov world-line path integral describing the propagation of gluon field quanta is constructed by
employing the background gauge fixing method and is subsequently applied to analytically compute the
divergent terms of the ongluonic) loop effective action to fourth order in perturbation theory. The merits of
the proposed approach are that, to a given order, it reduces to performing two integrations, one over a set of
Grassmann and one over a set of Feynman-type parameters, through which one manages to accommodate all
Feynman diagrams entering the computation at once.
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I. INTRODUCTION path integral. Within this context we pursued the problem of
tracing the field theory origins of Polyakov's spin factor, in-

Improved methods, in comparison to the Feynman diatroduced by him to properly account for the propagation of a
grammatic ones, for expediting perturbative calculations irfree, spin-1/2 particlelike entity on a closgé&uclidean
QCD have emerged, within the past decade or so, througace-time contour. In Reff28] we established, via a well-
the adoption of first-quantization-based approaches. The laflefined procedure, the emergence of the spin factor through
ter involve either string or world-line agents through which the recasting of the spin-1/2 matter field sector of a gauge
one describes the field theoretical system. The original effield theory from a functional to @vorld-line) path integral,
forts in this direction were string-inspired and were based or¢ntering as an appropriate weight to account for spin. At the
realizations, made in the late 1980s-5]|, regarding the re- same time, the field theoretical interaction terf85]
lation between string and non-Abelian gauge field theories injy,, /A" is replaced by a “factorized” Wilson lin¢or loop)
the limit of an infinite string tension. Following their own which accounts for the effect of the gauge field on the world-
involvement in such studies, Bern and KosoWér estab- line paths, equivalently describes its interaction with the mat-
lished a set of rules expediting efficient one loop computater particles. Our first applications turned in the direction of
tions in non-Abelian gauge theories. Through them oneconsidering situations when it is justified to set the spin fac-
could encompass contributions of a host of Feynman diator to unity—an occurrence which facilitates a factorization
grams at once. Further extensions of the string-inspired amf the infra-red sector of the gauge field theory, in its pertur-
proach were subsequently carried out in RETs-12]. bative versior[29].

World-line based methodologies aiming at the same goals More recently, we have tested the possible merits stem-
soon followed through the work of Strassldi3] who pro-  ming from the aformentioned disentanglement between spin
posed suitably definebne-dimensionalpath integrals for factor and Wilson line(loop), inherent in the Polyakov
the various quantum field systems he considered. Extensiugvorld-line) path integral for spin-1/2 particlelike entities, as
use was made of supersymmetric one-dimensional particlar as the task of facilitating effective, perturbative computa-
coordinateg§14—-16 “living” on the paths. Focusing on the tions in QCD is concernef30,31]. In the first of these pa-
computation of perturbative contributions to the effective acpers the emphasis was placed on extending the world-line
tion at the one loop level, the results of REE3] achieved methodology toopenfermionic lines. At the same time we
the reproduction of Bern-Kosower type rules at the level ofestablished a procedure by which Strassler’'s path integral
one particle irreduciblé1Pl) diagrams. Strassler’s approach expression for spin-1/2 matter particles, enteringiateract-
was further pursued in Ref§17—19, where computations ing) gauge field theory and which contains the tesnF in
pertaining to multiloop configurations in QED as well as the action, can be recast into the Polyakov form which car-
effective actions involving constant, exterrahromagelec-  ries, in its place, the spin factor. Our subsequent manipula-
tric and (chromgmagnetic fields were undertaken. tions were expedited by the presence of the spin factor and

Now, the world-line casting of relativistic quantum sys- produced, as a bonus, the following physical picture: Non-
tems is an old story, which goes back to F§2K], Feynman trivial spin-factor contributions come precisely at those
[21] and Schwingef22]. Notably, relevant contributions fol- points where a gauge field quantum is emitted or absorbed
lowed by several author$23-24, the latter of which by the fermionic world-line path. Moreover, each such oc-
sparked our original interest in the subjd@7,28. What currence signifies the presence of a derivative discontinuity
particularly attracted our attention was the geometrical seten the path as a four-momentuky is locally injected. This
ting underlying the construction of Polyakouworld-line) s, indeed, a nice intuitive picture as it connects the math-

ematical fact pertaining to the dominance of non-
differentiable paths on the one hand, with the physical oc-

*Email address: savramis@cc.uoa.gr curence of emission and absorption of quanta on the other. In
"Email address: akaranik@cc.uoa.gr the second paper we focused our attention on the more prag-
*Email address: cktorid@cc.uoa.gr matic goal of developing algorithms, always for spin-1/2 par-
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ticle (open world lines, which lead to efficient perturbative cess of finalizing tests of numerical procedures that have
computations in QCD pertaining to Green’s functions andbeen devised for their evaluation. Second, concerning one
amplitudes. Two different alternatives were arrived at acfarticle reducible diagramén the Feynman sengsea sys-
cording to whether the execution of the particle path integratematic way to include them into our scheme is to employ a
precedes or follows the considerations involving the Wilsonclassical field theory perturbation expansioree diagrams

line (loop): (a) The Feynman diagrammatic logic is directly associated with the background gauge field. We intend to
visible and comprehensively dealt witth) a novel organi- eport the details on both of these matters in a forthcoming
zation of the perturbative expansion is achieved which rePaper(32].

tains the space-time description all the way. Strat¢gy

leads to a neat organization of the resulting perturbative ex-  |l. POLYAKOV WORLD-LINE PATH INTEGRAL

pression which reduces the computation to two straightfor- FOR THE GLUON SECTOR OF QCD

ward steps. The first pertains, basically, to the spin factor and The successful transcription of the fermionic sector of a

e s cnaug fied theory to s Poyakov path mtegf2 orm
. ’ yin L P .~ utilizes the fact that the corresponding functional integral is
sidered. The second integration is over a set of proper tim

6f a Gaussian typE28]. For the gluon sector, of course, such
parameters inherited from the expansion of the Wilson expo- . ' '
nential. Possible practical merits of alternatit® constitute Is not the case. Following RefEL3] and[19], we proceed by

an open issue. employing the background gauge fixing procedure according

Encouraged by the fact that the Polyakov path integral forto which the gauge fieldh,, splits into a dynamical compo-

. ; g . nent, to be denoted by ,, and a background field® .
spm—ll 2 partlclt_a entities Iea_ds to computational procedureéiven that we shall res%lrfct ourselves ir? the presenf paper.
which, both logistically and intuitively, seem to present ad- ! ’ '

vantages of their own, we undertake, in the present paper, tﬁg the computation of effective action terms, the background

; . reld will be considered as classical. Let us finally mention
task of extending the application of the relevant methodol-h hall k f lism Euclid h h
ogy to the gluonic sector of QCD. Such an effort entailst at we shall keep our formalism Euclidean throughout our
. - : 'analysis. Transcription of our final results to Minkowski
among other things, the determination of the spin factor perépace-time will be made in the end. In this respect, charac-
taining to the propagation of a spin-1 particlelike entity. Thisterizations such as *Lorentz enerétors " “l orentz ,trace ;
issue is confronted in Sec. Il where we consider the PUIE. . will be employed b abusge of Ianguége '
gauge field sector of a Yang-Mills system and utilize tech- 'i'he quadratic p))/art 03; thépure gauge field action reads
nigues associated with the background gauge fixing proce- the Fevnman 9
dure. Focusing on effective action terms at the one gluorgIn € Feynman gauge
loop level, hence to 1PI diagrams in the Feynman context,
we proceed, in Sec. Ill, to produce a master expression fur- 5225“2 —(Dz)abéﬂv—[Dﬂ,D,,]ab—ingby]aE
nishing theMth perturbative order contribution. The overall
structure of these terms corresponds to a gluonic world-line +?‘1[(D2)ab]cb 1)
loop on which “vertex operators,” in the form of plane '
waves, are attached. As in our previous w8k], pertaining whereDab= Dab(B):& 520+ g fabeBE is the covariant field
to open fermionic world lines, the overall calculation reduces " " H "

to an integration over a Grassmann set of parameters fogerlvatl_ve In the.adjomt represgntaﬂon, v_vhliec are the
lowed by one over a set of Feynman-type parameters, thghOSt fields. Obvioushy,, entering Eq(;L) is the Maxwell
number of variables for each of the two sets being fixed by€nsor for the background gauge field, i.e.
the perturbative order. At the end of the section we briefly
discuss the extension of our approach to Green’s functions or
amplitudes where tree type configurations attached to loops _ cabe c c cdend me
must also be taken into account. Direct applications of our = —if"%9,B,-9,B,-9f""B,B,).
master formulas are worked out in Sec. IV, where we ana- @
lytically compute.the divergent parts of the secor_1d, t_hird, and Introducing the Lorentz generators under which four-
fourth (pe_rturbat!ve order one—gluon_—_loop cqntrlbgtlons to \ectors transform, namely
the effective action. From the specific manipulations it be-
comes obvious that the world-line configuration accommo- (J0) v =1(8,, 85— 8p105,), ®)
dates, to a given order, the totality of the contributing Feyn-
man diagrams. Moreover, it can be easily surmised from ouwe rewrite Eq.(1) as follows:
master expressions that no divergent terms make their ap-
pearance above the fourth order. Finally, in Sec. V we sum- 1, 2 ab abv b\ A/ ~2vabib
marize our findings and formulate our conclusions, while in  S2=75 @[ = (D9)™8,,=9(3-F)y, Ja, + (D))
the Appendix we trace the main steps involved in bringing (4)
the spin factor to its final, ready to apply form.

Let us close our introductory discussion with the follow-  In the one loop approximation, to which we shall restrict
ing two comments. First, as far as the finite contributions toour considerations in this work, the effective action, as a
the effective action terms are concerned, we are in the prdunctional of the background field, is given by

ab_ —ab _ __ifabcgc
FW—FW(B)——lfa cFM(B)
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wherew,,, expresses the rotation of the vector tangent to the
trajectory [26] and, for paths described by differentiable

functions, assumes the form

1
I';[B]= ETrln(—DZ—gJ- F)—Trin(—D?)

EI‘1,gluons[B:|"’I‘ghostiB]- (5)

In what follows it suffices to work with’; g0, B] as
Ighostd B] is simply given by the first of the two terms en-
tering the gluon contribution to the effective action, multi- A more careful discussion pertaining to the spin factor is

w,,[X]= E(xﬂxy—xﬂxv). (12

plied by (—2).

Employing Schwinger’s parametrization formJi22], we

write (trace on “Lorentz” and color indices

1ﬂlgluons[B]

where

Ky, T)ah=(yle™ TP 02 Fjx)ab )

corresponds to th@ynamical gauge field propagator kernel

in the background field.
The world-line path integral forK(y,x;T)Zi

K( . ab: X(T):y _ E T v2
Y. X T) Dx(t)ex dtxa(t)
x(0)=x 4)o

T . T ab
xPex;{igJ dtx~B+gJ dtJ-F
0 0

v

®)

As already established in Ref80,31], the Polyakov path

f dexTrK(x x;T), ()

results
through standard procedurésee, e.g., Ref.30]) and reads

conducted in the Appendix.
Once performing a partial integration, E) assumes its
Polyakov path-integral form which reads

exp{——f dtx)
x(0)=x

i (T
xPex;{—f dtJ-w)

2Jo

mv
T . ab
xPexp(igf dtx-B) . (13
0

In turn, the corresponding expression for the effective action,
including the contribution from the ghost term, becomes

[B]———j fDx(t)exp(——f dtx)

. L
x{TrLrp[ll[x]—z}TrcPexp(igf dtx-B),
0

X(T) y
. ab
K(y,x,T),w

(14

integral results once we apply the “area derivative” operatorwhere the subscrig® denotes the periodic boundary condi-

[33,34] given by

e 52
= Iimf dss
S

e—0Y —¢& S
x|t | ox, [ t— =

5,,(1)

9)
2 2)

and use, at the same time, the identities

S T . ab
Pexp i f dtx-B
68;41/(':) % g 0 )

—PeXp<|9f dix- B) al(—lgF[X(t)])alaz

up

t. agh
xPexp(igf dtx-B) (10
0

ov

JT ) 1(7.-,
dt———ex ——j dtx
0 08,,(1) '{ 4)o )

1(7 . 1(7 .
= Efo dt w,“,[x(t)]exp( - Zfo dtx2) , (11

and

tions, x(0)=x(T), imposed on the path integration, while
the indices on the traces stand for “Lorent®’) and “color”

(c). Furthermore, we have introduced the spin-factor expres-
sion[37]

(15

Pl [x]w_Pexp[if dtd- o[X(1)]

nv

which is the appropriate weight pertaining to the description
of the propagation of a spin-1 particlelike entitgluon) in
(Euclidean space-time. It is not difficult to see that the spin
factor has a restricted dependence on a path’s profile. As
argued in Ref[30] and further deliberated on in the Appen-
dix, contributions of the spin factor to the path integral come
solely from points where a four-momentum is applied
through an emission or absorption of a gauge field quantum.
Roughly speaking, this has to do with the fact that the ex-

pectation valug(x,x,)—(X,X,), as computed through the
path integral, vanishes unless a four-momentgmis im-
parted at the point.

For the sake of comparison we give the corresponding
expression for the one fermionic loop expression which con-
tributes to the effective actiof28]. It reads(color matrices
in the fundamental representatjon
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and spin-1 particlelike entities the corresponding weights are
provided by Eqs(17) and(15), respectively.

1(=dT 1 (7 .
Fl‘f[B]Z Ef ?f Dx(t)ex —ZJ th2
0 P 0
For completeness let us mention that the path integral

. T
X Tr ®MA[x]Tr P exp( igjo dtx- B) (16)  expression for the gluonic Green’s function, namely

with the spin factor now given by ; b_ [ .Tab
iIG(Y,X) 5= fo dTK(y,x;T)% (19

v

d)[l’z][k]EPexp{iszdt S w[X(t)] 17
0

is determined once the substitution from E@) is made for

. the propagation kernel.
and where the corresponding Lorentz generators belong to propag

the spinor representation, i.e.
Il. THE ONE GLUON LOOP, M-POINT EFFECTIVE

1 ACTION

i

S}LVZEU[.LV:Z[’YM”YV]' (18)

In this section we shall perform a number of manipula-

Generally put, the Polyakov path integral recasting of a relations through which we shall arrive at ready-to-apply master
tivistic quantum field theoretical system provides a unified®XPressions for the computation of one-loop effective action
basis for the description of the propagating particlelike en{€ms. Let us commence our efforts by giving to the, classi-
tity: one simply has to adjust the weight provided by the spinc) backgroun_d fiel@ the plane wave form, i.e. we sk38]
factor to its particular form. Thus, for a spin-zero particle theB,.(x) =t's "¢, where the indesn tracks the various
relevant weight factor is, simply, unit§note, in this regard, gauge fields entering thdth order term in the expansion of
that ghosts fall into this class irrespective of the anticommuthe Wilson exponential in Eq14). We obtain

1 T 1 -
11 f dt, |6ty , ...,tl)f Dx(t) [T ™ x(t,)
n=M JO P n=M

J
1 =dT
DOy, )= - 5 i) et 1) [

. 1t
X{Tr ®M[x]—2}exg — Zf dtx@+i >, p,-x(t,) |+ permutations, (20)
0 n=1
wherefd(ty, . .. ,tl)=Hﬁ=M,10(tn+l—tn) and where the indication “permutations” refers to all possible rearrangements of

thet, and thet‘é" associated with theéyl in number, background gauge fields.

Our computational strategy for confronting the above quantity coincides with the one employed [B1Rdf.relies on a
move to recast the spin-factor expression into an explicitly path-independent form. Once this is done the path integration can
be immediately performed given that the “action functional” is a simple Gaugsiith a linear term). Subsequently, we shall
deal with the spin factor.

Following the procedure employed in the aformentioned reference we introduce the Grassmann \g_ar'mhl@ﬁ through
which thee"-x(t,,) factors in Eq.(20) are elevated into exponentials accordind 18]

i8”~5<(tn)=J déndénexiliénéns” X(ty)]. (21)

After substituting in Eq(20) we obtain

11 f at,

n=M JO

l [—
Btw. ... m[nHM f dfndén}

1 =dT
M _ a, a
r'™(p,, ... ,pM)——EgMTrC(tG"" . .tel)fo -

M

xf Dx(t){Tquﬂll[iq—z}exp[—HTdb@ﬂE k(tn) - x(ty)
p n=1

0

+ permutations, (22
having set

K (t)=Pnut Enne (23)

n_
Eat,”
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Recalling the original specification of the spin factor, which utilizes the employment of the area derivative, let us rewrite
Eq. (22) in the specific form which takes into account the fact that the gauge potentials entering the expansion of the Wilson
exponential are plane waves. For tkieh order term we write

(T o
{Tr,_Pex;{ =i fo dtJ-g)

The above expression illustrates in an immediate, albeit formal, manner the path independence of the spin factor: One observes
that the area derivative acting on the exponential will produce delta functions entering the parametric integratiorf9xf. Eq.
entering the definition of the area derivative operator. A well defined argument leading to this result is provided in the
Appendix.

Returning to the case at hand, we write

(24)

M
exp[i Zl k(ty)-x(ty)].

M
Tquﬂll[R]sexp[ —i 21 k(th)-x(tn)

1

t, |6ty ...,tl)[ HM fdgnda}

1

N
Hfd
n=M JO

M
X{Tr ®M[k]-2} fPDx(t)eX[{ - %Jonti(er i n§=)l k(ty)-x(t,)

1 odT
M _ a a
POy, P = 5T ) [

+ permutations. (25

The first task we shall carry out is to perform the, basically Gaussian, path integral. Straightforward manipulations, partly
displayed in the Appendix, lead to the result

M

fx(O)=x(T) exp{ __f dix( Z (th)-x(tn)

1
—(277)'35@)( > pn)(4 TR

exp[E Pn PmG(tn,tm) + Z Enéne™ PmdnG(tn,t)

(26)

1 P n .m
+_n;m Enénéméme" e dndmG(th,ty) |

One notes contributions pertaining solely to the points of attachment of external gauge field on the loop contour. In the above
expression the following Green'’s functi¢f®3] has been employed:

) [t—t]
G(t,t")=|t—t’| 1—? . (27)
It correspond$39] to the motion of a one-dimensional particle moving on a closed contour, i.e.
” G(t,t")=-96 Nt 28
20 (L) =—o(t—-t)+ < (28)
and obeys the boundary conditio840t')=G(T,t’) andG(0t')=G(T,t’).
Introducing the dimensionless parametarsaccording tot;=Tu;,i=1, ... n, the interim result foﬂ“(l'\")(pl, cPw)
reads
1 M 1 1
(M) __ "M D o(D) ay ia D/2—-1
Lf(py, ... pw)==5g"(2m°s (nZl pn)TrcuGM e )D,zf armeeE I fo dun}

Xﬁ(uM,...,ul)F(M)(ul,...,uM;T)exr{TE Pn- PmG(Un,Upy) [+ permutations, — (29)

n<m

whereG (U, ,Un) =|U,—Un|[1—|u,—uy|] satisfies the additional properties
ﬁnG(un,um)EG(un,um)=sgr{un—um)—2( —Up)=— (Umv n) (30)

and
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= IndmG(Up ,Up) = 32G(Up ,Up) =G Uy, Up) = 2[ 8(up— up) — 1. (31)

Finally, in Eq.(29) we have set

F(M)(ulv s ruM !T):

1
HM f dfnda}(TrﬁD[”[R]—Z)exr{ > Enéng™ PmdnG(Un,Up)
= n#m

. (32

1 s n _.m
+ 2 Enénéméme" - €"9ndmG (U ,Upy)
2T i%m

The spin factor can now be brought into a ready-to-apply form through a series of manipulations that are outlined in the
Appendix. The following result is arrived at:

i\ 2
|
E) (JPZUZ)”’)‘(JplUl))‘V

. M
|
=t 5 (Jp)un 2 BpoM)+

. M
(Dw[k]:PeX[{%nzl J-$(n)

nv
M np,—1
X 2 2 b (N2 by (M) + - (33)
n,=1n;=1
|
with ods have been developed for this purpose whose report is
. forthcoming[32]. For the rest of this paper we restrict our-
b (M) =2&,E1(£,Pn, = €,Pn. ) selves to the computation of the divergent part of the effec-
tive action. In this regard, let us observe, by looking at Eq.
n fg € 1EnEn (8" e — gt 1gn) (32), that ultraviolet divergences will occur only for terms of
Tontisn+1onemEL Fe Fy Fp orderM=2,3,4. Specifically, by focusing on the terms that
have the minimum number qf, , factors one determines,
><5(un+1_un) (34)

through dimensional considerations, that they should carry
_ the compensating factd® ™ for M =2,3,4. The latter com-
and where we have designated tigt, ;= &m+1=0. bines withTM~1-P”2in Eq. (29) to produce divergent terms
Two observations of practical interest can be made in CON=_T"(2—D/2). Further inspection shows that no such terms
nection with the above expression for the spin factor. First, ilyrise forM =5, a fact that directly complies with the renor-
is clear that the number of terms in the expansion of thfi‘nalizability of the theory.
exponential in Eq.(33) terminates atM as the saturation  Concerning our earlier statement that the classical, back-
point of the Grassmann variables is by then reached. Secongyound fieldB takes, for the present purposes, the form of

the delta-function-containing term in E€33) implies that  plane waves we offer the following comment. Suppose we
for a given ordering there is a contribution from coinciding hecome completely general and set

points,u,, andu, , ; in this case. This occurrence signifies the
presence of a “four-gluon vertex” which is automatically
included in a given perturbative calculation, along with the B (x)ztaf q a2 (q) (35)
(derivative-dependentthree-gluon vertices” represented by ® G (2)P I

the first term. One thereby concludes that kheh order per-

turbative contributions to the effective action are classified . . .

via the spin factor, exclusively by the number of the points ofThen, the only resulting difference is that our master expres-
gluon (single or pairwisg attachments on the closed world- Sion. given by Eq(29), would include integrations over the
line contour, in all possible permutations. Accordingly, theMomenta. The plane-wave representation employed in the

computation of theM-point effective action term will collect Present paper has been made entirely for reasons of
all Mth order, 1Pl Feynman diagrams. economy, coupled with the fact that we shall be focusing on

We mention in passing that fermionic loop contributions the divergent contributioni to the effective action. Referring
to the effective action easily follow by referring to Egs. to Eq.(35), we have chosea’(q) = (27)°5(q—p)s? , with
(16)—(18). One simply has to make the substitution p-£=0. Let us also point out that in our subsequent compu-
?p5(Jp6) wv—Suv®Ppy in Egs.(33) and(34) and use the fun- tations we shall, for IR protection purposes, set the gluon
damental representation of the group. four-momenta tpZ=\?, n=1,2, ... ,with \*>A%p.

Given the expressions we have arrived at, what remains to Let us finally remark that the master formula can also be
be carried out, as far as 1P| configurations are concerned, aegnployed for the purpose of computing Green’s functions or
the integrations over the Grassmann variables as well as the@mplitudes where one particle reducible diagrams, in the lan-
parametric integrations entering E@9). Numerical meth- guage of the Feynman organization of perturbation theory,

D
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_ 1 .
..... @ s —> m@mm . FM™2(ug,up:T) = = (D= 2)e™ 626 (u up)

—8el-e%p;-p,. (39)
(a) {b)
One notes that the delta function entering the specification of
“G(uy,u,) accommodates the contribution coming from the
class of Feynman diagrams wherein the t{ironcated ex-
ernal gluons attach themselves to the loop through a four-
oint vertex.
The above result when substituted in E8R) gives, after
n integration by parts which results in the replacement

FIG. 1. Second order, one-loop gluon contribution to the effec
tive action. Depicted to the left is the “world-line diagram” repre-
senting theM =2 master formula. To the right, the classes of Feyn-
man diagrams, accommodated by the world-line one, are displaye
The ghost loop Feynman diagram has not been drawn.

also enter. To this end it is sufficient to represent the classic o &2
background field in the form it would assume had we solve (U1,Uu2) = = TPy PG Uy, ),
the equation

_ 1
LM=2(py,pa) == 5 (2m)* 8 Py + o) Tre ()

G
D,F,,(B)=0 (36)
g2
via the classical field perturbation theory. We would, then, X—D,281'82p1'p2
. (4m)
write
Ry v
~ X | dTT Jd J d
55=(2mP8(q—py)et+9(2m)°8(a—p1—p2) JO 0 2] T
et pye? X[(D—2)G?%(uy,u,)—8
X(t8)ay0,— o+ O(G7), @37 (D7 2E ) 8]
(P1+p2) X exd — T\2G(uy,u,) ]+ permutations,

which furnishes an attachment of a tree diagram with a three (40

gluon vertex. One could similarly proceed to determineyhere the infra-red cutoft has been introduced by going off
terms corresponding to attachments of higher order. With thghell. The integrations in the last equation can be easily per-
help of the series implied in Eq37) and employing the formed and lead to the final result
expression given by E@35), we can use the master formula

given by Eq.(29) to computeone-loop amplitude terms. As

1 2
mentioned earlier, these matters will be dealt with in a forth- F(l"":Z)(pl,pz) =— 5(277)45(4)(p1+ p,)N 62231

coming papef32]. (4m)?
2\ 2—-D/2
IV. COMPUTATION OF DIVERGENT ONE-LOOP x| 4m— et 8°p1-py
EFFECTIVE ACTION TERMS TO FOURTH ORDER A
In this section we shall apply our comprehensive formulas p( 9 E) 11-7(2-D/2)
given by Eqs(29) and(32)—(34) towards the computation of 2)3-2(2-D/2)
the divergent contributions to thd =2,3,4 terms in the ex-
. . . . . D D
pansion of the effective action—in fact, the only terms which XBl=—1—— 1) ' (41)
exhibit ultra-violet divergences. We leave the task of com- 2 2

puting finite contributions, to the same order, to a future . B )
: : : where the adjustmer®>—g2=g?u*"° was made in order
paper where numerical methods will be applied. 4 ! D M .
to restore dimensional consistency. The term “permutations”

in Eq. (29 has been duly taken care of by taking into ac-

count all the rearrangements of indidds2) and dividing by
The present calculation pertains to the classes of Feynmadi in order to comply with boson non-distinguishability.

diagrams displayed in Fig. 1 4a) and (b). Our master ex- From Eg.(41) we verify, once returning to Minkowski

pression accommodates the two depicted classes plus tispace-time, the well known resuitzhich does not take into

ghost contribution. From Eq$33) and (34) we determine, account the contribution from the fermionic Igop

for M=2,

A. The two gluon contribution (M =2) to the effective action

1 g2 11 1

Tr @M=D —8&,¢1 668" %Py pa. (39) 29:1_5(477)2N§ 2-D/2 42

Upon substituting in Eq32) and performing the Grassmann It is of interest to observe, by referring to Eq$3), (19) and
integrations we obtain as has been explicitly demonstrated in Rg®€,31], that the
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corresponding formulas resulting from Polyakov’s path inte- -
gral for open lines have the same basic structure with the s
ones that have resulted from the present considerations per- @ T *

taining to loops. It then becomes a straightforward matter to
surmise the validity of the Ward identigg °Z,=1 which is @ ®)
known to hold in the framework of the background gauge

fixing method. FIG. 2. Same as in Fig. 1 for third order contributionsl (

=3).

B. The three gluon contribution (M =3) to the effective action picted in Fig. 2(plus ghost ondsAgain, our first task is to

We now turn our attention t&'${" =3 which summarizes compute the corresponding expression for the spin factor.
the contributions from the classes of Feynman diagrams deEquations(33) and (34) now give

TrL(I)[l]=D+852§2§3§3(82-p383~p2—82~63p2-p3)+831§1g3§3(sl-p383~p1—81~83p1-p3)+851§152§2(61-p282-pl
-e%p;- pz)+ 515152525353[ el e2e3.pr—el-e%e?.py)d(uz—uy) + (et e3e? p3—e?- g3t py)
X 8(up—uq)+Tel-pae?-pe3 p,]. (43

The integration over the Grassmann variables can be systematically performed, yielding the result

F(M 3)(Ul,U2 us;T)= {8 ‘plc(us,U1)+83‘PzG(U3.U2)]é(U1,U2)+81'83[82‘p1G(U2.U1)

+sz-psc(uz,u3>]é<u1,u3>+ez-sg[sl- P2G(uy,Up) + &t paG(uy,uz)1G(uy,ug)}

16 23,2 16
+_(8 -e%e3.-py—et e3e? py)S(uz—uy) +

T(slss -p3—e2-e3%t p3)d(u,—uy) +f.t.,

(44)

wheref.t. stands for “terms with finite contribution.” Obviously the latter involve terms withio the Oth power or higher,
equivalently, they involve more than oriexterna] momentum variables. Let us reiterate that the finite terms should be
computable through numerical methods that are currently being developed.

Substituting the above result in E9) we obtain

3 g
3 1
I =3(py,pz,ps)=— E(ZW)45(4)( 21 pi>Trc(té3taeztzl)( )D’ZJO dTT " Dlzf dusf duzf du{4(D-2)

X[et %% py(uy—uy) +&t e%2 py(1—(uz—uy))]+[e? &%t pa(uz—u,y) ] — 16(et- e%° p,
TA\?
+el.8%2.p1)d(Ug—uy) —16(et- 362 py+e2- 3t py) S(uy—up) +f.t. b ex — —[(uz—uy)

X (1= (uy—up))+(uz—uy)(1—(uz—us))+(uz—uqy)(1—(uz—uq))] | +permutations. (45)

It is easy to see that the first term in the curly brackets takes care of the Feynman diagrams representedapyhite the
other two, which carry the delta functions, collect the contributions from diagrams depicted bybigi@further guide the
reader let us also mention that use was made of Bf5.and (31). Accordingly, the above expression refers to the specific
ordering which enters these equations and underlies the particular integrations over the parametgrsand u;, an
occurrence that will be rectified shortly. Finally, in the exponential factor we have set

PI=p53=p5=\%  2p;-p,=2p;1-Pa=2p,-P3=— A% (46)
Next, we make the variable change— u; =X, andus;— u;=X3 which casts Eq(45) into the form
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O

FIG. 3. Same as in Fig. 1 for fourth order contributiohd €4).

3

1 2 2 2—D/2
T™=3(p,,ps,ps)=— = (2m) 5“’(2 )Trcu?tézta@l)g 2 477”‘—) {—4(D-2)ap(et %% pytel-e®e?p;
2 (4)? A2

D
+e2.e31. py)+8bp(el 8283 py+3et-£3e2. py+ 262 3sl~p3)}F(2—§)+f.t.+permutations,

(47
where we have introduced
1 X
aD:227D/2J dXsJ 3dX2>(2[X2(1_X2)+(X?,_Xz)(l_xa"‘Xz)"‘XS(]-_X:«:)]D/}Z (48)
0 0
and
1
szf dxz(xa(1—X3))P2 72, (49)
0

Obviouslya,=t andb,=1.

In order to obtain the final result we need to take into account contributions coming from all permutations of the variables
uq, U,, Uz and divide by 3! to compensate for boson indistinguishability. The result can be easily obtained using the cyclic
properties of the trace. One, finally, obtains

3 2 5\ 2-DI2
_ 1 g %
ry" 3><p1,p2,p3>=§<2w>46<4>(§l P Tre(tetete) 477)2(477; {4(D-2)ap(s" %> ppt+et-e®? py
D
+e2.8%1 py)—16bp(el- 8263 - pyt+ et 832 py+e?-e31 - py) I’ 2—§)+f.t. (50

in agreement with the known result.

C. The four gluon contribution (M=4) to the effective action

The computation in the present subsection pertains to a “world-line” diagram which collectively accommodates all the
classes of the contributing Feynman diagrams, i.e. with zero, one and two four-vépliegsof course, contributions from
ghost diagrams(see Fig. 3. As our present analytic computations refer to the divergent part, let us isolate the relevant
contribution(terms with the factor /%) entering the expression for the spin factor. We find

Tr o= D+_§4§4§3§3§2§2§1§1(8 el 83—t £%2 £%) 8(uy—uz) S(uy—uy) 1.t (51

Integration over the Grassmann variables is a straightforward matter and gives

F(M=4)(U4,U3,U2,U1§T):

[8 +8263-8%G(Uy,up)G(Uz,Ug) + et £32- £9G(uyg,uz) G(Uy,Uy)

.. . 32
+el e%2.83G(uy,uy) G(Uy,ug) ]+ E(sl- ete?. 63—l %% &%)
X 8(Uy—uz)S(uy,—uq)+f.t. (52
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Substituting the above expression into E2P) we get

4
i 1
PE" (01 P2 papa) = = 5(2m) 00| 2, b | TrltggtEte

(22 [ e

uz
X J du{4(D—2)(et-e2e% e*+el 32 . e%+ - e%2.6%) —4(D—2)et- e2e3 4 S(u,— uy)
0

Trc(ta“tastaztal)(

+8(us—uz)]—4(D—2)et %2 £35(uz—uy) +4(D—2)et 263 £*8(up,—uyp) S(Uy— Us)
D/2—-2

4 4
+32et-e%e? 3l e3e2. &%) 6(u2—u1)5(u4—u3)}{n§_: :2 Pn: PmG(Up, Uy

+f.t.+ permutations. (53

One can easily verify that the first term inside the curly brackets represents contributions corresponding to the Feynman
diagrams with no four-vertices, the next two to those with one and the last to those with two. Of course, the above expression
pertains to a particular ordering of the variables u,, u;, u, as reflected in the explicit delta functions which make their
entrance.

Performing the parametric integrations, in the specific ordering that appears {63gone obtains

GG GG

4 4
1 D
F(lM‘4)(p1,pz,p3,p4)=——(277)45(4)(2 pi | Tre(ttt2te) ———— % F(Z——>{4(D—2)AD(81-8283-s4+sl~8382-84
2 = (2m)PP2 2

+el-e%%2.£%)—4(D—2)(Bp—Cp)el- e e*—4(D—2)Dpel- %2 £3+32Cp (e %2 &3

—gl. 832 £} +f.t. + permutations, (54)

where we have set

1
fdu4f du3f duzf du,GP"?2,
0 0

1 Us u,
Bo= [ v | e, | "du o, -uy) + ot v g% 2
0 0 0

0

Co

1 Us U
f du4f du3j duzf du,8(uy—uy) 8(uy—us)GPR2,
0 0 0

0

1
Ef dU4f dU3f dU2f dulﬁ(U3 Uz)ngz 2 (55)
0 0
with
4 4
G=2, 2 Pn'PnG(Un,Un). (56)

One trivially findsA,=3%, B,=2, C,=3% andD,=7%
The remaining step is to perform all reorderings of theariables and divide by 4!. In this way one arrives at the final
expression
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4

D
Trc(ta4ta3ta2tal)g—DF< 2-5

ottty (20 [4(D—2)Ap(el-s263 %+l £362. 84

4
. 1
T (py,p2.pa,Pa)= 5(277)45(4)( 2 p

+el.e%2.£%)—2(D—2)(Bp—Cp+Dp) (el 823 e +el- %2 £3)+ 16Cp (et 263 &*

+el.8%2.£3)—32Cpet 32 ¥ + 1 1., (57)
|
which is in full agreement with the known results. C.N.K. acknowledge the support from the General Secre-
tariat of Research and Technology of the University of Ath-
V. CONCLUDING COMMENTS ens.

Given the schemes pioneered by Bern and Kosd®égr
and reformulated by Strasslg¢d3] based on string and APPENDIX

world-line agents, respectively, and which aim at expediting |n this appendix we shall pay closer attention to the spin
perturbative computations in QCD both economically andfactor with respect to both carrying out the path integral in
efficiently, it becomes important to assess the relevant meritgq. (22) and establishing the result encoded in ES) and

of yet another competitive proposal advanced in the presens). | ooking at the identity given by Eq11) we present the

paper which utilizes the Polyakov world-line path integral. proper (regularizedl expression for the tensas,,, reads as
Directing, to begin with, our comments towards makingtg|iows:

comparisons with Strassler’'s approach we could say that the
basic difference between the two world-line based schemes
is how the disentanglement, between the weight factor per-f
taining to the spin of the propagating particlelike object on a
given path and the dynamical factor represented by the Wil- . :
son line(loop), is accomplished. In Strassler’s case this task X, ()X, (11)]6(t2— 11 —9). (A1)
is confronted by using super-particle degrees of freedom

(one dimensionaland generates a term in the correspondingNow, if the functions(on the ling x,,(t) are infinitely differ-
Lagrangian of the formy“F ,,". In the Polyakov(world-  entiable, then we can, once taking into account fhat t,|
line) version, on the other hand, the issue is addressed via theg, write iiﬂ(tz)zi'(#(tl) +O(s) as well asx,(t;) =x,(t2)
introduction of the spin factor. We believe that the separa+ (O(s) and immediately conclude that

tion, featured by the latter scheme, between “geometrical”

characteristics of paths on the one hand and dynamics—as [t . T(T . . o
embodied in the Wilson lindgloop) factor—on the other, f dt“’w[x(t)]zif dt[x, (D)X, (1) =X, (1)x,(1)].
leads to an organization of the path integral expression which 0

further facilitates the “efficiency factor” for performing per- (A2)

turbative computations. In particular, it offers a unified basis ) o , .
for treating spinors, gauge fields and ghosts; all one has to Jfgtherwise, one should use the limiting expression according

is adjust the master formula, which yields the computationai® Ed: (A1) when performing manipulations that involve the
rules, to the appropriate spin factor. Moreover, it lends itselSPiN factor. _ _ _

to straightforward extensions for applications to processes L€t us proceed with the computation of the path integral
involving openfermionic world lines, as established in Refs. €Ntering Eq(25). We set

[30,31]. Referring, finally, to the string-based approach of

T . 1 (e T T . i
dtw,, [x(1)]= Iimzﬁ dsfO dtzfo dty[ X, (t2)X, (1)

0 e—0

Bern and Kosower, we remark that, modulo the pend8® :f 4 f (1

detailed demonstration of how one patrticle reducible con- e d’a X(O)=X(T)=3Dx(t)<b [X(O 1o
nected configurations are handled through the application of

the classical perturbative expansion, our master formulas can xexp{— S[x]}, (A3)

bypass the aformentioned authors’ pinching rules as they

lead directly to perturbative calculations in QCD. We expectwhere the translational zero mode has been explicitly sepa-
to further demonstrate the virtues of the Polyakov world-linerated and where

path integral scheme toward the calculation of two gluon

loop contributions to the effective action by generating the 1(T . Mo
corresponding master formulas. x]= Zf dtx(t) —i E k(t,)-x(t,). (A4)
0 n=1
ACKNOWLEDGMENTS

To computel ,, we make the variable change-x+x°!,
One of us(S.D.A) acknowledges financial support from wherex®' is a solution of the classical equation of motion
the Greek State Scholarships Foundatfioik.Y.). A.LLK. and  resulting from the above action. Specifically, we have
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Mo that are infinitely differentiable, in which case E@?2)
5'<Z'(t)=—2i E k(t,) o(t—t,) strictly holds true, the integration of the spin factor with
n=1 respect to the quadratic action functional yields unity. All this
—x°l(t) leads to the following result, as far as performing the path
“ integral in Eq.(A3) is concerned:
M
=2i 21 k(t)A(t,t)+a, (A5) M
A=

> Pn

T Ppllye
= )(4WT)D’2(D D

|MV=(277)D(5<D>(

where we have employed the Green’s function

t(T—t") t'(T—1) Xexr{ > Pn PmG(tn,ty)
A(t,t")= T ot'—t)+ T o(t—t"), n<m
A(Ot")=A(T,t")=0. (AB) +n§mgn§n8n'pm‘9n6(tnvtm)

The new action functional is now specified by 1 o
+ 2 n;m Enénéméme" - &M 9ndmG(ty ) |.

1(7 .
S[x]—>—f dtx®(t) + S[x°'], (A7)
4Jo (A10)
where The above result explicitty demonstrates our assertion that
VR M the overall contribution from the spin factor is exclusively
ch_ o T . ) determined by those points on a given path where a momen-
Sx] nzl mzzl K(tn) - K(tm)A(tn tm) 'n; Pn-a. tum is imparted via the action of an external gauge field.
(A8) The final result is obtained once we substitute Ep)
' _ _ ' into Eq. (Al). We get
We immediately observe that integration oedeads to mo-
mentum conservation which enters Eg6). The rest of the T ] Mo
expression foiS[x°'] produces the terms entering the expo- f dth[XC']= -2 Enén(enPn,v—80Pn )
nential factor in the same equation. 0 n=1
Turning our attention to the spin factor we first note that M M
. | _
the variable change—x+x°' leads to +n§=:0 rnZ:O Enfntmém(enel—ene)
fT . T e (T .
dtwvx—>fdtwvx +—fdtxtx,,t 2 d
0 wlX] 0 pl X7 2J)o [xu(0%,(1) xf dsgﬁ(tn—tm—s). (A11)
—€ n

—X,(D)X, (D], (A9) ,

The correct handling of the last term follows once we take
having taken into account that the contow$) are to be into consideration that, firsm#n on account of the Grass-
integrated with respect to a quadratic action functide&l = mann variables and, second, it is to be integrated in consis-
Eq. (A7)], which implies, cf. Eqs(Al) and(A5), that mixed tence with the time ordering implicit in Eq20) of the text.
terms inx andx®' drop out. Let us finally note that for paths Specifically, we have

T T T & J
f dtnﬂf dth’ dtn,lﬁ(tnﬂ—tn)0(tn—tn,l)J ds— 8(t,—t,—S) . ..
0 0 0 P

T T T
= ... J;) dthrlfO dtnfo dtnfla(thrl_tn) 0(tn_tnfl)[25n+l,m5(tn+l_tn)_25m,n715(tn_tnfl)] ey

(A12)

which allows us to return to EqA11) and infer that

. M M
T ) | T _ . _
JO dta)ﬂv[XCl]Z - EJO dt(J- wCI)}LV: - 2n§=:0 fnén(szpn,v_ggpn,,u) _4n§=:1 §n+1fn+lfn§n(8,rl+lsg_8g+18,n;,) thr1—ty).
(A13)
With the above results in place, Eq83) and(34) in the text follow directly.
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The careful course of reasoning we have followed in this appendix can be circumvented by the more formal line of
procedure adopted in the text. Thus, the validity of the aformentioned equations can be established once we observe that

Mo T 5 Mo
exp[ﬂn}:)l K(ty)-X(ty) JO dtésw(t) exp[un; k(tn)-x(tn)}

_ T M M . A s\ . s
:—nmwof dt>, > dssl&(tn)é(tn—t—E)ky(tm)é(tm—t+5

0 n=1m=1J-¢

1 T & - S\.q S
_4!qufodtf_sdss>§ ts xv<t 2)
1(e T T . . . .
= Iimogf_adsfo dtzfo dta[ X, (t2)X, (1) = X, (t2) X, (1) ]6(t,— t1 —s). (Al4)
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