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Photons and gravitons as Goldstone bosons and the cosmological constant
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We reexamine a scenario in which photons and gravitons arise as Goldstone bosons associated with the
spontaneous breaking of Lorentz invariance. We study the emergence of Lorentz invariant low energy physics
in an effective field theory framework, with non-Lorentz invariant effects arising from radiative corrections and
higher order interactions. Spontaneous breaking of the Lorentz group also leads to additional exotic but weakly
coupled Goldstone bosons, whose dispersion relations we compute. The usual cosmological constant problem
is absent in this context: being a Goldstone boson, the graviton can never develop a potential, and the existence
of a flat spacetime solution to the field equations is guaranteed.
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[. INTRODUCTION vature scale of the universe. This is achieved by effective

theories consisting of three sorts of terms: gauge invariant

Massless particles can arise by a variety of mechanismgdnetic terms, non-gauge invariant potential terms, and small

gauge symmetry, chiral symmetry, supersymmetry, and theorrections to these. The simplest exampleLis (F,,)?

spontaneous breaking of global symmetry. The masslessnessY(A“A,). As we will discuss, it is not too hard to generate

of the photon and graviton is typically associated with theSuch effective actions from some more conventional under-
existence of gauge symmetry: here we explore an alternati¥ing dynamics. All terms in the action are taken to be Lor-

option in which it is associated with the spontaneous break€Ntz invariant; however, the potential is assumed to give rise

ing of Lorentz invariance, with the “gauge” fields arising as to a constant non-Lorentz invariant vacuum expectation
alue. The broken Lorentz generators imply the existence of

g;;ﬂi??ﬁebfggg f,g;i'ifbgféfk'gﬁ?_ r'1:a(1)sr ?ellg?g dhvlvsgcr)liy’sgitm#assless Goldstone.bosons. In the absence of th.e potential,
(2349 ' theT vacuum expectation valye would have no phy§|cal gffect,

U L being pure gauge; in particular, exact Lorentz invariance

At the '?Ve' of low energy effec'_uve f|_eld th_eory, the usual\ ouid be maintained. With the potential included gauge in-
argument in favor of exact gauge invariance is based on Lolyariance is broken and with it exact Lorentz invariance.
entz invariance. Some form of gauge invariance is reqUireqilowever, by definition the Goldstone bosons do not appear
in order to obtain an interacting, unitary, Lorentz invariantin the potential; the expansion of the potential is in terms of
theory of massless particles with spin 1 or 2. In a manifestlymassive fields. Since Lorentz invariance is broken only by
Lorentz invariant formulation a violation of gauge invariancethe potential, the breaking will be suppressed by the inverse
will typically imply a noncancellation of timelike and longi- mass of the heavy fields. So at low energies we will have an
tudinal modes, yielding a nonunitaBmatrix in the physical  approximately Lorentz invariant theory of Goldstone bosons.
sector. In a noncovariant gauge fixed formulation unitarity isThe expansion of the potential to quadratic order in fluctua-
manifest, but the action is required to be formally gaugetions simply acts a gauge fixing term, so the low energy
invariant in order to recover Lorentz invariance of thena-  theory is approximately that of photons or gravitons in a
trix. noncovariant gauge.

Especially in the case of gravity, there are various moti- Actually, there are additional interesting complications in
vations for exploring alternatives. First, it is a basic fact thatthe quantum theory, where loops induce small non-Lorentz
we inhabit a universe that is not Lorentz invariant at largeinvariant kinetic terms. This leads to the appearance of addi-
scales due to cosmological expansion. Second, in the case fiénal non-Lorentz invariant but “weakly coupled” Gold-
gravity, gauge invariance is insufficient to guarantee the exstone bosons whose effects we discuss. Directly related to
istence of massless gravitons propagating in Minkowskihis is that it is crucial to study whether the form of our
spacetime, since a potentiaf\/— g is allowed. Since a non- effective action is stable under radiative corrections, as these
zero cosmological constant leads to a non-Lorentz invarianill generically induce all possible operators consistent with
vacuum, the original motivation for gauge invariance is notthe symmetries. We study this question carefully, and find
actually realized. that with reasonable starting assumptions the resulting low

As an alternative we turn to effective actions that yieldenergy physics appears approximately Lorentz invariant.
massless photons and gravitons as Goldstone bosons of Motivated by the cosmological constant problem, a mul-
spontaneously broken Lorentz invariance. Of course, the efitude of authors have experimented with modifying gravity
fective theory must be consistent with the observed accuracy various ways(see[6] for a review of some attempts
of Lorentz invariance at distances small compared to the cuf=rom the point of view of low energy effective field theory

the problem is that general covariance allows one—and only

one—potential termA*\—g, and so unless this term van-
*Email address: pkraus@physics.ucla.edu ishes there exists no solution to the equations of motion with
TEmail address: tombouli@physics.ucla.edu constant fields. But in a scenario in which the graviton is a
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Goldstone boson this problem does not arise, since a Goldn the aboveN is some large number, and we have written
stone boson can never acquire a potential. So even if sonmmut the leading\ terms in the action. The action is Lorentz
scalar field undergoes a phase transition, contributing a terimvariant—all indices being raised and lowered with the
V(do)V—g to the effective action, one knows that the Minkwoski metric—but not gauge invariant. In particular,
vacuum expectation value for massive fields can be shiftethe potentiaV(A*A ) is not gauge invariant; a crucial point
such that the Goldstone boson gravitons remain massless. that this is theonly non-gauge invariant term at leading
Therefore, there wilalwaysexist an exact vacuum solution order in N. In particular, the higher derivatives terms are
with constant fields, on which propagate massless gravitorterms like F‘”FW)Z, d*F*"d,F,,, etc. Similarly, the ge-
with approximately Lorentz invariant physics. This then neric matter fieldsp are gauge invariantly coupled o, in
guarantees the existence of the sort of solution one want8 e ,A,). Apart from these stipulations the action is ge-
without fine-tuning. However, one should note that thereneric in the sense that all dimensionless couplifggart
may also exist other solutions with spacetime varying fieldsfrom N) are of order unity; that is, all dimensionful quantities
A complete solution to the problem should address why a flaére of the order of the cutoffk to the appropriate power.
(or nearly flaj spacetime solution is preferred; we discuss Since in our effective action we have explicitly excluded
this in Sec. Il various terms which are consistent with the symmetries of
The first part of this paper is devoted to the detailed studyhe theory, two questions immediately come to the fore: how
of the photon as a Goldstone boson, but this is essentially might an action of this form be generated from some under-
warmup for the more interesting case of gravity, which pro-lying dynamics, and is the assumed structure of the action
vides our main motivation. There does not seem to be angtable under radiative corrections? We now address these two
obvious advantage in producing the photon as a Goldstongoints in turn.
boson, and we have made no attempt at a realistic model by
including the other standard model fields. We should also A. Effective action from fermions
stress that we will work in an effective field theory frame-
work in which the graviton is to be thought of as a composite
of more fundamental degrees of freedom. It may be wort

mentioning why our scenario is not in conflict with the theo- tion of the original mechanism proposed by BjorkEH,

rem of Weinberg and Wittefv], which rules out “composite which considered four fermion interactions. So consiNer

gravitons” in a broad class of models. Specifically, the theo- . f Di formi We i ine th formi
rem states that a Lorentz invariant theory with a Lorentf;‘ipec'eS of Dirac fermiongy; . We Imagine these fermions

To show why an action of the forif2.1) is fairly natural,
e show how it can be generated by integrating out some
arge number of fermion species. This will be a generaliza-

invariant vacuum and a Lorentz covariant energy-momentu eing coupled o gauge fields which acquire masses at scale

e camot Havea massess spi 2 partce s spetrugl, TEYCATS 00 U s geue Posons v e
There is no conflict here since our vacuum will not be Lor- !

entz invariant. following subset:

This paper is organized as follows. In Sec. Il we study in o
detail the example of the photon as a Goldstone boson. The ﬁw:%(iap M) +ND Ao
photon example illustrates most of the important general fea- n=1
tures and is much simpler computationally than the gravity ) o L
case. We also discuss the relation to previous work on thi§l€re, summation over flavor indicesind spacetime indices
subject. In Sec. Il we discuss the graviton and the cosmo# IS implied. We wrote the action to have a N flavor
logical constant problem in this context. Section IV has som&ymmetry. The couplings.,, are of order unity times the
final comments, and the Appendix contains technical result&PPropriate power oA,
for the gravity case. Ny~ A %760, 2.3

(Giy )™

N2n (22)

Factors ofN have been inserted in order to give a well de-
Il. PHOTON AS GOLDSTONE BOSON fined largeN limit. In particular, the normalized bilinears

We begin by writing down a certain effective action for a O*=(1/N);y*¢; then have correlators scaling B, and
vector fieldA, coupled to matter. The motivation for this the action written in terms oD has an overall factor dN.
form will be discussed subsequently. The action is to be We will employ the standard trick of rendering the action
thought of as an effective action defined at a UV cutoff scalequadratic in fermions by introducing an auxiliary fiefd".

A. We thus consider the Lagrangian We therefore consider
Lya=di(i—d —m)gi—NV(A#A,). (2.4)
1
L= N( — 2 PR VATAL) The potentialV is a power series id*“A, with coefficients
chosen such that by solving the algebraic equations of mo-
_ o tion for A* and substituting back in we recover E@.2).
+higher derivatives+ Liauef ¢,A,) The most familiar case corresponds to a pure four fermion
interaction, with only A, nonvanishing, in which case
+O(NY). (21  V(A*A,)=A*A,I4\,. The quantum version of this theory
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is defined by a path integrélith a cutoff) over the fieldsy; violations of Lorentz invariance at low energies and so need
and A*. The idea is to imagine first doing the path integralto be suppressed. The need to suppress such terms is our
over ¢; to yield an effective action foA*. Sincey; is mini-  motivation for introducing the large numbét. Given the
mally coupled toA*, provided we choose a gauge invariant form (2.1), the loop expansion is an expansion ilN 150 the
cutoff the terms in the effective action generated in this waydangerous terms will only arise at ordsf.

will be gauge invariant. Furthermore, since there ldrspe- So at ordeN® we need to consider all possible Lorentz
cies of fermions the effective action will have an overalljhyariant terms generated by computing loop diagrams for
factor of N. Therefore, the form of the effective action is that ox at energies low compared to the cutoff we can restrict

of tl\r:e first set of terrplsciin' E(|12d-1)d h her f . . attention to terms with at most two derivatives. We further
ow suppose we had included the other fermion terms i .o,y symmetry under charge conjuga@ipacting as sign

Eq.(2.2) that would certainly arise upon integrating out mas-\ o, orsa| orax. This forbids single derivative terms. Terms
sive gauge fields. This will introduce other bilinears in the, . o derivatives just give a small correction to the poten-
theory, e.9.4iy*" i, i y*9"¢;, etc. The above procedure tig| in Eq. (2.1), which we are taking to be arbitrary, so we
should then be generalized by introducing a new auxilianheed consider only two derivative terms. Up to integration

field for each bilinear. Integrating out the fermions thenpy parts, there are seven independent terms:
yields an effective action for a set of interacting auxiliary

fields. The analysis rapidly becomes complicated; however, (1) fl(Az)a,LAV&"AV,
one expects on general grounds that the auxiliary fields will
acquire mass terms of order of the cutoff and so can be (2) f2(A2)aMAV0VA“,
neglected at lower energies. By contrast, in our scenario cer-
tain components oA* will remain massless since they will (3) f3(A2)A“A“o7#A,,(9aA”,
correspond to Goldstone bosons.

To reiterate somewhat, in our approach where we consider (4) f4(A2)AVA“a#A,,aaA“,
A* as the only auxiliary field it is consistent to omit terms
like (4iy"4:)?¢;d ¢; which might seem to lead to non- (5) fs(A)AYAG,AMA,,
gauge invariant terms Iiké(A“AM)F“ﬁFaB in the effective 5
action forA*. If such fermionic terms are to be included one (6)  fe(A)A*ATA%G, 0, A, ,

should introduce a new scalar auxiliary field for the bilinear

%(ﬂ ¥, and we are not doing this for the reasons stated

above. 2 an . .
We have thus demonstrated one possible way of genera%?foﬁ ]r? SA#] 'f_Azraellvg?%sra‘greuisifu?ri;?i;:”adm;gnz;g

ing an effective action with the structuf@.1), though there piing ! y pprop

are presumably other ways as well. For the most part W%

consider Eq(2.2) in its own right, without reference to its

(7)) F2(AD)AFAYAALG A, d,Ag. (2.5

ower of A. As we will see, after spontaneous symmetry
reaking some of these terms will lead to low energy viola-
tions of Lorentz invariance at orderN/

origin.
B. Coupling to matter D. Spontaneous symmetry breaking
By coupling a matter fieldp to the fermions via con- Our potential will generically have the form
serve_d curr_entsJ_M(¢>) iy, we will generate the matter o A2\ D
couplings given in Eq(2.1). An easy way to accomplish this V(A2)=A%Y v _) (2.6
is to modify Eq.(2.2) by taking the mass for some of the = MAZ)

fermions to be much less than the cutdif In this case we

would keep the light fermions in the low energy effective with the coefficientd/,, of order unity.V, can be determined
action rather than integrating them out. From E24) we  in terms of the\,, appearing in Eq(2.2). We will assume
see that these fermions will be minimally coupled Aé. that the potential leads to spontaneous symmetry breaking,
Whether we use this or some other mechanism to generate

the matter couplings, it will be important that the matter (A =cAn,, 2.7

action is gauge invariant, at least up to the level of two o ] ) ) )
derivative terms. where for definiteness,, is a spacelike unit vector anglis

of order unity. This expectation value spontaneously breaks

Lorentz invariance at the cutoff scale. Nevertheless, we

will see that low energy physics is approximately Lorentz
Treating Eq.(2.1) as an effective field theory at scalg invariant.

to extract out low energy physics we still need to integrate We now expand the action around the vacu(®v) by

out the fluctuations oA*. Since the potential term violates writing

gauge invariance, once we start computing loop diagrams all

possible Lorentz invariant, but not necessarily gauge invari- A,=cAn,+a,. (2.8

ant, terms will generically be generated. Some of these terms

would lead, after spontaneous symmetry breaking, to larg&o quadratic order ira, the potential becomes

C. Stability under radiative corrections
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1 There are thus three broken generators corresponding to two
V=V(-c?A%)+ E(n'a)2+”'. (2.9  rotations and a boost. The corresponding three Goldstone
bosons are the three componentabforthogonal tan*. We
where choose a basis of two transverse components and a timelike
component:
— 1 1 (1,2 (1,2 (1,2
= (=A%) T AT (2.10 transverse: €,?, k-e?=n.e?=0,
Shifting the vacuum has a trivial effect on th& kinetic timelike: €Y=k, +(n-k)n,,
terms since, being gauge invariant, these depend only on
derivatives ofA*. Hence in the kinetic terms we can just obeys n-e9=0. (2.15

replaceA*— a*. We can similarly make this replacement in
the matter Lagrangian after performing a compensatinght low energies only the Goldstone bosons are relevant. At

gauge rotation of the matter fields: leading order inN the gauge invariant form of the kinetic
terms implies that only the transverse Goldstone bosons
Linatiel ¢{AL) +a,) = Lnanek '18,), (2.1)  propagate, giving us the conventional Lorentz invariant elec-

trodynamics. However, at ord®® the timelike component

whereg¢' is a gauge transformation gf. We will henceforth  will also propagate, and this will lead to interesting effects.
drop the prime onp. Therefore, the action takes the form We now concentrate on the low energy physics of the
Goldstone bosons coupled to matter. The Goldstone bosons
can be thought of as coordinates on the cosdB8S0/SQ(2,
1). Since the Goldstone bosons label flat directions of the
potential, the cubic and higher order terms from the expan-
+higher derivatives@(a3)] sion of the potential all involve the massive component

n-a, and so are irrelevant at low energies. Now consider the
orderN° terms(2.5). Note that after spontaneous symmetry
breaking the terms$4)—(7) expanded to quadratic order in
fluctuations will all involve at least one factor nfa. There-

L=N| - TFeE,, - 2
- _Z ﬂv_Z(n'a)

+£mane|(¢:aﬂ)+o(No)- (2.12

The (n-a)? term plays the role of an axial gauge fixing

term. It gives a mass of ordéx to a spacelike component of fore, only terms(1)—~(3) are relevant for low energy physics.
a,. So to the above order our action takes the form of a

Ij:urthermore, one linear combination(@ and(2) is propor-
" .

5 . . :
axial gauge fixed photon coupled gauge invariantly to matte _|onaI to (F,,,)” and so just provides a small correction to the

Neglecting the higher derivative terms, the photon propagac-)rderN value of this term. Hence we can omit one linear

tor is given by combination, say?2), and focus only on term&) and(3). It
is also convenient at this point to rescaté—a*/ /N to put

i 1 the gauge kinetic term in standard form. Therefore to order
- N_pz( Nyv™ ﬁ(nupﬁ n,p.) N°, and d.iscardi_ng terms suppressed at low energies hy
the effective action is
P.Py
“ )z(apz—nz))- (2.13 1 1 , le
p ﬁz_zF’“ FW—Z(n-a) +§W&”a dua,
As usual, only the first term contributes when the propagator 1c
is sandwiched between conserved current, and the result is + 22208y a g.at+ L a,/\N).
Lorentz invariant. Corrections to this Lorentz invariant result 2N «rp matef 8,
are suppressed hy/ A and/or 1N, as will be discussed be- (2.16
low.
Here we defined the order unity numerical coefficiantsas
E. Goldstone bosons
After slponta_neous symmetry breaking we have “massless f1((A)?) = %Cl, CA?f3((A)?)= %Cz- (2.17
particles™ by virtue of Goldstone’s theorem. In particular, a

spacelike vector breaks the Lorentz group according to ) ) _
We also kept the termn(- @) as a convenient way of imple-

SQ(3,1)—S02,1). (2.19 menting the axial gauge condition.
Equation(2.16) clearly shows the need for aNLsuppres-
sion of the third and fourth terms in order to have approxi-
e employ quotation marks since we can no longer use the stadnate Lorentz invariance at low energies. It is easiest to com-
dard definition of particles as being irreducible representations opute the propagator from the first two terms and to think of
the (now spontaneously brokgPoincaregroup. But it should be the third and fourth terms as interactions. Then it is clear that
clear what we mean when we use the particle terminology. when we compute interaction between conserved matter cur-
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rents we will get the standard QED results at leading ordergauge propagator at leading order and regard corrections as
with non-Lorentz invariant corrections occurring at ordercoming from interaction vertices with coefficients of order
1/N. 1/N.
The timelike mode is also suppressed by phase space con-
F. Low energy spectrum siderations. For fixed available enery the dispersion re-

: . . ) lation forces
We now determine the dispersion relations for the three

Goldstone bosons by solving the linearized equations of mo- [k-n|<\/cy /NK. (2.24
tion. The latter are
Consider putting the system in a box of sizeThen forN

Cy Cz > (k°L)? only the zero momentum mode parallelrtt sur-
| M V__ gV m _SnanB v
1+ N 90,8 =070, 8"+ N N*N"dadp vives, yielding a phase space suppression proportional to
1L,
~ “nka,n’=0. (2.18 While the timelike mode gives small corrections to the

interaction between conserved currents it could have more
dramatic consequences given its unusual dispersion relation.
First consider the transverse modes. Using the afisaez  We should emphasize that the res{@t23 does not neces-

Eq. (2.19] sarily imply faster than lightsignal propagation, since Eq.
(2.23 is only valid for long wavelengths. Also, even if Eq.

a,= e Mg ikx (219  (2.23 could be extrapolated to short wavelengths so that

signals could propagate faster than light, there would be no

we find the dispersion relation conflict with causality since Lorentz invariance has been

spontaneously broken by a preferred frame. It would be in-

_ Ci) , ©Cp ) teresting to study the physics of the timelike mode in more
transverse: | 1+ k +N(n-k) =0. (220  (etail
This corresponds to an anisotropic speed of light. The speed G. Summary and relation to previous work

of light parallel ton* differs from that orthogonal t@* by Let us summarize what has been accomplished. We have
an amount of order J/N _ shown that spontaneous breaking of Lorentz symmetry can
Now consider the timelike mode. We use the ansatz  |aa(d to an approximately Lorentz invariant low energy theory
Cikox of massless photons coupled to matter. This is possible in the
a,=(k,+yn,)e """ (22D context of a theory in which gauge invariance is violated at
leading order only by a potential term. Since the Goldstone
boson photons do not appear in the potential, the Lorentz
violating condensate leads to only small corrections to the
low energy physics of the photons. On the other hand, the
existence of three broken Lorentz generators implies the ex-
istence of a third Goldstone boson whose physics is not even
approximately Lorentz invariant. However, its effects are
N : ;
— —(n-k)2=0. (2.23 suppressed by IlV and phase space conS|derat|qns. Alto-
C1 gether, Lorentz invariance appears as an approximate sym-
metry of the low energy world.
In the dispersion relation we have dropped terms down by This is a good place to compare and contrast with previ-
1N or ak?. The dispersion relatiori2.23 is non-Lorentz  ous work on this subject, in particular the original work of
invariant at leading order. The timelike modes propagate agjorken [1]. The main difference is that we have taken a
the ordinary speed of light in directions orthogonaht but  modern effective field theory point of view, emphasized that
at a speed of ordeyN in the direction parallel tm*. We are  the violation of Lorentz invariance is real, and pointed out
assuming that;>0. the existence of an extra Goldstone boson. Earlier work
The physics of the transverse modes is thus standard up &tarted from a four Fermi interaction, i.e., just keeping the
small corrections, while that of the timelike mode is quitetermX, in Eq. (2.2). The trouble with this is that it is incom-
exotic. The reason for this is that the timelike mode does nopatible with spontaneous symmetry breaking, since it corre-
propagate with respect to the leadiNggauge invariant ki- ~ sponds to a potentiad~A*A , with no higher order terms. A
netic terms of Eq(2.1). It only acquires a kinetic term at reflection of this is that the condensate was never actually
order N°, and these terms are non-Lorentz invariant aftercomputed in earlier work, but was eithassumedo arise
spontaneous symmetry breaking. somehow, or emerged after formal manipulations with diver-
While exaotic, the timelike mode leads to acceptably small
effects for sufficiently largeN. Its contribution to the inter-
action between conserved currents is suppressed My 1/ 2Here we refer to the speed of light as the speed of the transverse
since as we have discussed we can use the standard axiabdes after spontaneous symmetry breaking.

We find
y=n-k+O(ak?), (2.22

and the dispersion relation

timelike: k?
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gent integrals. The claim was then made that the physicElat spacetime thus plays a preferred role in this context;
after spontaneous symmetry breaking was the usxattly indeed we think of the underlying dynamics as that of a
Lorentz invariant quantum electrodynamics. This conclusiomongravitational theory in Minkowski spacetime. The Ap-
was again dependent on manipulating divergent quantitiependix discusses one possibility for such an underlying
As far as we can tell, the origin of this claim is that if one theory. The Einstein-Hilbert term in Ed3.1) is standard
takes the pure four Fermi interaction and assutmgengly)  while the potential is some generic Lorentz invariant func-
that this leads to spontaneous symmetry breaking, then exion of h,, with indices contracted withy,,,. Odd powers of
pandingV~A*A,, around the new vacuum would yield an h are allowed; for instance, the terhf; can appear in the
axial gauge fixing term and nothing more. This of courseexpansion of/(h). As in the photon case the higher deriva-
gives the usual QED in the axial gauge. But from our pointtive terms are generally covariant, as is the matter action.
of view it is clear what would actually happen in this theory. General covariance is violated only by the potential.

The four Fermi theory leads either to an instability or to a Note that the observed Newton’s constant will be

stable vacuum with a massive vector fiedd,. In neither

case does one find QED. On the other hand, the problem 1
disappears once one includes the higher order fermion terms Gn~ NAZ® (3.9

as we have done; this is also the natural starting point from

the view of effective field theory. )
Since earlier work took the point of view that the sponta- 1 hérefore, the cutof\ is smaller by a factor of AN com-

neous breaking of Lorentz invariance was somehow fictipared to the usual Planck scale. Indeed, this lowered value of

tious, the existence of the extra Goldstone boson was ndfi€ cutoff is responsible for suppressing loop correctiors.
noted. is a large number but presumably need not be more than 10
Before turning to gravity we should also note that some ofor so. Thus the cutoff can still be well above observable
the above criticisms were commented on recently by BjorkerSN€rdy scales. _ _ _
[8]. In particular it was noted that the four Fermi theory by e consider potentials leading to a vacuum expectation
itself is inadequate, and that some real violations of Lorent¥@lué forh,,. By performing a Lorentz transformation we
invariance should be expected once quantum effects a@®N bring the expectation value to the form
taken into account. These points were also examined by _
Banks and Zaks ifi9] in the context of non-Abelian gauge hoo
fields; they also concluded that there is a real violation of —
Lorentz invariance. We hope to have resolved these issues (th,,)= . (3.4)

here. ur) [

I1l. GRAVITON AS GOLDSTONE BOSON has

We now turn to our main interest: producing a graviton 8SForh,,,, all nonvanishing and distinct, the Lorentz group will
a Goldstone boson. Fortunately, the analysis closel_y parallelsg completely broken:
the photon case, and so we can draw on our experience from
that example to navigate in the more complicated gravita- ;
tional setting. The main difference is in the different pattern SQ3,3)—nothing. @9
of spontaneous Lorentz breaking as well as in the connection _
to the cosmological constant problem. The cosmologicaP€ing dimensionless, we expefef,, of order unity. There-
constant provides a motivation for modifying the low energnyfe there will be six Goldstone bosons corresponding to the
effective theory of general relativity, and indeed we will seeSix broken Lorentz generators. The Lorentz generatgt
that the problem is avoided in the sense that the Goldston@Cts on¢h,,) by exciting the u# v components. So the
boson graviton remains massless even in the presence Gfldstone bosons are the six off-diagonal components of the
vacuum energy. symmetric matrixh ,, . Fluctuations of the diagonal compo-
To adapt the previous approach to the case of gravity w&ents will generically correspond to massive fields. We will

consider an effective action in direct analogy with E21),  ultimately associate two of the Goldstone bosons with the
two physical polarizations of the graviton, while the remain-

ing four will appear in analogy with the timelike Goldstone

_ 2 4
L=N{AZJ=gR(g)—A™V(h) boson in the photon case.
+higher derivativelst £aref ¢,9) ~ We now consider fluctuations around the vacuum by writ-
ing
+O(N9). (3.1
hyw=(hy) + Ry, (3.6
Here h is defined via expansion of the metric around flat
spacetime: The expansion of the potential will correspond to mass terms
for the diagonal components Bfw. The precise form of this
9uv= vt Ny, (3.2 mass matrix is not important, so we will write
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3 5 wieldy, and so we will not display it here. Fortunately, for
V(h)=const- A“Z (fané’“a)nfa)hw)2 leading order calculations we only need to know that it has
a=0 the structure of the standard covariant propagator
+0(hd). (3.7) i
Here 32_(77,11,(1771/3_'— NupNva™ 77/.LV77a,8) (316
N{e)= (3.8)  plus terms with at least one factor pf(vectop in the nu-

. merator. Sandwiched between conserved energy-momentum
andf, are numbers of order unity.

o . . tensors, the lattep terms vanish, and so we recover the
We can simplify the action by performing a general coor-

. . ; . standard Lorentz invariant result. Of course this is no su-
dinate transformation to put the background metric back "brise since Eq(3.15 represents a valid gauge choice
standard form. In particular, introduce new coordinat&$ ’ ' '

The low energy physics is therefore quite similar to what

such that we found in the photon example. We will have two graviton
O gx'V states which propagate at the speed of light, up to a small
X B Tur= Napt (Nap)- (3.9  anisotropic correction. Further, there are four additional

Goldstone bosons that acquire kinetic terms at ordst. 1/
, These will have highly non-Lorentz invariant dispersion re-
wy lations, but their couplings to conserved currents are sup-
pressed by M. Working out these dispersion relations ex-
ax' " ax' v _ pIicitIy'wouId bg quite involved given the' Iarqe ngmper of
— —,eh,'w(x'): Rap(X). (3.10 terms in the action at orderN/and the proliferating indices.
IxX* Ix However from our discussion of the photon example it
should be clear that the essential physics is independent of
these detalils.

The metric appearing in the action will then b;;erﬁ
where

We similarly act with a coordinate transformation on the
matter fields; e.g., for a scalar

' (X")=p(x). (3.11 The cosmological constant

Notice that we have obtained an approximately Lorentz

After changing the integration variable td the potential . X . . X o
term is modified while the general covariant terms are ofivariant theory of gravity without making any specific as-

course invariant. Given the for8.10), the modification of ~SUMPtions about the form of the potentiéh). Therefore,
the potential can be absorbed in a redefinition of the conW€ See that if the potential is suddenly modified, say by a

stantsf,,. So after the coordinate transformation our actionMatter phase transition, then the vacuum expectation value of
takes tﬁe form h can simply shift to the new minimum, leaving us again

with an approximately Lorentz invariant theory. In particular,

L£=N{A? [ZgR(g)—A*V(R) the term \/—ngane,(gbo_) can be added to our previous po-
tential and the analysis proceeds as before. We have there-
+higher derivativest £ aief ¢',9) fore evaded the usual cosmological constant problem. The

+ONO) (3.12 usual problem arises because of general covariance: only a
(N, ' single potential term is allowed\*/—g, and a nonzero
with value of this term is incompatible with a Lorentz invariant
solution. If one is willing to violate general covariance by
(3.13 writing a more general potential then this conclusion need
not follow. Indeed, if the graviton is a Goldstone boson one
and is guaranteed to find a solution with constant fields and a
massless graviton. What is perhaps surprising is that the
physics around such a non-Lorentz invariant solution is ap-

g,LLV: 77;LV+ h,:w

3

V(h')=const-A* > (f i nt R )2 proximately Lorentz invariant, as we have seen.
«=0 On the other hand, the above discussion does not imme-
+0(h'3). (3.14 diately imply that the approximately Lorentz invariant solu-
tions are theonly solutions. Indeed, at least in the weak field
We henceforth relabel fieldsh’' —h, ¢’ — . approximation we will find additional approximately de Sit-

We think of the quadratic terms in the potential as gaugéer and anti—de Sitter solutions. This follows from the fact
fixing terms, corresponding to the gauge that at low energies and for weak fields our theory is that of

standard gravity in a noncovariant gauge, plus additional
no sum. (3.15  weakly coupled Goldstone bosons. If one now takes a stan-
dard solution with a given energy-momentum tensor and ex-
This defines an acceptable noncovariant gauge. The gravitgresses it in our gauge, this must continue to be an approxi-
propagator in this gauge is extremely complicated and unmate solution of our theory. The existence of multiple

un= Mup
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solutions is hardly surprising given that we are solviiag APPENDIX

leading ordersecond order differential equationslote that In this appendix we indicate one way the gravitational

the approximately Lorentz invariant solution with ConStameffective action(3.1) may emerge from some underlying

fields is guaranteed to be an exact solution as it just corre- ' entional dynamics. There may be others. Here we em-

nds to extremizing th tential, while the other solution : .
sponds to extre g the potenta, © e other Solutio Son the same mechanism as in the photon case (Ef).

with spacetime varying fields need not be exact. In a mor hus we consideN fermions coupled to gauge fields that
conventional field theory context one would expect a solu- . . upie gaug .
acquire masses. We then imagine integrating out the fields

tion with time dependent fields to eventually settle down to afrom some initialA~ down to a scale\ obtaining the effec-
static solution by radiating energy. One might expect the.Ve action 0 9

same here, with the time dependent fields of the de Sitte
type solutions radiating away, leading to the solution with o
constant fields. A realistic proposal in this framework must wi(iﬁ—M)¢i+4rr2NE Cu(Ag,A)O(A) (AL)
involve showing how to make the transition from an expand- K
ing radiation or matter dominated universe to the approxi-
mately Lorentz invariant solution discussed above. We hop
to return to this in future work.

volving an infinite set of fermion interactions. Restricting
consideration first to the subset consisting only of powers of

j— - -
IV. CONCLUDING REMARKS Ouv=1 ¥i5 (Yudv=Yud) i, (A2)

Building on the work of Bjorken, we have shown that
massless photons and gravitons can be produced as GoMe introduce the symmetric auxiliary fieft"” to render the
stone bosons associated with the spontaneous breaking @ffective action quadratic in the fermions, so that we may
Lorentz invariance, and with low energy physics appearingVrite it in the form[cf. Eq. (2.4)]

Lorentz invariant to high accuracy. The most dramatic effect i

of the Lorentz breaking is the existence of additional weakly Lo =( "+ h*Y) e IS WA

coupled Goldstone bosons obeying highly non-Lorentz in- on=(7 )l//'2(y" v Ve

variant dispersion relations. These fields would be difficult to A%

detect as they couply weakly to conserved currents. A rather — My —N FV(h)_ (A3)
v

general framework for studying Lorentz violating extensions
of the standard model has been develofesk, e.g.[12]),

and it might be useful to study some of our results in that!l indices are raised and lowered by the flat meig, .
language. Integrating out the fermions, the effective action from the

We find it interesting that the observed low energy phys_resulting dete_rminant can be_expressed_, as usual, as the sum
ics of gravity can be produced in the context of an effective®Ver all fermion one loop diagrams with exterrfallegs.
field theory that differs markedly from general relativity, and NOte; in particular, that the diagram with one extermég is
which does not suffer from the usual cosmological constant? 9eneral nonvanishing. This reflects the fact that @¢)
problem. While it remains to be seen whether a theory of thid@S & honvanishing expectatigroportional toz,,,) even in
type could be incorporated into a truly fundamental frame-0rdinary perturbation theory on a Lorentz invariant vacuum,

work or be developed into a realistic cosmology, it seems td-€-» interactions built from EqA2) shift the classical back-
be an idea worth pursuing. ground. Correspondingly, all terms, including a linear term,

are included in the general potenti(h) in Eq. (3.1 (cf.
discussion in the text
Explicit evaluation of the fermion-loop graphs with one
This work was supported by NSF grants PHY-0099590and two externah legs gives, after a lengthy computation,
and PHY-9819686. the contribution to the effective action to(h?):

ACKNOWLEDGMENTS

(2) I 1 v 1 2 N v\ 2 w2 v A v\ 2
L =Nl —hfit S+ 5 (02| 5 1L (02— (9,02 + 2,009, —2(3,h)2)
N v\ 2 1 2 Av\2 7 V) A 2 v\ 2
= 5g'0| (ON*")2= 5 (ON)2= 23,002+ 33,0, T+ 5 (3,0,04)2 |+ (A4)

31t is also reminiscent of brane world scenarios for addressing the cosmological constant drbhtEdh But there the Lorentz invariant
solution on the brane is tied up with a naked singularity away from the brane, and so need not exist.
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Equation(A4) displays explicitly the leading terms, i.e., the
local, cutoff dependert'divergent”) part of the result of the
loop integrations. The ellipses denote the subleading pieces
from the finite, nonlocal parts, which can be expanded in
powers ofJ/M?2, and contribute to higher derivative inter-

: . . i ab__ (i a b R
actions relevant only for short distance behavior near th&ith Lorentz generatorsS™=(i/4)[y*,y"]. The spinoryy
cutoff. Dimensional regularization, under the usual correMa; in general, be taken to transform under general coordi-
spondence Itk (1/e+ const), gives nate transformations as a density of weightThe result of

the explicit computation is in fact found to be independent of
w (see, for example[13]). Indeed, note that, in terms

), n=0,24. (A5)  of the functional integration, the factoe*~2") can be
absorbed by the change of variablegi— e(1=2%/2y’

In Pauli-Villars regularization, which appears more physicalEHe(lf_zw)/Z_E'- The spin connectiow 4 is given in terms
in the present context, one has of the vierbein by

=
ﬁﬂlzw#absab (A11)

<1
l

"

2

M”In(W

" @y

2

3
1 M
Ih=— > ckMEIn(—z), n=0,2,4. (A6) 1
(4m)° =1 M wﬂabzzeZ(Tamn_Tmna_Tnam)’

Three regulator massdd,, of order of the cutoffA, are

required here with coefficientg, satisfying EﬁzlckME

+M"=0, forn=0, 2, 4. Thn=(ehen —enem) d,e5. (A12)
Equation(A4) is now seen to be the flat space expansion

to second order of the gravitational action

L=+—gN

Equation (A12) implies that the connecti@ terms in Eq.
(A10), in the expansioitA8), do not give ahis vertex, but

only “seagull” hzaw and higherh powers vertices. This is
most easily seen by rewriting the connection terms in Eq.
(A7)  (A10), after a little rearrangement, in the form

1
Lot 5 12R

l| R, R“Y 1R2
20 0| "wr 3

with the metric expressed in terms of the vierBein 1
ez @uane™ Ve .
grr=eje’, eh=d5;+hy, (A8)

and
Furthermore, it follows from this form that all fermion one

h#v= 54hav, (A9) loop diagrams with two externdl legs do not receive any
contribution from the spin connection interaction. The result

Taking h*” to be symmetric, as done in the above calculato O(h?) thus agrees with that obtained from HA3).
tion, amounts to théstandardl local Lorentz gauge fixingto ~ The vertices from the spin connection terms will, how-
a symmetric vierbein[lIt is known that the antisymmetric €ver, contribute to the diagrams with three or more external
part in fact decouples in EGA7).] Thus our effective gravi- €gs, reproducing EqA7) to all orders, as dictated by the
tational action(3.1) is reproduced to this order. general coordinate invariance of E@\10). It may therefore

To see how this comes about, note that the re@d) is ~ appear that, in addition to EgA2), one would need an in-
precisely what one obtains after integrating out the fermiorfinite set of different operatotérom Eq. (A1), with precisely

fields in the Lagrangian foN fermions in curved space: specified coefficients, to be included in EA3) in order to
generate Eq(A7). This, however, is not the case. In the

12| gL (o % context of Eq(A1), the connection arises naturally when Eq.
L=¢ eglﬁii(yaVM_Vwa) i (A3) is extended to include the set of powers of the operator
_M%lr/,i ) (A10) N - )\
O = Wlva Ly ¥ L, (A13)

to second order in the expansion about flat sgaés. In Eq.
(A10), e=dete,,, and
in addition to those of EqA2). Introducing the correspond-

4Curved and flat indices are denoted by Greek and Latin letters,
respectively. Note that Eq(A12) contains botte® and its inverse.
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ing independent auxiliary fiele”, , Eq.(A3) is extended to tirely in terms of the vierbein as in E@A12).° For illustra-
tion purposes, we may adopt a model where the quadratic
terms in the potential fow are suppressed. Then, upon inte-
s grating out the fermions, EqA7) and the effective gravita-
Lyn=(n""+h*") z/;ii tional action(3.1) are reproduced to within small deviations.
This is easily seen to be stable under radiative corrections

R .1 from graviton loops.
X Yudy= Yudyt gwym{y“ LYY It is perhaps worth pointing out again that, as we saw, just
the fermionic self-interactions of products of E&2) in flat
o A4 spacetime already suffice to fully reproduce to second order
— My zpi—NmV(h,w). (A14) the Einstein-Hilbert(plus R? termg parts in our effective

gravitational action(3.1), i.e., reproduce the full content of
linearized general relativity.

The fermionic part of Eq(A14) is equivalent to Eq(A10) in

the first o_rder(PaI_atlnD formulatlon._ . ®This is analogous to considering EGA10) in the first order
Now, in the first order formalism, the nonpropagating o majism not just by itself, but with the addition of the Einstein-

connection in Eq(A10) serves as a constraint field enforcing yjpert action. The latter provides a potential for the connectipn
vanishing of torsiore;O™2" generated by the fermions. thus leading to the usual result of torsion generated by fermions.

Equation(A14) differs from Eq.(A10) by the presence of This is, of course, the usual situation. In the above we were led to
a potential inw. Hence, variation of the connection will not consider Eq.(A10) by itself in the context of generating the
imply vanishing torsion, and will not be expressible en- Einstein-Hilbert action from EqAL).
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