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Photons and gravitons as Goldstone bosons and the cosmological constant

Per Kraus* and E. T. Tomboulis†

Department of Physics and Astronomy, UCLA, Los Angeles, California 90095-1547
~Received 24 April 2002; published 19 August 2002!

We reexamine a scenario in which photons and gravitons arise as Goldstone bosons associated with the
spontaneous breaking of Lorentz invariance. We study the emergence of Lorentz invariant low energy physics
in an effective field theory framework, with non-Lorentz invariant effects arising from radiative corrections and
higher order interactions. Spontaneous breaking of the Lorentz group also leads to additional exotic but weakly
coupled Goldstone bosons, whose dispersion relations we compute. The usual cosmological constant problem
is absent in this context: being a Goldstone boson, the graviton can never develop a potential, and the existence
of a flat spacetime solution to the field equations is guaranteed.
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I. INTRODUCTION

Massless particles can arise by a variety of mechanis
gauge symmetry, chiral symmetry, supersymmetry, and
spontaneous breaking of global symmetry. The massless
of the photon and graviton is typically associated with t
existence of gauge symmetry; here we explore an alterna
option in which it is associated with the spontaneous bre
ing of Lorentz invariance, with the ‘‘gauge’’ fields arising a
Goldstone bosons. This basic idea has a long history, da
back to the 1963 work of Bjorken@1#. For related work, see
@2,3,4,5#.

At the level of low energy effective field theory, the usu
argument in favor of exact gauge invariance is based on L
entz invariance. Some form of gauge invariance is requ
in order to obtain an interacting, unitary, Lorentz invaria
theory of massless particles with spin 1 or 2. In a manifes
Lorentz invariant formulation a violation of gauge invarian
will typically imply a noncancellation of timelike and longi
tudinal modes, yielding a nonunitarySmatrix in the physical
sector. In a noncovariant gauge fixed formulation unitarity
manifest, but the action is required to be formally gau
invariant in order to recover Lorentz invariance of theSma-
trix.

Especially in the case of gravity, there are various mo
vations for exploring alternatives. First, it is a basic fact th
we inhabit a universe that is not Lorentz invariant at lar
scales due to cosmological expansion. Second, in the ca
gravity, gauge invariance is insufficient to guarantee the
istence of massless gravitons propagating in Minkow
spacetime, since a potentialL4A2g is allowed. Since a non
zero cosmological constant leads to a non-Lorentz invar
vacuum, the original motivation for gauge invariance is n
actually realized.

As an alternative we turn to effective actions that yie
massless photons and gravitons as Goldstone boson
spontaneously broken Lorentz invariance. Of course, the
fective theory must be consistent with the observed accu
of Lorentz invariance at distances small compared to the
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vature scale of the universe. This is achieved by effect
theories consisting of three sorts of terms: gauge invar
kinetic terms, non-gauge invariant potential terms, and sm
corrections to these. The simplest example isL5(Fmn)2

2V(AmAm). As we will discuss, it is not too hard to genera
such effective actions from some more conventional und
lying dynamics. All terms in the action are taken to be Lo
entz invariant; however, the potential is assumed to give
to a constant non-Lorentz invariant vacuum expectat
value. The broken Lorentz generators imply the existence
massless Goldstone bosons. In the absence of the pote
the vacuum expectation value would have no physical eff
being pure gauge; in particular, exact Lorentz invarian
would be maintained. With the potential included gauge
variance is broken and with it exact Lorentz invarianc
However, by definition the Goldstone bosons do not app
in the potential; the expansion of the potential is in terms
massive fields. Since Lorentz invariance is broken only
the potential, the breaking will be suppressed by the inve
mass of the heavy fields. So at low energies we will have
approximately Lorentz invariant theory of Goldstone boso
The expansion of the potential to quadratic order in fluct
tions simply acts a gauge fixing term, so the low ene
theory is approximately that of photons or gravitons in
noncovariant gauge.

Actually, there are additional interesting complications
the quantum theory, where loops induce small non-Lore
invariant kinetic terms. This leads to the appearance of a
tional non-Lorentz invariant but ‘‘weakly coupled’’ Gold
stone bosons whose effects we discuss. Directly relate
this is that it is crucial to study whether the form of o
effective action is stable under radiative corrections, as th
will generically induce all possible operators consistent w
the symmetries. We study this question carefully, and fi
that with reasonable starting assumptions the resulting
energy physics appears approximately Lorentz invariant.

Motivated by the cosmological constant problem, a m
titude of authors have experimented with modifying grav
in various ways~see @6# for a review of some attempts!.
From the point of view of low energy effective field theor
the problem is that general covariance allows one—and o
one—potential term,L4A2g, and so unless this term van
ishes there exists no solution to the equations of motion w
constant fields. But in a scenario in which the graviton is
©2002 The American Physical Society15-1
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Goldstone boson this problem does not arise, since a G
stone boson can never acquire a potential. So even if s
scalar field undergoes a phase transition, contributing a t
V(f0)A2g to the effective action, one knows that th
vacuum expectation value for massive fields can be shi
such that the Goldstone boson gravitons remain mass
Therefore, there willalwaysexist an exact vacuum solutio
with constant fields, on which propagate massless gravi
with approximately Lorentz invariant physics. This the
guarantees the existence of the sort of solution one w
without fine-tuning. However, one should note that the
may also exist other solutions with spacetime varying fiel
A complete solution to the problem should address why a
~or nearly flat! spacetime solution is preferred; we discu
this in Sec. III.

The first part of this paper is devoted to the detailed stu
of the photon as a Goldstone boson, but this is essentia
warmup for the more interesting case of gravity, which p
vides our main motivation. There does not seem to be
obvious advantage in producing the photon as a Golds
boson, and we have made no attempt at a realistic mode
including the other standard model fields. We should a
stress that we will work in an effective field theory fram
work in which the graviton is to be thought of as a compos
of more fundamental degrees of freedom. It may be wo
mentioning why our scenario is not in conflict with the the
rem of Weinberg and Witten@7#, which rules out ‘‘composite
gravitons’’ in a broad class of models. Specifically, the the
rem states that a Lorentz invariant theory with a Lore
invariant vacuum and a Lorentz covariant energy-momen
tensor cannot have a massless spin 2 particle in its spect
There is no conflict here since our vacuum will not be Lo
entz invariant.

This paper is organized as follows. In Sec. II we study
detail the example of the photon as a Goldstone boson.
photon example illustrates most of the important general
tures and is much simpler computationally than the grav
case. We also discuss the relation to previous work on
subject. In Sec. III we discuss the graviton and the cosm
logical constant problem in this context. Section IV has so
final comments, and the Appendix contains technical res
for the gravity case.

II. PHOTON AS GOLDSTONE BOSON

We begin by writing down a certain effective action for
vector field Am coupled to matter. The motivation for thi
form will be discussed subsequently. The action is to
thought of as an effective action defined at a UV cutoff sc
L. We thus consider the Lagrangian

L5NH 2
1

4
FmnFmn2V~AmAm!

1higher derivativesJ 1Lmatter~f,Am!

1O~N0!. ~2.1!
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In the above,N is some large number, and we have writt
out the leadingN terms in the action. The action is Loren
invariant—all indices being raised and lowered with t
Minkwoski metric—but not gauge invariant. In particula
the potentialV(AmAm) is not gauge invariant; a crucial poin
is that this is theonly non-gauge invariant term at leadin
order in N. In particular, the higher derivatives terms a
terms like (FmnFmn)2, ]aFmn]aFmn , etc. Similarly, the ge-
neric matter fieldsf are gauge invariantly coupled toAm in
Lmatter(f,Am). Apart from these stipulations the action is g
neric in the sense that all dimensionless couplings~apart
from N! are of order unity; that is, all dimensionful quantitie
are of the order of the cutoffL to the appropriate power.

Since in our effective action we have explicitly exclude
various terms which are consistent with the symmetries
the theory, two questions immediately come to the fore: h
might an action of this form be generated from some und
lying dynamics, and is the assumed structure of the ac
stable under radiative corrections? We now address these
points in turn.

A. Effective action from fermions

To show why an action of the form~2.1! is fairly natural,
we show how it can be generated by integrating out so
large number of fermion species. This will be a generali
tion of the original mechanism proposed by Bjorken@1#,
which considered four fermion interactions. So considerN
species of Dirac fermionsc i . We imagine these fermion
being coupled to gauge fields which acquire masses at s
L. Integrating out the massive gauge bosons will yield
infinite set of fermion interactions, and we will focus on th
following subset:

Lc5c̄ i~ i ]/ 2m!c i1N(
n51

`

l2n

~ c̄ ig
mc i !

2n

N2n . ~2.2!

Here, summation over flavor indicesi and spacetime indice
m is implied. We wrote the action to have a U(N) flavor
symmetry. The couplingsl2n are of order unity times the
appropriate power ofL,

l2n;L426n. ~2.3!

Factors ofN have been inserted in order to give a well d
fined largeN limit. In particular, the normalized bilinear
Om5(1/N)c̄ ig

mc i then have correlators scaling asN0, and
the action written in terms ofO has an overall factor ofN.

We will employ the standard trick of rendering the actio
quadratic in fermions by introducing an auxiliary fieldAm.
We therefore consider

Lc,A5c̄ i~ i 2]/ 2m!c i2NV~AmAm!. ~2.4!

The potentialV is a power series inAmAm with coefficients
chosen such that by solving the algebraic equations of
tion for Am and substituting back in we recover Eq.~2.2!.
The most familiar case corresponds to a pure four ferm
interaction, with only l2 nonvanishing, in which case
V(AmAm)5AmAm/4l2 . The quantum version of this theor
5-2
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is defined by a path integral~with a cutoff! over the fieldsc i
andAm. The idea is to imagine first doing the path integ
overc i to yield an effective action forAm. Sincec i is mini-
mally coupled toAm, provided we choose a gauge invaria
cutoff the terms in the effective action generated in this w
will be gauge invariant. Furthermore, since there areN spe-
cies of fermions the effective action will have an over
factor ofN. Therefore, the form of the effective action is th
of the first set of terms in Eq.~2.1!.

Now suppose we had included the other fermion terms
Eq. ~2.2! that would certainly arise upon integrating out ma
sive gauge fields. This will introduce other bilinears in t
theory, e.g.,c̄ ig

mnc i , c̄ ig
m]nc i , etc. The above procedur

should then be generalized by introducing a new auxili
field for each bilinear. Integrating out the fermions th
yields an effective action for a set of interacting auxilia
fields. The analysis rapidly becomes complicated; howe
one expects on general grounds that the auxiliary fields
acquire mass terms of order of the cutoff and so can
neglected at lower energies. By contrast, in our scenario
tain components ofAm will remain massless since they wi
correspond to Goldstone bosons.

To reiterate somewhat, in our approach where we cons
Am as the only auxiliary field it is consistent to omit term
like (c̄ ig

mc i)
2c̄ j]/ c j which might seem to lead to non

gauge invariant terms likef (AmAm)FabFab in the effective
action forAm. If such fermionic terms are to be included on
should introduce a new scalar auxiliary field for the biline
c̄ i]/ c j , and we are not doing this for the reasons sta
above.

We have thus demonstrated one possible way of gene
ing an effective action with the structure~2.1!, though there
are presumably other ways as well. For the most part
consider Eq.~2.1! in its own right, without reference to its
origin.

B. Coupling to matter

By coupling a matter fieldf to the fermions via con-
served currents,Jm(f)c̄ igmc i , we will generate the matte
couplings given in Eq.~2.1!. An easy way to accomplish thi
is to modify Eq. ~2.2! by taking the mass for some of th
fermions to be much less than the cutoffL. In this case we
would keep the light fermions in the low energy effecti
action rather than integrating them out. From Eq.~2.4! we
see that these fermions will be minimally coupled toAm.
Whether we use this or some other mechanism to gene
the matter couplings, it will be important that the matt
action is gauge invariant, at least up to the level of t
derivative terms.

C. Stability under radiative corrections

Treating Eq.~2.1! as an effective field theory at scaleL,
to extract out low energy physics we still need to integr
out the fluctuations ofAm. Since the potential term violate
gauge invariance, once we start computing loop diagram
possible Lorentz invariant, but not necessarily gauge inv
ant, terms will generically be generated. Some of these te
would lead, after spontaneous symmetry breaking, to la
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violations of Lorentz invariance at low energies and so ne
to be suppressed. The need to suppress such terms is
motivation for introducing the large numberN. Given the
form ~2.1!, the loop expansion is an expansion in 1/N, so the
dangerous terms will only arise at orderN0.

So at orderN0 we need to consider all possible Loren
invariant terms generated by computing loop diagrams
Am. At energies low compared to the cutoff we can restr
attention to terms with at most two derivatives. We furth
assume symmetry under charge conjugationC, acting as sign
reversal onAm. This forbids single derivative terms. Term
with no derivatives just give a small correction to the pote
tial in Eq. ~2.1!, which we are taking to be arbitrary, so w
need consider only two derivative terms. Up to integrati
by parts, there are seven independent terms:

~1! f 1~A2!]mAn]mAn,

~2! f 2~A2!]mAn]nAm,

~3! f 3~A2!AmAa]mAn]aAn,

~4! f 4~A2!AnAa]mAn]aAm,

~5! f 5~A2!AnAa]mAn]mAa ,

~6! f 6~A2!AmAnAa]m]nAa ,

~7! f 7~A2!AmAnAaAb]mAn]aAb . ~2.5!

HereA2[AmAm . As always, we assume that all dimensio
ful couplings in f i are of order unity times the appropria
power of L. As we will see, after spontaneous symme
breaking some of these terms will lead to low energy vio
tions of Lorentz invariance at order 1/N.

D. Spontaneous symmetry breaking

Our potential will generically have the form

V~A2!5L4(
n51

`

VnS A2

L2D n

, ~2.6!

with the coefficientsVn of order unity.Vn can be determined
in terms of thel2n appearing in Eq.~2.2!. We will assume
that the potential leads to spontaneous symmetry breaki

^Am&5cLnm , ~2.7!

where for definitenessnm is a spacelike unit vector andc is
of order unity. This expectation value spontaneously bre
Lorentz invariance at the cutoff scaleL. Nevertheless, we
will see that low energy physics is approximately Loren
invariant.

We now expand the action around the vacuum~2.7! by
writing

Am5cLnm1am . ~2.8!

To quadratic order inam the potential becomes
5-3
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PER KRAUS AND E. T. TOMBOULIS PHYSICAL REVIEW D66, 045015 ~2002!
V5V~2c2L2!1
1

2a
~n•a!21¯ , ~2.9!

where

a5
1

4V9~2c2L2!
;

1

L2 . ~2.10!

Shifting the vacuum has a trivial effect on theAm kinetic
terms since, being gauge invariant, these depend only
derivatives ofAm. Hence in the kinetic terms we can ju
replaceAm→am. We can similarly make this replacement
the matter Lagrangian after performing a compensa
gauge rotation of the matter fields:

Lmatter~f,^Am&1am!5Lmatter~f8,am!, ~2.11!

wheref8 is a gauge transformation off. We will henceforth
drop the prime onf. Therefore, the action takes the form

L5NH 2
1

4
FmnFmn2

1

2a
~n•a!2

1higher derivatives1O~a3!J
1Lmatter~f,am!1O~N0!. ~2.12!

The (n•a)2 term plays the role of an axial gauge fixin
term. It gives a mass of orderL to a spacelike component o
am . So to the above order our action takes the form of
axial gauge fixed photon coupled gauge invariantly to mat
Neglecting the higher derivative terms, the photon propa
tor is given by

2
i

Np2 S hmn2
1

n•p
~nmpn1nnpm!

2
pmpn

~n•p!2 ~ap22n2! D . ~2.13!

As usual, only the first term contributes when the propaga
is sandwiched between conserved current, and the resu
Lorentz invariant. Corrections to this Lorentz invariant res
are suppressed byp/L and/or 1/N, as will be discussed be
low.

E. Goldstone bosons

After spontaneous symmetry breaking we have ‘‘mass
particles’’1 by virtue of Goldstone’s theorem. In particular,
spacelike vector breaks the Lorentz group according to

SO~3,1!→SO~2,1!. ~2.14!

1We employ quotation marks since we can no longer use the s
dard definition of particles as being irreducible representation
the ~now spontaneously broken! Poincare´ group. But it should be
clear what we mean when we use the particle terminology.
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There are thus three broken generators corresponding to
rotations and a boost. The corresponding three Goldst
bosons are the three components ofam orthogonal tonm. We
choose a basis of two transverse components and a tim
component:

transverse: em
~1,2! , k•e~1,2!5n•e~1,2!50,

timelike: em
~0!5km1~n•k!nm ,

obeys n•e~0!50. ~2.15!

At low energies only the Goldstone bosons are relevant
leading order inN the gauge invariant form of the kineti
terms implies that only the transverse Goldstone bos
propagate, giving us the conventional Lorentz invariant el
trodynamics. However, at orderN0 the timelike component
will also propagate, and this will lead to interesting effect

We now concentrate on the low energy physics of
Goldstone bosons coupled to matter. The Goldstone bos
can be thought of as coordinates on the coset SO~3, 1!/SO~2,
1!. Since the Goldstone bosons label flat directions of
potential, the cubic and higher order terms from the exp
sion of the potential all involve the massive compone
n•a, and so are irrelevant at low energies. Now consider
orderN0 terms~2.5!. Note that after spontaneous symmet
breaking the terms~4!–~7! expanded to quadratic order i
fluctuations will all involve at least one factor ofn•a. There-
fore, only terms~1!–~3! are relevant for low energy physics
Furthermore, one linear combination of~1! and~2! is propor-
tional to (Fmn)2 and so just provides a small correction to t
order N value of this term. Hence we can omit one line
combination, say~2!, and focus only on terms~1! and~3!. It
is also convenient at this point to rescaleam→am/AN to put
the gauge kinetic term in standard form. Therefore to or
N0, and discarding terms suppressed at low energies byp/L,
the effective action is

L52
1

4
FmnFmn2

1

2a
~n•a!21

1

2

c1

N
]man]man

1
1

2

c2

N
nanb]aam]bam1Lmatter~f,am /AN!.

~2.16!

Here we defined the order unity numerical coefficientsc1,2 as

f 1~^A&2!5
1

2
c1 , c2L2f 3~^A&2!5

1

2
c2 . ~2.17!

We also kept the term (n•a)2 as a convenient way of imple
menting the axial gauge condition.

Equation~2.16! clearly shows the need for a 1/N suppres-
sion of the third and fourth terms in order to have appro
mate Lorentz invariance at low energies. It is easiest to co
pute the propagator from the first two terms and to think
the third and fourth terms as interactions. Then it is clear t
when we compute interaction between conserved matter

n-
of
5-4
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rents we will get the standard QED results at leading ord
with non-Lorentz invariant corrections occurring at ord
1/N.

F. Low energy spectrum

We now determine the dispersion relations for the th
Goldstone bosons by solving the linearized equations of
tion. The latter are

S 11
c1

N D ]m]man2]n]mam1
c2

N
nanb]a]ban

2
1

a
nmamnn50. ~2.18!

First consider the transverse modes. Using the ansatz@see
Eq. ~2.15!#

an5en
~1,2!e2 ik•x ~2.19!

we find the dispersion relation

transverse: S 11
c1

N D k21
c2

N
~n•k!250. ~2.20!

This corresponds to an anisotropic speed of light. The sp
of light parallel tonm differs from that orthogonal tonm by
an amount of order 1/AN.

Now consider the timelike mode. We use the ansatz

an5~kn1gnn!e2 ik•x. ~2.21!

We find

g5n•k1O~ak2!, ~2.22!

and the dispersion relation

timelike: k22
N

c1
~n•k!250. ~2.23!

In the dispersion relation we have dropped terms down
1/N or ak2. The dispersion relation~2.23! is non-Lorentz
invariant at leading order. The timelike modes propagate
the ordinary speed of light in directions orthogonal tonm, but
at a speed of orderAN in the direction parallel tonm. We are
assuming thatc1.0.

The physics of the transverse modes is thus standard u
small corrections, while that of the timelike mode is qu
exotic. The reason for this is that the timelike mode does
propagate with respect to the leadingN gauge invariant ki-
netic terms of Eq.~2.1!. It only acquires a kinetic term a
order N0, and these terms are non-Lorentz invariant af
spontaneous symmetry breaking.

While exotic, the timelike mode leads to acceptably sm
effects for sufficiently largeN. Its contribution to the inter-
action between conserved currents is suppressed byN,
since as we have discussed we can use the standard
04501
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gauge propagator at leading order and regard correction
coming from interaction vertices with coefficients of ord
1/N.

The timelike mode is also suppressed by phase space
siderations. For fixed available energyk0 the dispersion re-
lation forces

uk•nu,Ac1 /Nk0. ~2.24!

Consider putting the system in a box of sizeL. Then forN
.(k0L)2 only the zero momentum mode parallel tonm sur-
vives, yielding a phase space suppression proportiona
1/L.

While the timelike mode gives small corrections to t
interaction between conserved currents it could have m
dramatic consequences given its unusual dispersion rela
We should emphasize that the result~2.23! does not neces
sarily imply faster than light2 signal propagation, since Eq
~2.23! is only valid for long wavelengths. Also, even if Eq
~2.23! could be extrapolated to short wavelengths so t
signals could propagate faster than light, there would be
conflict with causality since Lorentz invariance has be
spontaneously broken by a preferred frame. It would be
teresting to study the physics of the timelike mode in mo
detail.

G. Summary and relation to previous work

Let us summarize what has been accomplished. We h
shown that spontaneous breaking of Lorentz symmetry
lead to an approximately Lorentz invariant low energy theo
of massless photons coupled to matter. This is possible in
context of a theory in which gauge invariance is violated
leading order only by a potential term. Since the Goldsto
boson photons do not appear in the potential, the Lore
violating condensate leads to only small corrections to
low energy physics of the photons. On the other hand,
existence of three broken Lorentz generators implies the
istence of a third Goldstone boson whose physics is not e
approximately Lorentz invariant. However, its effects a
suppressed by 1/N and phase space considerations. Al
gether, Lorentz invariance appears as an approximate s
metry of the low energy world.

This is a good place to compare and contrast with pre
ous work on this subject, in particular the original work
Bjorken @1#. The main difference is that we have taken
modern effective field theory point of view, emphasized th
the violation of Lorentz invariance is real, and pointed o
the existence of an extra Goldstone boson. Earlier w
started from a four Fermi interaction, i.e., just keeping t
terml2 in Eq. ~2.2!. The trouble with this is that it is incom
patible with spontaneous symmetry breaking, since it co
sponds to a potentialV;AmAm with no higher order terms. A
reflection of this is that the condensate was never actu
computed in earlier work, but was eitherassumedto arise
somehow, or emerged after formal manipulations with div

2Here we refer to the speed of light as the speed of the transv
modes after spontaneous symmetry breaking.
5-5
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gent integrals. The claim was then made that the phy
after spontaneous symmetry breaking was the usualexactly
Lorentz invariant quantum electrodynamics. This conclus
was again dependent on manipulating divergent quanti
As far as we can tell, the origin of this claim is that if on
takes the pure four Fermi interaction and assumes~wrongly!
that this leads to spontaneous symmetry breaking, then
pandingV;AmAm around the new vacuum would yield a
axial gauge fixing term and nothing more. This of cour
gives the usual QED in the axial gauge. But from our po
of view it is clear what would actually happen in this theo
The four Fermi theory leads either to an instability or to
stable vacuum with a massive vector fieldAm . In neither
case does one find QED. On the other hand, the prob
disappears once one includes the higher order fermion te
as we have done; this is also the natural starting point fr
the view of effective field theory.

Since earlier work took the point of view that the spon
neous breaking of Lorentz invariance was somehow fi
tious, the existence of the extra Goldstone boson was
noted.

Before turning to gravity we should also note that some
the above criticisms were commented on recently by Bjor
@8#. In particular it was noted that the four Fermi theory
itself is inadequate, and that some real violations of Lore
invariance should be expected once quantum effects
taken into account. These points were also examined
Banks and Zaks in@9# in the context of non-Abelian gaug
fields; they also concluded that there is a real violation
Lorentz invariance. We hope to have resolved these iss
here.

III. GRAVITON AS GOLDSTONE BOSON

We now turn to our main interest: producing a graviton
a Goldstone boson. Fortunately, the analysis closely para
the photon case, and so we can draw on our experience
that example to navigate in the more complicated grav
tional setting. The main difference is in the different patte
of spontaneous Lorentz breaking as well as in the connec
to the cosmological constant problem. The cosmolog
constant provides a motivation for modifying the low ener
effective theory of general relativity, and indeed we will s
that the problem is avoided in the sense that the Golds
boson graviton remains massless even in the presenc
vacuum energy.

To adapt the previous approach to the case of gravity
consider an effective action in direct analogy with Eq.~2.1!,

L5N$L2A2gR~g!2L4V~h!

1higher derivatives%1Lmatter~f,g!

1O~N0!. ~3.1!

Here h is defined via expansion of the metric around fl
spacetime:

gmn5hmn1hmn . ~3.2!
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Flat spacetime thus plays a preferred role in this conte
indeed we think of the underlying dynamics as that of
nongravitational theory in Minkowski spacetime. The A
pendix discusses one possibility for such an underly
theory. The Einstein-Hilbert term in Eq.~3.1! is standard
while the potential is some generic Lorentz invariant fun
tion of hmn with indices contracted withhmn . Odd powers of
h are allowed; for instance, the termhm

m can appear in the
expansion ofV(h). As in the photon case the higher deriv
tive terms are generally covariant, as is the matter act
General covariance is violated only by the potential.

Note that the observed Newton’s constant will be

GN;
1

NL2 . ~3.3!

Therefore, the cutoffL is smaller by a factor of 1/AN com-
pared to the usual Planck scale. Indeed, this lowered valu
the cutoff is responsible for suppressing loop corrections.N
is a large number but presumably need not be more than4

or so. Thus the cutoff can still be well above observa
energy scales.

We consider potentials leading to a vacuum expecta
value for hmn . By performing a Lorentz transformation w
can bring the expectation value to the form

^hmn&5S h̄00

h̄11

h̄22

h̄33

D . ~3.4!

For h̄mm all nonvanishing and distinct, the Lorentz group w
be completely broken:

SO~3,1!→nothing. ~3.5!

Being dimensionless, we expecth̄mm of order unity. There-
fore there will be six Goldstone bosons corresponding to
six broken Lorentz generators. The Lorentz generatorJmn

acts on ^hmn& by exciting themÞn components. So the
Goldstone bosons are the six off-diagonal components of
symmetric matrixhmn . Fluctuations of the diagonal compo
nents will generically correspond to massive fields. We w
ultimately associate two of the Goldstone bosons with
two physical polarizations of the graviton, while the rema
ing four will appear in analogy with the timelike Goldston
boson in the photon case.

We now consider fluctuations around the vacuum by w
ing

hmn5^hmn&1h̃mn . ~3.6!

The expansion of the potential will correspond to mass te
for the diagonal components ofh̃mn . The precise form of this
mass matrix is not important, so we will write
5-6
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V~h!5const1L4 (
a50

3

~ f an~a!
m n~a!

n h̃mn!2

1O~ h̃3!. ~3.7!

Here

n~a!
m 5da

m , ~3.8!

and f a are numbers of order unity.
We can simplify the action by performing a general co

dinate transformation to put the background metric back
standard form. In particular, introduce new coordinatesx8m

such that

]x8m

]xa

]x8n

]xb hmn5hab1^hab&. ~3.9!

The metric appearing in the action will then behmn1h̃mn8
where

]x8m

]xa

]x8n

]xb h̃mn8 ~x8!5h̃ab~x!. ~3.10!

We similarly act with a coordinate transformation on t
matter fields; e.g., for a scalar

f8~x8!5f~x!. ~3.11!

After changing the integration variable tox8 the potential
term is modified while the general covariant terms are
course invariant. Given the form~3.10!, the modification of
the potential can be absorbed in a redefinition of the c
stantsf a . So after the coordinate transformation our acti
takes the form

L5N$L2A2gR~g!2L4V~ h̃8!

1higher derivatives%1Lmatter~f8,g!

1O~N0!, ~3.12!

with

gmn5hmn1h̃mn8 ~3.13!

and

V~ h̃8!5const1L4 (
a50

3

~ f an~a!
m n~a!

n h̃mn8 !2

1O~ h̃83!. ~3.14!

We henceforth relabel fields:h̃8→h, f8→f.
We think of the quadratic terms in the potential as gau

fixing terms, corresponding to the gauge

gmm5hmm , no sum. ~3.15!

This defines an acceptable noncovariant gauge. The grav
propagator in this gauge is extremely complicated and
04501
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wieldy, and so we will not display it here. Fortunately, fo
leading order calculations we only need to know that it h
the structure of the standard covariant propagator

2 i

p2 ~hmahnb1hmbhna2hmnhab! ~3.16!

plus terms with at least one factor ofp ~vector! in the nu-
merator. Sandwiched between conserved energy-momen
tensors, the latterp terms vanish, and so we recover th
standard Lorentz invariant result. Of course this is no
prise, since Eq.~3.15! represents a valid gauge choice.

The low energy physics is therefore quite similar to wh
we found in the photon example. We will have two gravito
states which propagate at the speed of light, up to a sm
anisotropic correction. Further, there are four additio
Goldstone bosons that acquire kinetic terms at order 1N.
These will have highly non-Lorentz invariant dispersion r
lations, but their couplings to conserved currents are s
pressed by 1/N. Working out these dispersion relations e
plicitly would be quite involved given the large number
terms in the action at order 1/N and the proliferating indices
However from our discussion of the photon example
should be clear that the essential physics is independen
these details.

The cosmological constant

Notice that we have obtained an approximately Lore
invariant theory of gravity without making any specific a
sumptions about the form of the potentialV(h). Therefore,
we see that if the potential is suddenly modified, say b
matter phase transition, then the vacuum expectation valu
h can simply shift to the new minimum, leaving us aga
with an approximately Lorentz invariant theory. In particula
the termA2gVmatter(f0) can be added to our previous po
tential and the analysis proceeds as before. We have th
fore evaded the usual cosmological constant problem.
usual problem arises because of general covariance: on
single potential term is allowed,L4A2g, and a nonzero
value of this term is incompatible with a Lorentz invaria
solution. If one is willing to violate general covariance b
writing a more general potential then this conclusion ne
not follow. Indeed, if the graviton is a Goldstone boson o
is guaranteed to find a solution with constant fields an
massless graviton. What is perhaps surprising is that
physics around such a non-Lorentz invariant solution is
proximately Lorentz invariant, as we have seen.

On the other hand, the above discussion does not im
diately imply that the approximately Lorentz invariant sol
tions are theonly solutions. Indeed, at least in the weak fie
approximation we will find additional approximately de S
ter and anti–de Sitter solutions. This follows from the fa
that at low energies and for weak fields our theory is that
standard gravity in a noncovariant gauge, plus additio
weakly coupled Goldstone bosons. If one now takes a s
dard solution with a given energy-momentum tensor and
presses it in our gauge, this must continue to be an appr
mate solution of our theory. The existence of multip
5-7
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solutions is hardly surprising given that we are solving~at
leading order! second order differential equations.3 Note that
the approximately Lorentz invariant solution with consta
fields is guaranteed to be an exact solution as it just co
sponds to extremizing the potential, while the other solutio
with spacetime varying fields need not be exact. In a m
conventional field theory context one would expect a so
tion with time dependent fields to eventually settle down t
static solution by radiating energy. One might expect
same here, with the time dependent fields of the de S
type solutions radiating away, leading to the solution w
constant fields. A realistic proposal in this framework mu
involve showing how to make the transition from an expan
ing radiation or matter dominated universe to the appro
mately Lorentz invariant solution discussed above. We h
to return to this in future work.

IV. CONCLUDING REMARKS

Building on the work of Bjorken, we have shown th
massless photons and gravitons can be produced as G
stone bosons associated with the spontaneous breakin
Lorentz invariance, and with low energy physics appear
Lorentz invariant to high accuracy. The most dramatic eff
of the Lorentz breaking is the existence of additional wea
coupled Goldstone bosons obeying highly non-Lorentz
variant dispersion relations. These fields would be difficul
detect as they couply weakly to conserved currents. A ra
general framework for studying Lorentz violating extensio
of the standard model has been developed~see, e.g.,@12#!,
and it might be useful to study some of our results in t
language.

We find it interesting that the observed low energy ph
ics of gravity can be produced in the context of an effect
field theory that differs markedly from general relativity, an
which does not suffer from the usual cosmological const
problem. While it remains to be seen whether a theory of
type could be incorporated into a truly fundamental fram
work or be developed into a realistic cosmology, it seems
be an idea worth pursuing.
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APPENDIX

In this appendix we indicate one way the gravitation
effective action~3.1! may emerge from some underlyin
conventional dynamics. There may be others. Here we
ploy the same mechanism as in the photon case, Eq.~2.1!.
Thus we considerN fermions coupled to gauge fields th
acquire masses. We then imagine integrating out the fie
from some initialL0 down to a scaleL obtaining the effec-
tive action

c̄ i~ i ]”2M !c i14p2N(
k

Ck~L0 ,L!Ok~L! ~A1!

involving an infinite set of fermion interactions. Restrictin
consideration first to the subset consisting only of powers

Omn5
1

N
c̄ i

i

2
~gm]W n2gm]Q n!c i , ~A2!

we introduce the symmetric auxiliary fieldhmn to render the
effective action quadratic in the fermions, so that we m
write it in the form @cf. Eq. ~2.4!#

Lc,h5~hmn1hmn!c̄ i

i

2
~gm]W n2gm]Q n!c i

2M c̄ ic i2N
L4

4p2 V~h!. ~A3!

All indices are raised and lowered by the flat metrichmn .
Integrating out the fermions, the effective action from t

resulting determinant can be expressed, as usual, as the
over all fermion one loop diagrams with externalh legs.
Note, in particular, that the diagram with one externalh leg is
in general nonvanishing. This reflects the fact that Eq.~A2!
has a nonvanishing expectation~proportional tohmn! even in
ordinary perturbation theory on a Lorentz invariant vacuu
i.e., interactions built from Eq.~A2! shift the classical back-
ground. Correspondingly, all terms, including a linear ter
are included in the general potentialV(h) in Eq. ~3.1! ~cf.
discussion in the text!.

Explicit evaluation of the fermion-loop graphs with on
and two externalh legs gives, after a lengthy computatio
the contribution to the effective action toO(h2):
t

L~2!5NI4F2hm
m1

1

2
hmnhmn1

1

2
~hm

m!2G1
N

6
I 2@~]lhmn!22~]nhm

m!212]mhmn]nhl
l22~]mhmn!2#

2
N

20
I 0F ~!hmn!22

1

3
~!hm

m!222~]m]lhln!21
2

3
]m]nhmn!hl

l1
2

3
~]m]nhmn!2G1¯ . ~A4!

3It is also reminiscent of brane world scenarios for addressing the cosmological constant problem@10,11#. But there the Lorentz invarian
solution on the brane is tied up with a naked singularity away from the brane, and so need not exist.
5-8
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Equation~A4! displays explicitly the leading terms, i.e., th
local, cutoff dependent~‘‘divergent’’ ! part of the result of the
loop integrations. The ellipses denote the subleading pie
from the finite, nonlocal parts, which can be expanded
powers of!/M2, and contribute to higher derivative inte
actions relevant only for short distance behavior near
cutoff. Dimensional regularization, under the usual cor
spondence lnL↔(1/e1const), gives

I n5
1

~4p!2 Mn lnS L2

M2D , n50,2,4. ~A5!

In Pauli-Villars regularization, which appears more physi
in the present context, one has

I n5
1

~4p!2 (
k51

3

ckMk
n lnS Mk

2

M2D , n50,2,4. ~A6!

Three regulator massesMk , of order of the cutoffL, are
required here with coefficientsck satisfying (k51

3 ckMk
n

1Mn50, for n50, 2, 4.
Equation~A4! is now seen to be the flat space expans

to second order of the gravitational action

L5A2gNF I 41
1

6
I 2R

2
1

20
I 0S RmnRmn2

1

3
R2D G ~A7!

with the metric expressed in terms of the vierbein4

gmn5ea
mean, ea

m5da
m1ha

m , ~A8!

and

hmn5da
mhan. ~A9!

Taking hmn to be symmetric, as done in the above calcu
tion, amounts to the~standard! local Lorentz gauge fixing to
a symmetric vierbein.@It is known that the antisymmetric
part in fact decouples in Eq.~A7!.# Thus our effective gravi-
tational action~3.1! is reproduced to this order.

To see how this comes about, note that the result~A4! is
precisely what one obtains after integrating out the ferm
fields in the Lagrangian forN fermions in curved space:

L5e~122w!Fea
mc̄ i

i

2
~ga¹Wm2¹Qmga!c i

2M c̄ ic i G , ~A10!

to second order in the expansion about flat space~A8!. In Eq.
~A10!, e5deteam , and

4Curved and flat indices are denoted by Greek and Latin lett
respectively.
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2
vmabS

ab ~A11!

with Lorentz generatorsSab5( i /4)@ga,gb#. The spinorc
may, in general, be taken to transform under general coo
nate transformations as a density of weightw. The result of
the explicit computation is in fact found to be independent
w ~see, for example,@13#!. Indeed, note that, in term
of the functional integration, the factore(122w) can be
absorbed by the change of variables:c→e(122w)/2c8,
c̄→e(122w)/2c̄8. The spin connectionvmab is given in terms
of the vierbein by

vmab5
1

2
em

a ~Tamn2Tmna2Tnam!,

Tmn
a 5~em

r en
s2en

rem
s !]ser

a . ~A12!

Equation ~A12! implies that the connection terms in Eq
~A10!, in the expansion~A8!, do not give ahc̄c vertex, but
only ‘‘seagull’’ h2c̄c and higherh powers vertices. This is
most easily seen by rewriting the connection terms in E
~A10!, after a little rearrangement, in the form

em
mc̄

1

4
vmabe

mabcgcg
5c.

Furthermore, it follows from this form that all fermion on
loop diagrams with two externalh legs do not receive any
contribution from the spin connection interaction. The res
to O(h2) thus agrees with that obtained from Eq.~A3!.

The vertices from the spin connection terms will, how
ever, contribute to the diagrams with three or more exter
legs, reproducing Eq.~A7! to all orders, as dictated by th
general coordinate invariance of Eq.~A10!. It may therefore
appear that, in addition to Eq.~A2!, one would need an in-
finite set of different operators5 from Eq.~A1!, with precisely
specified coefficients, to be included in Eq.~A3! in order to
generate Eq.~A7!. This, however, is not the case. In th
context of Eq.~A1!, the connection arises naturally when E
~A3! is extended to include the set of powers of the opera

Om
kl5

i

4N
c̄ i$gm ,@gk,gl#%c i , ~A13!

in addition to those of Eq.~A2!. Introducing the correspond

s,
5Note that Eq.~A12! contains botheam and its inverse.
5-9
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ing independent auxiliary fieldvkl
m , Eq. ~A3! is extended to

Lc,h5~hmn1hmn!cW i

i

2

3S gm]W n2gm]Q n1
1

8
vnkl$gm ,@gk,gl#% Dc i

2M c̄ ic i2N
L4

4p2 V~h,v!. ~A14!

The fermionic part of Eq.~A14! is equivalent to Eq.~A10! in
the first order~Palatini! formulation.

Now, in the first order formalism, the nonpropagati
connection in Eq.~A10! serves as a constraint field enforcin
vanishing of torsionem

mOmab generated by the fermions.
Equation~A14! differs from Eq.~A10! by the presence o

a potential inv. Hence, variation of the connection will no
imply vanishing torsion, andv will not be expressible en
04501
tirely in terms of the vierbein as in Eq.~A12!.6 For illustra-
tion purposes, we may adopt a model where the quadr
terms in the potential forv are suppressed. Then, upon int
grating out the fermions, Eq.~A7! and the effective gravita-
tional action~3.1! are reproduced to within small deviation
This is easily seen to be stable under radiative correcti
from graviton loops.

It is perhaps worth pointing out again that, as we saw, j
the fermionic self-interactions of products of Eq.~A2! in flat
spacetime already suffice to fully reproduce to second or
the Einstein-Hilbert~plus R2 terms! parts in our effective
gravitational action~3.1!, i.e., reproduce the full content o
linearized general relativity.

6This is analogous to considering Eq.~A10! in the first order
formalism not just by itself, but with the addition of the Einstei
Hilbert action. The latter provides a potential for the connectionv,
thus leading to the usual result of torsion generated by fermio
This is, of course, the usual situation. In the above we were le
consider Eq.~A10! by itself in the context of generating th
Einstein-Hilbert action from Eq.~A1!.
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