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Chirality violation in QCD Reggeon interactions

Alan R. White*
High Energy Physics Division, Argonne National Laboratory, 9700 South Cass, Illinois 60439

~Received 7 May 2002; published 16 August 2002!

The appearance of the triangle graph infrared axial anomaly in reduced quark loops contributing to QCD
triple-Regge interactions is studied. In a dispersion relation formalism, the anomaly can only be present in the
contributions of unphysical triple discontinuities. In this paper an asymptotic discontinuity analysis is applied
to high-order Feynman diagrams to show that the anomaly does indeed occur in sufficiently high-order
Reggeized gluon interactions. The Reggeon states involved must contain Reggeized gluon combinations with
the quantum numbers of the anomaly~winding-number! current. A direct connection with the well-known U~1!
problem is thus established. Closely related diagrams that contribute to the pion or Pomeron and triple
Pomeron couplings in color superconducting QCD are also discussed.
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I. INTRODUCTION

It is commonly believed that nonperturbative qua
chirality transitions play an important role within the QC
bound-stateSmatrix. Assuming that the theory can be qua
tized via a suitably defined Euclidean path integral,1 the
chirality transitions are understood as originating fro
gauge-dependent nonperturbative classical solutions
nontrivial topology. Field configurations of this kind produc
zero modes of the Dirac operator which@2# prevent the
gauge-invariant separation of massless fermion fields
right- and left-handed components that separately create
ticles and antiparticles. The resulting violation of ax
charge conservation is described by the anomalous di
gence equation for the U~1! axial current. While many con
sequences of chirality violation are understood, for exam
the generation@3# of a mass for theh8, its full significance in
determining the nonperturbative masslessS matrix is far
from understood. In particular, the role of chirality violatio
due to topological gauge fields in chiral symmetry break
is the subject of much debate@4,5#.

In this paper, and a companion paper@6#, we provide a
completely different understanding of chirality transitions
the massless, high-energy, QCD bound-stateS matrix. No
mention is made of Euclidean path-integral quantization
topological fields. Rather, as we explain further below, o
arguments are based directly on the singularity structure
high-order Feynman diagrams that contribute to the hi
energy scattering of bound states.

It is well established@7# that when the gauge symmetry o
QCD is spontaneously broken, general high-energy lim
~multi-Regge limits! of quark and gluon amplitudes are d
scribed perturbatively by Reggeon diagrams in which
Reggeons are simply massive, Reggeized, gluons
quarks. Botht- ands-channel unitarity are satisfied. Regge
interactions are described, in general, by ‘‘reduced’’ Fe
man diagrams, obtained from underlying diagrams by pl

*Email address: arw@hep.anl.gov
1We note, though, that the elimination of unphysical degrees

freedom remains an unsolved problem@1#.
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ing some propagators on-shell. It is important, however,
distinguish two kinds of interaction vertices. The simple
kind are those that describe the repeated interaction
Reggeons ‘‘propagating’’ in a single Reggeon channel~for
which there is only one overall transverse momentum!. The
well-known Balitskiı̆-Fadin-Kuraev-Lipatov~BFKL! kernel
is, essentially, an example of this kind of vertex. The seco
kind are the vertices that couple different Reggeon chann
the simplest being the triple-Regge vertices@8# that couple
three Reggeon channels—each carrying a separate trans
momentum. In the massless theory such vertices should
tain the couplings of bound-state Reggeons~e.g. pions and
nucleons! together with their couplings to the physic
Pomeron. Effectively, therefore, vertices of this kind det
mine the bound states of the theory and their high-ene
scattering amplitudes.

There are, of course, no axial-vector currents in the Q
interaction but in the reduced diagrams providing the cruc
triple-Regge vertices, components of an axial-vector inter
tion can appear. Therefore, we have suggested@10# that, in
sufficiently high orders, chirality violation due to the infrare
triangle anomaly should appear in Reggeized gluon inte
tions of this kind. The purpose of this paper is to fina
establish that this is the case. It is necessary, howeve
study very high-order diagrams.

We have long believed@9# that the massless, bound-sta
multi-Regge,Smatrix should be obtainable from the massi
Reggeon diagrams once the infrared role of the ch
anomaly is determined. In previous papers we have outli
@11,12# how ~appropriately regularized! anomaly interactions
can be the essential element that, in combination with
infrared divergences of the massless limit, produce the ‘‘n
perturbative’’ properties of confinement and chiral symme
breaking. We argued that, while the anomaly interactio
cancel when the scattering states are perturbative quarks
gluons, for compound multi-Regge states with an appropr
infrared component such interactions dominate and infra
divergences self-consistently produce the bound-stateS ma-
trix. However, to demonstrate this via the construction o
full set of multi-Regge amplitudes is a complicated proje
which, of necessity, will involve much abstract multi-Reg
theory. While this construction is still our eventual goal,
f
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an intermediate step, we have first developed, in the com
ion paper to this, a calculational method that demonstra
the dynamical role of the anomaly while avoiding the~little
known! multi-Regge formalism as much as possible. Lig
cone properties of the anomaly are heavily exploited and
are able to show how both the U~1! and chiral flavor
anomaly play essential roles.

By studying the interaction of~infinite momentum! axial
currents we show@6# that, when the SU~3! gauge symmetry
is partially broken to SU~2!, U~1! anomaly interactions com
bine with couplings due to the flavor anomaly to produce
infrared divergent amplitude for the scattering of Goldsto
boson ‘‘pions’’ and ‘‘nucleons.’’ The flavor anomaly pro
duces the pion particle poles, while the U~1! anomaly pro-
duces the high-energy coupling of the pions to the exchan
Pomeron. After the divergence is factorized off, as a w
gluon condensate within the scattering states, the remai
amplitudes have both confinement and chiral symme
breaking.~The wee gluon condensate can be identified
rectly with the infrared component of multi-Regge states t
appears in the multi-Regge program.! It is apparent that the
nature of the Pomeron is crucially dependent on chiral sy
metry breaking. We anticipate that restoration of full SU~3!
gauge symmetry will result from randomization of the SU~2!
condensate within SU~3! and that the critical Pomeron@13#
will appear.

The main focus of this paper will be on multigluo
Reggeon interactions that are most directly relevant to
general multi-Regge program and the Pomeron interact
that emerge. However, as we briefly describe at the en
this paper, the multiquark-gluon interaction that provides
pion-Pomeron coupling in@6# is very closely related to the
Reggeized gluon interactions that we study. We will est
lish, remarkably perhaps, that for the anomaly to appear
Reggeon states involved must contain gluon combinati
with the quantum numbers of the anomaly~winding-number!
current. The conventional U~1! problem is, therefore, clearly
encountered. We will concentrate on isolating the anom
via infrared properties. Nevertheless, although we will d
cuss this only briefly at a few key points, we expect t
infrared phenomena we discuss to be connected to ‘‘ultra
let’’ Reggeon interaction problems~involving momenta
flowing around an internal quark loop that are comparable
magnitude to large external momenta! where short-distance
interactions of the winding number current appear direc
That the anomaly is a high-order, many gluon, phenome
is not surprising if the anomaly current, containing a prod
of three gluon fields, has to be involved.

Properties of the triangle diagram are discussed in de
in the companion paper@6#, where a complete set of th
relevant references is given. For our present purposes
note that the massless axial-vector graph has an infrare
vergence that involves a zero four-momentum ferm
propagator. Both the ‘‘particle’’ and ‘‘antiparticle’’ poles o
this propagator contribute to the divergence. The couplin
one end of the propagator can be viewed as the vertex
production of the particle while simultaneously~and sym-
metrically! that at the other end describes the production
the antiparticle. If the zero momentum propagator descri
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a physical transition it implies that there is, necessarily,
accompanying ‘‘spectral flow’’ of the fermion energy spe
trum so that the production of the antiparticle~or the par-
ticle! corresponds to the production of a Dirac hole state,
the absorption of a particle~antiparticle!. In this way, the
transition is understood as a ‘‘chirality transition.’’

In Minkowski space, the Dirac zero modes due to top
logical gauge fields do indeed produce@2# spectral flow~with
time! of the eigenvalues of the corresponding~gauge-
dependent! ‘‘Hamiltonian.’’ However, since there is no com
plete nonperturbative Hamiltonian formalism for massle
QCD, there is no understanding of the full consequence
spectral flow.2 The phenomenon we see is, arguably, t
minimum spectral flow that could be present~if there is any!.
Zero momentum fermion states identified initially as a p
ticle ~within a bound state! can evolve with time into a filled
vacuum state of the corresponding Dirac sea and, simila
filled vacuum states can evolve into particles.~The existence
of stable bound states and physical scattering processe
such an environment is clearly far from trivial.! In our analy-
sis, spectral flow of this kind is directly introduced by th
appearance of the triangle graph infrared divergence
Reggeized gluon interactions. It is interesting that a rela
phenomenon has already been encountered in nex
leading order calculations@14# of the high-energy scattering
of massless gluons. A massless gluon triangle diagram oc
in the effective vertex for Reggeized gluon exchange a
produces a ‘‘particle-antiparticle transition’’ that for gluons
simply an unanticipated helicity transition.

A Reggeon interaction vertex can be obtained by calcu
ing the contribution of Feynman diagrams to the simpl
multi-Regge limit in which the vertex appears. In@10# we
distinguished two methods for calculating multi-Reg
amplitudes—the direct calculation of diagrams in light-co
coordinates and the calculation of multiple asymptotic d
continuities with the subsequent use of an asymptotic dis
sion relation. Although the two methods should ultimate
produce the same results, direct light-cone calculations
impractical for the problem we are discussing. This is b
cause of the large number of diagrams that could contrib
and because the complexity of the diagrams makes a
discussion of whether or not integration contours are tr
trapped, in the asymptotic limits involved, very difficul
Consequently the asymptotic dispersion relation method
to be used. In this paper, therefore, we develop meth
aimed at directly calculating multiple asymptotic discon
nuities.

The form of the asymptotic dispersion relation for a giv
multi-Regge process is determined by the possi
asymptotic multiple discontinuities that satisfy the Ste
mann relation property~that the discontinuities occur in non
overlapping invariant channels!. Such discontinuities are ex

2The conventional wisdom is probably that strong coupling co
finement effects overwhelm such phenomena altogether. As
have emphasized elsewhere, we expect our discussion to apply
weak coupling version of massless QCD in which there is, eff
tively at least, an infrared fixed point.
9-2
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CHIRALITY VIOLATION IN QCD REGGEON INTERACTIONS PHYSICAL REVIEW D66, 045009 ~2002!
plicitly reflected in the analytic structure of asymptot
amplitudes provided by multi-Regge theory and, convers
using the dispersion relation, multi-Regge amplitudes can
calculated directly from the discontinuities. In@6# we de-
scribed how the appearance of the anomaly pole in the
ementary three current amplitude could be understood as
to an unphysical triangle Landau singularity appearing~from
an unphysical sheet! at the edge of the physical region. Co
respondingly, the crucial feature of the high-order amplitud
that produce Reggeon interactions containing the anoma
the presence of unphysical multiple discontinuities that s
isfy the Steinmann relation property and approach phys
scattering regions only asymptotically.~This implies that
they correspond to contour trappings that would be very
ficult to demonstrate using direct light-cone calculation!
Discontinuities of this kind are present in complex~imagi-
nary momentum! parts of the asymptotic region for suffi
ciently complicated many-particle multi-Regge process
the simplest of which is the full triple-Regge region@8# that
we study in this paper. Because they are in nonoverlapp
channels these discontinuities can~and must! consistently
appear in the asymptotic amplitudes that describe also
real physical region behavior.

The familiar amplitudes that appear in multi-Regge p
duction processes~such as those that contribute to the BFK
equation@7#! do not contain unphysical multiple discontinu
ties. Rather they contain only multiple discontinuities th
are naturally interpreted as due to a succession of phys
region on-shell scattering processes.~The necessity for a
physical time-ordering of such processes then determines
absence of overlapping channel discontinuities.! Because
physical region multiple discontinuities involve only phys
cal amplitudes and physical intermediate states, when
are calculated using the perturbative amplitudes of the m
less theory, they cannot contain chirality transitions ass
ated with particle-antiparticle ambiguities. Therefore, wh
only production processes are involved~i.e. at what we
might call the BFKL level of multi-Regge theory! there is no
possibility for ‘‘chirality violation.’’

A priori, there is no reason why unphysical multiple d
continuities should not contain potential chirality transitio
when calculated perturbatively. Nevertheless, the occurre
of the infrared anomaly within such discontinuities is ve
subtle. The divergence is produced by a quark loop that
duces to a triangle by the placing of many propagators
shell. Of the three propagators associated with the trian
diagram, one must carry the zero momentum that allow
chirality transition while the other two carry the same ligh
like momentum. The additional on-shell propagators have
be associated with a triple discontinuity in such a way t
~when all transverse momenta are zero! they also can all
carry the same light-cone momentum~relative to the direc-
tion of the loop momentum!. It is obvious that this require
ment cannot be satisfied by a physical triple discontinu
and, in fact, it is very difficult to satisfy.~As we briefly
discuss towards the end of this paper, this difficulty is like
to be closely related to the complexity involved in havi
local interactions of the anomaly current appear in the ul
violet region of Reggeon interaction vertices.! Indeed, we
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will see that by itself this requirement is sufficient to ensu
that ~in the obtained Reggeon interaction! at least three
Reggeons are present in each Reggeon channel. Requ
that the spin structure that generates the anomaly also
present then further restricts the contributing triple discon
nuities to those originating from a small class of Feynm
diagrams. The discontinuities involved are truly unphysi
in that they correspond to three ‘‘asymptotic pseudothre
olds’’ ~or, in more technicalS-matrix language, ‘‘mixeda
singularities’’! each of which contains particles~effectively!
going in opposite time directions. Not surprisingly, thoug
this provides just the right circumstances for the anomaly
appear.

As we noted above, the obtained Reggeon interactions
of such high order that the minimum circumstances in wh
they can occur~between color zero Reggeon states! is when
each of the states involved carries the quantum number
the U~1! anomaly current. The lower-order diagrams cons
ered in @10# remain valuable to discuss for illustrative pro
cesses but the analysis within this paper shows that they
essentially irrelevant. We do not give any detailed discuss
of further cancelations among the diagrams we consider.
note, however, that the signature rule of@10# implies that the
full vertex for three Reggeon states, each of which carries
quantum numbers of the U~1! anomaly current, must vanish
In the pion-Pomeron vertex obtained in@6# there are, in ad-
dition to the three gluon Reggeons, a quark-antiquark pai
the pion, and an additional Reggeon in the Pomeron. In
triple Pomeron vertex, which we also briefly discuss, there
an additional Reggeon in each channel. In following pap
we hope to lay out the details of the construction of the f
multi-ReggeS matrix alluded to above. For the moment w
note only that triple-Regge interactions of the kind we co
sider here will contribute generally to the vertices and int
actions of the Reggeon bound states that emerge and ref
the brief discussion in@10#, and also to the outline in@12#,
for more details.

II. MULTIPLE DISCONTINUITIES AND THE STEINMANN
RELATIONS

A. Physical region discontinuities

The Steinmann relations originated in axiomatic fie
theory @15#. They ~essentially! describe the restrictions tha
the time-ordering of interactions places on the combinati
of intermediate states that can occur in a scattering proc
For on-shellS-matrix amplitudes their significance is mo
immediately appreciated in the approximation in which w
ignore higher-order Landau singularities and consider o

FIG. 1. A tree diagram representing simultaneous invariant cu
9-3
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FIG. 2. Physical scattering processes corresponding to Fig. 1.
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the normal threshold branch points~and stable particle poles!
that occur in individual channel invariants. The Steinma
relations then say that simultaneous thresholds~and/or poles!
cannot occur in overlapping channels.~Channels overlap if
they contain a common subset of external particles.! As a
result anN-point amplitude has at mostN23 simultaneous
cuts ~or poles! in distinct invariants. The possible combin
tions of cuts can be described by tree diagrams with th
point vertices in which each internal line corresponds to
channel invariant in which there is a cut due to intermedi
state thresholds—as illustrated in Fig. 1 for the 7-point a
plitude. @As usual,s125(P11P2)2, s1235(P11P21P3)2,
etc.# The set of all combinations of thresholds~and poles!
allowed by the Steinmann relations is the basic singula
structure of all scattering amplitudes. The higher-order L
dau singularities are believed@16# to emerge from the norma
thresholds in a manner that, for most purposes, makes th
secondary effect.

Conversely, the combination of cuts represented by a
ticular tree diagram can be directly associated with a se
physical scattering processes. As illustrated in Fig. 2, thi
the set of all processes~involving all the external particles o
the diagram as either ingoing or outgoing particles! in which
it is kinematically possible for all of the internal lines to b
replaced by physical multiparticle states.3 The hatched seg
ments represent physical intermediate states that, if they
all placed on shell, give~essentially! the associated multiple
discontinuity.

The Steinmann relations play a fundamental role in mu
Regge theory. It is possible to show@16# that in a physical
multi-Regge asymptotic region the analytic structure of sc
tering amplitudes can be treated as if only normal thresho
satisfying the Steinmann relations were present. In eff
higher-order Landau singularities are suppressed. This
the very important consequence that only the normal thre
old cuts in individual channel invariants need be represen
by multi-Regge asymptotic formulas. Furthermore, if w
consider only the multi-Regge limits accessible in 2→M
production processes, it can be shown that the maximal n
ber ~M-1! of simultaneous thresholds is encountered asym
totically only in physical regions. This is a generalization
the cut-plane analyticity property familiar from elastic sc
tering.

B. Unphysical multiple discontinuities

If we consider the multi-Regge regions ofM→M 8 scat-
tering amplitudes (M ,M 8>3) there is a significant change

3We do not distinguish processes in which ingoing and outgo
particles are interchanged viaCPT conjugation
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To understand the point involved consider the simplest c
of the tree diagram of Fig. 3. At first sight this diagra
corresponds only to the 2→4 production processes show
The three distinct scattering processes are distinguishe
different constraints on the invariants, i.e.

~ i! As12.As341As56,

~ ii ! As34.As121As56, ~2.1!

~ iii ! As56.As121As34.

We can also regard the three processes involved as di
guished by the selection of one pair of particles as incomi
which then must have energy larger than the sum of
subenergies of the other two pairs, which are necessaril
the outgoing state.

We may wonder about the symmetric asymptotic reg
in which

As12;As34;As56→`. ~2.2!

There are no physical scattering processes in this reg
However, the three processes of Eq.~2.1! are described by
the same~analytically continued! amplitude and so analytic
continuation from each of the physical regions implies th
such cuts must be present. It is, perhaps, natural that a t
discontinuity should exist that is symmetric with respect
the three processes of Fig. 3. Apparently, though, the s
metry requirement could only be satisfied if all the extern
particles are in the final, or initial, state. In fact, as we disc
further in the next sections, if we allow particles to car
complex momenta, a positive value for a two-particle ene
invariant can be achieved by a combination of an ‘‘inco
ing’’ and an ‘‘outgoing’’ particle in that they carry opposit
sign, but imaginary, energies. Therefore, in the symme
region it is possible for the three cuts of Fig. 3 to be pres
if each is associated with such a combination. We will sh
in the following that there are unphysical processes~with
imaginary momenta! in this region that do produce a tripl
discontinuity of this kind and we will refer to it as an ‘‘un
physical triple discontinuity.’’

Since the external particles for each cut are both ingo
and outgoing it is, perhaps, not surprising that intermed
states appear that also involve such combinations. Ind
we will see that this is how a triple discontinuity can conta
the ‘‘particle-antiparticle’’ transitions that ultimately provid
the massless chirality transitions that we are looking f
Since the complex momentum part of Eq.~2.2! is contained
in the triple-Regge asymptotic region, a triple discontinu
of this kind is just what we are looking for. The importanc

g

9-4
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FIG. 3. A tree diagram and correspondin
physical scattering processes.
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of the triple-Regge region is that it is the simplest mu
Regge limit in which the vertices appear that provide
couplings of bound-state Regge poles such as the Pom
or the pion. For higher-pointM→M 8 amplitudes there is a
wide range of unphysical multiple discontinuities satisfyi
the Steinmann relations. Bound-state scattering amplitu
can thus appear in which the anomaly is a crucial eleme

III. THE PHYSICAL REGION ANOMALY AND THE
TRIPLE-REGGE DISPERSION RELATION

A. The triple Regge limit and maximally nonplanar diagrams

In our previous paper@10# we studied the full triple-
Regge limit@8# of three-to-three quark scattering. If we d
note the initial momenta asPi , i 51,2,3, and the final mo-
menta as2Pi 85Pi1Qi , i 51,2,3, the triple-Regge limit
can be realized, within the physical region, by taking each
P1 , P2 andP3 large along distinct light-cones, with the mo
mentum transfersQ1 ,Q2 andQ3 kept finite, i.e.

P1→P115~p1 ,p1,0,0!, p1→`

q15Q1/2→~ q̂1 ,q̂1 ,q12,q13!

P2→P2
15~p2,0,p2,0!, p2→`

q25Q2/2→~ q̂2 ,q21,q̂2 ,q23! ~3.1!

P3→P3
15~p3,0,0,p3!, p3→`

q35Q3/2→~ q̂3 ,q31,q32,q̂3!.

Momentum conservation gives a total of five independenq
variables which, along withp1 ,p2 andp3, give the necessary
eight variables. The definition of the triple-Regge limit
terms of angular variables is given in@10#. For our present
purposes the above definition in terms of momenta will
sufficient. This will alow us to avoid the extra complicatio
of defining helicity angles, helicity-pole limits etc. Th
asymptotic behavior involved must hold for all complex va
04500
e
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ues of the large momenta, including the additional physi
regions reached by reversing the signs of thepi .

In @10# we also studied Feynman diagrams that contai
closed quark loop and generate triple-Regge Regge
gluon interactions containing the loop. To set the context
the present paper we briefly review the results. We con
ered the lowest-order amplitudes in which the anomaly co
potentially appear and, in particular, studied ‘‘maxima
nonplanar’’ diagrams of the kind shown in Fig. 4~a!.
~Throughout this paper we adopt the usual convention
solid and wavy lines respectively represent a quark an
gluon. We have reversed the direction ofP3 relative to the
notation of @10# in order to have a completely symmetr
notation.! The leading asymptotic contributions come fro
regions of gluon loop integrations where some of the pro
gators in the quark loop and the scattering quark systems
on-shell. We discuss the determination of which propaga
can be on-shell below. For the moment we consider the p
sibility, discussed at length in@10#, that the on-shell lines are
those that are hatched in Fig. 4~a!. We will eventually con-
clude that this combination of on-shell propagators can
produce a Reggeon interaction with a physical reg
anomaly divergence, even though it does produce a trian
diagram interaction. As we will see, the crucial issue is n
just which propagators are placed on-shell but also wh
pole ~‘‘particle’’ or ‘‘antiparticle’’ ! is involved. ~As the dis-
cussion in the previous section suggested, for the unphys
discontinuities, with which we will ultimately be concerne
the answer to this question is not unambiguous.! In the fol-
lowing we initially ignore this subtlety. As it emerges in ou
discussion it will become clear that it is a vital part of th
search for further diagrams which do produce an interac
containing the anomaly.

If the hatched on-shell propagators are used to carry
light-like longitudinal momentum integrations, the integra
over gluon loop momenta reduce to two-dimensional ‘‘tran
verse’’ integrals over spacelike momenta, as illustrated
Fig. 4~b!. The transverse plane~and orthogonal light-like
momenta! can, in general, be chosen differently in ea
d
o-
FIG. 4. A maximally nonplanar diagram an
the triangle diagram Reggeon interaction pr
duced.
9-5
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t-channel. IfQi' is the projection ofQi on the corresponding transverse plane, the leading asymptotic contribution then h
form

P11P21P31)
i 51

3 E d2ki1d2ki2

ki1
2 ki2

2
d2~Qi'2ki12ki2!Gi

2~ki1 ,ki2 ,••• !R6~Q1 ,Q2 ,Q3 ,k11,k12,••• ! ~3.2!

whereR6(Q1 ,Q2 ,Q3 ,k11,k12,•••) can be identified with the ‘‘reduced,’’ or ‘‘contracted,’’ Feynman diagram of Fig. 4~c!. If
we write

ki15qi1ki , ki25qi2ki , ~3.3!

then we showed in@10# that ~with a particular choice of transverse planes!

R6~q1 ,q2 ,q3 ,k1 ,k2 ,k3!5E d4k
Tr$g5g2,2,1~k”1k” 11q” 21k” 3!g5g2,2,2k”g5g2,2,2~k”2k” 21q” 11k” 3!%

~k1k11q21k3!2k2~k2k21q11k3!2
1••• ~3.4!
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where

g6,6,65gm
•nm

6,6,6 , nm
6,6,65~1,61,61,61!.

~3.5!

The contributions toR6 not shown explicitly in Eq.~3.4! do
not have ag5 at all three vertices of the triangle diagram. A
we will discuss again in Sec. V, the particularg-matrix pro-
jections appearing depend on the choice of transverse c
dinates. If the anomaly is present inR6, however, we expec
it to be independent of this choice. We should emphasize
while we have written Eq.~3.4! as a function of four-
dimensional momenta, theki are restricted to being two
dimensional spacelike momenta~plus longitudinal compo-
04500
or-

at

nents determined by the mass-shell conditions for the
shell quarks! and theqi have the restricted form given by Eq
~3.1!. These restrictions play a crucial role in determini
whether the anomaly can occur in a physical region Regg
interaction.

B. A Reggeon diagram amplitude

For completeness, we give a brief description~full details
can be found in@10#! of how a Reggeon vertex is extracte
from Eq.~3.2!. A Reggeon diagram amplitude that represe
right-hand cuts in the unphysical triplet$s138 ,s328 ,s218% and
has two Reggeons in eacht-channel, each with trajectory
a(t)511O(g2), has the form@10#
)
i
E d2ki

sinpa~ki
2!sinpa@~Qi2ki !

2#
b~k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3!

3@~s138!
$a(k1

2)1a[(Q12k1)2] 1a(k3
2)1a[(Q32k3)2] 2a(k2

2)2a[(Q22k2)2] 21%/2

3~s328!
$a(k3

2)1a[(Q32k3)2] 1a(k2
2)1a[(Q22k2)2] 2a(k1

2)2a[(Q12k1)2] 21%/2

3~s218!
$a(k1

2)1a[(Q12k1)2] 1a(k2
2)1a[(Q22k2)2] 2a(k3

2)2a[(Q32k3)2] 21%/2#Fsin
p

2
$a~k1

2!1a@~Q12k1!2#1a~k3
2!

1a@~Q32k3!2#2a~k2
2!2a@~Q22k2!2#%sin

p

2
$a~k3

2!1a@~Q32k3!2#1a~k2
2!1a@~Q22k2!2#2a~k1

2!2a@~Q12k1!2#%

3sin
p

2
$a~k1

2!1a@~Q12k1!2#1a~k2
2!1a@~Q22k2!2#2a~k3

2!2a@~Q32k3!2#%G21

~3.6!

g2→
;

0~s138!
1/2~s328!

1/2~s218!
1/2)

i
E d2ki

ki
2~Qi2ki !

2 b~k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3!. ~3.7!
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FIG. 5. The basic anomaly process.
re

et

s-
n

’’

-
ce

te

rib
on

ea
q
r

e

ci
s
w

w
t

ca
tio
s

he

o-
tum

s in

es

-
w-
m-
hat
esss
nd
we

n
of

ices
~The generalization of this formula to include mo
Reggeons in any of the channels should be obvious.! Taking
the triple discontinuity ins138 , s328 and s238 of Eq. ~3.6!
removes the poles due to the sine factors in the second s
square brackets, but leaves theg2→0 limit unchanged. Since
the triple discontinuity is unphysical and of the kind di
cussed in the previous section, according to the discussio
@10#, the ‘‘six-Reggeon interaction vertex
b(k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3) could contain the anomaly.

Writing

P11P21P31[~s138!
1/2~s328!

1/2~s218!
1/2 ~3.8!

and comparing with Eq.~3.7! we see that it would be
straightforward to identify Eq.~3.2! as a lowest-order contri
bution to such a Reggeon diagram amplitude if the redu
Feynman diagram amplitude of Fig. 4~c! is identified as a
Reggeon vertex, i.e.

R6~Q1 ,Q2 ,Q3 ,k1 ,Q12k1 ,••• !

[b~k1 ,k2 ,k3 ,Q1 ,Q2 ,Q3!. ~3.9!

Note, however, that while the right-side of Eq.~3.8! clearly
has a triple discontinuity in$s138 ,s328 ,s218%, the left-side
does not. The equivalence of the two sides is only de
mined if higher-order terms in Eq.~3.6! appear and add to
Eq. ~3.2! in the appropriate manner. Such terms are cont
uted by what we refer to in the following as Reggeizati
diagrams. Note, also, that for parts ofR6 ~not includingg5
couplings! higher-order terms would be expected to app
implying that one or more of the transverse integrals in E
~3.2! should be interpreted as arising from the trajecto
function terms in Eq.~3.6!. Such parts ofR6 would then be
interpreted as providing interaction vertices for few
Reggeons.

The amplitude~3.4! representing Fig. 4~c! is the full four-
dimensional triangle diagram amplitude except that spe
g-matrices appear at the vertices and only combination
~essentially! two-dimensional transverse momenta flo
through the diagram. It is shown in@10# that theg-matrix
couplings are appropriate to produce the anomaly but, as
discuss next, whether the necessary momentum configura
can occur within a physical region and provide a physi
region infrared divergence is a nontrivial and subtle ques
that depends crucially on the choice of propagator poles u
to put lines on-shell.
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C. The basic anomaly process

As we discuss further in Sec. V, the divergence of t
~massless! triangle diagram occurs@6# when a single light-
like momentum flows through the diagram and all other m
menta are spacelike and scaled to zero. Such a momen
configuration for the Reggeon interactionR is realized by
that of the full Feynman diagram shown in Fig. 5~a!. If we
label the momenta entering the Reggeon interaction a
Fig. 5~b!, an explicit configuration for Fig. 5~a!, discussed in
@10#, is

q12k15~2l ,2l ,0,0!, q22k25~22l ,0,22l ,0!
~3.10!

together with

q̂152q̂25 l q1352q23 q125q2150. ~3.11!

This determinesk1 andk2 and also gives

q352~q11q2!5~0,2 l ,l ,0!. ~3.12!

If we then take

k35 l ~0,122 cosu,122 sinu,0! ~3.13!

the light-cone momentum

22l ~1,cosu,sinu,0! ~3.14!

flows along the two vertical nonhatched lines in Fig. 5~b!. It
is straightforward to check that all three of the hatched lin
are on mass-shell. If spacelike momenta ofO(q) are added
to the momentum configuration~3.10!–~3.14! and the limit
q→0 is taken, the anomaly divergence occurs.~We will dis-
cuss this in more detail in Sec. V.!

Apart from the reversal of direction forP3, the process
represented by Fig. 5~a! is what we called ‘‘the basic
anomaly process’’ in@10#. The zero momentum quark is pro
duced by one ‘‘wee gluon’’ and absorbed by the other, allo
ing the chirality transition produced by the anomaly to co
pensate for a spin flip of the antiquark. Note, however, t
when the wee gluons are massless, the scattering proc
represented by Fig. 5 is physical only when the quark a
antiquark involved are also massless. In addition, as
noted in the Introduction~and discussed in more detail i
@6#!, the anomaly infrared divergence involves both poles
the zero momentum quark propagator. Moreover, the vert
coupling to the propagator should,a priori, be symmetrically
9-7
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FIG. 6. ~a! A physical threshold double dis
continuity. ~b! A pseudothreshold double discon
tinuity.
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interpreted as describing either the simultaneous produc
of the two states in the propagator or their simultaneous
sorption. When, as is the case in@6#, the infrared divergence
analysis used to define physical states and amplitudes
quires that the massless scattering enter the physical re
with the time ordering implied by Fig. 5, the presence o
nonperturbative background gauge field is effectively i
plied. The background field would be needed to produce
necessary spectral flow at one vertex that is required to
terpret the process as a chirality transition.

While the required mass-shell conditions are indeed sa
fied by Eqs.~3.10!–~3.14!, there is a problem. With the mo
menta given by Eqs.~3.10!–~3.14!, the energy component o
each of the three hatched lines in Fig. 5~b! has the same sign
Since the exchanged gluons carry only spacelike momen
is clear that this must be the case. We will see that this
very difficult configuration to obtain within a Reggeon inte
action. We can emphasize the problem by lettingl→0 while
simultaneously making a boostaz(z) such thatl coshz5n is
kept finite.~This is what is done in@6#.! If we then take all
transverse momenta to be zero, we obtain

q12k1→~2n,0,0,2n!, q22k2→~22n,0,0,22n!
~3.15!

and all the on-shell propagators carry the same light-like m
mentum~with respect to the direction of the loop mome
tum!. Effectively, then, the on-shell states in the loop must
in a symmetric light-like situation.@This implies that if the
zero momentum state is an antiquark~quark!, all hatched
lines must be quarks~antiquarks!.#

As we already remarked on in the Introduction, and as
discussed at length in@10#, the only practicable calculationa
method to determine whether a given combination of
shell lines contributes to the triple-Regge behavior~after all
diagrams are added! is the dispersion relation method that w
outline very briefly below. In this approach all on-shell lin
in a Reggeon interaction result directly from the taking o
triple asymptotic discontinuity. ‘‘Real part’’ interactions wit
the same on-shell lines may be generated when the full
persion relation is written or, equivalently, multi-Regg
theory is used@10# to convert the triple discontinuity to a ful
amplitude.

To have all on-shell lines carry the same light-like m
mentum~around a loop! in a multiple discontinuity is a very
restrictive requirement. The essential point becomes cle
we consider a physical region double discontinuity wh
04500
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gives the cut lines of Fig. 4~a!, as in Fig. 6~a!. If all cut lines
carry light-like momenta, the positive direction for the e
ergy component must be as indicated by the arrows in F
6~a!. Obviously the direction cannot be the same, relative
the internal loop momentum, for all cut lines. Neverthele
this is an essential requirement if a Reggeon interaction i
contain a physical region divergence produced by
anomaly~i.e. some variant of the ‘‘basic anomaly proces
must be involved!. We obtain what we require if we revers
one internal line and one external line~to make the cutting
completely symmetric! as in Fig. 6~b!. Since both cuts now
involve both forward and backward going~in time! particles
it is clear that we must have a combination of pseudothre
olds, just as suggested in the previous section, that can o
only in an unphysical region of momentum space.

We already recognized in@10# that the necessary triple
discontinuity is not present in the diagram of Fig. 4 but w
suggested that nevertheless it may be present in rel
higher-order Reggeization diagrams that produce
Reggeization of the gluons, in which case the basic anom
process of Fig. 5 would be required as a real part interact
In fact, we will show in the remaining part of this paper th
this is not the case. Instead, the requirement that all cut l
are treated symmetrically will require more wee gluons a
ultimately will require that Reggeon interactions with th
quantum numbers of the winding number current must
involved. Also, as we already anticipated in the previo
section the discontinuities involved must be unphysical.

As we discussed in@10#, we do not expect the anomal
divergence to be present in the scattering of elemen
quarks and/or gluons after all diagrams are summed. Ra
we expect it to be present when the basic process is ge
alized to describe the scattering of the particular multi-Reg
states that ultimately form bound states, and then only
color superconducting QCD. In@6# it is clear that the rel-
evant bound states are just the Goldstone bosons prod
by chiral symmetry breaking. The correspondingGi will
then appear in a generalization of Eq.~3.2! and the wee
gluons involved will be a crucial characteristic of scatteri
states. Also the chirality transitions produced~and the im-
plicit spectral flow! will be an essential part of scatterin
processes.

D. The triple-Regge dispersion relation

In general, an asymptotic dispersion relation@16# gives
the leading multi-Regge behavior of an amplitude as a s
9-8
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over multiple discontinuity contributions allowed by th
Steinmann relations. For the particular case~described in de-
tail in @10#! of the triple-Regge behavior of a six-point am
plitude we can write

M6~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!

5(C
M6

C~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!1M6
0 ,

~3.16!

where M6
0 contains all nonleading triple-Regge behavi

double-Regge behavior, etc. and the sum is over all tripleC
of asymptotic cuts in nonoverlapping~large! invariants. For
each tripletC, sayC5(s1 ,s2 ,s3), we can write

M6
C~P1 ,P2 ,P3 ,Q1 ,Q2 ,Q3!

5
1

~2p i !3E ds18ds28ds38
DC

~s182s1!~s282s2!~s382s3!

~3.17!

whereDC is the triple discontinuity.
The triple discontinuities are of three kinds, described

the tree diagrams of Fig. 7. There are 24 correspondin
Fig. 7~a!, 12 to Fig. 7~b!, and 12 of the Fig. 7~c! kind—
including those described by Fig. 3. Those of Figs. 7~a! and
7~b! occur in the physical regions, while those correspond
to Fig. 7~c! are all unphysical triple discontinuities of th
kind discussed in the last section.

E. Unphysical triple discontinuities and Reggeization

As we discussed in@10#, the diagram of Fig. 4~a! has
physical region triple discontinuities of both the Figs. 7~a!
and 7~b! kinds, although neither gives leading triple-Reg
behavior. Unphysical discontinuities are more complicated

FIG. 7. Tree diagrams for triple discontinuities.
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discuss. If the usual cutting rules hold, the diagram of F
4~a! has no asymptotic triple discontinuities corresponding
Fig. 7~c!, but rather has only double discontinuities. To s
this, consider cutting the diagram as in Fig. 8, superficia
giving an $s138 ,s328 ,s218% triple discontinuity. In fact, just
taking a double discontinuity, as in Fig. 6, cuts all the ava
able lines, implying that there is no independent third disc
tinuity that can be taken.

It is not clear,a priori, that the cutting rules do apply to
unphysical discontinuities. However, we will show direct
in the next section that, indeed, there is no symmetric tri
discontinuity present giving the desired common ene
component sign in the diagram of Fig. 4. Therefore, as
described above, whether there is an anomaly contribu
from diagrams of this kind depends on whether the neces
triple discontinuities are present when Reggeization effe
appear. In@10# we noted only that such discontinuities a
peared to be present in Reggeization diagrams but did
discuss the structure of such diagrams in any detail.

As an example of a diagram that should produ
Reggeization, consider that shown in Fig. 9, in which one
the gluons in the diagram of Fig. 8 is replaced by two-glu
exchange—potentially giving the one-loop contribution
the trajectory function of the original gluon. The thin line
again indicate how an unphysical$s138 ,s328 ,s218% disconti-
nuity would be taken. The corresponding six Reggeon in
action, together with a remnant seven Reggeon interact
would be generated by putting the cut lines on-shell. T
discontinuity is clearly not symmetric and in the next secti
we will confirm by direct calculation that there is no trip
discontinuity giving the anomaly. This will be sufficient t
determine that the anomaly process of Fig. 5 is not gener
as a ‘‘real part interaction’’ when higher-order Reggeizati
effects are included.

F. A symmetric triple discontinuity

To obtain a symmetric triple discontinuity in which th
normal cutting rules could potentially give the anomaly a

FIG. 8. An unphysical triple discontinuity?
FIG. 9. A diagram with an unphysical triple
discontinuity.
9-9
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FIG. 10. A diagram with a symmetric unphysical triple discontinuity.~b! Expected Reggeon interactions.
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plitude associated with Fig. 5, we consider the high-or
diagram shown in Fig. 10~a! in which there are three gluon
in eacht-channel. A triple discontinuity in$s182 ,s283 ,s381% is
obtained by cutting the diagram as indicated in Fig. 10~b!.
The closed loops involving two-gluon exchange could g
both one loop contributions to the one Reggeon traject
function and the leading contribution of a two Reggeon sta
A priori, therefore, we expect the diagram to contribute
the six-, seven-, eight- and nine-Reggeon interaction as il
trated.

Since the triple discontinuity of Fig. 10~b! is manifestly
symmetric we again might expect the symmetric configu
tion giving the anomaly to appear in the six-Reggeon int
action. However, for consistency with our previous disc
sion, the anomaly should not~and does not! appear quite so
simply. After we carry out the explicit evaluation o
asymptotic discontinuities in the next section, it will be cle
that the triple discontinuity of Fig. 10~b! does not contain the
required symmetric momentum configuration. In fact, t
anomaly does occur within a Reggeon interaction gener
by the diagram of Fig. 10~a!, but only when the unphysica
discontinuities are actually taken as shown in Fig. 11. Ho
ever, we will postpone until Sec. V a discussion of whi

FIG. 11. Another cutting of Fig. 10~a!.
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Reggeon interaction is involved. Note that the discontinu
lines in Fig. 11 cross each other. We will see that this
possible because, as anticipated in the previous section
particles contributing to each discontinuity will not all hav
the same time direction. To evaluate a multiple discontinu
of this kind we must develop direct methods to compu
asymptotic discontinuities.

IV. UNPHYSICAL TRIPLE DISCONTINUITIES AND
HIGHER-ORDER GRAPHS

In this section we generalize the single asymptotic disc
tinuity analysis described in the Appendix to asympto
triple discontinuities. The essential idea is that there is
well-defined leading-log result for each triple discontinu
~just as there is for the single discontinuity calculated in
Appendix! that can be found from the leading-log calculatio
of amplitudes by keeping thei e dependence of all loga
rithms.

A. A physical region discontinuity

We begin by considering again the maximally nonplan
graph shown in Fig. 4. To understand how asymptotic d
continuities arise, we first consider a physical region disc
tinuity. For this we interchangeP1 and P18 in Eq. ~3.1! so
that P18 andP2 are the momenta of incoming particles. F
simplicity, we also setQi50, i 51,2,3. This could cause
confusion as to in which invariants discontinuities actua
occur. However, for the discontinuities that interest us,
will be able to avoid this issue.~As is the case for our dis
cussion in the Appendix, adding both transverse mome
and masses to our discussion would not change the esse
features of the analysis, but would eliminate gluon infrar
divergences. We will discuss, at some points, the gen
effect of adding transverse momenta.! Therefore we write,
asymptotically,
9-10
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FIG. 12. Routing loop momenta for Fig. 5.
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P18→2P15~p18 ,p18,0,0!, p18→`

P2→2P285~p2,0,p2,0!, p2→`

P3→2P385~p3,0,0,p3!, p3→`. ~4.1!

For the reasons given in the last section, we will u
mately be looking for a symmetric triple discontinuit
Therefore, we consider only routes for the internal loop m
menta of Fig. 4 that are completely symmetric with resp
to the three external loops. There is essentially only one p
sibility. The two apparently distinct possibilities illustrated
Fig. 12 are related by interchanging the primed a
unprimed external momenta. We will also want to make
symmetric choice for the quark lines we place on shell.
though we will not discuss the anomaly in detail until t
next section, in anticipation of this we will demand that
product of three orthogonalg-matrices be associated wit
the process of putting on-shell each internal quark line.
achieve this it is necessary to put on-shell, symmetrically,
internal lines in Fig. 12~a! along which a single loop momen
tum flows. Therefore, we consider only such lines in t
following.

Using the momentum routing of Fig. 12~a! and the analy-
sis of the Appendix we consider logarithms generated by
k1 andk2 integrations. Thek1 andk2 loops are shown in Fig
13. For the moment, we omit the propagators in the slop
lines and all propagator numerators.~The omitted propaga
tors will, nevertheless, play an important role below. Th
are also relevant if we wish to consider the other kinds

FIG. 13. ~a! The k1 loop. ~b! The k2 loop.
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discontinuities that appear in Fig. 7.! In this case, the two
loops differ only in the light-cone direction ofP18 andP2.

We consider Fig. 13~a! first. We can directly apply the
discussion following Eq.~A4! if we identify P18 with p, q
with p8, k1 with k, and consider the propagator pole at (k1
1q)250. We then obtain

I ~p18q12!; i E d2k1'@2k1'
2 1 i e#22

3E
0

lq12

dk12@k122q12#21

3@p18k122k1'
2 1 i e#21

;
1

p18q12

log@p18lq121 i e#. ~4.2!

We have used the notation~used extensively in the follow-
ing! that for any four-momentumk

ki 65k06ki ki'5~kj ,kk! j ÞkÞ i i , j ,k51,2,3. ~4.3!

The q12 dependence indicates that the logarithm is a refl
tion of a threshold in the invariantP18•q . This dependence
plays an important role in the following discussion. We al
retain thel-dependence, for technical reasons that will b
come apparent later. The final result will be independen
l, as it must be. From Fig. 13~b! we analagously obtain

I ~p2q22!;
1

p2q22

log@2p2lq221 i e#. ~4.4!

The minus sign~which is very important in the following!
appears relative to Eq.~4.2! because of the opposite directio
of P2.

Next we consider how the logarithmic branch cuts gen
ated by thek1 andk2 integrations can trap the internal loo
9-11
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ALAN R. WHITE PHYSICAL REVIEW D 66, 045009 ~2002!
integration overq to produce an overall discontinuity i
s182;p18p2. For simplicity, we consider the region where

ki'
2 ;q2 ;0 i 51,2,3. ~4.5!

Appealing to Eq.~A6! we can then, for our present purpose
effectively ignore the remainingki dependence of the quar
loop ~including the propagators that we ignored in the abo
discussion!. If we parametrizeq as

q5~q0 ,q12,q22,q32! ~4.6!

we can treat theqi 2 as independent variables, withq0 essen-
tially determined by the constraintq2;0. The logarithmic
cuts of Eqs.~4.2! and ~4.4! appear, respectively, in theq12

andq22 planes and if we make a further change of variab
to

q125x2x3 , q225x3x1 , q325x1x2 ~4.7!

the two branch points appear in thex3-plane, for fixed, posi-
tive, x1 ,x2, as illustrated in Fig. 14~a!. ~The branch points
also appear, separately, in thex2 andx1 planes. To focus on
the s182 discontinuity and avoid any complication from di
continuities involving a logarithm ofp3 in these planes we
can take thel for this logarithm to be much smaller.! The
propagator poles that are not on-shell, that we ignored in
above discussion, combine to give a multiple pole atq250
~on both sides of the contour, as determined by the prese
of i e in all propagators!. If we continue to ignore propagato
numerators then the factors of 1/q12 and 1/q22, in Eqs.~4.2!
and ~4.4! respectively, will also contribute poles atx350
~that will partly be compensated by the Jacobian due to
change of variables!. However, in the anomaly contributio
we will ultimately consider, these poles will be directly ca
celed by numerator factors.

The threshold we are interested in occurs when the
branch points collide~at x350 for e50). To extract the
discontinuity we consider a full-plane rotation ofp2, with
p18 fixed, so that the logarithmic branch cut~4.4! deforms

FIG. 14. Contours in thex3-plane: ~a! the initial contour;~b!
p2→e2p i p2; ~c! the discontinuity;~d! the discontinuity as a line
integral.
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the contour as shown in Fig. 14~b!—the dashed line indicate
that the contour is on the second sheet of the branch p
~4.2!. ~In this figure we have omitted the poles atx350.!
Note that the continuation path we have chosen isolates
discontinuity around thes182 branch cut, since it avoids th
pinching of the integration contour with the singularity
q250 that would give other discontinuities. The desired d
continuity is obtained by adding the original contour in t
opposite direction, as shown in Fig. 14~c!. Combining both
contours we obtain Fig. 14~d! which, as illustrated, can be
written as a line integral between the two branch points
the double-discontinuity due to both cuts. Ase→0, or in the
asymptotic limit p18 , p2→`, the branch points approac
each other and the result is a closed contour integral aro
the singularity atq250 which is independent of the positio
of the end points and remains finite in the asymptotic lim
This is the asymptotic discontinuity and the singularity
q250 is clearly crucial in producing a nonzero result.

In Fig. 15~a! we have illustrated the last stage of the co
tour contraction ase→0 and have also included the effect
adding ~external and internal! transverse momenta in th
foregoing analysis. The integral between the branch poi
of the double discontinuity, is still obtained, while the sing
larity at q250 separates into a set of poles at both posit
and negativex3. In Fig. 15~b! we have shown the asymptoti
discontinuity. Since the branch points are logarithmic,
double discontinuity involved is simply 4p2 and so no
longer contains either branch cut. Consequently, the asy
totically finite integral around the poles to the left can
opened up to give the original contour, as illustrated.~If there
is a singularity atx350, the contour is constrained to pa
through this point although, as we noted above, for
anomaly contribution to graphs, this will not be the cas!
The final result shown in Fig. 15~b! is just what would be
given by the normal cutting rules for a discontinuity ins182,
i.e. the original integral with the four propagators involved
generating the discontinuity placed on-shell. Note that
same result is obtained if the discontinuity is evaluated
varying p18 . An integral around the positivex3 poles ap-
pears at the intermediate stage, which can then be opene
to give the same final contour as in Fig. 15~b!.

An obvious, but essential, requirement in the origin of t
asymptotic discontinuity, which we want to emphasize,
that the branch cuts due to the logarithms inp18 andp2 must
lie on opposite sides of thex3 contour. @This is the sign
difference between Eqs.~4.2! and ~4.4! that we emphasized
above.# In a physical region this requirement is normal
straightforward for a loop integration producing a thresho
due to two massive states since the loop momentum
flow oppositely through the two states and thei e prescription
will place the states on opposite sides of the energy inte

FIG. 15. ~a! The x3 contour with finite transverse momenta;~b!
equivalence of the asymptotic contour to the original contour.
9-12
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CHIRALITY VIOLATION IN QCD REGGEON INTERACTIONS PHYSICAL REVIEW D66, 045009 ~2002!
tion contour. In the variables we are using the generation
the threshold is a little more subtle. Note, for example, t
whenx1,0 the branch point~4.2! appears in the upper half
plane ~moving through infinity asx1 moves through zero!
and there is no discontinuity. Therefore, the signs of thexi
play an essential role in the occurrence of the discontinu
A further requirement, which clearly holds in the case ju
discussed, is that the trapping~pinching! of the contour that
we have discussed must combine with the pinching ass
ated with the logarithms to give a complete cut through
diagram. That is to say, the complete set of pinchings m
correspond to an overall invariant cut.

B. Maximally nonplanar unphysical discontinuities

We consider next the unphysical discontinuities that
our principal interest. According to the discussion in Sec.
we are looking for a triple discontinuity of the form of Fig.
that treats the three cut lines of the quark loop symmetric
so that, in a physical region, the sign of the energy com
nent can be the same for all three on-shell states. We
therefore, confine our discussion to a search for a symme
triple discontinuity. As we noted, if the normal cutting rule
apply there is no triple discontinuity~symmetric or not! of
the Fig. 8 kind. We consider whether the direct evaluation
discontinuities gives the same result.

The discontinuity we discussed above occurred in a ph
cal region that is unsymmetric in thatP2 is the momentum of
an incoming particle whileP1 is the momentum of an out
going particle. To look for a symmetric discontinuity we w
use an analysis that treats the complete graph symmetri
throughout. To this end, we start in the symmetric asympt
region ~3.1! where all momenta are real and

si 8 j;2pipj,0. ~4.8!

In this region, the diagram is defined by the usuali e pre-
scription. Since all three invariants must be positive,
triple discontinuity of Fig. 8 can only be present in the tripl
Regge limit if we allow the large momenta involved to b
unphysical. A symmetric way to do this is to start from t
real physical region and take
04500
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pi→e2 ip/2pi5 ipi , i 51,2,3

5.si 8 j;~2 ipi !~ ip j !.0. ~4.9!

Given the symmetry of the present discussion, it is imm
diately apparent that there will not be a~symmetric! triple
discontinuity, as we now argue. Using the above analy
logarithms will be generated by each of theki integrations. If
we consider again the region where the transverse mom
are close to zero then, from Eq.~A6!, the requirement tha
the energy component of each on-shell line in the loop h
the same sign is equivalent to requiring that theqi 2 all have
the same sign. This, in turn, requires that thexi should all
have the same sign. However, in the symmetric real phys
region, if x1 and x2 have the same sign, the logarithm
branch cuts inP1 and P2 lie on the same side of thex3
contour as illustrated in Fig. 16. Since the continuation~4.9!
is symmetric they will remain on the same side after t
continuation. As a consequence, in the symmetricxi region,
the contour will not be trapped and distorted as one bra
point moves aound the other, as it was in Fig. 14, and
discontinuity will result. We conclude therefore that, for th
graph we are discussing, discontinuities can only be ge
ated in asymmetric regions of thexi that cannot provide the
symmetric triple discontinuity that we are looking for. Th
foregoing analysis also precludes the occurrence of a tr
discontinuity, that is appropriately symmetric, in the diagra
of Fig. 9.

C. A symmetric unphysical triple discontinuity

To obtain a symmetric triple discontinuity we look for
graph that has the appropriate overall symmetry and also

FIG. 16. The symmetric location of branch cuts in thex3-plane.
FIG. 17. Labeling momenta for Fig. 10~a!.
9-13



o

t
to

te
w

-

la
rn
u
in

ec

ig
i

n
th

he
e
f
er
w
co
u
on
in
in

he

by
i-
ally.
he
ted

nta
asic

e

s

ts in

d
al

, the
re,

g.
y
r
he
ns

es

to
n
n a
ow
e
-

ALAN R. WHITE PHYSICAL REVIEW D 66, 045009 ~2002!
eachiÞ j Þk, has logarithmic branch cuts on both sides
thexi contour in a symmetric region ofxj andxk . With these
requirements in mind, an obvious graph to consider is tha
Fig. 10. To discuss this graph we continue, for simplicity,
take Q15Q25Q350. Two symmetric~distinct! routes for
the internal momenta are shown in Fig. 17. To be consis
with our previous notation we have used the notation that
direct theki momenta in the opposite direction to thePi , the
ki8 momenta in the opposite direction to thePi8 ~i.e. in the
same direction as thePi), and direct the internal loop mo
mentum in the same direction as theki8 momenta.

For a threshold corresponding to the cutting of particu
lines of the internal quark loop to be generated the exte
loop momentum generating the relevant logarithms m
pass through at least one of the lines. With this constra
only the routing shown in Fig. 17~a! will give both disconti-
nuities of the kind we are looking for, and theg-matrix struc-
ture for on-shell contributions that we show, in the next s
tion, gives the anomaly. The routing of Fig. 17~b! would be
appropriate for discussing the triple discontinuity of F
10~b!. However, as we noted in the previous section, and w
explain further below, this triple discontinuity does not co
tain the symmetric momentum configuration needed for
anomaly.

Using the momentum routing of Fig. 17~a! we consider
the logarithms generated by both theki andki8 loop integra-
tions. Extracting all logarithms places on-shell all t
hatched lines of Fig. 17~a!, and gives leading behavior of th
form of Eq.~3.2! multiplied by double logarithms of each o
the Pi 1. How the logarithms cancel or combine with oth
diagrams is, of course, a very complicated problem. As
have emphasized, to discuss this systematically we must
sider all the multiple asymptotic discontinuities that occ
rather than the behavior of full diagrams. Our present c
cern is, however, the much narrower purpose of determin
only whether there is a symmetric triple discontinuity
which the anomaly can occur.

FIG. 18. ~a! The k1 loop. ~b! The k18 loop.
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As above, to study discontinuities we keep t
q-dependence of all logarithms together with alli e depen-
dence. We consider specifically the logarithms generated
the k1 andk18 loops, but the symmetry of the diagram obv
ously determines that the others can be treated identic
The loops, extracted from Fig. 17, are shown in Fig. 18. T
k1 loop is identical to those of Fig. 13 and can be evalua
analagously. Using a similar analysis, thek18 loop gives an
integral of the form

E
0

(k21q)12

dk1128 •••. ~4.10!

If we again go to the region where all transverse mome
are close to zero, then we have drawn the diagrams as b
anomaly processes in Fig. 32 using Eq.~A6!. It follows that
after thek2 integration

k212;k20;q2/q22!q12. ~4.11!

Therefore, we can take the upper end point in Eq.~4.10! to
be q12. In this case both thek1 and k18 integrations give
logarithms with q12 in the argument—but with opposit
signs. We then have branch cuts located as in Fig. 19~a! in
each of thex1 ,x2 andx3 planes. We have included the pole
at q250 andxi50 and have used differentl i and l i8 for
each branch cut to allow us to separate the branch poin
our discussion.

With values of thel i and l i8 implied by Fig. 19~a!, we
could clearly obtain a discontinuity insjk8 ~due to the two
closest branch points! by repeating the discussion illustrate
by Fig. 14. The discontinuity would similarly be an integr
between the two branch points involved, as in Fig. 14~d!, but
because of the additional branch points that are present
contour could not be opened up as in Fig. 15. Therefo
having takenxj ,xk.0 so that the branch cuts lie as in Fi
19~a!, the discontinuity would involve only pure imaginar
or negative real part values ofxi . Consequently, any furthe
discontinuity obtained by the collision of branch points in t
xj or xk planes would have to involve mixed real part sig
for thexi . We conclude~not surprisingly! that in the physical
region a triple discontinuity cannot be obtained that involv
only positive values of all threexi .

This brings us to the central point of the paper. If we go
the unphysical region~4.9!, where we expect to encounter a
unphysical triple discontinuity, the last analysis changes i
crucial manner. The resulting location of branch cuts is n
as shown in Fig. 19~b!, allowing the integration contour to b
rotated as illustrated. In Fig. 19~b! we have also, for empha
sis, chosen significantly different values of thel i andl i8 . If
FIG. 19. ~a! Branch points in thexi-plane.~b!
pi→e2 ip/2pi5 ipi , i 51,2,3.
9-14
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CHIRALITY VIOLATION IN QCD REGGEON INTERACTIONS PHYSICAL REVIEW D66, 045009 ~2002!
we again determine the discontinuity associated with the
lision of the two nearest branch points, as above, the re
will be the contour integral of the double discontinui
shown in Fig. 20. Now the integral involves positive re
values ofxi and, as illustrated, the asymptotic limit gives
loop integral over just positive values. The contour integ
cannot be opened up, however, since the other branch
remain.

Having derived a first discontinuity from two branc
points in thexi plane, as in Fig. 20, it is straightforward t
keep the remaining branch points and move on to thexj and
xk planes where, in each case, only two branch cuts n
appear. In both planes, discontinuities of the form of Fig.
occur, provided thexi integration is restricted to positive rea
values. Therefore, we obtain a triple discontinuity in whi
each of thexi , xj and xk integrations is consistently ove
positive values and the asymptotic contour is obtained
illustrated by the first two contours in Fig. 21. Since all log
rithmic branch cuts are now removed, all three contours
be opened up to obtain the last contour of Fig. 21 which
once again, the original contour of integration for each ofxi ,
xj andxk . We thus obtain a triple discontinuity which, at fir
sight, corresponds to the usual cutting rules since all cut li
are on-shell. However, the triple discontinuity is truly sym
metric and as a result each discontinuity is, necessaril
pseudothreshold. There is also a very important furt
subtlety.

If we consider the discontinuity arising from the pinchin
of logarithms ofp1l1 andp2l28 , for example, then the line
put on-shell in the discontinuity are those that have th
hatches in Fig. 22~a!. These lines are only a subset of tho
required to obtain a complete cut of the diagram. This i

FIG. 20. The unphysical region discontinuity.
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plies that the corresponding pinching does not, by itself, g
a singularity of the complete integral anda priori the inte-
gration contour could be deformed away from the pinch
region. To obtain a complete cut we must add the lines t
have thin hatches in Fig. 22~a!. When these lines are on she
the pinching does give an overall singularity. But, if we r
quire a common sign for thexi the two thin-hatched lines
again have the wrong momentum direction to straightf
wardly combine with the asymptotic pinching to give wh
would be a physical sheet ‘‘asymptotic normal threshold
However, each of the two thin hatched lines is separa
placed on shell by one of the additional discontinuitie
Therefore, the full triple discontinuity we have found do
correspond to a triplet$s128 ,s238 ,s328% of invariant ~pseudo-
threshold! cuts.

If we consider instead the discontinuity arising from t
pinching of logarithms ofp1l1 and p3l38 then the lines put
on shell are those hatched in Fig. 22~b!. In this case there is
no simple way to include additional lines and obtain an
variant cut. Therefore, this pinching cannot be extended
complete cut of the diagram. We conclude that the tri
discontinuity in$s128 ,s238 ,s328% that is illustrated in Fig. 11
is the only combination that exists, as an extension of
above analysis. It is symmetric, with each of the intern
quark lines that are put on shell byki integrations treated
symmetrically. All three of these lines contribute to each
variant cut but, as we have just discussed, two of them
ways have the wrongi e prescription, relative to the third, to
give a physical normal threshold. Singularities associa
with combinations of forward and backward going particl
are ‘‘mixed-a ’’ solutions of the Landau equations@16#. In
general, such ‘‘pseudothresholds’’ are not singular on
physical sheet because of the conflictingi e prescriptions.
However, they are generally singular on unphysical she
and can appear in multiple discontinuities. They would
particularly expected to appear in unphysical multiple d
continuities.

Finally, we return to the triple discontinuity of Fig. 10~b!,

FIG. 21. Contours for thexi , xj andxk integrations.
FIG. 22. On-shell lines for~a! ans128 discon-
tinuity; ~b! a potentials138 discontinuity.
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ALAN R. WHITE PHYSICAL REVIEW D 66, 045009 ~2002!
using the momentum routing of Fig. 17~b!. Consider, for
example, the discontinuity ins283. This will be due to the
pinching of thex1 integration contour by the logarithms ge
erated from thek28 andk3 integrations. The relevant sub-pa
of Fig. 17~b! is shown in Fig. 23. That the direction of th
q-momentum flow is opposite, relative tok28 and k3, along
the relevant internal lines implies thatx2 andx3 must have
opposite signs in order for the branch cuts to be on oppo
sides of thex1 contour. As a result no symmetric triple dis
continuity exists.

There are clearly two criteria for the existence of a sy
metric asymptotic triple discontinuity, which we will appe
to further in the next section. The first is that theq momen-
tum flow must be in the same relative direction along
relevant internal lines for each discontinuity. The second
that all internal loop lines, besides those in the remain
triangle, must be put on shell by the combination of the th
pinches of thexi integrations.

V. THE TRIANGLE ANOMALY AND OTHER DIAGRAMS

In this section we discuss how the anomaly occurs i
Reggeon vertex obtained from the triple discontinuity of F
11. We will also consider other diagrams that can contrib
and discuss how color quantum numbers determine wh
Reggeon interactions are involved.

FIG. 23. Part of theq momentum flow within Fig. 17~b!.
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A. The asymptotic amplitude

We can briefly describe the calculation of the asympto
amplitude obtained from Fig. 11~in which all the cut lines
are put on-shell as described in the last section! as follows.
Additional background description of the method used c
be found in@10#. We begin by adding in the numerator d
pendence what we essentially ignored in the previous s
tion. For the external lines, additional powers of the exter
momenta are generated as in Eqs.~A9! and ~A10!. As a
result, inverse external momentum factors, such asp18

21 in
Eq. ~4.2! andp2

21 in Eq. ~4.4! are eliminated and the facto
of P11P21P31 that appears in Eq.~3.2! is produced. Also, if
we use the natural transverse momenta given by Eq.~4.3!,
the light-like g-matrix couplings that appear at each of t
vertices of the internal loop~after the triple-Regge limit is
taken! are as illustrated in Fig. 24~a!. For the hatched lines
that appear in both Figs. 24~a! and 24~b!, we keep theg
matrices shown. These are the ‘‘local couplings’’~see@10#!
that appear when that part of the associated numerator is
that cancels the internal momentum factors that arise fr
the longitudinal loop momentum integrations@such asq12

21

in Eq. ~4.2! andq22
21 in Eq. ~4.4!#. To justify this procedure

we appeal to the~‘‘infrared nonrenormalization’’! argument
of Coleman and Grossman@17# that only a fermion triangle
diagram, with particular helicities for the couplings, can pr
duce the anomaly infrared divergence.

We introduce external transverse momenta~that we essen-
tially ignored in the previous section! using the notation il-
lustrated in Fig. 25~a!. The resulting asymptotic behavio
then has the form

P11P21P31)
i 51

3 E d2ki1d2ki2d2ki3

ki1
2 ki2

2 ki3
2

3d2~Qi'2ki12ki22ki3!Gi
3~ki1 ,ki2 ,ki3••• !

3R9~Q1 ,Q2 ,Q3 ,k11,k12,k13••• ! ~5.1!

where R9 is the triangle diagram illustrated in Fig. 24~c!.
Note that this diagram depends only onki21ki3 ~i.e. it is
independent ofki22ki3).
FIG. 24. g-matrix structure for the Reggeon interaction extracted from Fig. 10.
9-16
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FIG. 25. ~a! Notation for Eq.~5.1!. ~b! Nota-
tion for Eq. ~5.4!.
te

ig.
-

B. The Reggeon interaction anomaly

By comparing with the generalization@10# of Eqs. ~3.6!
and ~3.7! to three Reggeons in eacht-channel, we can di-
rectly interpretR9 as a nine-Reggeon interaction. If we wri

ki15qi1ki ,

ki25~qi2ki !/22ki8 ,

ki35~qi2ki !/21ki8 , ~5.2!
g
i.e

e

04500
then the momentum flow into the triangle diagram of F
24~c! is as shown in Fig. 25~b!. Using momentum conserva
tion, i.e.

q11q21q350, ~5.3!

R9, which does not depend on theki8 , can be written@very
similarly to Eq.~3.4!# as
R9~q1 ,q2 ,q3 ,k1 ,k2 ,k3!5E d4kTrH g5g123122
~k”1k” 21q” 32k” 1!

3
g5g221132

~k”2q” 21q” 32k” 22k” 3!g5g322112
~k”1k” 12q” 22k” 3!

~k1k21q32k1!2~k2q21q32k22k3!2~k1k12q22k3!2 J ~5.4!
where

g123122
5g12g31g225g2,2,22 i g2,2,1g5

g221132
5g22g11g325g2,2,22 i g1,2,2g5

g322112
5g32g21g125g2,2,22 i g2,1,2g5

~5.5!

andg6,6,6 is defined by Eq.~3.5!. Again we obtain a par-
ticular component of the tensor that describes the trian
diagram contribution to a three current vertex function,
we can write

R9~q1 ,q2 ,q3 ,k1 ,k2 ,k3!

5~nm
2,2,22 i nm

2,2,1!~na
2,2,22 i na

1,2,2!

3~nb
2,2,22 i nb

2,1,2!Tmab~k12k32q2 ,k2

2k122q3! ~5.6!

whereTmab is the triangle diagram three current amplitud
le
.

.

To discuss the occurrence of the anomaly in Eq.~5.5! we
first recall the general invariant decomposition ofTmab as
discussed in@6#. With the notation illustrated in Fig. 26 we
can write

Tmab~p1 ,p2!5A1esabmp1
s1A2esabmp2

s

1A3edsamp1bp1
dp2

s1A4edsamp2bp1
dp2

s

1A5edsbmp1ap1
dp2

s1A6edsbmp2ap1
dp2

s .

~5.7!

FIG. 26. Triangle diagram notation.
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ALAN R. WHITE PHYSICAL REVIEW D 66, 045009 ~2002!
The ultraviolet anomaly occurs in the first two terms of E
~5.7!, i.e.

Tmab~k1 ,k2!5
1

4p2 esabmp1
s

1
1

4p2 esabmp2
s1••• ~5.8!

leading to the well-known divergence equation

~p11p2!mTmab5
1

2p2
edsabp1

dp2
s . ~5.9!

The ultraviolet anomaly can therefore appear only in a ten
component with three orthogonal Lorentz indices. If we ke
just theg5 parts of the three vertices in Eq.~5.5! we obtain a
nonzero projection on such a tensor component. In fact
contribution toR9 retains the full symmetry of the origina
Feynman diagram of Fig. 10~a! and, as a result, has the ne
essary symmetry to contain the ultraviolet anomaly.

The infrared ‘‘anomaly pole’’ occurs inA3 andA6. When
p1

250

A352A65
1

2p2

1

p2
22q2 S p2

2

p2
22q2 ln

p2
2

q2 21D ~5.10!

and whenp2
2→0

A3→
1

2p2

1

q2 . ~5.11!

That is, a pole appears inA3 (52A6) and, as a consequenc
of all divergence equations, the coefficient is also given
the anomaly. If, instead, we integrate over spacelike val
of q2, we obtain

E dq2A3~q2,p2
2! f ~q2,p2

2!

——→
k2

2→0

1

p
f ~0,0!5E dq2

1

p
d~q2! f ~q2,0!

~5.12!

@providedf (q2,p2
2) is regular atq2,p2

250#. As we discussed
in @6#, the pole~5.11! is responsible for the appearance o
Goldstone boson pole in amplitudes containing the ch
flavor anomaly. For the Reggeized gluon interactions that
are discussing it is thed-function property that is important

The tensor factors multiplyingA3 andA6 in Tmab poten-
tially suppress theq2→0 divergence due to the anoma
pole. To describe this, we consider a specific momen
configuration, e.g.

p15~p/A2,p/A2,0,0!

p25~2p/A2,2p cosu/A2,0,2p sinu/A2!
04500
.

or
p

is

y
s

l
e

m

u→0
;

2p12~0,0,pu/A2,0!52p12~0,0,q,0! ~5.13!

where

q25~p11p2!2 ;
u→0

p2u2

2
. ~5.14!

In this configuration, we obtain the largest numerator if w
consider the anomaly contribution ofA3 to, say,T223. This
has the form

T2235esd23

p1
sp2

dp12

q2

5p2@pu/A2#q2 ;
u→0

A2p

u
~5.15!

and so the divergence is suppressed, but only partially
divergence of the form~5.15! is the strongest that can b
obtained.

In general, to obtain the maximal infrared divergence
must have a component ofTmab with m5a and with m
having a light-like projection. The corresponding light-lik
momentum must also flow through the diagram.b must have
an orthogonal spacelike projection and the transverse
mentum that vanishes, asq2→0, must be in the remaining
orthogonal spacelike direction. If we choose theg5 compo-
nent from all three vertices in Eq.~5.5! the first requirement
is not met. However, if we choose theg5 component from
one vertex and choose the vector coupling from the ot
two vertices, it is met. The finite light-like momentum in
volved must then have a projection onn2,2,2m and the or-
thogonal spacelike momentum must be distinct in each c
There is then a divergence of the form of Eq.~5.15!.

The three possibilities for the infrared anomaly dive
gence to occur are associated with the three distinct he
graphs described in@10#, and hence with three distinct helic
ity amplitudes. In the analysis of@10# the coordinates used
were asymmetric and were chosen to isolate one anom

FIG. 27. A basic anomaly process associated with Fig. 24.
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FIG. 28. ~a! The ‘‘bare’’ diagram.~b!–~d! Full
diagrams.
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configuration. These coordinates were naturally associ
with a particular hexagraph and the corresponding heli
amplitudes and limits. We could equally well use these
ordinates in discussing Fig. 11, in which case, theg5 and
non-g5 components in two of the threeg-matrices in Eq.
~5.5! are interchanged. The anomaly pole contribution th
comes from the threeg5 components. In either case, th
result is the same. We anticipate, but will not attempt
demonstrate here, that for each hexagraph amplitude th
traviolet anomaly and anomaly pole components are rela
by Reggeon Ward identities, just as corresponding com
nents in Eq.~5.7! are related by normal vector Ward iden
ties. @Note that the ‘‘ultraviolet’’ region for Eq.~5.4! is actu-
ally the regionk&P11;P21;P31, rather thank;`.# This
implies that the occurrence of the infrared and ultravio
anomalies in diagrams will be closely correlated. We w
exploit this in the following.

As discussed at length in@10#, while the triple disconti-
nuity giving Fig. 24 occurs in an unphysical region, the
will be a corresponding ‘‘real’’ Reggeon interaction in phys
cal regions. In particular, the anomaly infrared divergen
can occur in the physical-region configuration shown in F
27. ~The dots indicate that a local interaction is involved!
Theg5 interaction is at the intermediate vertex and the lig
like momenta are as in Eqs.~3.10!–~3.14!. Figure 27 can
then be identified with the basic anomaly process of Fig
except that there is an additional wee gluon involved. Th
are also additional gluons with finite transverse momentu

C. Other diagrams

We now consider whether, based on the discontinu
analysis of the previous section, there are other diagr
besides that of Fig. 10~a! that could contain the anomaly. W
will not consider all possible diagrams—there are simply
many. We will make the simplifying assumption that on
diagrams that are completely symmetric~with respect to the
threet-channels! are relevant. There are two justifications f
this assumption. First there is the infrared light-cone ar
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ment discussed in Sec. III. Secondly, we anticipate, as
have just discussed, that infrared and ultraviolet anoma
should occur together so that Reggeon Ward identities
satisfied. It seems that at this ‘‘simplest’’ level, where it fir
emerges, the ultraviolet anomaly is very likely to require
symmetric diagram.

If we begin from the diagram of Fig. 10~a! and retain only
the exterior lines of the internal loop we obtain the ‘‘bar
diagram of Fig. 28~a!. The exterior lines give the triangle
diagram in the Reggeon vertex. Since they must remain
cut when a triple discontinuity is taken they must remain
the exterior, as in the bare diagram. If we then add furt
lines such that a complete loop is formed within a symme
diagram, and there is no sub-loop, the only new possibili
~up to reflections! are shown in Figs. 28~b!–28~d!.

The diagram of Fig. 28~b! can be analyzed very similarly
to our analysis of Fig. 10~a!. As we described at the end o
the last section, a pseudothreshold triple discontinuity will
present if the six nonexterior loop lines can be grouped i
three pairs, each associated with a particular discontinu
such that the loop momentum flows across the discontin
line in the same direction for each pair. In Fig. 29~a! we have
drawn the appropriate cuts of Fig. 28~b! and in Fig. 29~b! we
have isolated the cut lines that contribute to one disconti
ity. Both criteria for a symmetric triple discontinuity are sa
isfied. However, we must also consider theg-matrix struc-
ture of the vertices that appear in the triangle diagram tha
obtained. In fact, we find products ofg-matrices of the form
shown in Fig. 29~c!, which do not produce theg5 coupling
needed for the anomaly. The diagrams of Figs. 28~c! and
28~d! clearly do not have sufficient nonplanar structure
give a pseudothreshold triple discontinuity. We conclu
therefore, that none of the additional diagrams of Fig. 28
produce an anomaly contribution to a Reggeon vertex.

D. Color factors and signature

Similarly to our discussion of the triple discontinuity o
Fig. 10~b!, a priori R9 can contribute to vertices for fewe
FIG. 29. ~a! Cuts; ~b! one discontinuity; and
~c! a g-matrix vertex, of Fig. 28~b!.
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FIG. 30. Four triple cuts of a diagram for four Reggeon states.
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than nine Reggeons. However, in@10# we argued that the
anomaly would cancel, after all integrations over transve
momenta, unless each Reggeon state has anomalous
parity ~not equal to the signature!. When SU~3! color ampli-
tudes are obtained by first constructing the color superc
ducting theory with SU~2! color, as in @6#, the relevant
Reggeon anomaly interactions are those for SU~2! Reggeon
states. In this case the simplest Reggeon state with ano
lous color parity is the color zero, odd signature, thr
Reggeon state. A Reggeon state that is ‘‘vector-like’’ in tha
has ~close to! unit angular momentum and appears in od
signature amplitudes, is composed of~at least! three gluons,
and has abnormal color parity, has all the quantum numb
of the anomaly current. As a result, the ultraviolet anom
discussed above will directly involve interactions of t
anomaly current. It is somewhat remarkable that we are
directly to the anomaly current by looking for the infrare
anomaly within Reggeon interactions. For SU~3! color, a two
Reggeon even signature state with octet color and odd c
parity would also be possible. For color zero, however,
three Reggeon state is again the simplest possible.

If each Reggeon state must contain at least th
Reggeons, the lowest-order Reggeon vertex that can con
the anomaly is the nine Reggeon vertex. In fact, we show
in @10# that the analyticity properties of amplitudes imp
that the anomaly can only appear when signature conse
tion is also satisfied, which it is not if all three Regge
states carry odd signature. However, this conservation
should be satisfied only after all relevant diagrams have b
added. This would include the addition of all diagrams ha
ing the structure of Fig. 10~a! but with ~one or two! incoming
and outgoing lines interchanged. To avoid this cancela
additional Reggeons~Reggeized gluons or quarks! must be
present. As we discuss in the next section, additio
Reggeons are also required for the infrared anomaly to p
the dynamical role we anticipate.

Amplitudes giving vertices with four Reggeons in ea
Reggeon state no longer need to be completely symme
provided they collapse to give a symmetric triangle diagra
In fact, when four Reggeons~or more! are present in each
state a new subtlety arises in the process of taking a tr
discontinuity. Consider the diagram shown in Fig. 29, wh
is a simple generalization of the diagram of Fig. 10~a! that
we have discussed so much. Two of the single Reggeon l
in Fig. 10~a! are replaced by two Reggeons, with no ad
tional nonplanarity. In Fig. 30, we have also drawn triplets
cuts through the diagram in four distinct ways. These are
only possible triplets if we require pairs of nonexterior lo
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lines to be associated with each cut, such that the loop
mentum flows across the cut line in the same direction
each pair. However, if we consider just one triplet and ta
asymptotic discontinuities for each cut~as above! by consid-
ering pairs of external logarithms, we do not obtain a co
plete triple discontinuity of the diagram. There are alwa
three internal lines that are not put on shell. As a result,
or more of the pinchings do not give a complete, invaria
cut of the diagram. To obtain a genuine triple discontinu
we have to combine all the pinchings of logarithms involv
in the four sets of cuts shown in Fig. 30. All internal lines a
then on shell and a complete triple discontinuity is obtain
The vertices for the corresponding triangle are the rotati
ally symmetric products ofg-matrices shown in Fig. 31 and
so the extracted twelve Reggeon vertex will contain
anomaly.

We will postpone a systematic discussion of cancelatio
how and when the anomaly survives after all diagrams
summed, etc., until following papers. Our priority in th
paper has been simply to find diagrams in which
asymptotic discontinuity analysis determines that
anomaly is definitively present in the extracted Reggeon
teraction.

VI. PION AND POMERON VERTICES IN COLOR
SUPERCONDUCTING QCD

For completeness, we briefly describe the physi
Pomeron and pion interactions that appear in color superc
ducting QCD. Pion scattering is described in@6# and we
anticipate that the corresponding multi-Regge amplitudes
given by modifying the procedure described in@11# to incor-
porate the explicit structure of anomaly vertices that we h
since discovered. Here we give only enough details to sh
that a staightforward extension of the above analysis w
demonstrate that such interactions contain the anomaly.

When the SU~3! gauge symmetry of QCD is broken t
SU~2!, the infrared divergence@6,11# that involves the
anomaly and that actually dominates bound-state interact
occurs in diagrams that are very similar to the ones we h

FIG. 31. Theg-matrix vertices obtained from Fig. 30.
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FIG. 32. ~a! The triple Pomeron interaction
~b! A multi-Pomeron interaction.
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discussed. The divergence is factorized off to give a w
gluon condensate within both pion~i.e. Goldstone boson!
bound states and the Pomeron. The Pomeron is a si
Reggeon@i.e. a massive, SU~2! singlet, Reggeized gluon#
within the wee-gluon condensate and the pion is a qua
antiquark pair in the same condensate. A diagram contri
ing to the triple-Pomeron interaction is shown in Fig. 32~a!
and a class of diagrams contributing to multi-Pomeron in
actions is shown in Fig. 32~b!. The scattering states are no
pions and the solid, wavy, lines are Reggeons. The das
lines represent massless gluons that carry zero transv
momentum and, in collaboration with the anomaly, produ
the divergence. Thed-function due to the anomaly produce
transverse momentum conservation at the vertex where
Reggeons interact.

We have drawn the diagrams as basic anomaly proce
in Fig. 32, rather than in a form that exhibits their unphysi
discontinuity properties. The triple Pomeron process in F
32~a! corresponds to a diagram that is just a little more co
plicated than the diagram of Fig. 30. There is an additio
Reggeon in each of the initial and final wee gluon config
rations. The accompanying Reggeon state contains
gluons—which can give the imaginary part of the sing
Reggeon state that is anticipated to survive in the Pome
@6#. In both Figs. 32~a! and 32~b! the three multi-Reggeon
~Pomeron! states that are interacting through the anomaly
have a wee-gluon component that participates in the di
gence. In the notation of Eqs.~3.10!–~3.14! the correspond-
ing basic anomaly process involves~as already discussed i
Sec. III! taking the limit l→0 while simultaneously making
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a boostaz(z) such thatl coshz5n is kept finite.
The diagram that gives the pion-Pomeron coupling u

lized in @6# is shown in Fig. 33~a!. The corresponding basi
anomaly process is shown in Fig. 33~a!. The diagram of Fig.
33~b! has a triple discontinuity structure very similar to th
of Fig. 30.
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APPENDIX: ASYMPTOTIC DISCONTINUITY ANALYSIS

In Sec. IV we analyze triple-Regge asymptotic discon
nuities using a generalization of the simple light-cone ana
sis that we develop in the following.

Consider the box-diagram illustrated in Fig. 34. Initial
we ignore the role played by numerators and so we consi
in the notation shown,

I ~s,t,m2!5E d4k@k22m21 i e#21

3F S p2
q

2
1kD 2

2m21 i eG21

3@~q2k!22m2

1 i e#21F S p81
q

2
2kD 2

2m21 i eG21

. ~A1!
.

FIG. 33. The pion-Pomeron coupling:~a! the

Feynman diagram;~b! the basic anomaly process
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This integral is, of course, a function of invariants only, ev
though it is specified using four momenta. Indeed, we
evaluate the integral using complex, unphysical, mome
that give physical values of the invariants, provided we
careful to define the integral via analytic continuation fro
the appropriate physical momentum region. Our purpos
this section is to discuss momentum dependence of this
for the simplifying case of the leading asymptotic behavi
in a manner that we apply to much more complicated d
grams in Sec. IV.

For illustrative purposes we set bothq50 andm50 in
Eq. ~A1! and ignore infrared divergences. We can then w

I ~s!5E d4k@k21 i e#22@~p1k!21 i e#21

3@~p82k!21 i e#21. ~A2!

We choose a particular Lorentz frame and introduce lig
cone coordinates such that

p5S P1

2
,
P1

2
, 0> D1OS 1

sD , P1;s→`

p85S P18 1P28

2
,
P18 2P28

2
,p'8 D ~A3!

so thats5P1P28 @11O(1/s)#. We can then write

I ~s! ;
s→`

1

2E d2k'dk1dk2@k1k22k'
2 1 i e#22

3@~k11P1!k22k'
2 1 i e#21

3@~k12P18 !~k22P28 !2~k'2p'8 !21 i e#21.

~A4!
To obtain a nonzero answer by closing thek1 contour,

with k2 and k' fixed, the three poles given by the thre
square brackets of Eq.~A4! must not be on the same side
the contour. This requires 0,k2,P28 and, in this case, the
k1 contour can be closed to pick up only the pole in the l
bracket. This gives

k15P18 1
~k'2p'8 !22 i e

~k22P28 !
~A5!

FIG. 34. The box diagram.
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which is finite and so can be neglected compared toP1 .
Note also that

k2;0, k'
2 ;05.k1;2k0;

p82

P28
~A6!

~we use this approximation in the analysis of Sec. IV!. We
thus obtain,

I ~s!s→`
;

p i E d2k'@2k'
2 1 i e#22

3E
0

P28 dk2@k22P28 #21@P1k22k'
2 1 i e#21.

~A7!

We are specifically interested in the leading real a
imaginary parts of Eq.~A7!. They are given by the logarithm
generated by the pole factor containingP1 as it approaches
the k250 end point of the integration. If we keep only th
integration over 0,k2,lP28 and takel!1 so that we can
make the approximationk2 /P28 ;0 we obtain

I ~s! ;
s→`

p i E d2k'@2k'
2 1 i e#22

1

P28

3E
0

lP28 dk2~P1k22k'
2 1 i e!21

;
1

P1P28
@ log~P1P28 l2k'

2 1 i e#J1~0!

;
1

s F log~sl1 i e#J1~0!;
1

s
@ logs1 ip#J1~0!

~A8!

whereJ1(0);*d2k'@2k'
2 1 i e#22 is infinite, but would be

finite if we added a mass to the particle propagators.
As we have indicated, the sign of the imaginary part

Eq. ~A8! arises directly from thei e prescription. To obtain
the leading imaginary part or, equivalently, the leading b
havior of the discontinuity ins, it suffices to keep thei e
dependence while dropping the2k'

2 dependence in thek2

integral. Equation~A8! is, of course, independent ofl. It
will, however, be useful to note the role ofl with respect to
the analytic structure ofI (s) in the s-plane. As illustrated in
Fig. 35, the finite end of the branch-cut asociated with
logarithm in Eq.~A8! moves out asl→0. This is irrelevant
to the asymptotic behavior and the ‘‘asymptotic discontin

FIG. 35. l-dependence of the branch cut.
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CHIRALITY VIOLATION IN QCD REGGEON INTERACTIONS PHYSICAL REVIEW D66, 045009 ~2002!
ity’’ clearly remains unchanged. We, nevertheless, exp
this simple feature in evaluating multiple discontinuities
Sec. IV. Also, although Eq.~A8! is an invariant result, for our
purposes it will be useful to keep the dependence on bothP1

andP28 and discuss the dependence of the phase onP1 .
The initial k2 integration contour for Eq.~A8! is as

shown in Fig. 36~a! with the pole atk25k'
2 /P1 indicated by

a dot. As P1 ~and therefores) completes a circle in the
complex plane, the pole moves around the end point as il
trated in Fig. 36~b!. The result is that the phase of the log
rithm in Eq. ~A8! changes fromp to 2p and there is a ne
discontinuity of 2p i /s, as is given directly by Eq.~A8!. This
is also the result that would be obtained by applying direc
the standard cutting rules to Fig. 34, cut by the thin line
the k1 andk2 integrations are used to put the vertical lin
on shell. The above discussion is simply an asympto
analysis of how the two cut propagators pinch the integra
region to generate a branch point ins. Introducingl limits
the integration region for the original integral such that t
pinching only takes place fors;P1.1/l. Note also that the
residue functionJ1(0), multipying the logarithm in Eq.~A8!,
is directly obtained from the original box diagram by puttin
the cut lines giving the discontinuity on-shell using the lo
gitudinal momentum integrations. This is a very simple e
ample~the simplest! of the relationship between a discon
nuity and asymptotic behavior.

In evaluating unphysical~multiple! discontinuities in Sec.
IV we do not assume that the standard cutting rules ap
Instead we directly analyze the discontinuities produced
logarithms. To understand how a discontinuity generated
a logarithm can provide leading asymptotic behavior we n
that the twisted diagram of Fig. 37, forq50, differs from
that of Fig. 34 only byP1→2P1 . As a result, the integra
tion contour and pole position of Fig. 36~a! is replaced by
that of Fig. 36~c!. In this case a discontinuity is generated f
s,0. For s.0 there is no phase generated by Fig. 37 a
only the real logarithms cancel when this diagram is adde
that of Fig. 34. The leading behavior of the discontinuity ins,
i.e. the imaginary part, produced by the diagram of Fig.
remains. This cancelation of the logarithms is very we

FIG. 36. Integration contours for~a! Eq. ~A7!; ~b! P1

→e2p i P1 ; ~c! Fig. 15.
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known, of course. It is also well known that the cancelati
fails when a non-Abelian symmetry group is present and t
a consequence is the Reggeization of the gluon.

We can briefly summarize the effect of adding numerat
to Eq. ~A1! as follows. First we note that the numerator
the internal fermion propagator carryingP1 gives an addi-
tional P1 factor of the formg2P1 . As a consequence, in
Eq. ~A8!, there is the replacement

E
0
dk2~P1k21••• !21

→g2P1E
0
dk2~P1k21••• !21; logP1

~A9!

and there is no inverse power ofP1 . Also, each coupling to
a gluon gives ag matrix factor and since the external fe
mion lines are on-shell we can use the asymptotic form
the Dirac equation~i.e. g2P1c;mc) to write

^P1ugmg2gnuP1&

; K P1U g2P1

m
gmg2gn

g2P1

m UP1L
5^P1uP1g2P1uP1&/m2 ;P1 /m.

~A10!

This gives another power ofP1 (;s) provided that the cor-
responding factor ofP28 is present in the finite momentum
part of the scattering process. Not surprisingly this fac
emerges from that part which would dominate ifP28 were
large. However, we want to emphasize that this selectio
made only by the need to form a Lorentz invariant amplitu
from the noninvariant large momentum process.

Finally we note that the above analysis goes through w
very little modification if we take bothm2 andq to be non-
zero so that Eq.~A2! will not be infrared divergent.

FIG. 37. The twisted box diagram.
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