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Chirality violation in QCD Reggeon interactions
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The appearance of the triangle graph infrared axial anomaly in reduced quark loops contributing to QCD
triple-Regge interactions is studied. In a dispersion relation formalism, the anomaly can only be present in the
contributions of unphysical triple discontinuities. In this paper an asymptotic discontinuity analysis is applied
to high-order Feynman diagrams to show that the anomaly does indeed occur in sufficiently high-order
Reggeized gluon interactions. The Reggeon states involved must contain Reggeized gluon combinations with
the quantum numbers of the anomalyinding-numbey current. A direct connection with the well-known1)
problem is thus established. Closely related diagrams that contribute to the pion or Pomeron and triple
Pomeron couplings in color superconducting QCD are also discussed.
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I. INTRODUCTION ing some propagators on-shell. It is important, however, to
distinguish two kinds of interaction vertices. The simplest
It is commonly believed that nonperturbative quarkkind are those that describe the repeated interaction of
chirality transitions play an important role within the QCD Reggeons “propagating” in a single Reggeon chan(fet
bound-stateS matrix. Assuming that the theory can be quan-which there is only one overall transverse momentufine
tized via a suitably defined Euclidean path integrahe  well-known BalitskitFadin-Kuraev-Lipatov(BFKL) kernel
chirality transitions are understood as originating fromis, essentially, an example of this kind of vertex. The second
gauge-dependent nonperturbative classical solutions withind are the vertices that couple different Reggeon channels,
nontrivial topology. Field configurations of this kind produce the simplest being the triple-Regge vertid@&$ that couple
zero modes of the Dirac operator whi¢B] prevent the three Reggeon channels—each carrying a separate transverse
gauge-invariant separation of massless fermion fields intonomentum. In the massless theory such vertices should con-
right- and left-handed components that separately create pawin the couplings of bound-state Reggedesy. pions and
ticles and antiparticles. The resulting violation of axial nucleon$ together with their couplings to the physical
charge conservation is described by the anomalous divePomeron. Effectively, therefore, vertices of this kind deter-
gence equation for the (1) axial current. While many con- mine the bound states of the theory and their high-energy
sequences of chirality violation are understood, for examplacattering amplitudes.
the generatiof3] of a mass for thep’, its full significance in There are, of course, no axial-vector currents in the QCD
determining the nonperturbative massleé®snatrix is far  interaction but in the reduced diagrams providing the crucial
from understood. In particular, the role of chirality violation triple-Regge vertices, components of an axial-vector interac-
due to topological gauge fields in chiral symmetry breakingtion can appear. Therefore, we have suggept€d that, in
is the subject of much debafé,5]. sufficiently high orders, chirality violation due to the infrared
In this paper, and a companion papét, we provide a triangle anomaly should appear in Reggeized gluon interac-
completely different understanding of chirality transitions intions of this kind. The purpose of this paper is to finally
the massless, high-energy, QCD bound-statmatrix. No  establish that this is the case. It is necessary, however, to
mention is made of Euclidean path-integral quantization ostudy very high-order diagrams.
topological fields. Rather, as we explain further below, our We have long believefB] that the massless, bound-state,
arguments are based directly on the singularity structure ofulti-Regge Smatrix should be obtainable from the massive
high-order Feynman diagrams that contribute to the highReggeon diagrams once the infrared role of the chiral
energy scattering of bound states. anomaly is determined. In previous papers we have outlined
It is well established7] that when the gauge symmetry of [11,12 how (appropriately regularizécanomaly interactions
QCD is spontaneously broken, general high-energy limitxan be the essential element that, in combination with the
(multi-Regge limitg of quark and gluon amplitudes are de- infrared divergences of the massless limit, produce the “non-
scribed perturbatively by Reggeon diagrams in which theperturbative” properties of confinement and chiral symmetry
Reggeons are simply massive, Reggeized, gluons andteaking. We argued that, while the anomaly interactions
quarks. Both- ands-channel unitarity are satisfied. Reggeon cancel when the scattering states are perturbative quarks and
interactions are described, in general, by “reduced” Feyn-gluons, for compound multi-Regge states with an appropriate
man diagrams, obtained from underlying diagrams by placinfrared component such interactions dominate and infrared
divergences self-consistently produce the bound-Sate-
trix. However, to demonstrate this via the construction of a

*Email address: arw@hep.anl.gov full set of multi-Regge amplitudes is a complicated project
We note, though, that the elimination of unphysical degrees ofvhich, of necessity, will involve much abstract multi-Regge
freedom remains an unsolved probléi. theory. While this construction is still our eventual goal, as
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an intermediate step, we have first developed, in the compar physical transition it implies that there is, necessarily, an
ion paper to this, a calculational method that demonstrateaccompanying “spectral flow” of the fermion energy spec-
the dynamical role of the anomaly while avoiding tittle trum so that the production of the antipartidier the par-
known) multi-Regge formalism as much as possible. Light-ticle) corresponds to the production of a Dirac hole state, i.e.
cone properties of the anomaly are heavily exploited and we¢he absorption of a particl@antiparticlg. In this way, the
are able to show how both the(l) and chiral flavor transition is understood as a “chirality transition.”
anomaly play essential roles. In Minkowski space, the Dirac zero modes due to topo-
By studying the interaction afinfinite momentum axial  logical gauge fields do indeed prody@? spectral flomwith
currents we show6] that, when the S(B) gauge symmetry time) of the eigenvalues of the correspondirfgauge-
is partially broken to S(2), U(1) anomaly interactions com- dependent‘Hamiltonian.” However, since there is no com-
bine with couplings due to the flavor anomaly to produce arplete nonperturbative Hamiltonian formalism for massless
infrared divergent amplitude for the scattering of GoldstoneQCD, there is no understanding of the full consequences of
boson “pions” and “nucleons.” The flavor anomaly pro- spectral flow? The phenomenon we see is, arguably, the
duces the pion particle poles, while thé1lyanomaly pro-  minimum spectral flow that could be preséifithere is any.
duces the high-energy coupling of the pions to the exchangedero momentum fermion states identified initially as a par-
Pomeron. After the divergence is factorized off, as a weaicle (within a bound statecan evolve with time into a filled
gluon condensate within the scattering states, the remainingacuum state of the corresponding Dirac sea and, similarly,
amplitudes have both confinement and chiral symmetrilled vacuum states can evolve into particléEhe existence
breaking.(The wee gluon condensate can be identified di-of stable bound states and physical scattering processes in
rectly with the infrared component of multi-Regge states thakuch an environment is clearly far from trivialn our analy-
appears in the multi-Regge progrart.is apparent that the sis, spectral flow of this kind is directly introduced by the
nature of the Pomeron is crucially dependent on chiral Symappearance of the triangle graph infrared divergence in
metry breaking. We anticipate that restoration of fullSlJJ  Reggeized gluon interactions. It is interesting that a related
gauge symmetry will result from randomization of the(@J  phenomenon has already been encountered in next-to-
condensate within S@3) and that the critical Pomerdi3]  |eading order calculationg 4] of the high-energy scattering
will appear. of massless gluons. A massless gluon triangle diagram occurs
The main focus of this paper will be on multigluon in the effective vertex for Reggeized gluon exchange and
Reggeon interactions that are most directly relevant to th@roduces a “particle-antiparticle transition” that for gluons is
general multi-Regge program and the Pomeron interactionsimply an unanticipated helicity transition.
that emerge. However, as we briefly describe at the end of A Reggeon interaction vertex can be obtained by calculat-
this paper, the multiquark-gluon interaction that provides thang the contribution of Feynman diagrams to the simplest
pion-Pomeron coupling ii6] is very closely related to the multi-Regge limit in which the vertex appears. lh0] we
Reggeized gluon interactions that we study. We will estabdistinguished two methods for calculating multi-Regge
lish, remarkably perhaps, that for the anomaly to appear theamplitudes—the direct calculation of diagrams in light-cone
Reggeon states involved must contain gluon combinationgoordinates and the calculation of multiple asymptotic dis-
with the quantum numbers of the anomaljinding-numbey  continuities with the subsequent use of an asymptotic disper-
current. The conventional (@) problem is, therefore, clearly sion relation. Although the two methods should ultimately
encountered. We will concentrate on isolating the anomalyroduce the same results, direct light-cone calculations are
via infrared properties. Nevertheless, although we will dis-impractical for the problem we are discussing. This is be-
cuss this only briefly at a few key points, we expect thecause of the large number of diagrams that could contribute
infrared phenomena we discuss to be connected to “ultravioand because the complexity of the diagrams makes a full
let” Reggeon interaction problemginvolving momenta  discussion of whether or not integration contours are truly
flowing around an internal quark loop that are comparable inrapped, in the asymptotic limits involved, very difficult.
magnitude to large external momentahere short-distance Consequently the asymptotic dispersion relation method has
interactions of the winding number current appear directlyto be used. In this paper, therefore, we develop methods
That the anomaly is a high-order, many gluon, phenomenogimed at directly calculating multiple asymptotic disconti-
is not surprising if the anomaly current, containing a productuities.
of three gluon fields, has to be involved. The form of the asymptotic dispersion relation for a given
Properties of the triangle diagram are discussed in detaihulti-Regge process is determined by the possible
in the companion pap€6], where a complete set of the asymptotic multiple discontinuities that satisfy the Stein-
relevant references is given. For our present purposes W@ann relation propertithat the discontinuities occur in non-

note that the massless axial-vector graph has an infrared dbverlapping invariant channglsSuch discontinuities are ex-
vergence that involves a zero four-momentum fermion

propagator. Both the “particle” and “antiparticle” poles of

this propagator contribute to the divergence. The coupling at2The conventional wisdom is probably that strong coupling con-
one end of the propagator can be viewed as the vertex fgiement effects overwhelm such phenomena altogether. As we
production of the particle while simultaneouslgind Ssym-  have emphasized elsewhere, we expect our discussion to apply to a
metrically) that at the other end describes the production ofveak coupling version of massless QCD in which there is, effec-
the antiparticle. If the zero momentum propagator describesvely at least, an infrared fixed point.
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plicitly reflected in the analytic structure of asymptotic will see that by itself this requirement is sufficient to ensure
amplitudes provided by multi-Regge theory and, converselythat (in the obtained Reggeon interactjoat least three
using the dispersion relation, multi-Regge amplitudes can b&eggeons are present in each Reggeon channel. Requiring
calculated directly from the discontinuities. [6] we de-  that the spin structure that generates the anomaly also be
scribed how the appearance of the anomaly pole in the ePresent then further restricts the contributing triple disconti-
ementary three current amplitude could be understood as diglities to those originating from a small class of Feynman
to an unphysical triangle Landau singularity appeatingm  diagrams. The discontinuities involved are truly unphysical
an unphysical shegat the edge of the physical region. Cor- I that they correspond to three *asymptotic pseudothresh-
respondingly, the crucial feature of the high-order amplitude£!ds™ (O, in more technicab-matrix language, “mixede

that produce Reggeon interactions containing the anomaly &ingularities’) each of which contains particlésffectively)

the presence of unphysical multiple discontinuities that satd0ing in opposite time directions. Not surprisingly, though,
isfy the Steinmann relation property and approach physicatlh's provides just the right circumstances for the anomaly to
scattering regions only asymptoticalljThis implies that aPpear. _ _ _

they correspond to contour trappings that would be very dif- _ AS We noted above, the obtained Reggeon interactions are
ficult to demonstrate using direct light-cone calculatipns. Of Such high order that the minimum circumstances in which
Discontinuities of this kind are present in complémagi- ey can occutbetween color zero Reggeon statisswhen

nary momentur parts of the asymptotic region for suffi- each of the states involved carries the quantum numbers of

ciently complicated many-particle multi-Regge processest,he U1) anomaly current. The lower-order diagrams consid-

the simplest of which is the full triple-Regge regif8i that ered in[10] remain va_luab_le_to d_iscuss for illustrative pro-
we study in this paper. Because they are in nonoverlappin§€SSes but the analysis within this paper shows that they are
channels these discontinuities céand must consistently ssentially irrelevant. We do not give any detailed discussion

appear in the asymptotic amplitudes that describe also thgf further cancelations among the diagrams we consider. We
real physical region behavior. note, however, that the signature rule/ ©0] implies that the

The familiar amplitudes that appear in multi-Regge pro_fuII vertex for three Reggeon states, each of which carries the

duction processesuch as those that contribute to the BFKL duantum numbers of the(l) anomaly current, must vanish.
equation[7]) do not contain unphysical multiple discontinui- " the pion-Pomeron vertex obtained[#] there are, in ad-
ties. Rather they contain only multiple discontinuities thatdition to the three gluon Reggeons, a quark-antiquark pair in
are naturally interpreted as due to a succession of physic&l€ Pion, and an additional Reggeon in the Pomeron. In the
region on-shell scattering processéShe necessity for a triple Pomeron vertex, which we also briefly discuss, there is
physical time-ordering of such processes then determines ! additional Reggeon in each channel. In following papers
absence of overlapping channel discontinuijieBecause we hope to lay out_ the details of the construction of the full
physical region multiple discontinuities involve only physi- Multi-ReggeS matrix alluded to above. For the moment we

cal amplitudes and physical intermediate states, when thejote only that triple-Regge interactions of the kind we con-

are calculated using the perturbative amplitudes of the mas$ider here will contribute generally to the vertices and inter-

less theory, they cannot contain chirality transitions associ@ctions of the Reggeon bound states that emerge and refer to
ated with particle-antiparticle ambiguities. Therefore, whenth® brief discussion if10], and also to the outline if12],

only production processes are involvéde. at what we [OF more details.

might call the BFKL level of multi-Regge theoryhere is no

possibility for “chirality violation.” , __Il. MULTIPLE DISCONTINUITIES AND THE STEINMANN
A priori, there is no reason why unphysical multiple dis- RELATIONS

continuities should not contain potential chirality transitions _ _ _ o

when calculated perturbatively. Nevertheless, the occurrence A. Physical region discontinuities

of the infrared anomaly within such discontinuities is very  The Steinmann relations originated in axiomatic field
subtle. The d.|vergence is prodgced by a quark loop that 'Sheory[15]. They (essentially describe the restrictions that
duces to a triangle by the placing of many propagators onge time-ordering of interactions places on the combinations
shell. Of the three propagators associated with the trianglgf intermediate states that can occur in a scattering process.
diagram, one must carry the zero momentum that allows g&or on-shellSmatrix amplitudes their significance is most
chirality transition while the other two carry the same light- immediately appreciated in the approximation in which we

like momentum. The additional on-shell propagators have tynore higher-order Landau singularities and consider only
be associated with a triple discontinuity in such a way that

(when all transverse momenta are 2etbey also can all

. . . 2 3
carry the same light-cone momentunelative to the direc- 4
tion of the loop momentuin It is obvious that this require-
ment cannot be satisfied by a physical triple discontinuity 1 5 <—> 8
and, in fact, it is very difficult to satisfy(As we briefly
discuss towards the end of this paper, this difficulty is likely
to be closely related to the complexity involved in having
local interactions of the anomaly current appear in the ultra-
violet region of Reggeon interaction verticesndeed, we  FIG. 1. A tree diagram representing simultaneous invariant cuts.
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FIG. 2. Physical scattering processes corresponding to Fig. 1.

the normal threshold branch poiriend stable particle poles To understand the point involved consider the simplest case
that occur in individual channel invariants. The Steinmannof the tree diagram of Fig. 3. At first sight this diagram
relations then say that simultaneous thresh¢éasl/or poles  corresponds only to the-24 production processes shown.

cannot occur in overlapping channe{€hannels overlap if The three distinct scattering processes are distinguished by
they contain a common subset of external partitlés. a  different constraints on the invariants, i.e.

result anN-point amplitude has at mo$t—3 simultaneous

cuts (or poles in distinct invariants. The possible combina- (i) Vs12> \'Saa+ \/Sss,

tions of cuts can be described by tree diagrams with three-

point vertices in which each internal line corresponds to a (i) /S34> \/S1o V/Ssg, 2.0
channel invariant in which there is a cut due to intermediate

state thresholds—as illustrated in Fig. 1 for the 7-point am- (i) VS5g> VSio+ \/Saa

plitude. [As usual,s;,=(P1+P5)?, S;5= (P14 Py+P3)?,

etc] The set of all combinations of threshol@and poles e can also regard the three processes involved as distin-
allowed by the Steinmann relations is the basic singularity ;isheq by the selection of one pair of particles as incoming,
structure of all scattering amplitudes. The higher-order Lan

q inqularit re believéti] to emerge from the normal which then must have energy larger than the sum of the
au singuiarities are belie 0 eémerge Iro € norma subenergies of the other two pairs, which are necessarily in
thresholds in a manner that, for most purposes, makes the

m .
secondary effect. tRe outgoing state.

Conversely, the combination of cuts represented by a par- We_ may wonder about the symmetric asymptotic region

ticular tree diagram can be directly associated with a set of! which

hysical scattering processes. As illustrated in Fig. 2, this is
Fhey set of all procgsgeémvolving all the external pa?ticles of \/S—lf \/5_3’4~ \/S—%HOO'
the diagram as either ingoing or outgoing partigi@swhich
it is kinematically possible for all of the internal lines to be
replaced by physical multiparticle stattShe hatched seg-
ments represent physical intermediate states that, if they a
all placed on shell, givéessentially the associated multiple
discontinuity.

The Steinmann relations play a fundamental role in multi
Regge theory. It is possible to shdw6] that in a physical
multi-Regge asymptotic region the analytic structure of scat
tering amplitudes can be treated as if only normal threshold
satisfying the Steinmann relations were present. In effec
higher-order Landau singularities are suppressed. This h
the very important consequence that only the normal thres
old cuts in individual channel invariants need be represente
by multi-Regge asymptotic formulas. Furthermore, if we

(2.2

There are no physical scattering processes in this region.
However, the three processes of EB.1) are described by
;Qe sameanalytically continueflamplitude and so analytic
continuation from each of the physical regions implies that
such cuts must be present. It is, perhaps, natural that a triple
_discontinuity should exist that is symmetric with respect to
the three processes of Fig. 3. Apparently, though, the sym-
metry requirement could only be satisfied if all the external
articles are in the final, or initial, state. In fact, as we discuss
urther in the next sections, if we allow particles to carry
mplex momenta, a positive value for a two-particle energy
fnvariant can be achieved by a combination of an “incom-
g” and an “outgoing” particle in that they carry opposite
sign, but imaginary, energies. Therefore, in the symmetric
region it is possible for the three cuts of Fig. 3 to be present

consider only the multi-Regge limits accessible ir-21 if each is associated with such a combination. We will show
production processes, it can be shown that the maximal num- . . ' )
in the following that there are unphysical processgeith

ber (M-1) of simultaneous thresholds is encountered asymp:_ " i thi on that d q triol
totically only in physical regions. This is a generalization of IMagnary momentain this region that do produce a triple

the cut-plane analyticity property familiar from elastic Scat_dlscqntmu!ty of _th|s k'.nd .an,(,j we will refer to it as an "un-
tering. physical triple discontinuity.

Since the external particles for each cut are both ingoing
and outgoing it is, perhaps, not surprising that intermediate
states appear that also involve such combinations. Indeed,

If we consider the multi-Regge regions Bf—M’ scat-  we will see that this is how a triple discontinuity can contain
tering amplitudes ¥1,M’=3) there is a significant change. the “particle-antiparticle” transitions that ultimately provide

the massless chirality transitions that we are looking for.

Since the complex momentum part of Eg.2) is contained
SWe do not distinguish processes in which ingoing and outgoingn the triple-Regge asymptotic region, a triple discontinuity
particles are interchanged V@P T conjugation of this kind is just what we are looking for. The importance

B. Unphysical multiple discontinuities
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P, e,
2 3 i) 142 —>3+4+5+6 - .._< o
’ P FIG. 3. A tree diagram and corresponding

hysical scattering processes.
<> i1) 3+4—> 1+2+5+6 phy gp

5 iii) 546 —> 1+2+3+4

of the triple-Regge region is that it is the simplest multi- ues of the large momenta, including the additional physical
Regge limit in which the vertices appear that provide theregions reached by reversing the signs of phe
couplings of bound-state Regge poles such as the Pomeron |n [10] we also studied Feynman diagrams that contain a
or the pion. For higher-poinl —M’ amplitudes there is @ closed quark loop and generate triple-Regge Reggeized
wide range of unphysical multiple discontinuities satisfying gluon interactions containing the loop. To set the context for
the Steinmann relations. Bound-state scattering amplitudage present paper we briefly review the results. We consid-
can thus appear in which the anomaly is a crucial element.greq the lowest-order amplitudes in which the anomaly could
potentially appear and, in particular, studied “maximally
Ill. THE PHYSICAL REGION ANOMALY AND THE nonp|anar" diagrams of the kind shown in F|g(a¥‘
TRIPLE-REGGE DISPERSION RELATION (Throughout this paper we adopt the usual convention that
A. The triple Regge limit and maximally nonplanar diagrams solid and wavy lines respectively represent a quark and a
gluon. We have reversed the direction @ relative to the
notation of[10] in order to have a completely symmetric
notation) The leading asymptotic contributions come from
regions of gluon loop integrations where some of the propa-
pators in the quark loop and the scattering quark systems are
on-shell. We discuss the determination of which propagators
can be on-shell below. For the moment we consider the pos-
sibility, discussed at length irL0], that the on-shell lines are

In our previous papefl10] we studied the full triple-
Regge limit[8] of three-to-three quark scattering. If we de-
note the initial momenta aB;, i=1,2,3, and the final mo-
menta as—P;,=P;+Q;, i=1,2,3, the triple-Regge limit
can be realized, within the physical region, by taking each o
P,, P, andPj large along distinct light-cones, with the mo-
mentum transfer§,,Q, and Q5 kept finite, i.e.

P1—P1+=(p1,p1.0,0), py—x those that are hatched in Fig@t We will eventually con-
clude that this combination of on-shell propagators cannot
01=Q1/2—(01,01,012,012) produce a Reggeon interaction with a physical region
anomaly divergence, even though it does produce a triangle
P,— P2+=(p2,0,p2,0), py— diagram interaction. As we will see, the crucial issue is not
just which propagators are placed on-shell but also which
02=Q2/2—(02,921,02,029) (3.1)  pole (“particle” or “antiparticle” ) is involved. (As the dis-
cussion in the previous section suggested, for the unphysical
P;— Pg =(p3,0,0p3), pz—> discontinuities, with which we will ultimately be concerned,
the answer to this question is not unambiguplris.the fol-
Q3=Q3/2—>(a3,Q31,Q32,a3)- lowing we initially ignore this subtlety. As it emerges in our

discussion it will become clear that it is a vital part of the
Momentum conservation gives a total of five independgnt search for further diagrams which do produce an interaction
variables which, along witp,,p, andps, give the necessary containing the anomaly.
eight variables. The definition of the triple-Regge limit in  If the hatched on-shell propagators are used to carry out
terms of angular variables is given [ih0]. For our present light-like longitudinal momentum integrations, the integrals
purposes the above definition in terms of momenta will beover gluon loop momenta reduce to two-dimensional “trans-
sufficient. This will alow us to avoid the extra complication verse” integrals over spacelike momenta, as illustrated by
of defining helicity angles, helicity-pole limits etc. The Fig. 4(b). The transverse planénd orthogonal light-like
asymptotic behavior involved must hold for all complex val- momenta can, in general, be chosen differently in each

Pat
P2+ 3:/

N + > - FIG. 4. A maximally nonplanar diagram and
the triangle diagram Reggeon interaction pro-
duced.

P1+
(a) (b) (c)
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t-channel. IfQ;, is the projection of); on the corresponding transverse plane, the leading asymptotic contribution then has the
form

d?k;,d2%k;
P1+P2+P3+H #

=1 K2 K2 8%(Qi. — kiz—ki2) Gl (ki1 Kiz, - - )R®(Q1,Q2,Qs., K11, Kz, ) 3.2
i1Ki2

whereR%(Q4,Q,,Q3.,k11,kq2,- - ) can be identified with the “reduced,” or “contracted,” Feynman diagram of Fig).4f
we write

Kiig=di+ki, kix=di—ki, (3.3

then we showed if10] that (with a particular choice of transverse plaphes

Tr{ysy (KKt datKa) ysy ™ T Kysy 7T (K=ko+di +Kg)}
Rﬁ(qlqu!q?ﬂklka!kS):J' d4k > : 52 2 > 2 : + (34)
(k+ky+0dz+k3) ko (k—ky+ 0y +ks)
|

where nents determined by the mass-shell conditions for the on-

o e o shell quarkgand theqg; have the restricted form given by Eq.

yOT T =y, T = (L2125, (3.1). These restrictions play a crucial role in determining
(3.5 whether the anomaly can occur in a physical region Reggeon

The contributions t&R® not shown explicitly in Eq(3.4) do ~ mteraction.

not have ays at all three vertices of the triangle diagram. As
we will discuss again in Sec. V, the particulgimatrix pro-
jections appearing depend on the choice of transverse coor- For completeness, we give a brief descripti@ul details
dinates. If the anomaly is presentR%, however, we expect can be found if10]) of how a Reggeon vertex is extracted
it to be independent of this choice. We should emphasize thdtom Eq.(3.2). A Reggeon diagram amplitude that represents
while we have written Eq(3.4) as a function of four- right-hand cuts in the unphysical triplg$;s ,S3> ,S»1/} and
dimensional momenta, thk, are restricted to being two- has two Reggeons in eadkchannel, each with trajectory
dimensional spacelike momentalus longitudinal compo- «(t)=1+0(g?), has the forn{10]

B. A Reggeon diagram amplitude

d?k;
H f sinra(k?)sinral (Q;—k;)?]

ﬂ(kl!k21k3!Q1!Q21Q3)

X [[(S1g)12KD+ @l(Qu—kD)?] + al(k) + al(Qa~kg)?) ~ a(k) ~ al(Qz~kp) ] ~ 1112

X (Sgp ) 12K+ al(Qa= k)] + (k) + al(Qa~kp)?) ~ a(k)) ~ al(Qy —k1)] ~ 1112

X (550 ) 10D+ allQu—kp)?T +a(k)) + al(Qz~kp) )~ (k) ~ al(Qa—ky) ] ~1}12] S,n_{a(k )+ a[(Qy—ky) 2]+ a(kd)

+al(Qs—ka)*]— a(ky) — al(Qa— kz)z]}Sln—{a(k)Jra[(Qs ka)?1+ a(ky) + al(Qo—kp)*]— a(k]) — al(Q1 —ky)*T}

1
><S'n—{a(k2 )+ al(Q1—kq)2]+ a(kd) + al (Qu—ko)?] — a(kKd) — a[ (Qz— ks)z]}} (3.9
g —>0(313')1/2(532')1/2(521')1/21—[ fl?ﬁﬁ(kl,kz K3,Q1,Q2,Q3). (3.7
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----- = light-like -k 7>
‘‘wee’’ gluon b
== = zero-momentum k=0
quark with <=
a chirality qptky ;:v 95Ky
transition
AAR = Q +k] Aan )
T roncverse - %tk FIG. 5. The basic anomaly process.
momentum
gluon ot
3 ->
—+— = on-shell qpkp "
quark
(a) (b)
(The generalization of this formula to include more C. The basic anomaly process

Reggeons in any of the channels should be obvjotaking As we discuss further in Sec. V, the divergence of the

the triple discontinuity ins;s , Sz2 and So3 of Eq. (3.6 (masslesstriangle diagram occurls] when a single light-
removes the poles due to the sine factors in the second set fﬂie momentum flows through the diagram and all other mo-
square brackets, but leaves tfe~0 limit unchanged. Since  menta are spacelike and scaled to zero. Such a momentum

the triple discontinuity is unphysical and of the kind dis- configuration for the Reggeon interactihis realized by
cussed in the previous section, according to the discussion ip 5t of the full Feynman diagram shown in Figab If we

[10], ~ the  “six-Reggeon interaction  vertex” |ape| the momenta entering the Reggeon interaction as in
B(Kky,kz,k3,Q1,Q2,Q3) could contain the anomaly. Fig. 5(b), an explicit configuration for Fig.(®), discussed in
Writing [10], is
P1+Po+ P =(S13) YA sgp ) Y551 ) 2 (3.8 q:—k.:=(21,21,0,0, g,—k,=(—21,0,—21,0)
(3.10

and comparing with Eq(3.7) we see that it would be
straightforward to identify Eq3.2) as a lowest-order contri-
bution to such a Reggeon diagram amplitude if the reduced
Feynman diagram amplitude of Fig(c} is identified as a

together with

01=—0o=!| G13= —0Uzs Gs=02=0. (3.11)

Reggeon vertex, i.e. This determinek; andk, and also gives
R6(Q11Q21Q31k11Q1_k11"') Q3:_(q1+q2):(01_|1|!o) (313
=p(ky,k2,k3,Q1,Q2,Q3). (3.9  If we then take

Note, however, that while the right-side of E&.8) clearly ks=1(0,1-2 c0s,1-2sin0,0) (3.13

has a triple discontinuity ifs;3 ,S3x,S,1/}, the left-side T
does not. The equivalence of the two sides is only deterJEhe light-cone momentum
mined if higher-order terms in Eq3.6) appear and add to —21(1,cos6,sin6,0) (3.1
Eq. (3.2 in the appropriate manner. Such terms are contrib-
uted by what we refer to in the following as Reggeizationflows along the two vertical nonhatched lines in Figo)5 It
diagrams. Note, also, that for parts Bf (not including ys is straightforward to check that all three of the hatched lines
couplings higher-order terms would be expected to appeaiare on mass-shell. If spacelike momentaQdfy) are added
implying that one or more of the transverse integrals in Eqto the momentum configuratio{8.10—(3.14) and the limit
(3.2) should be interpreted as arising from the trajectoryq— 0 is taken, the anomaly divergence occiiwe will dis-
function terms in Eq(3.6). Such parts oR® would then be  cuss this in more detail in Sec.)V.
interpreted as providing interaction vertices for fewer Apart from the reversal of direction fdP5, the process
Reggeons. represented by Fig. (8 is what we called “the basic
The amplitudg3.4) representing Fig. @) is the full four-  anomaly process” in10]. The zero momentum quark is pro-
dimensional triangle diagram amplitude except that speciatluced by one “wee gluon” and absorbed by the other, allow-
y-matrices appear at the vertices and only combinations ahg the chirality transition produced by the anomaly to com-
(essentially two-dimensional transverse momenta flow pensate for a spin flip of the antiquark. Note, however, that
through the diagram. It is shown [10] that the y-matrix ~ when the wee gluons are massless, the scattering processs
couplings are appropriate to produce the anomaly but, as wepresented by Fig. 5 is physical only when the quark and
discuss next, whether the necessary momentum configurati@ntiquark involved are also massless. In addition, as we
can occur within a physical region and provide a physicalnoted in the Introductiorfand discussed in more detail in
region infrared divergence is a nontrivial and subtle questiof6]), the anomaly infrared divergence involves both poles of
that depends crucially on the choice of propagator poles useithe zero momentum quark propagator. Moreover, the vertices
to put lines on-shell. coupling to the propagator shoul priori, be symmetrically
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— S2’3 Sz FIG. 6. (a) A physical threshold double dis-
T continuity. (b) A pseudothreshold double discon-
4 tinuity.
S3n 831
(a) (b)

interpreted as describing either the simultaneous productiogives the cut lines of Fig.(4), as in Fig. a). If all cut lines
of the two states in the propagator or their simultaneous abzarry light-like momenta, the positive direction for the en-
sorption. When, as is the case[8], the infrared divergence ergy component must be as indicated by the arrows in Fig.
analysis used to define physical states and amplitudes réa). Obviously the direction cannot be the same, relative to
quires that the massless scattering enter the physical regidhe internal loop momentum, for all cut lines. Nevertheless,
with the time ordering implied by Fig. 5, the presence of athis is an essential requirement if a Reggeon interaction is to
nonperturbative background gauge field is effectively im-contain a physical region divergence produced by the
plied. The background field would be needed to produce thanomaly(i.e. some variant of the “basic anomaly process”
necessary spectral flow at one vertex that is required to inmust be involvegl We obtain what we require if we reverse
terpret the process as a chirality transition. one internal line and one external li® make the cutting
While the required mass-shell conditions are indeed satissompletely symmetricas in Fig. &b). Since both cuts now
fied by Eqs.(3.10—(3.14), there is a problem. With the mo- involve both forward and backward goirip time) particles
menta given by Eq43.10—(3.14), the energy component of it is clear that we must have a combination of pseudothresh-
each of the three hatched lines in Figbphas the same sign. olds, just as suggested in the previous section, that can occur
Since the exchanged gluons carry only spacelike momenta, @nly in an unphysical region of momentum space.
is clear that this must be the case. We will see that this is a We already recognized ifiLl0] that the necessary triple
very difficult configuration to obtain within a Reggeon inter- discontinuity is not present in the diagram of Fig. 4 but we
action. We can emphasize the problem by letting0 while  suggested that nevertheless it may be present in related
simultaneously making a booaj({) such that cosh{=nis  higher-order Reggeization diagrams that produce the
kept finite.(This is what is done ii6].) If we then take all Reggeization of the gluons, in which case the basic anomaly

transverse momenta to be zero, we obtain process of Fig. 5 would be required as a real part interaction.
In fact, we will show in the remaining part of this paper that
d:—k;—(2n,0,0,21), d—k;—(—2n,0,0,-2n) this is not the case. Instead, the requirement that all cut lines

(3.19 are treated symmetrically will require more wee gluons and
) ) ultimately will require that Reggeon interactions with the
and all the .on-shell propagator_s carry the same light-like MOgyuantum numbers of the winding number current must be
mentum (with respect to the direction of the loop momen- jhyolved. Also, as we already anticipated in the previous
tum). Effectively, then, the on-shell states in the loop must besection the discontinuities involved must be unphysical.

in a symmetric light-like situation[This implies that if the As we discussed ifi10], we do not expect the anomaly
zero momentum state is an antiquaduark, all hatched  gjvergence to be present in the scattering of elementary
lines must be quark&ntiquarks ] _quarks and/or gluons after all diagrams are summed. Rather,

_As we already remarked on in the Introduction, and as igye expect it to be present when the basic process is gener-
discussed at length {110}, the only practicable calculational ajized to describe the scattering of the particular multi-Regge
method to determine whether a given combination of onstates that ultimately form bound states, and then only in
shell lines contributes to the triple-Regge behavadter all ~ g)or superconducting QCD. If6] it is clear that the rel-
diagrams are addeds the dispersion relation method that we gyant bound states are just the Goldstone bosons produced
outline very briefly below. In this approach all on-shell lines by chiral symmetry breaking. The correspondigy will
in a Reggeon interaction result directly from the taking of atpen, appear in a generalization of E®.2 and the wee
triple asymptotic discontinuity. “Real part” interactions with gluons involved will be a crucial characteristic of scattering
the same on-shell lines may be generated when the full dissiates. Also the chirality transitions producéhd the im-

persion relation is written or, equivalently, multi-Regge pjicit spectral flow will be an essential part of scattering
theory is used10] to convert the triple discontinuity to a full processes.

amplitude.

To have all on-shell lines carry the same light-like mo-
mentum(around a loopin a multiple discontinuity is a very
restrictive requirement. The essential point becomes clear if In general, an asymptotic dispersion relatid®] gives
we consider a physical region double discontinuity whichthe leading multi-Regge behavior of an amplitude as a sum

D. The triple-Regge dispersion relation
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(a) (b) (c)

FIG. 7. Tree diagrams for triple discontinuities. FIG. 8. An unphysical triple discontinuity?
over multiple discontinuity contributions allowed by the discuss. If the usual cutting rules hold, the diagram of Fig.
Steinmann relations. For the particular cédescribed in de-  4(a) has no asymptotic triple discontinuities corresponding to
tail in [10]) of the triple-Regge behavior of a six-point am- Fig. 7(c), but rather has only double discontinuities. To see

plitude we can write this, consider cutting the diagram as in Fig. 8, superficially
giving an {s;3 ,S3» ,Sy1/} triple discontinuity. In fact, just
Mg(P1,P2,P3,Q1,Q2,Q3) taking a double discontinuity, as in Fig. 6, cuts all the avail-
able lines, implying that there is no independent third discon-
=> M&(Py,P,,P3,Q:,Q,,Q5) + M2, tinuity that can be taken.
; o(P1.P2,P3,Q1.Q2.Qs It is not clear,a priori, that the cutting rules do apply to

(3.16 unphysical discontinuities. However, we will show directly

' in the next section that, indeed, there is no symmetric triple
discontinuity present giving the desired common energy
component sign in the diagram of Fig. 4. Therefore, as we
described above, whether there is an anomaly contribution
from diagrams of this kind depends on whether the necessary
triple discontinuities are present when Reggeization effects

where Mg contains all nonleading triple-Regge behavior,
double-Regge behavior, etc. and the sum is over all triglets
of asymptotic cuts in nonoverlappiritarge invariants. For
each tripletC, sayC=(s;,s,,S3), we can write

MS(P. P, P ) appear. In[10] we noted only that such discontinuities ap-
6(P1,P2,P3,Q1,Q2,Qs peared to be present in Reggeization diagrams but did not
AC discuss the structure of such diagrams in any detail.
= f dsds,ds} As an example of a diagram that should produce
(27i)3 (S1—51)(S5—S,)(S5—S3) Reggeization, consider that shown in Fig. 9, in which one of

the gluons in the diagram of Fig. 8 is replaced by two-gluon
(3.17 exchange—potentially giving the one-loop contribution to
the trajectory function of the original gluon. The thin lines
. - e . . again indicate how an unphysicfd; s ,S;3» ,S,1/} disconti-
The triple discontinuities are of three kinds, described byngity would be taken. Thepcoyrrefs(lfndisa siilléeggeon inter-
the tree diagrams of Fig. 7. There are 24 corresponding t9tjon together with a remnant seven Reggeon interaction,
Fig. 7(a), 12 to Fig. 1b), and 12 of the Fig. €) kind— 54 be generated by putting the cut lines on-shell. The
including those described by Fig. 3. Those of Fig®) and  giscontinuity is clearly not symmetric and in the next section
7(b) occur in the physical regions, while those correspondingye will confirm by direct calculation that there is no triple
to Fig. 7c) are all unphysical triple discontinuities of the discontinuity giving the anomaly. This will be sufficient to

whereAC is the triple discontinuity.

kind discussed in the last section. determine that the anomaly process of Fig. 5 is not generated
as a “real part interaction” when higher-order Reggeization
E. Unphysical triple discontinuities and Reggeization effects are included.

As we discussed if10], the diagram of Fig. @) has
physical region triple discontinuities of both the Figsa)7
and 1b) kinds, although neither gives leading triple-Regge To obtain a symmetric triple discontinuity in which the
behavior. Unphysical discontinuities are more complicated tmormal cutting rules could potentially give the anomaly am-

F. A symmetric triple discontinuity

> + FIG. 9. A diagram with an unphysical triple
?) discontinuity.

7
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FIG. 10. A diagram with a symmetric unphysical triple discontinuib). Expected Reggeon interactions.

plitude associated with Fig. 5, we consider the high-ordeiReggeon interaction is involved. Note that the discontinuity
diagram shown in Fig. 1@) in which there are three gluons lines in Fig. 11 cross each other. We will see that this is
in eacht-channel. A triple discontinuity if1S;/,,S,:3,S3/1} IS possible because, as anticipated in the previous section, the
obtained by cutting the diagram as indicated in FigblO  particles contributing to each discontinuity will not all have
The closed loops involving two-gluon exchange could givethe same time direction. To evaluate a multiple discontinuity

both one loop contributions to the one Reggeon trajectoryf this kind we must develop direct methods to compute
function and the leading contribution of a two Reggeon stategsymptotic discontinuities.

A priori, therefore, we expect the diagram to contribute to
the six-, seven-, eight- and nine-Reggeon interaction as illus-
trated.

Since the triple discontinuity of Fig. 16) is manifestly
symmetric we again might expect the symmetric configura- |n this section we generalize the single asymptotic discon-
tion giving the anomaly to appear in the six-Reggeon intertinuity analysis described in the Appendix to asymptotic
action. However, for consistency with our previous discus+riple discontinuities. The essential idea is that there is a
sion, the anomaly should néand does notappear quite so e|l-defined leading-log result for each triple discontinuity
simply. After we carry out the explicit evaluation of (jyst as there is for the single discontinuity calculated in the
asymptotic discontinuities in the next section, it will be C|earAppendix) that can be found from the leading-log calculation

that the triple discontinuity of Fig. 18) does not contain the ¢ amplitudes by keeping thee dependence of all loga-
required symmetric momentum configuration. In fact, theyjthms.

anomaly does occur within a Reggeon interaction generated
by the diagram of Fig. 1@), but only when the unphysical

discontinuities are actually taken as shown in Fig. 11. How- A. A physical region discontinuity
ever, we will postpone until Sec. V a discussion of which

IV. UNPHYSICAL TRIPLE DISCONTINUITIES AND
HIGHER-ORDER GRAPHS

We begin by considering again the maximally nonplanar
graph shown in Fig. 4. To understand how asymptotic dis-
continuities arise, we first consider a physical region discon-
tinuity. For this we interchang®, and P, in Eq. (3.1) so
thatP,;, andP, are the momenta of incoming particles. For
simplicity, we also setQ;=0, i=1,2,3. This could cause
- confusion as to in which invariants discontinuities actually

occur. However, for the discontinuities that interest us, we
will be able to avoid this issuéAs is the case for our dis-
cussion in the Appendix, adding both transverse momenta
and masses to our discussion would not change the essential
features of the analysis, but would eliminate gluon infrared
divergences. We will discuss, at some points, the general
effect of adding transverse momentaherefore we write,
FIG. 11. Another cutting of Fig. 1@). asymptotically,
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FIG. 12. Routing loop momenta for Fig. 5.

(a) (b)

P, ——P;=(py,p1,0,0), py— discontinuities that appear in Fig.)7n this case, the two
loops differ only in the light-cone direction ¢?; and P,.

We consider Fig. 1&) first. We can directly apply the
discussion following Eq(A4) if we identify P, with p, q
with p’, k; with k, and consider the propagator pole &t (
P3— —P3=(p3,0,0p3), p3—. (4D  +qg)?=0. We then obtain

Po— —P2 =(p2,0p2,0), py—x

For the reasons given in the last section, we will ulti-
mately be looking for a symmetric triple discontinuity. |(pl,q1,)~if d?k,, [— K2, +ie]™?
Therefore, we consider only routes for the internal loop mo- -
menta of Fig. 4 that are completely symmetric with respect NGy
to the three external loops. There is essentially only one pos- X f dki-[ki-—qq-171
sibility. The two apparently distinct possibilities illustrated in 0
Fig. 12 are related by interchanging the primed and
unprimed external momenta. We will also want to make a
symmetric choice for the quark lines we place on shell. Al-
though we will not discuss the anomaly in detail until the ~
next section, in anticipation of this we will demand that a P1/d1-
product of three orthogonay-matrices be associated with
the process of putting on-shell each internal quark line. T
achieve this it is necessary to put on-shell, symmetrically, th
internal lines in Fig. 1@a) along which a single loop momen-
tum flows. Therefore, we consider only such lines in the
following. L b —(L. . C

Using the momentum routing of Fig. (& and the analy- ki==ko=ki kir=(kj ki) J#k#1 1, k=123. “.3
sis of the Appendix we consider logarithms generated by the
k, andk, integrations. Thé, andk, loops are shown in Fig. Theq,-
13. For the moment, we omit the propagators in the slopin

i I h X ion of a threshold in the invariam4, - q . This dependence
ines and all propagator numerato§he omitted propaga- javs an important role in the following discussion. We also
tors will, nevertheless, play an important role below. They

I I i ish ider th her kind Tretain the\-dependence, for technical reasons that will be-
are also relevant it we wish to consider the other kinds ol;,ye apparent later. The final result will be independent of

\, as it must be. From Fig. 18) we analagously obtain

x[pl’kl‘_5§L+iE]_l

log[pi/NQ -tie€]. (4.2

e have used the notatidsed extensively in the follow-
ing) that for any four-momenturk

dependence indicates that the logarithm is a reflec-

N R
\W \'M:2
v 1 )
wre | € kp+a € %2 1(p20z-)~ pzqz_log[—pquz—ﬂe]- (4.4
Py’

The minus sign(which is very important in the following

P, r appears relative to E¢4.2) because of the opposite direction
(a) (b) of P,. _ -
Next we consider how the logarithmic branch cuts gener-

FIG. 13. (a) Thek; loop. (b) Thek, loop. ated by thek; andk, integrations can trap the internal loop
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*3 %3 ' :
:::;‘.‘:‘;q'r]:tion T3=x:_§\g’ ,/’/7\\\ e a = ...?... - @_“ = _“'I'T
/lq2=u - )
e (a) (b)
X.=0 | S—
3 x,= "iE FIG. 15. (a) The x5 contour with finite transverse momenth)
xR equivalence of the asymptotic contour to the original contour.
(a) (b)
the contour as shown in Fig. @—the dashed line indicates
*3 X3, that the contour is on the second sheet of the branch point
(4.2). (In this figure we have omitted the polesf=0.)
TN Note that the continuation path we have chosen isolates the
/[ = (-, discontinuity around ths;,, branch cut, since it avoids the
e pinching of the integration contour with the singularity at
©) @ g?=0 that would give other discontinuities. The desired dis-
c

continuity is obtained by adding the original contour in the

FIG. 14. Contours in thes-plane:(a) the initial contour;(b) opposite dlrectlon., as.shown In.Flg. (]:A'Comblnlng both
p,—e2™p,; (c) the discontinuity;(d) the discontinuity as a line CONtours we _Obt"’}'n Fig. 1d) which, as illustrated, can be
integral. written as a line integral between the two branch points of

the double-discontinuity due to both cuts. As:0, or in the
integration overq to produce an overall discontinuity in asymptotic limitp;,, p,—o, the branch points approach
S1/,~P1/P,. For simplicity, we consider the region where €ach other and the result is a closed contour integral around
the singularity aj>=0 which is independent of the position
k?~0? ~0i=123. (4.5  of the end points and remains finite in the asymptotic limit.
- This is the asymptotic discontinuity and the singularity at
Appealing to Eq(A6) we can then, for our present purposes,q?=0 is clearly crucial in producing a nonzero result.
effectively ignore the remaining; dependence of the quark  |n Fig. 15a) we have illustrated the last stage of the con-
loop (including the propagators that we ignored in the aboveour contraction ag— 0 and have also included the effect of

discussion If we parametrizeg as adding (external and interngltransverse momenta in the
B 46 foregoing analysis. The integral between the branch points,
9=(9o.01-,02-,03-) (4.6 of the double discontinuity, is still obtained, while the singu-

we can treat they,- as independent variables, witlg essen- larity at q2'=0 separates into a set of poles at both posit_ive
tially determined by the constraimf>~0. The logarithmic and negatives. In Fig. 13b) we have shown the asymptotic

cuts of Egs.(4.2) and (4.4) appear, respectively, in the, - discontinuity. Since the branch points are logarithmic, the
A . . y y . . . . . . 2
andq,- planes and if we make a further change of variableﬁjOUbIe discontinuity involved is simply #° and so no
to onger contains either branch cut. Consequently, the asymp-
totically finite integral around the poles to the left can be
Q1-=XoX3, Oo-=XgX1, Og-=X1Xp 4.7 opened up to give the original contour, as illustratéftthere

is a singularity atx;=0, the contour is constrained to pass

the two branch points appear in thg-plane, for fixed, posi- through this point although, as we noted above, for the
tive, X;,X,, as illustrated in Fig. 14). (The branch points anomaly contribution to graphs, this will not be the case.
also appear, separately, in tke andx, planes. To focus on The final result shown in Fig. 1B) is just what would be
the s;/, discontinuity and avoid any complication from dis- given by the normal cutting rules for a discontinuitysip,,
continuities involving a logarithm op; in these planes we i.e. the original integral with the four propagators involved in
can take the\ for this logarithm to be much smallgThe  generating the discontinuity placed on-shell. Note that the
propagator poles that are not on-shell, that we ignored in theame result is obtained if the discontinuity is evaluated by
above discussion, combine to give a multiple pol&%t0  varying p;,. An integral around the positive; poles ap-
(on both sides of the contour, as determined by the presengears at the intermediate stage, which can then be opened up
of i e in all propagatorks If we continue to ignore propagator to give the same final contour as in Fig.(b
numerators then the factors ofgl/ and 14,-, in Eqgs.(4.2) An obvious, but essential, requirement in the origin of the
and (4.4) respectively, will also contribute poles ag=0 asymptotic discontinuity, which we want to emphasize, is
(that will partly be compensated by the Jacobian due to théhat the branch cuts due to the logarithm$in andp, must
change of variablgs However, in the anomaly contribution lie on opposite sides of thg; contour.[This is the sign
we will ultimately consider, these poles will be directly can- difference between Eq$4.2) and (4.4) that we emphasized
celed by numerator factors. above] In a physical region this requirement is normally

The threshold we are interested in occurs when the twatraightforward for a loop integration producing a threshold
branch points collide(at x;=0 for e=0). To extract the due to two massive states since the loop momentum will
discontinuity we consider a full-plane rotation p§, with  flow oppositely through the two states and tleeprescription
p;s fixed, so that the logarithmic branch c@t.4) deforms  will place the states on opposite sides of the energy integra-
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tion contour. In the variables we are using the generation of X3
the threshold is a little more subtle. Note, for example, that
whenx; <0 the branch point4.2) appears in the upper half-

plane (moving through infinity asx; moves through zejo X3=0 ]
and there is no discontinuity. Therefore, the signs ofxhe Y /'—
3=

play an essential role in the occurrence of the discontinuity.
A further requirement, which clearly holds in the case just ig

discussed, is that the trappifginching of the contour that x3=x1_>\p

we have discussed must combine with the pinching associ- 2

ated with the logarithms to give a complete cut through the FIG. 16. The symmetric location of branch cuts in theplane.
diagram. That is to say, the complete set of pinchings must

correspond to an overall invariant cut. pi—e "%p,=ip;, i=1,2,3

xz)\p1

=>sj~(—ip;)(ip;)>0. (4.9

B. Maximally nonplanar unphysical discontinuities . . . L
Given the symmetry of the present discussion, it is imme-

We_ co_nsid_er next the unphysical dis_contin.uitigs that argjiately apparent that there will not be(symmetrio triple
our principal interest. According to the discussion in Sec. '“adiscontinuity, as we now argue. Using the above analysis,
we are looking for a triple discontinuity of the form of Fig. 8 |ggarithms will be generated by each of thentegrations. If
that treats the three cut lines of the quark loop symmetricallyye consider again the region where the transverse momenta
so that, in a physical region, the sign of the energy compoyre close to zero then, from E(A6), the requirement that
nent can be the same ]‘or aII.three on-shell states. We WI|.|t,he energy component of each on-shell line in the loop have
therefore, confine our discussion to a search for a symmetrig,e same sign is equivalent to requiring that the all have
triple discontinuity. As we noted, if the normal cutting rules the same sign. This, in turn, requires that theshould all
apply there is no triple discontinuitisymmetric or ngtof  paye the same sign. However, in the symmetric real physical
the Fig. 8 kind. We consider whether the direct evaluation Ofregion if x, and X, have the same sign, the logarithmic

discontinuities gives the same result. _ branch cuts inP; and P, lie on the same side of the,
The discontinuity we discussed above occurred in a physigoniour as illustrated in Fig. 16. Since the continuatié:)

cal region that is unsymmetric in thBy, is the momentum of ;g symmetric they will remain on the same side after the

an incoming particle whileP; is the momentum of an out- gntinuation. As a consequence, in the symmetricegion,

going particle. To look for a symmetric discontinuity we will the contour will not be trapped and distorted as one branch
use an analysis that treats the complete graph symmetrlcalb(oim moves aound the other, as it was in Fig. 14, and no

throughout. To this end, we start in the symmetric asymptotigiscontinuity will result. We conclude therefore that, for the

region (3.1) where all momenta are real and graph we are discussing, discontinuities can only be gener-

4.9 ated in gsymmetrig regi(.)ns. of the that cannot provide the
symmetric triple discontinuity that we are looking for. The
foregoing analysis also precludes the occurrence of a triple

In this region, the diagram is defined by the usislpre- g:csl(::i(;ntglwty, that is appropriately symmetric, in the diagram

scription. Since all three invariants must be positive, the
triple discontinuity of Fig. 8 can only be present in the triple-
Regge limit if we allow the large momenta involved to be
unphysical. A symmetric way to do this is to start from the To obtain a symmetric triple discontinuity we look for a

real physical region and take graph that has the appropriate overall symmetry and also, for

Si'jN_pipj<0'

C. A symmetric unphysical triple discontinuity

FIG. 17. Labeling momenta for Fig. (d).
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As above, to study discontinuites we keep the

3 g-dependence of all logarithms together with iadl depen-
. N dence. We consider specifically the logarithms generated by
eay CH ky+kp+a “--.k.l.ﬁv-" the k, andk; loops, but the symmetry of the diagram obvi-
/ + ously determines that the others can be treated identically.
Py =-Py The loops, extracted from Fig. 17, are shown in Fig. 18. The
k, loop is identical to those of Fig. 13 and can be evaluated
analagously. Using a similar analysis, tke loop gives an
(a) (b) integral of the form
(ko+0a)1-
FIG. 18. (a) Thek, loop. (b) Thek; loop. f dky, . (4.10
0

eachi#j#k, has logarithmic branch cuts on both sides of |fwe again go to the region where all transverse momenta
thex; contour in a symmetric region of andx . With these  are close to zero, then we have drawn the diagrams as basic

reqUIrementS in mlnd an obvious graph to consider is that Oénoma|y processes in F|g 32 us|ng EAB) It follows that
Fig. 10. To discuss this graph we continue, for simplicity, toafter thek, integration

take Q:=Q,=Q3=0. Two symmetric(distinc) routes for
the internal momenta are shown in Fig. 17. To be consistent Ko1-~ Koo~ %/ 0p- <01 - (4.11
with our previous notation we have used the notation that we
direct thek; momenta in the opposite direction to tRe, the ~ Therefore, we can take the upper end point in &q10 to
k! momenta in the opposite direction to tRé (i.e. in the be g;-. In this case both thé; andk; integrations give
same direction as thB;), and direct the internal loop mo- logarithms withq;- in the argument—but with opposite
mentum in the same direction as tke momenta. signs. We then have branch cuts located as in Figa)1f
For a threshold corresponding to the cutting of partlculareaCh of thex; ,X; andx; planes. We have included the poles
lines of the internal quark loop to be generated the externadt d°=0 andx;=0 and have used different;, and \ for
loop momentum generating the relevant logarithms mus€ach branch cut to allow us to separate the branch points in
pass through at least one of the lines. With this constraintpur discussion.
only the routing shown in Fig. 1@ will give both disconti- With values of the; and\| implied by Fig. 19a), we
nuities of the kind we are looking for, and thematrix struc- ~ could clearly obtain a discontinuity ig;,, (due to the two
ture for on-shell contributions that we show, in the next sec<closest branch pointdby repeating the discussion illustrated
tion, gives the anomaly. The routing of Fig.(by would be by Fig. 14. The discontinuity would similarly be an integral
appropriate for discussing the triple discontinuity of Fig. between the two branch points involved, as in Figidldbut
10(b). However, as we noted in the previous section, and willbecause of the additional branch points that are present, the
explain further below, this triple discontinuity does not con-contour could not be opened up as in Fig. 15. Therefore,
tain the symmetric momentum configuration needed for thdaving takerx;,x,>0 so that the branch cuts lie as in Fig.
anomaly. 19(a), the discontinuity would involve only pure imaginary
Using the momentum routing of Fig. & we consider or negative real part values gf. Consequently, any further
the logarithms generated by both tkeandk/ loop integra-  discontinuity obtained by the collision of branch points in the
tions. Extracting all logarithms places on-shell all theX; or x, planes would have to involve mixed real part signs
hatched lines of Fig. 1@), and gives leading behavior of the for thex;. We concludénot surprisingly that in the physical
form of Eq. (3.2 multiplied by double logarithms of each of region a triple discontinuity cannot be obtained that involves
the P;+. How the logarithms cancel or combine with other only positive values of all threg; .
diagrams is, of course, a very complicated problem. As we This brings us to the central point of the paper. If we go to
have emphasized, to discuss this systematically we must coithe unphysical regiofd.9), where we expect to encounter an
sider all the multiple asymptotic discontinuities that occurunphysical triple discontinuity, the last analysis changes in a
rather than the behavior of full diagrams. Our present conerucial manner. The resulting location of branch cuts is now
cern is, however, the much narrower purpose of determinings shown in Fig. 1®), allowing the integration contour to be
only whether there is a symmetric triple discontinuity in rotated as illustrated. In Fig. 19 we have also, for empha-

which the anomaly can occur. sis, chosen significantly different values of theand\/ . If
Xi_' . xi= % xi‘_l
é:ltl;gz:tmn \fj kB *,- i€ . X, i Xe>> X
< P ek Xy JpJ
~ s -> \ FIG. 19. (a) Branch points in the;-plane.(b)
A7 N Sy, pi—e ™p=ip;, i=12,3.
x, =" \x _if xekpk
®35%B i xk_)"jpj
(a) (b)
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x.ﬂ xi_l xi_l

.o e —> aes D => e flar
NS -> D

FIG. 21. Contours for the;, x; andx, integrations.

plies that the corresponding pinching does not, by itself, give
a singularity of the complete integral ardpriori the inte-
gration contour could be deformed away from the pinched
region. To obtain a complete cut we must add the lines that
we again determine the discontinuity associated with the colhave thin hatches in Fig. 28. When these lines are on shell
lision of the two nearest branch points, as above, the resuthe pinching does give an overall singularity. But, if we re-
will be the contour integral of the double discontinuity quire a common sign for thg; the two thin-hatched lines
shown in Fig. 20. Now the integral involves positive real again have the wrong momentum direction to straightfor-
values ofx; and, as illustrated, the asymptotic limit gives a wardly combine with the asymptotic pinching to give what
loop integral over just positive values. The contour integraWould be a physical sheet “asymptotic normal threshold.”
cannot be opened up, however, since the other branch cufiowever, each of the two thin hatched lines is separately
remain. placed on shell by one of the additional discontinuities.
Having derived a first discontinuity from two branch Therefore, the fuII_ triple discontinuity we hz_ive found does

points in thex; plane, as in Fig. 20, it is straightforward to fﬁggﬁg%nguttz a triplefs,»,Sz3 3} Of invariant (pseudo-
)lieepﬁ;:;rmign?nbgg%h f;s'gtsoirll? TN%VZ;ZS:?‘)QE?SS - If we consider instead the discontinuity arising from the
ak In both ,I di t', i fthe f fFi 20oinching of logarithms ofp;A; and ps\; then the lines put

ppear. 1n both planes, discontinuities ot tne torm ot FI9. 245, sha |’ are those hatched in Fig.(BR In this case there is
occur, provided the; integration is restricted to positive real

I Theref btai inle di Uity in whi hno simple way to include additional lines and obtain an in-
values. Therefore, we obtain a triple discontinuity In WhiChy,aiant oyt Therefore, this pinching cannot be extended to a

each of thex;, x; and x, integrations is consistently over complete cut of the diagram. We conclude that the triple
positive values and the asymptotic contour is obtained agiscontinuity in{s;y ,S,s ,Ss»} that is illustrated in Fig. 11
illustrated by the first two contours in Fig. 21. Since all loga-js the only combination that exists, as an extension of the
rithmic branch cuts are now removed, all three contours ca@pove analysis. It is symmetric, with each of the internal
be opened up to obtain the last contour of Fig. 21 which isquark lines that are put on shell by integrations treated
once again, the original contour of integration for each;of ~ symmetrically. All three of these lines contribute to each in-
X; andx, . We thus obtain a triple discontinuity which, at first variant cut but, as we have just discussed, two of them al-
sight, corresponds to the usual cutting rules since all cut linesays have the wronge prescription, relative to the third, to
are on-shell. However, the triple discontinuity is truly sym- give a physical normal threshold. Singularities associated
metric and as a result each discontinuity is, necessarily, with combinations of forward and backward going particles
pseudothreshold. There is also a very important furthefre “mixed«” solutions of the Landau equatiorfd6]. In
subtlety. general, such “pseudothresholds” are not singular on the
If we consider the discontinuity arising from the pinching Physical sheet because of the conflicting prescriptions.
of logarithms ofp;\; andp,\}, for example, then the lines However, they are generally singular on unphysical sheets
put on-shell in the discontinuity are those that have thickdnd can appear in multiple discontinuities. They would be

hatches in Fig. 22). These lines are only a subset of thoseParticularly expected to appear in unphysical multiple dis-
. : : -~ continuities.
required to obtain a complete cut of the diagram. This im- Finally, we return to the triple discontinuity of Fig. @0,

FIG. 20. The unphysical region discontinuity.

FIG. 22. On-shell lines fofa) ans;» discon-
tinuity; (b) a potentials,y discontinuity.

(a) (b)
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P2 A. The asymptotic amplitude

We can briefly describe the calculation of the asymptotic
amplitude obtained from Fig. 1@n which all the cut lines
are put on-shell as described in the last segtas follows.
Additional background description of the method used can
be found in[10]. We begin by adding in the numerator de-
pendence what we essentially ignored in the previous sec-
tion. For the external lines, additional powers of the external
momenta are generated as in E¢&9) and (A10). As a
result, inverse external momentum factors, suclpas? in
o Eq. (4.2 andp, ' in Eq. (4.4 are eliminated and the factor

FIG. 23. Part of they momentum flow within Fig. 1(). of P,+P,+P3+ that appears in Eq3.2) is produced. Also, if
we use the natural transverse momenta given by(E®),
using the momentum routing of Fig. ®j. Consider, for the light-like y-matrix couplings that appear at each of the
example, the discontinuity is, 5. This will be due to the vertices of the internal loogafter the triple-Regge limit is
pinching of thex; integration contour by the logarithms gen- taken are as illustrated in Fig. 24). For the hatched lines
erated from the; andk; integrations. The relevant sub-part that appear in both Figs. & and 24b), we keep they
of Fig. 17(b) is shown in Fig. 23. That the direction of the Matrices shown. These are the “local couplingsee[10])

g-momentum flow is opposite, relative g and ks, along that appear When_that part of the associated numerator is kept
) . oo that cancels the internal momentum factors that arise from
the relevant internal lines implies thaj and x; must have

o ) _the longitudinal loop momentum integratiofsich agy;- !
opposite signs in order for the branch cuts to be on opposm:ﬁ Ea.(4.2) andd._ L in Eq. (4.4]. To iustify this procedure
sides of thex,; contour. As a result no symmetric triple dis- ™ Eq. (4.2 Az~ In Eq. (4.4)]. To justify this p N

> ] we appeal to thé“infrared nonrenormalization] argument

continuity exists. o _ of Coleman and Grossmdf 7] that only a fermion triangle
There are clearly two criteria for the existence of & sym-giagram, with particular helicities for the couplings, can pro-

metric asymptotic triple discontinuity, which we will appeal gyce the anomaly infrared divergence.

to further in the next SeCtion. The fiI’St iS that thenomen— We introduce externa| transverse momd{ﬂ&at we essen-

tum flow must be in the same relative direction along thet|a||y ignored in the previous Secti@)msing the notation il-

relevant internal lines for each discontinuity. The second isustrated in Fig. 2&). The resulting asymptotic behavior

that all internal loop lines, besides those in the remaininghen has the form

triangle, must be put on shell by the combination of the three

. . . 3
inches of thex; integrations. d?k; 1d%k; ,d?k;
p i 9 P1+P2+P3+H f |12 2|22 i3
i=1 kikiokis
V. THE TRIANGLE ANOMALY AND OTHER DIAGRAMS X 6%(Q;, —kiz—kia—kiz) Go(Kiz Kiz Kz - +)
In this section we discuss how the anomaly occurs in a XR%(Q1,Q5,Q3,K11,K10,Kq3 - +) (5.1

Reggeon vertex obtained from the triple discontinuity of Fig.

11. We will also consider other diagrams that can contributavhere R® is the triangle diagram illustrated in Fig. @4
and discuss how color quantum numbers determine whicNote that this diagram depends only &p+ki; (i.e. it is
Reggeon interactions are involved. independent ok;,—k;3).

2-1+3-

O

f Ya-241

(a) (b) (c)

FIG. 24. v-matrix structure for the Reggeon interaction extracted from Fig. 10.
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ql'”"l&
Do-143=
_ ~~
q; kZN Qqnqs_ka
p . FIG. 25. (a) Notation for Eq.(5.1). (b) Nota-
tion for Eq. (5.4).
q3+k3;| (i2+k2
AN
ql_klﬂfyrﬂl'
(b)
B. The Reggeon interaction anomaly then the momentum flow into the triangle diagram of Fig.

By comparing with the generalizatidi0] of Egs. (3.6) 2.4(0).is as shown in Fig. 2B). Using momentum conserva-
and (3.7) to three Reggeons in eadkchannel, we can di- tion, I.e.
rectly interpretR® as a nine-Reggeon interaction. If we write

kKii=0i ki, g1+0,+0d3=0, (5.3
kio=(qi—ki)/2—k{ ,

R®, which does not depend on ttk¢, can be writter{very
k|3:(q|_k|)/2+ kil y (52) Similarly tO Eq(34)] as

R%(01,02,03,K1 Ko, Ka) = f d4kTr{ 7’57173+27(k+ Ko+d5—Kq)

’}’57’271+37(k—‘ﬁ2+‘ﬁ3_k2—k3) 757372+17(k+k1_¢12_k3)

5 5 > (5.9
(k+ka+03—ky)“(K=02+ 03—k —kz)“(k+ki—0p—ks)
|
where To discuss the occurrence of the anomaly in &g5) we
first recall the general invariant decomposition©f,,z as
71’3*2’: Y1 Y3r e =y T T =iy T discusged in6]. With the notation illustrated in Fig. 26 we
can write
271737 _ B i s S - o 4
Y =Y2-Y1+Y3-=7V Iy Vs T,u,aﬁ( P1, p2) _Alea'aﬁ/.tpl +A260'aﬁ,u,p2
—ptq- 4 +Az€500 oPI+ A€ 50 °pg
B2 e =y T Ty Ty 3€50auP15P1P2 T A4€554,,P25P1P2
(5.9 +A5650ﬁ/¢plapfpg+A66§crﬁp.p2ap]§_pg'
and y= =~ is defined by Eq(3.5). Again we obtain a par- (5.7

ticular component of the tensor that describes the triangle
diagram contribution to a three current vertex function, i.e.
we can write

Rg(ql,qz,q3,k1,k2,k3)

=(n, " —in_ "N, =ing )
X(ng " —ing ") TPk —Ks— 0y, k;
—ki——03) (5.6
whereT#*# is the triangle diagram three current amplitude. FIG. 26. Triangle diagram notation.
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The ultraviolet anomaly occurs in the first two terms of Eq. -

(5.7, i.e. 6—0—p;—(0,0p6/y2,00=—p,—(0,09,0) (5.13
1 - where
Tuaﬁ(klikZ): meaaﬁupl
p292
1 . A*=(p1tp2)? ~ ——. (5.14
+ mégaﬁupz'f‘ cee (5.8 6—0

In this configuration, we obtain the largest numerator if we
consider the anomaly contribution 8§ to, say,T_ _3. This
has the form

leading to the well-known divergence equation

1
(pl+ p2)’uT/},aﬁ:F6§0’aﬁpfp(Zr' (59) 5
m P1P2P1-
: _ T 3=€pp-3— 5 —
The ultraviolet anomaly can therefore appear only in a tensor q
component with three orthogonal Lorentz indices. If we keep 5
just theys parts of the three vertices in E(h.5) we obtain a =p¥pdl \ﬁ]qz — A /_p (5.15
nonzero projection on such a tensor component. In fact this ¢_o ¥ 0

contribution toR® retains the full symmetry of the original
Feynman diagram of Fig. 18 and, as a result, has the nec- and so the divergence is suppressed, but only partially. A

essary symmetry to contain the ultraviolet anomaly. divergence of the form5.195 is the strongest that can be
The infrared “anomaly pole” occurs ih; andAg. When  obtained.
pa=0 In general, to obtain the maximal infrared divergence we

must have a component df,,z with u=a and with p
1 1 p% p% having a light-like projection. The corresponding light-like
:ﬁ W W'”? -1} (5.10 momentum must also _flow thr_ough the diagrgmust have
an orthogonal spacelike projection and the transverse mo-
mentum that vanishes, a8 —0, must be in the remaining
orthogonal spacelike direction. If we choose gwecompo-
nent from all three vertices in E¢5.5) the first requirement
o — . (5.1) Is not met. However, if we choose the component from
272 Q one vertex and choose the vector coupling from the other
two vertices, it is met. The finite light-like momentum in-
That is, a pole appears & (= —Ag) and, as a consequence volved must then have a projection an*~*~#* and the or-
of all divergence equations, the coefficient is also given bythogonal spacelike momentum must be distinct in each case.
the anomaly. If, instead, we integrate over spacelike valueshere is then a divergence of the form of E§.15.

A3: _A6

and whenp5—0

11
As

of g2, we obtain The three possibilities for the infrared anomaly diver-
gence to occur are associated with the three distinct hexa-
2 2 .2 2.2 graphs described if0], and hence with three distinct helic-
f da°As(a%,p2)f(a%.p2) ity amplitudes. In the analysis ¢.0] the coordinates used

1 1 were asymmetric and were chosen to isolate one anomaly
—»—f(0,0)=f do?—(a?)f(q?,0)
k2—>0 T o

2 §-

(5.12 TS

[providedf(q?,p3) is regular ag?,p3=0]. As we discussed
in [6], the pole(5.1)) is responsible for the appearance of a T
Goldstone boson pole in amplitudes containing the chiral AV
flavor anomaly. For the Reggeized gluon interactions that we
are discussing it is thé-function property that is important. POV P

-
-
-

The tensor factors multiplying; andAg in T, poten-
tially suppress theg?—0 divergence due to the anomaly )
pole. To describe this, we consider a specific momentum pt T
configuration, e.g. 1
+ |-
p1=(p/\2,p/\2,0,0 Pyl
p,=(—p/ \/5,— p cosG/\/E,O,— p sin6/ \/E) FIG. 27. A basic anomaly process associated with Fig. 24.
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FIG. 28. (a) The “bare” diagram.(b)—(d) Full
diagrams.

(a) (b) (c) (d)

configuration. These coordinates were naturally associatesient discussed in Sec. lll. Secondly, we anticipate, as we
with a particular hexagraph and the corresponding helicitjhave just discussed, that infrared and ultraviolet anomalies
amplitudes and limits. We could equally well use these coshould occur together so that Reggeon Ward identities are
ordinates in discussing Fig. 11, in which case, theand satisfied. It seems that at this “simplest” level, where it first
non-ys components in two of the threg-matrices in Eq. emerges, the ultraviolet anomaly is very likely to require a
(5.5 are interchanged. The anomaly pole contribution thersymmetric diagram.
comes from the three/s components. In either case, the If we begin from the diagram of Fig. 18 and retain only
result is the same. We anticipate, but will not attempt tothe exterior lines of the internal loop we obtain the “bare”
demonstrate here, that for each hexagraph amplitude the utiagram of Fig. 283). The exterior lines give the triangle
traviolet anomaly and anomaly pole components are relatediagram in the Reggeon vertex. Since they must remain un-
by Reggeon Ward identities, just as corresponding composut when a triple discontinuity is taken they must remain on
nents in Eq(5.7) are related by normal vector Ward identi- the exterior, as in the bare diagram. If we then add further
ties.[Note that the “ultraviolet” region for Eq(5.4) is actu-  lines such that a complete loop is formed within a symmetric
ally the regionk< P+~ P,+~P3+, rather thark~o.] This  diagram, and there is no sub-loop, the only new possibilities
implies that the occurrence of the infrared and ultraviolet(up to reflectionsare shown in Figs. 28)—28(d).
anomalies in diagrams will be closely correlated. We will The diagram of Fig. 2®) can be analyzed very similarly
exploit this in the following. to our analysis of Fig. 1@). As we described at the end of

As discussed at length i0], while the triple disconti- the last section, a pseudothreshold triple discontinuity will be
nuity giving Fig. 24 occurs in an unphysical region, therepresent if the six nonexterior loop lines can be grouped into
will be a corresponding “real” Reggeon interaction in physi- three pairs, each associated with a particular discontinuity,
cal regions. In particular, the anomaly infrared divergencesuch that the loop momentum flows across the discontinuity
can occur in the physical-region configuration shown in Figline in the same direction for each pair. In Fig(29we have
27. (The dots indicate that a local interaction is involyed. drawn the appropriate cuts of Fig. @3 and in Fig. 29b) we
The y5 interaction is at the intermediate vertex and the light-have isolated the cut lines that contribute to one discontinu-
like momenta are as in Eq$3.10—(3.14). Figure 27 can ity. Both criteria for a symmetric triple discontinuity are sat-
then be identified with the basic anomaly process of Fig. 5sfied. However, we must also consider thematrix struc-
except that there is an additional wee gluon involved. Theréure of the vertices that appear in the triangle diagram that is
are also additional gluons with finite transverse momentumobtained. In fact, we find products gfmatrices of the form

shown in Fig. 2€c), which do not produce thes coupling
C. Other diagrams needed for the anomaly. The diagrams of FigsicR&nd

28(d) clearly do not have sufficient nonplanar structure to
Ygive a pseudothreshold triple discontinuity. We conclude,

Ena.lgs'stﬁftthflzpre\iguti s;ectlolg, thetrg "’;Le other dllag\]/(/a erefore, that none of the additional diagrams of Fig. 28 can
esides that of Fig. hat could contain the anomaly. We produce an anomaly contribution to a Reggeon vertex.
will not consider all possible diagrams—there are simply too

many. We will make the simplifying assumption that only
diagrams that are completely symmetweath respect to the

threet-channels are relevant. There are two justifications for ~ Similarly to our discussion of the triple discontinuity of
this assumption. First there is the infrared light-cone arguFig. 10b), a priori R® can contribute to vertices for fewer

We now consider whether, based on the discontinuit

D. Color factors and signature

-
o %
L Y . -
T* FIG. 29. (a) Cuts;(b) one discontinuity; and
e (c) a y-matrix vertex, of Fig. 2&).
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FIG. 30. Four triple cuts of a diagram for four Reggeon states.

than nine Reggeons. However, [ii0] we argued that the lines to be associated with each cut, such that the loop mo-

anomaly would cancel, after all integrations over transversenentum flows across the cut line in the same direction for

momenta, unless each Reggeon state has anomalous coéach pair. However, if we consider just one triplet and take

parity (not equal to the signaturéWhen SU3) color ampli-  asymptotic discontinuities for each diats abovgby consid-

tudes are obtained by first constructing the color supercorering pairs of external logarithms, we do not obtain a com-

ducting theory with S(2) color, as in[6], the relevant plete triple discontinuity of the diagram. There are always

Reggeon anomaly interactions are those fo(ZWReggeon three internal lines that are not put on shell. As a result, one

states. In this case the simplest Reggeon state with anomar more of the pinchings do not give a complete, invariant,

lous color parity is the color zero, odd signature, threecut of the diagram. To obtain a genuine triple discontinuity

Reggeon state. A Reggeon state that is “vector-like” in that itwe have to combine all the pinchings of logarithms involved

has (close t9 unit angular momentum and appears in odd-in the four sets of cuts shown in Fig. 30. All internal lines are

signature amplitudes, is composed(af least three gluons, then on shell and a complete triple discontinuity is obtained.

and has abnormal color parity, has all the quantum numberghe vertices for the corresponding triangle are the rotation-

of the anomaly current. As a result, the ultraviolet anomalyally symmetric products of-matrices shown in Fig. 31 and

discussed above will directly involve interactions of theso the extracted twelve Reggeon vertex will contain the

anomaly current. It is somewhat remarkable that we are lednomaly.

directly to the anomaly current by looking for the infrared  We will postpone a systematic discussion of cancelations,

anomaly within Reggeon interactions. For@Wcolor, atwo  how and when the anomaly survives after all diagrams are

Reggeon even signature state with octet color and odd col@ummed, etc., until following papers. Our priority in this

parity would also be possible. For color zero, however, thepaper has been simply to find diagrams in which an

three Reggeon state is again the simplest possible. asymptotic discontinuity analysis determines that the
If each Reggeon state must contain at least threanomaly is definitively present in the extracted Reggeon in-

Reggeons, the lowest-order Reggeon vertex that can contaiaraction.

the anomaly is the nine Reggeon vertex. In fact, we showed

in [10] that the analyticity properties of amplitudes imply VI. PION AND POMERON VERTICES IN COLOR

that the anomaly can only appear when signature conserva- SUPERCONDUCTING QCD

tion is also satisfied, which it is not if all three Reggeon _ _ )

states carry odd signature. However, this conservation rule FOr completeness, we briefly describe the physical

should be satisfied only after all relevant diagrams have beeRomeron and pion interactions that appear in color supercon-

added. This would include the addition of all diagrams hav-ducting QCD. Pion scattering is described [6] and we

ing the structure of Fig. 1@) but with (one or two incoming ~ anticipate that the corresponding multi-Regge amplitudes are

and outgoing lines interchanged. To avoid this cancelatioigiven by modifying the procedure described 1] to incor-

additional ReggeonéReggeized gluons or quadkeust be p_orate t_he explicit structure o_f anomaly vertices thz_at we have

present. As we discuss in the next section, additionafince discovered. Here we give only enough details to show

Reggeons are also required for the infrared anomaly to plafhat a staightforward extension of the above analysis will

the dynamical role we anticipate. demonstrate that such interactions contain thg anomaly.
Amplitudes giving vertices with four Reggeons in each When the SUB) gauge symmetry of QCD is broken to

Reggeon state no longer need to be completely symmetri®U(2). the infrared divergencd6,11] that involves the

In fact, when four Reggeon®r more are present in each OCCUrS in diagrams that are very similar to the ones we have

state a new subtlety arises in the process of taking a triple

discontinuity. Consider the diagram shown in Fig. 29, which

is a simple generalization of the diagram of Fig(dhat

we have discussed so much. Two of the single Reggeon lines A

in Fig. 10 are replaced by two Reggeons, with no addi-

tional nonplanarity. In Fig. 30, we have also drawn triplets of VT

cuts through the diagram in four distinct ways. These are the

only possible triplets if we require pairs of nonexterior loop FIG. 31. They-matrix vertices obtained from Fig. 30.

'73-724-73_
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FIG. 32. (a) The triple Pomeron interaction.
(b) A multi-Pomeron interaction.

(a) (b)

discussed. The divergence is factorized off to give a weea boosta,(¢) such that coshi=n is kept finite.

gluon condensate within both piofie. Goldstone boson The diagram that gives the pion-Pomeron coupling uti-
bound states and the Pomeron. The Pomeron is a sing|ged in [6] is shown in Fig. 38). The corresponding basic
Reggeon[i.e. a massive, S) singlet, Reggeized gludn anomaly process is shown in Fig.(a8 The diagram of Fig.

within the wee-gluon condensate and the pion is a quark33p) has a triple discontinuity structure very similar to that
antiquark pair in the same condensate. A diagram contributyf Fig. 30.

ing to the triple-Pomeron interaction is shown in Fig(&®2
and a class of diagrams contributing to multi-Pomeron inter-
actions is shown in Fig. 3B). The scattering states are now
pions and the solid, wavy, lines are Reggeons. The dashed This work was supported by the U.S. Department of En-
lines represent massless gluons that carry zero transvergggy, Division of High Energy Physics, Contracts W-31-109-
momentum and, in collaboration with the anomaly, produceENG-38 and DEFG05-86-ER-40272.

the divergence. Thé-function due to the anomaly produces

transverse momentum conservation at the vertex where th(?APPENDIX: ASYMPTOTIC DISCONTINUITY ANALYSIS
Reggeons interact.

We have drawn the diagrams as basic anomaly processes In Sec. IV we analyze triple-Regge asymptotic disconti-
in Fig. 32, rather than in a form that exhibits their unphysicalnuities using a generalization of the simple light-cone analy-
discontinuity properties. The triple Pomeron process in Figsis that we develop in the following.

32(a) corresponds to a diagram that is just a little more com- Consider the box-diagram illustrated in Fig. 34. Initially
plicated than the diagram of Fig. 30. There is an additionalve ignore the role played by numerators and so we consider,
Reggeon in each of the initial and final wee gluon configu-in the notation shown,

rations. The accompanying Reggeon state contains two

gluons—which can give the imaginary part of the single ) N S

Reggeon state that is anticipated to survive in the Pomeron! (S:t:M ):f d*k[k"—m+ie€]

[6]. In both Figs. 32a) and 32Zb) the three multi-Reggeon

ACKNOWLEDGMENTS

. . 2 -1
(Pomeron states that are interacting through the anomaly all q o 22
have a wee-gluon component that participates in the diver- X[\ P 2 Tk m*+iel  X[(q=k)"=m
gence. In the notation of Eqé3.10—(3.14) the correspond- 5 .
ing basic anomaly process involvéss already discussed in Tiel Y pr e q ) 24
Sec. Ill) taking the limitl —0 while simultaneously making el P35 K mrie (A1)

FIG. 33. The pion-Pomeron couplingg) the
Feynman diagram) the basic anomaly process.

(a) (b)
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Ll
P- q/2\1<mwwvx7(p,+ q/2
t k )‘ s=x2/
! / -
P +q/27( """""""" \p -q/2 A=>0
\,_/ FIG. 35. A-dependence of the branch cut.
s which is finite and so can be neglected comparedto.
FIG. 34. The box diagram. Note also that
12
This integral is, of course, a function of invariants only, even k_~0, k2~0=>k, ~2ko~ p_, (A6)

though it is specified using four momenta. Indeed, we can
evaluate the integral using complex, unphysical, momenta
that give physical values of the invariants, provided we argwe use this approximation in the analysis of Sec). [We
careful to define the integral via analytic continuation fromthus obtain,
the appropriate physical momentum region. Our purpose in
this section is to discuss momentum dependence of this kind
for the simplifying case of the leading asymptotic behavior,
in a manner that we apply to much more complicated dia-
grams in Sec. IV. PL pr-1 L2 11
For illustrative purposes we set bot=0 andm=0 in XJO dk-[k-=P-] P k- 5i+'6] '
Eqg. (A1) and ignore infrared divergences. We can then write

I(S)S—>OO7Tif dzki[—kf+i6]72

(A7)

— M2 -2 2.: 1-1 We are specifically interested in the leading real and
(5)= f kil T (prk) +ie] imaginary palrats of Eq(f&?). They are given by the I%garithm
generated by the pole factor containiRg as it approaches
thek_=0 end point of the integration. If we keep only the
integration over 8.k_<\P’ and takex<1 so that we can
make the approximatiok_ /P’ ~0 we obtain

X[(p'—k)?+ie] L. (A2)

We choose a particular Lorentz frame and introduce light
cone coordinates such that

1
P+ P+ 1 I(s) ~ winZk —K2+ie] 2—
P=l%5 % 0 +O(§), Pi~s— ( )SHOO Kil—ki+ie] P
’ ’ ’ ’ \PL L2 i1
P.+P. P,-P. | X dk_(Pik_—k{+ie)
p’= 2 ) 2 ,EL (A3) 0 -
so thats=P P’ [1+0O(1/s)]. We can then write ~ Y [Iog(P+P’_)\—kf+ie]J1(0)
P’ =
I(s) ~ Ef d?k  dk,dk_[k k_—Kk2 +ie] 2 1 1
w2 SATEEREL R -3 Iog(s)\+ie]Jl(0)~g[logs+iq-r]J1(O)
X[(ky +Py )k —k2 +ie] L (A8)

whereJ;(0)~ fd?k, [ —k?+ie] 2 is infinite, but would be
finite if we added a mass to the particle propagators.
(A4) As we have indicated, the sign of the imaginary part in

To obtain a nonzero answer by closing tke contour, Eq. (A8) arises directly from thee prescription. To obtain
with k_ and k, fixed, the three poles given by the three the leading imaginary part or, equivalently, the leading be-
square brackets of E§A4) must not be on the same side of havior of the discontinuity ins, it suffices to keep thee
the contour. This requires<Ok_<P’ and, in this case, the dependence while dropping thekf dependence in thk_
k. contour can be closed to pick up only the pole in the lasintegral. Equation(A8) is, of course, independent of. It

X[(ke=PL)(ko=PL)=(k, —p')*+ie] "

bracket. This gives will, however, be useful to note the role hfwith respect to
the analytic structure df(s) in the s-plane. As illustrated in

(kl—Pl)z—iG Fig. 35, the finite end of the branch-cut asociated with the
k,=P,+ —_— (A5) logarithm in Eq.(A8) moves out ag. —0. This is irrelevant

(k-—P2) to the asymptotic behavior and the “asymptotic discontinu-
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Y - '+q/2
- P O S p-a/2 P'+a/
/Py

(a) (b) {c) k}‘ a2
FIG. 36. Integration contours foa) Eq. (A7); (b) P, P +d/2 P-4

—e?™P, ; (o) Fig. 15.

FIG. 37. The twisted box diagram.
ity” clearly remains unchanged. We, nevertheless, exploit
this simple feature in evaluating multiple discontinuities in known, of course. It is also well known that the cancelation
Sec. IV. Also, although EqAS8) is an invariant result, for our  fails when a non-Abelian symmetry group is present and that
purposes it will be useful to keep the dependence on Bgth  a consequence is the Reggeization of the gluon.
andP” and discuss the dependence of the phasf on We can briefly summarize the effect of adding numerators

The initial k_ integration contour for Eq(A8) is as to Eq.(Al) as follows. First we note that the numerator of

shown in Fig. 36a) with the pole ak,=kf/P+ indicated by  the internal fermion propagator carryi®), gives an addi-
a dot. AsP, (and therefores) completes a circle in the tional P, factor of the formy_P, . As a consequence, in
complex plane, the pole moves around the end point as illu=d. (A8), there is the replacement
trated in Fig. 36b). The result is that the phase of the loga-
rithm in Eq. (A8) changes fromr to — 7 and there is a net j dk (P k_+---)~t
discontinuity of 2ri/s, as is given directly by EqA8). This o
is also the result that would be obtained by applying directly
the standard cutting rules to Fig. 34, cut by the thin line, if oLl
thek, andk_ integrations are used to put the vertical lines _}%P+jodk7(P+k7+ ) oGP+
on shell. The above discussion is simply an asymptotic
analysis of how the two cut propagators pinch the integration

region to generate a branch pointsnintroducing limits  gnq there is no inverse power Bf. . Also, each coupling to
the |n_tegrat|on region for the original integral such that they gluon gives ay matrix factor and since the external fer-
pinching only takes place far~ P, >1/\. Note also that the  mion Jines are on-shell we can use the asymptotic form of

residue functiod;(0), multipying the logarithm in EQ(A8),  ihe Dirac equatiori.e. y_ P, ¢~mi) to write
is directly obtained from the original box diagram by putting

(A9)

the cut lines giving the discontinuity on-shell using the lon- (Pilyuy—v.lIPs)
gitudinal momentum integrations. This is a very simple ex-
ample (the simplest of the relationship between a disconti- _p y-Ps y-Py P
nuity and asymptotic behavior. HTm YTy *
In evaluating unphysicgmultiple) discontinuities in Sec.
IV we do not assume that the standard cutting rules apply. =(P,|P,y_P.|P.)/m?* ~P,/m.
Instead we directly analyze the discontinuities produced by (A10)

logarithms. To understand how a discontinuity generated by

a logarithm can provide leading asymptotic behavior we notel his gives another power ¢ (~s) provided that the cor-
that the twisted diagram of Fig. 37, fay=0, differs from  responding factor oP’ is present in the finite momentum
that of Fig. 34 only byP, —— P, . As a result, the integra- part of the scattering process. Not surprisingly this factor
tion contour and pole position of Fig. @6 is replaced by emerges from that part which would dominatePf were
that of Fig. 36c¢). In this case a discontinuity is generated for large. However, we want to emphasize that this selection is
s<0. Fors>0 there is no phase generated by Fig. 37 andnade only by the need to form a Lorentz invariant amplitude
only the real logarithms cancel when this diagram is added térom the noninvariant large momentum process.

that of Fig. 34. The leading behavior of the discontinuitg,in Finally we note that the above analysis goes through with
i.e. the imaginary part, produced by the diagram of Fig. 34very little modification if we take botim? andq to be non-
remains. This cancelation of the logarithms is very well-zero so that Eq(A2) will not be infrared divergent.
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