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We derive the nonequilibrium real-time evolution of @&¢N)-invariant scalar quantum field theory in the
presence of a nonvanishing expectation value of the quantum field. Using a systeiatixphhsion of the
2P| effective action to next-to-leading order, we obtain nonperturbative evolution equations which include
scattering and memory effects. The equivalence of the direct method, which requires the resummation of an
infinite number of skeleton diagrams, with the auxiliary-field formalism, which involves only one diagram at
next-to-leading order, is shown.
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[. INTRODUCTION scriptions of the large-time behavior of quantum fidlds],
which employ the loop expansion of the 2P| effective action
Nonequilibrium quantum field theory has a wide range ofrelevant at weak couplind8,9,10. For systems in or close
applications, including current and upcoming relativisticto equilibrium recent applications of the loop expansion can
heavy-ion collision experiments at the BNL Relativistic be found in Refs[11-14. A 1/N expansion has the advan-
Heavy lon Collider(RHIC) and CERN Large Hadron Col- tage over the loop expansion that it is not restricted to small
lider (LHC), phase transitions in the early universe or thecouplings, an observation made in the context of nonequilib-
formation of Bose-Einstein condensates in the laboratoryrium quantum field dynamics already for quite some time
Important theoretical progress has been achieved with effe¢415]. However, in order to describe quantum scattering and
tive descriptions based on a separation of scales in the wealiermalization the inclusion of the usually discarded next-to-
coupling limit[1], or for systems close to equilibrium using leading orde(NLO) contributions is crucial.
approximations such g@sonlinear response or gradient ex-  In Ref. [4] the 1N expansion of the 2P| effective action
pansions [2]. However, the description of far-from- has been carried out to NLO in the symmetric regime for a
equilibrium dynamics is still in its infancies. The situation is vanishing expectation valug of the quantum field. Here, we
complicated by the fact that typically there is no clear sepasderive the evolution equations from the NLO approximation
ration of scales which is valid at all times and it is often of the 2P effective action for nonzeré. A nonvanishing
difficult to identify a small expansion parameter. For ex-field expectation value is important to describe the physics of
ample, standard perturbation theory is plagued by the prolieavy ion collisions, where the presence of a substantial sca-
lem that a seculaunboundegltime evolution prevents the lar quark-antiguark condensate signals the spontaneous
description of the late-time behavior of quantum fields. breakdown of chiral symmetrjin the language of th©(4)
Practicable nonperturbative approximation schemes maljnear sigma model for two-flavor QCD one has-{qq).]
be based on the two-particle irreducib(Pl) generating Important nonequilibrium applications in this context include
functional for Green’s function§3]. Recently, a systematic the formation of disoriented chiral condensatB<CCs, cf.
1/N expansion of the 2P| effective action has been propose[lL6]) or the decay17] of parity odd metastable states in hot
and applied to a scalaD(N)-symmetric quantum field QCD [18]. Similar far-from-equilibrium applications in in-
theory[4]. The approach provides a controlled nonperturbaflationary cosmology concern the phenomenon of preheating,
tive description of far-from-equilibrium dynamics at early where the dynamics of the inflatap is expected to trigger
times as well as the late-time approach to thermal equilibexplosive particle productio(see, e.g.[19]). The availabil-
rium and can be applied in extreme nonequilibrium situadty of a quantum field description of the dynamics is impor-
tions[4,5]. This is in contrast with the standard\NLexpan-  tant for cases where the effectively classical approximation
sion of the 1P| effective action which is secular in time once(in the context of inflation, see e.fR0]) may not be appro-
direct scattering is taken into accodifi. The 1N expansion priate.
of the 2PI effective action extends previous successful de- In this work, we perform a systematicNL/expansion of
the 2Pl effective action to next-to-leading order. A detailed
discussion of the classification of diagrams is given in Sec.

*Email address: aarts@mps.ohio-state.edu Ill. This allows us to give the effective actigisec. I\V) and
"Email address: dahrens@physik.uni-bielefeld.de the equations of motiofSec. \j in a straightforward man-
*Email address: baier@physik.uni-bielefeld.de ner. In Sec. VI it is shown how this result is obtained using
SEmail address: j.berges@thphys.uni-heidelberg.de the auxiliary-field formalisn{21]. The causal equations for
'Email address: serreau@thphys.uni-heidelberg.de the spectral and statistical functions are listed in Sec. VIl and
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a perturbative approximation to second order in the couplin%\l
constant is given in Sec. VIII. In two Appendixes we discuss
further features of the equations and the realization of Gold
stone’s theorem.

ith ¢?=dagpa and So(x—y)=8(x°—y%) &% (x—y). The
contributionI’,[ ¢,G] is given by all closed 2Pl graphwith

the propagator lines set equal®j3]. The effective interac-
tion vertices are obtained from the terms cubic and higher in
¢ in the classical actiorfl) after shifting the fieldp— ¢

Il. THE 2PI EFFECTIVE ACTION +¢. In presence of the nonvanishing expectation vafue

. . this results in a cubic and a quartic vertex
We consider a real scald-component quantum field,

(a=1, ... N) with a classicalO(N)-invariant action
A
Lin(X; b, p) = — BN Pa(X) Pa(X) p(X) ep(X)

1 1 1 )
E‘?XO(Pa(?xO(Pa_ Eax‘Pa&x‘Pa_ Em PaPa

S[(P]:J dd+1x \
- M[(Pa(x)@a(x)]z- (6)

A 2
- M((Pa‘/’a) . (1)
Dynamical equations fop, andG,, can be found by mini-
mizing the effective action. In the absence of external
Summation over repeated indices is implied asel(x%,x).  sources physical solutions require
All correlation functions of the quantum theory can be ob-
tained from the effective actiol’[ ¢,G], the two-particle ST[$,G]
irreducible(2P]) generating functional for Green’s functions —— =0,
parametrized by the macroscopic fiefd(x) and the com- 8¢a(X)
posite fieldG,p(X,Y), given by

)

which leads to the macroscopic field evolution equation

¢a(x):<‘Pa(X)>1 (2
—| Ogt+m?+ 6LN[¢2(X)+be(X.X)] da(X)
Gap(X,Y) =(Teea(X) @p(¥)) —(@a(X)){ @p(Y))- ©)
_ A 5F2[¢!G]
= 3_N¢b(X)Gba(X1X)_ X €3)

The brackets denote the expectation value with respect to the
density matrix and', denotes time-ordering along a contour
C in the complex time plane. At this stage the explicit form as well as
of the contour is not needed.

A discussion of the defining functional integral of the 2PI
effective action can be found in Rd8]. Following[3] it is o'l ¢,G] _
convenient to parametrize the 2P| effective action as OGap(X,y)

(€)

i which leads to

F[¢,G]=S[¢]+i§TrlnG‘1+ >

TrGo '(¢)G+T3[¢,G]
Gan (%,Y)=Ggap(X,¥) = Sap(X,Y; $,G) (10)

+ const. 4)
with
Here the classical inverse propagait@ral(@ is given by
o 0Ti$.G]
L sy San(x.Y;$,6)=2i T s (1)
G0V = 5430 68u(y)

Equation (10) can be rewritten as a partial differential
equation suitable for initial value problems by convolution

)\’ .
=—( Oyt M2+ = 62(x) | Bap with G
6N
A’ 1 . . . . . . .
_ A graph is two-particle irreducible if it does not become discon-
+ 1) 5
3N ¢a(x)¢b(x)) cx=y) ® nected upon opening two propagator lines.
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JGO,ab(XaZ)Gbc(Ly)
z

:fzzac(xaz)ecb(zry)"'Bab5c(x_y)r (12

where the shorthand notatiofy= [, dZ°fdz is employed.
With the classical inverse propagat@) this differential
equation reads explicitly

— | O, +m?+ L(pz(x) Gap(X,Y)
X 6N ab\ N

A
= ﬁ ¢a(X) ¢C(X)Gcb(X,y)

+i fzzac(xaz ¢aG)Gcb(ZvY) +i 5ab5C(X_ y)-

(13

The evolution of¢, andG,;, is determined by Eqg¥8) and
(13), oncel’,[ ¢,G] is specified.

IIl. THE 1 /N EXPANSION OF THE 2PI
EFFECTIVE ACTION

In this section we discuss theNL/expansion of the 2PI
effective action proposed in Ref4] in more detail. We
present a simple classification scheme base@@x) invari-
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G,p (we neglect all space-time dependengies
s=tr{(pp)PrGY1- - - (pp)PnGn]

=(p?)P1T TP Mr(hp GU1) - - -tr(hp GIn)

for p;#0, where the; andq; (i=1, ... n) are any positive
integer.[For all p;=0 the right-hand sidéRHS) is given by
trG9* "+ ] The second line in the above equation fol-
lows from simple contraction of the field indices and corre-
sponds to the fact that all functions ¢f and G, which are
singlets undelO(N), can be built from the irreduciblé.e.
nonfactorizable in field-index spacmvariants

(14

$?, t(G") and t(HpHG").
We note that for giveN only the invariants witm=<N are
irreducible. However, we will see below that for lower orders
in 1/N and for sufficiently largeN one hasn<<N. In particu-

lar, for the next-to-leading order approximation one finds that
only invariants withn<2 appear.

Since each single graph contributing I ¢,G] is an
O(N) singlet, we can express them with the help of the set of
invariants in Eq(15). The factors oN in a given graph have
two origins: each irreducible invariant is taken to scale pro-
portional toN since it contains exactly one trace over the
field indices, while each vertex provides a factor df 1The
leading order(LO) graphs then scale proportional kb (as
the classical actiors), next-to-leading orde(NLO) contri-

(15

ants which parametrize the 2P| diagrams contributing tdutions are of order one, the next-to-next-to-leading order

I'[ #,G]. The effective action at a given order inNLcan

(NNLO) scales as N and so on. This provides a well-

then be obtained from a straightforward summation of thedefined expansion df[ ¢,G] in powers of 1IN. We stress
diagrams contributing at that order. The NLO result forthat by construction each order in theNléxpansion of the

I'[ ¢,G] for general field configurationsg(, G) is presented

2P| effective action respect®(N) symmetry. In particular,

in Sec. IV. Below we will compare the direct summation this is crucial for the validity of Goldstone’s theorem in the
procedure described here with an alternative method, whichase of spontaneous symmetry breaking. For constant

employs an auxiliary field to simplify the summatidof.
Sec. V).

A. Counting rules for irreducible O(N) invariants

Following standard procedurd®2] the interaction term
of the classical action in Eq1) is written such that§ ¢]
scales proportional tdl. From the fields¢, alone one can
construct only one independent invariant un@gmN) rota-
tions, which can be taken as¢ip=¢?>=p,p,~N. The

minimum ¢, of the classical effective potential for this

theory is given by¢§=N(—6m2/)\) for negative mass-
squaredn? and scales proportional td. Similarly, the trace

$»#0 one observes that the mass matrix
~ 8T [, G p) ]/ 5p, 8y, , With GEBY ) being the so-
lution of Eg. (9), contains N—1) massless “transverse”
modes and one massive “longitudinal” modsee Appendix

A for a discussion

B. Classification of diagrams

In the following we will classify the various diagrams
contributing tol'[ ¢,G]. The expressioni4) for the 2PI ef-
fective action contains, besides the classical action, the one-
loop contribution proportional to Tr IG*1+TrG(§1(¢)G
and a nonvanishind’,[ ¢,G] if higher loops are taken into

with respect to the field indices of the classical propagatoaccount. The one-loop term contains both LO and NLO con-

Gy is of orderN.
The 2PI effective action is a singlet unde(N) rotations
and parametrized by the two fields, and G,,. To write

down the possibleO(N) invariants, which can be con-

structed from these fields, we note that the numberpof
fields has to be even in order to construct@fN) singlet.
For a compact notation we usé §).,= ¢.¢,. Consider a
general singlet composed of arbitrary powers ¢t ., and

tributions. The logarithmic term corresponds, in absence of
other terms, simply to the free field effective action and
scales proportional to the number of field componéht3o
separate the LO and NLO contributions at the one-loop level
consider the second term &g, Y(#)G. From the form of the
classical propagatai5) one observes that it can be decom-
posed into a term proportional to @)~N and terms(ne-
glecting all the space-time structiire

045008-3



AARTS, AHRENSMEIER, BAIER, BERGES, AND SERREAU PHYSICAL REVIEW 86, 045008 (2002

a b

b a

FIG. 1. Graphical representation of tledependent contribu- FIG. 3. NLO “double bubble” contribution.

tions forI",=0. The crosses denote field insertiong, ¢, for the
left figure, which contributes at leading order, ardb, ¢, for the

; VgtV ; ;
right figure contributing at next-to-leading order. comes with a factorX/N) 3" Y4 from the vertices. The high-

est power ofN is obtained by contracting thé and theG
field such that the largest number of invariant&tt¢?) and

~ GLN[”(¢¢)U(G)+2 tf(ppG)]. (16) (oo G"=1) appears. The structure with the highest power
of N,

This can be seen as the sum of two “2PI one-loop graphs”
with field insertion ~¢,¢, and ~ ¢ by, respectively.
Counting the factors oN coming from the traces and the
prefactor, one observes that only the first of the two terms in
Eq. (16) contributes at LO, while the second one is of orderis ¢ order one and contributes therefore at NLO.

one (see Fig. 1 _ _ _ For V=0 the corresponding diagrams are shown in Fig.
We now turn tal,[ ¢, G] which contains all 2P diagrams 4 4] Forv,=2 the infinite series of graphs is presented in

beyond the one-loop level. The graphs are constructed frOI’f_lig_ 5. We will now argue that graphs wit,=4 are not

the three-point vertex and the four-point vertex in the inter~,, naricle irreducible such that we have classified the com-

a_1ction Lagrangiar(6) with G associated t_o the propagator plete NLO contribution. We note that the invariantgifG)
lines. From the three-ve(rjt.eae ba Onﬁ. ehaﬂly ob?_e:\ée.s thaF connects the field insertior ¢,¢,, with a single propagator
onezc_annot construct a diagram WIIKI: asate INSertiof e i 5 diagram contains that invariant more than once it is
~$“=daga. As a consequence, all loop diagrams beyondyavs possible to disconnect the graph by cutting two
the ?ne-loop Ievelncan only depend on the basic invariantgnes2 consequently, a diagram with the above structure and
tr(G") and tr(¢¢ G"). Furthermore, we note that the invari- i v/, >4 is not two-particle irreducible and does not con-
ant tr(G) = Ga, can only appear if the graph contains a tad-yip e 1o I'[ 5, G]. We therefore have classified all possible
iagrams which contribute to the 2PI effective action at NLO

pole as shown in Figs. 2 and 3. The first graph, Fig. 2, iy
proportional to the product of the terfir(G)]* and a factor 5 present the result in the next section. In Appendix A we

/N from the quartic vertex. It therefore contributes at LO 10 giscyss possible further approximations consistent with an
the effective action. The graph in Fig. 3 is proportional toexpansion in powers of iU,

tr(G?)/N and is of order one. The two-loop graphs shown in
these figures are indeed the only two-particle irreducible

V3+Vy

[tr($¢G) V¥ tr(GH)]V+"Ve% (19

N

graphs which contain a tadpole. As a consequence, the only IV. THE 2PI EFFECTIVE ACTION AT NLO
invariants that can arise beyond two loops ar&¥{?) and We write
tr(pp G"Y).
Using these considerations, one can now straightfor-
wardly continue to classify all the diagrams at a given order I',[¢,G]=T5[G]+T'Y[¢,G]+- - (20)

of the 1N expansion. Consider a graph withy three-point
andV, four-point vertices. The number of internal liness WhereFEO denotes the leading ordétO) and rr;Lo the

determined by the familiar relation next-to-leading ordefNLO) contributions. The LO contribu-
tion to I';[ G] is given by the diagram presented in Fig. 2,

We observe again that; has to be even. This graph contains ?To see this, note that the number of lodp# these diagrams is
V3/2 field insertions~ ¢, 2V,4+3V; propagatorsG and  given by the standard relation
V,

a b L=1-V3—V,+1=V,+ 73 +1, (19
where we have used E(L7) for the second equality. Tadpole dia-
grams are forbidden in those graphs and each “bubbleGj(
corresponds to one closed loop. From the above relation one then
observes that the total number of loops in the diagram is given by

a b the number of bubbles plus one. In particular, one can disconnect
the diagram by cutting two lines connecting the fields insertions
FIG. 2. LO contribution to the 2PI effective action. [the terms~tr(¢$pG)].
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COQA-O-

FIG. 4. NLO ¢-independent contribution to the 2PI effective action. Higher loop diagrams in the infinite series can be obtained from the
previous one by introducing another “rung” with two propagator lines at each vertex. The resummed series including the prefactors not
displayed in the figure is given by the first term in E82).

)N The functionl(x,y;G) is defined by
LO
PGI= - g [ GaxGm(x. @1

This contribution is¢ independent.

The NLO contribution consists of an infinite series of dia-
grams which fall into two classes. The first class is indepen-
dent of ¢ and is constructed with only quartic vertices. It —j L 1(x,2:G)Gar(2,Y)Gap(ZY), (25)
contains the complete NLO contribution whes 0 and has 6N J, T Tan eI Eant sy
been resummed in Ref4]. The diagrams are shown in
Fig. 4. The second class depends ¢rand contributes for

the case of a nonzero field expectation value. This series Qfng resums the infinite chain of “bubble” graphs, which can
diagrams is shown in Fig. 5 and can be resummed as welhe seen by re-expanding the series. The functi¢rsy; G)

As a result, the NLO contribution tb',[ ¢,G] is given by 54 the inverse oB(x,y:G) are closely related by

the sum of the two resummed expressions and Feads

A
[(X,y;G)= ﬁGab(x,y)Gab(x,w

[ i B (x,y;G)=8,(x—Yy)—il(X,y; 2
F9L0[¢,G]=|§TrCLn[B(G)]+% (X,y;G)=6c(x—y) —il(x,y;G), (26)

) which follows from convoluting Eq(23) with B~ and using
X Lyl(x,y,G)¢a(x)Gab(x,y)¢b(y). (22) Eg. (25. We note thatB and| do not depend onrp, and
I';[ ¢,G] is only quadratic ingg at NLO. Hence, the com-

) i plete effective action at NLO contains only quadratic and
In the above equation we have defined quartic terms ing.

A
B(X,YiG) = 8e(X—Y) +i gsGan(X.Y)Gan(x.Y), (23 V. THE EQUATIONS OF MOTION

From the 2Pl effective actiof’[ ¢,G] at NLO we find
equations of motion for the macroscopic fieldsand G, as
indicated in Sec. Il. The equation for the field expectation
value (8) reads at NLO

and the logarithm in Eq22) sums the infinite series shown
in Fig. 4,

N
TroLn[B(G) = L( imGab(x,x)Gab(x,x))

- Dx+m2+6LN[¢2(X)+Gcc(X1X)] ¢a(x):Ka(XaX)-
10 (. X\ 2
-3/ [igGutenGatey) 0
A
X| 15 Ca (Y X)Garp (¥, X) [+ - - + + +

(24)
FIG. 5. NLO ¢-dependent contribution to the 2Pl effective ac-
tion. Each diagram in the infinite series can be obtained from the
3Besides the dynamical field degrees of freedprand G we will previous one by introducing another “rung” with two propagator
introduce a number of quantities which aresummegfunctions of  lines at each vertex. The resummed series is given by the second
these fields. These functions will be denoted by either boldface oterm in Eq.(22). The complete NLO contribution is given by the
Greek letters in the following. sum of the diagrams in Figs. 4 and 5.
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We have written the LO contribution of the evolution equa-

tion on the LHS and combined the NLO contributiorf as
Ka(X,y)=Ka(X,y; ¢,G)
A -1
=3n).B (XZG)GCan(y,2) du(2), (28)
z

evaluated ak=y. We have writterK ;(x,y) as a function of
x andy for later convenience.

Equation(10) for G_}(x,y) can be completed using Eq.
(12) for the self-energy. The LO contribution is simply

LO(x,y)=—i A (X,X) 8apdc(X—Y). (29
a 1 6N CcC 1 a

To obtain the NLO contribution the following identity may
be helpful

Sl(u,v:G) 6B Yu,v;G)
=1
0Gap(X,Y) 0Gap(X,Y)

=388 (UXG)Gan(x,y)BH(Y,v:G), (30

where we used that

6B(u,v;G) A

Caxy) 3N Carx:y)dU=x)oc(v —y). (3D)

Collecting all the pieces, we find that E4.0) for the inverse
propagator can be written as

iGor(x,y)=

O, +m2+ —[¢>2(x)+GCC(X X)] | BapSe(X—Y)

—3—NB L(X,Y:G) da(X) p(Y) +iD(X,Y)Gap(X,Y),
(32
with the definition

D(x,y)=D(x,y;¢,G)
A A )2
=iz l(><yG)+(3N) fuval(x,u;G)an(U)

X Gap(U,0) p(v)B~H(v,y;G). (33

SinceB~! is of order one and of order 1N, the second
line on the RHS of Eq(32) corresponds to the LO and the
third line to the NLO contribution.

“Note that the classical inverse propagaii@r(}1 contains a LO
and a NLO part.

PHYSICAL REVIEW 86, 045008 (2002

Equations(27) and(32) together with Eqs(28), (33) and
(25), (26) form the complete set of equations which have to
be solved to obtain the 2PI effective action at NLO in the
1/N expansion. FronT'[ ¢,G] all correlation functions can
then be found by derivatives with respect to the fields as
functions of the known¢ and G. We stress that the N/
expansion of the 2PI effective action is done on the level of
the effective action. There are no further approximations in-
volved on the level of the evolution equations.

We note that Eq(33) contains a double integration over
the time contouC which can be inconvenient for numerical
purposes. It turns out that it is possible to disentangle the
nested integrations by exploiting the functikp . Convolut-
ing the functiondB andD and using the definitions fd and
K, in Egs.(23) and(28), one obtains

A A
D(X,y) =i w%(X_Y)"‘ wKa(yax)ﬁba(x)

A
-l ﬁLGab(X,Z)Gab(x,z)D(z,y)_ (34)

We observe that the nested integrals have disappeared in Eq.
(34) without any problems. In Appendix B we work out more
details for the equations preserving the nested-integral struc-
ture. It is also convenient to rewrite E@8) for K, such that

B does not appear. By convolutiigjandK ,, one obtains

A
Ka(x,Y)= g5 #6()GoalX,Y)

A
i | Goex DG DK 2y (@9

As a result, we find thaB and B~ are eliminated com-
pletely from the coupled equations. We also see that the gap
equations foiD andK, are local in one time variabléhere

y), which is useful for numerical implementation.

The form of the equation of motion for the inverse propa-
gator, Eq.(32), is suitable for a boundary value problem and
can be used, in particular, to discuss the propagator in ther-
mal equilibrium by specifying the contourto the Matsub-
ara contour along the imaginary-time axis. However, to deal
with nonequilibrium time evolution, i.e., an initial value
problem, the form already given in E¢L3) is more useful.

At NLO we find that the partial differential equation for the
propagator takes the form

A
- I:|X+m2+ ﬁ[ﬁbz(x)'l'Gcc(XaX)] Gab(xvy)
=1 0ap0c(X—Y) + da(X)Kp(X,Y)
_iJD(sz)Gac(sz)Gcb(zay)- (36)

To summarize, Eq927), (36) together with Eqs(34), (35)
form the complete set of equations which have to be solved.
They are completely equivalent to our first set containing Eq.
(32) for the inverse propagator.
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VI. THE AUXILIARY-FIELD METHOD 2 1

1, = oY D]

In this section we show that the equations derived in the 1Gojj(xy; @)= 5D ()50 () (42)
previous sections can also be obtained in the auxiliary-field y

formulation. In particular, we discuss the difference between _ — _

the 1N expansion of the 2P| effective action and the “bare- where®;=(¢,,x) andS[®]=5[ ¢, x]. It has the following

vertex approximation” introduced in Ref21]. components:
Following Refs.[21,22 we rewrite the action by intro-
ducing an auxiliary fieldy as 29 ¢, x] _
o o=~ [Oxt M+ x ()] 8apSe(x—y),
L a1 8ba(X) 36hs(Y)
S[<P,X]:_f 5 @a(0+ M) @a= oo X*+ 5 X@aPal- -
X 2
3 #Spx] 3N
Sx(x)éx(y) A
Integrating outy yields the original action1). From the
Heisenberg equations of motion we see that the auxiliary 82 ¢ ;]
field represents the composite  operatory(x) ———— =~ (X) S X—Y).
=N (6N) (X)) @a(X). The following one- and two-point OxX(X) 5aly)

functions can be written down:
These operators are symmetric. Similarly, the matrix contain-

da()=(@a(X)), x(X)={(x(X)), (38  ing the two-point functions is defined as

d Gap K,

- (o T -
Ganl%,Y) =(Tega)p(¥)) (a0 p(¥),

here K 4(x,y) =K,(y,X) [21]. Hence, thi trix is al

Ka(Y) = (Tex(0 @a()) — (X0 ) @a(y)) e g2y = Kalyx) 124 Henee, this mairix fs also

K The 2Pl effective action can now be written down and

D(X,Y) =(Tex(X) x(¥)) = (x )} x(¥))- _ — i i
I[®,Gl=9®]+ 5Tr|ng—1+ ETrggngrrz[g]Jrconst.
We note that additional “propagators” appear due to the in- (44)
troduction of the auxiliary field. Sincg is not a dynamical

degree of freedom, onlg,,, has the physical meaning of a S o :
propagator. The role of the other one- and two-point func- Herel'; is given by all two-particle irreducible graphs made

tions is to implicitly perform infinite resummations, which With lines representing the *propagator€,, K,, K,, and

were carried out explicitly in the direct method in the previ- D, and the vertex- 3 x(x) ¢a(X) ¢a(x). In the auxiliary-field

ous sections. formalism,I", does not depend on the expectation value
Following [21] the quantum fields are combined in an  The equations of motion for the field expectation values

extended field witiN+1 components, follow by variation of ' with respect tog, and y. We find

(I)i:

Pa _ 1 —
X), 49 ~ [0t m? 4 X001 = 5 [Ka(x,x) + Ka(x,x)]

wherei=1, ... N+1. One may now formulate the 2PI ef- =Ka(x,%), (45)

fective action for this quantum field theory by coupling

sources to the field;(x) and the bilocal fieldD;(x)®;(y) and

[21]. We would like to point out that in the presence of

sources the original quantum theory and the one with the — )

auxiliary field are potentially different. For instance, in the x(x)= 6_N[¢ () +Gec(x,X)]- (46)

second formalism one may differentiate with respect to the

bilocal source and obtain correlation functions of

x(X)@a(y). This possibility is not present in the original

theory. However, as we will see below, on the level of the

equations of motion in the B/ expansion of the 2P1 effective ST,[G]

action at NLO, the two approaches yield identical results. Gil=Got—2i —=— v (47)
The inverse of the classical propagator is b 1l 3G

The equation for the two-point function follows by variation
with respect tog, which gives
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By convoluting this equation from the right wit and de-
composing the self-energy’as

i Teld] _ ( S Ea), s

8Gij B, I
one obtains the following set of coupled equations:
— [t M+ x(X)1Gap(X.Y)

= ¢a(X)Kp(X,Y) +18apSc(X—Y)

+i Jz[iac<x.z>ecb<z,y>+Ea<x,z)+<b<z.y>]. (49)
3N (o
S Ka) = 003+ [ [E4(x2)Gua(2)
+1(x,2)Ka(zY)], (50)
3N
TD(X,Y)
= ha(X)Ka(X,y) +i6c(x—Y)
+iL[Ea(x,Z)fa(z,y)+H(x,Z)D(z,y)], (51)
—[ O+ m2+ x(x) 1K a(X,Y) = ¢pa(X)D(X,Y)
+i fz[iab<x,z>ib<z,y>
+E.x2D(zy)]. (52

We note that Eq(52) for fa is not an independent equation

sinceK ,(x,y) =K,(y,X). Therefore, Eq(52) is not needed
in practice.
To find explicitly at which order in the N expansion of

the 2PI effective action specific diagrams contribute, we not
that in the auxiliary-field formalism the possible irreducible

O(N) singlets are of the form

tr(G"), D, tr(KG"K), (53
with n=1. From Eq.(5)) it follows that D~ 1/N, and from

Eq. (50) we find that

1 +
tr(KG“K)~mtr(¢¢G” 2) (54)

PHYSICAL REVIEW 86, 045008 (2002

FIG. 6. NLO contribution in the N expansion of the 2P| ef-
fective action in the auxiliary-field formalism. The full line denotes
the scalar propagat@ ., , the dashed line the auxiliary-field propa-
gatorD.

NLO and NNLO in the 1IN expansion of the 2Pl effective
action in the auxiliary-field formalism.

We find that the NLO contribution td', consists of one
graph only,

r3H161= 1'—1 fxyeabu,y)Gab(x,y)D(x,y>, (55

shown in Fig. 6. From this expression the self-energies de-
fined above follow:

SNO(X,y) = — Gap(X,y)D(X,Y),

1
HNLO(Xay) == EGab(ny)Gab(Xay)v
(56)

EN(x,y)=0.

Inserting these expressions in E¢49)—(51), we immedi-
ately recover our final result at NLO, Eq&7), (34-36,
obtained by the direct method in Sec®V.

Only three diagrams contribute in the auxiliary-field for-
mulation at NNLO. They are shown in Fig. 7. We note that
diagrams with the mixed propagatKr, (resulting in a non-

?/anishingEa and Z,) appear only at NNLO. In Ref21]

the first NNLO diagram,

ryMoTg)= fxyKamy)Gab(x,y)Exx,y), (57)

was combined with the NLO diagram of Fig. 6 in the so-
called bare-vertex approximatigBVA ). We conclude that in
the presence of a field expectation value the BVA approxi-
mation is not consistent with the Nl/approximation of the
2P| effective action discussed here. For vanishinghe 1N

is proportional to I as well. Using this scaling behavior it approximation of the 2PI effective action at NLO and the
is straightforward to give the diagrams that contribute atg\/a ansatz are identicdl.

Note that in the auxiliary-field formalisrﬁab does not receive a

local LO contribution. It differs therefore from the self-enefy,
in the direct method, obtained by varyihg[ ¢,G].

5Therefore, we use the same notation for the functiin® and
IT in Secs. V to VII.
For similar approximation schemes see also [R2g].
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1
- S KEO0Y) =5 (K (6 y) +KZ (x,y) =ReKZ (x.y)],

' (63)

Kg(X:Y):i(Kz(XaY)_KaT(X:Y)): -2 |m[K§(X’Y)],
a) b) ©) (64)

FIG. 7. NNLO contribution in the N expansion of the 2PI

effective action in the auxiliary-field formalism. The full-dashed 20 1€ SaMe ODr(X,y) andD,(x.y).

i ) Now we have all the necessary definitions and relations to
lines denote the mixed propagatdts, K, . express the time evolution equations for the field expectation
value and Green’s function along the Schwinger-Keldysh
contour as real and causal equations. The time evolution
equation for the field reads

VII. EVOLUTION EQUATIONS FOR THE SPECTRAL AND
STATISTICAL FUNCTIONS AT NLO

In order to describe nonequilibrium dynamics we will

now specify the contourC to the standard Schwinger- — [t m?+ x(x) ] a(x) = KE(x,%) (65
Keldysh contour along the real-time axig4].2 The two- _
point function can be decomposed as with
—c> 0_,0 < 0_0 _ A
Gab(XaY) Gab(xvy)®C(X y )+Gab(xay)®C(y X()518) X(X): 6_N[¢2(X)+FCC(X1X)]' (66)

whereG_,(x,y)=G5,* (x,y) are complex functions. For the The functionsKZ andK? satisfy the equations

real scalar field theory it is convenient to express the evolu-

tion equations in terms of two independent real-valued two- . A A [x0 F
point functions, which can be associated to the expectatiofta(X:¥) = 35 #o(X)Fpa(X,y)+ ﬁfo dzII,(x,2)K4(z,y)
values of the commutator and the anti-commutator of two
fields[4,5,8. We define

~3n ), dzle( 2K ZY), (67)

1
Fab(X,Y)= 5 (GZ(x.Y) + Gap(x,¥)) = REGZL(x.Y)], \ o
(59 KIY)= 5 $o0ppax¥) F 35 fyxo dzI1,(x,2K4(ZY),

pan(X,Y) =1(Gop(X,y) — Gp(X,¥)) = —2|m[G§b(x,y(>].) where we employ the notation
60

0 0
HereF is the statistical propagator apddenotes the spectral j “dz= fx dZOJ dz, (68)
function, with the properties F3,(X,y)=Fan(X,y) 0 0
=Fpa(y,X) andpZy(X,¥) = pan(X,¥) = = ppa(y.X). and
In order to proceed it is convenient to separate the singu-
lar part of D [see Eq.(34)] and write

1 1
IMe(xy)=— E[ Fan(X,Y)Fap(X,y)— Zpab(xyy)Pab(va) )

A ~

D(xy) =zl dc(x=y) +D(x.y)], (61)
HP(X,y): _Fab(x,y)Pab(X,y)- (69)
with The statistical propagator obeys

~ A —
D(x.y) = Ka(y.X) ¢a(X) — 35 11(X.y) =[Ot m?+ x(x)IF ap(X,y)

. _L E

+% H(x,z)f)(z,y). (62) _3N Fac(XaX)Fcb(Xry)+Q”a(X)Kb(X!y)

x0 ~
+f dz2(x,2)Fep(2,y)

For the functionsK,(x,y) [see Eq.(35)] and D(x,y) we 0

define the statistical and spectral components as

0 ~
— foy dZEZc(XaZ)Pcb(ZvY)a (70)

8We use a Gaussian initial density matrix. Non-Gaussian initial
density matrices are also possible, see e.g. Réfs0]. and the spectral function
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— [0y M2+ x(X) 1pap(X,Y)

A
= 2 FacX0pen(%,y) + Ba0OKE(X,)

x0 ~
+ [ az8n D penizy) (7
y

Here we use the notation

. 1 .
Fab(XvY) DF(va) - Z,Dab(X,Y)Dp(X,Y) 1
(72)

S xy)= - o
abt™ 3N

~ A ~ ~
22606Y) = = gy LPan(YIDE(X,Y) + Fap(X,Y)Dy(x.y) ],
(73

with

N A
Dr(x,y) = K5 (¥, %) ba(X) = g5 TE(GY)

M a2 (x2)b
+3_N . zI1,(%,2)De(z,y)

yO

~3n ). dzle(2)b,zy),

R A
Dp(x,y) ==Ky, X) da(X) = 3 1,(X%,Y)

N [xO R
+ﬁfy§dZHP(X,Z)DP(Z,y)_ (74)

In the absence of a field-expectation valug, € 0) we find

PHYSICAL REVIEW 86, 045008 (2002

FIG. 8. Diagrams contributing in the N/expansion of the 2PI
effective action when an additional weak-coupling expansion to
second order in is performed.

VIIl. WEAK COUPLING EXPANSION

In order to simplify the interrelated set of nonperturbative
NLO equations of motion given in the previous section, we
discuss here a truncated version of thl dpproximation of
the 2PI effective action for the case that the coupling is
weak. It amounts to expanding the effective action to second
order in explicit factors of the coupling constant Since
F'go is proportional to\ it is preserved completely. For the
NLO contributionI'}° in Eq. (22) we find

A A2
2 1¢,Gl=gy | ) +i G—N) nymx,y)mx,y)

X |2
_Zi(ﬁ) LyH(X,y)¢a(X)Gab(X7Y)¢b(y)!
(77)

where we use again the notationIl(x,y)=
—1G,4p(X,Y)Gap(X,y). The corresponding diagrams are pre-
sented in Fig. 8.

The weak-coupling expansion affects the equations of

motion through the auxiliary variablds, andD,

A
Ka(X,y)= 3N Dp(X)Gpa(X,Y)

that Ki=K%=0 and the equations above reduce to those

treated in[4,5] for diagonal two-point functions.

In order to completely determine the time evolution, Egs.
(65), (70) and(71) have to be implemented with initial con-
ditions taken atx°=y°=0. For the field¢$,(x) one may
choose nonvanishing valuegs,(x°=0,), but vanishing “ve-
locities” dyopa(X)|0=o=0. The initial values for the spec-
tral function are completely fixed by the equal-time proper-
ties[8]

Pab(XaY)lxozyoz 0,
axopab(xvy”xo:yoz 5ab5d(x_y)- (795

Nontrivial information about the initial density matrix is con-
tained in(derivatives of the statistical two-point function at
initial time

Fab(X1Y)|x0=y0=Oa ﬁXOFab(Xay)|x°=y°=01

ﬁxoﬂyoFab(X,y)|xo:yo:0. (76)

il a

A 2
3N) sz(X’Z) ¢b(Z)Gba(Zry);

N A
D(x,y)= 3 [ #a(X) Gan(X,y) dp(y) — IL(x,y)].
(78)

In the evolution equation&0) and(71) for the statistical and
spectral function Eq(67) is replaced by

Here we consider the simple case of a field expectation value for
which (\/6N) ¢? is small compared to the characteristic mass scale.
We stress that for a consistent weak coupling expansion it is impor-
tant to note that a nonzero minimum ¢12=¢§ of the classical
potential in Eq.(1) scales asp3=—(6N/\)m?. Therefore, in a
situation with spontaneously broken symmetry it is not sufficient to
count only the powers of coming from the vertices, as exempli-
fied in this section. A consister®®(\) scheme would have to take
into account the first and the third graph of Fig. 8, whileg¥?)

Specification of these three functions is necessary and suffine three-loop graphs of Figs. 8 and 5 would have to be taken into

cient to solve the equations of motion.

account.
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. Y on some aspects of Goldstone’s theorem. We note that within
Ka(x,y)= 35 #o(X¥)Fpa(X,y) the NLO approximation the replacement
tr G2—(tr G)?/N (A1)

N2 (w0
+(3—N) f dzI1,(x,2) dp(2)Fpa(Zy) _ _ _ _ _ _
0 in the expressions for the diagrams discussed in Sec. Il is

X 12 o correct up to higher order terms. This corresponds to the
—(—) Jy dzIIE(X,2) dp(2) ppalZ,Y), replacement G,p(X,Y) Gap(X,y) —[Gaa(X,¥)J?/N in the
3N/ Jo functionsB(G) of Eq. (23) and1(G) of Eq. (25). One ob-
(79)  serves that the resulting expressions can no longer be repre-
sented by the diagrams of Sec. IIl. To verify this replacement
A up to NNLO corrections we note théfior given space-time
Ka(x.y)= 35 #6(X)Poa(X,Y) coordinates G can be diagonalized by virtue 6¥(N) rota-
tions. In particular,G is diagonal up to subleading correc-

2,0 tions. This can be seen explicitly from the LO solution of Eq.
3N LO dzIl,(x,2) ¢p(2) ppa(Z,Y), (9) for the propagatorG{;{”)~ 8,5, which follows from the
fact that the LO diagrams depend only on the invarian@ tr
and Eq.(74) simplifies considerably to and ¢? (cf. Sec. Il). Since the invariant &2 does not ap-

pear in LO diagrams, the replaceméAtl) is correct within
the NLO approximation. We stress here that &) has not

~ N
De(x,y)= 3_N[¢a(X)Fab(X’y)¢b(y)_HF(X’y)]’ been used in the derivation of any equation presented in this

paper.
A A A similar argument cannot be applied to the invariant
D,(x,y)= ﬂ[cba(x)pab(X,y)cﬁb(y)—HP(X,Y)]- tr(ppG) = ¢p,G.pdp. TO See this, it is sufficient to restrict

(80) our attention to constant field configurations. In this case, it
follows from O(N) symmetry that the most general form of

IX. SUMMARY the propagator is

We have derived the 2PI effective actibfi¢,G] for the GH™ () =GL(p*)Ps+ Gr(d?) Py, (A2)
O(N) model using the N expansion of the 2PI effective L ) T L )
action to next-to-leading order. A detailed discussion of theVhere Pzy=dady/¢° and Pop= 6., Py, are respectively
classification of diagrams was presented. The equations ¢f€ longitudinal and transverse projectors with respect to the
motion for the field expectation valugé and the two-point field direction. Using this _decomposi_tion, we first chgck that
function G were calculated without further approximations. the replacementAl) is valid at NLO, in agreement with the
We showed the equivalence of the direct calculation with thétbove general discussion. Indeed the difference
auxiliary-field formulation. (trG)? 1
. A detalleq, but separate investigation would be necessary trg2— =(GL—GT)2( 1__) ~NO (A3)
in order to discuss the question of the nonperturbative renor- N N
malizability of I'[ ¢,G] and the evolution equations derived ] 5
above within the approximations considered in this paper. InS Subleadingrecall that tG°~tr G~N). However,
principle, this problem may be treated following methods 2 G
outlined in Ref.[12]. However, concerning the applications tr(ppG)— o
we have in mind and which are listed in the Introduction, we N
emphasize that the physics of these problems is dominated )
by soft excitations and requires a finite cutoff. Therefore,démonstrates that {¢G) cannot be replaced bytr G/N

from the practical point of view the important next step is toUP t© higher order corrections.

PN B
$2(GL~Gp)| 1- < |~N (A%)

solve these equations along the lines of RE4sS] using a In the remainder of this appendix we want to show that
straightforward lattice discretization. Goldstone’s theorem is satisfied at any order in thé éx-
pansion of the 2Pl effective action. Following Sec. Ill the
ACKNOWLEDGMENTS 2P| effective action can be written as a function of @gN)

invariants(15) only,
J.B. thanks Jm Knoll and Hendrik van Hees for interest-

ing discussions. G.A. was supported by the U. S. Department I'[¢,G]=T[ ¢ tr(G"),tr(ppGP)]. (A5)
of Energy under Contract No. DE-FG02-01ER41190. D.A. is i
supported by DFG, project FOR 339/2-1. In the case of spontaneous symmetry breaking one has a

constant$# 0 and the propagator can be parametrized as in
Eq. (A2). The standard 1Pl effective actidhp[ ¢] is ob-
tained by evaluating the 2P1 effective action at the stationary

In this section we discuss possible further approximationwalue (9) for G [3], and the mass matrid1,, can then be
consistent with an expansion in powers diildnd comment obtained from

APPENDIX A
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5T, GG )] with the “nonlocal” self-energy at NLOwe suppress th&
b~ : (A6)  dependencde
: 6haddy ¢=const P
A
If T'ypi[ @] is calculated from Eqs(A5) and (A2) one ob- 2 ap(Xy)=— 3—N{I(x,y)[¢a(x)¢b(y)+Gab(x,y)]
serves that indeed the 1PI effective action depends only on
one invariant,>. The form of the mass matrid1,, can +P(X,Y)Gap(X,y)}. (B3)
now be inferred straightforwardly froh,p,[ ¢]. To obtain
the effective potentiall ($2/2), we write Here we defined
_ 2 A
L1pi[ #1] g conse= Qa+1U($%12), (A7) P(x,y)=—w B-(x,u)A(U.0)BLv.y), (B4)
where Q4. , is the (d+1)-dimensional Euclidean volume. v
The expectation value of the field is given by the solution of AX,Y) = — ha(X)Gan(X%,Y) dp(Y). (B5)

the stationarity equatiof) which becomes

Eqg. (B2) results in the standard time evolution equations for

2
AT (pg) T ande sl

2 _ X0 p
whereU' = aU/a(2/2) and similarly for higher derivatives. [Hx%ac™Mac(X)]Fen(x,y)= fo dz2Z(x,2)Fcp(z,y)
The mass matrix reads

0
2 TV + [V azsEixapalzy),
T 0¢ady (86)
= 6apU’ + pacppU” 0
=(U’+ ¢?U")PL,+U'P], . (A9) [OxBactM2c(X)1pen(X,y) =~ J’yodzzgc(X,Z)Pcb(Z,YL
(B7)

In the symmetric phased(,=0) one finds that all modes

have equal mass squarett2,=U’s,,. In the broken With

phase, with¢,#0, Eq. (A8) implies that the mass of the \

transverse modes-U’ vanishes identically in agreement (12 () =Im2+ v(x)18arn+ — X) br(X) + F (XX

with Goldstone’s theorem. For a similar discussion, see Ref. an(¥) =M™ xX00 Japt 3l balx) )+ Fan(X X1,

[25]. Truncations of the 2Pl effective action may not show (B8)

manifestly the presence of massless transverse modes if one dth local self .

considers the solutioG (5™ of Eq. (9) instead of the second 2"d € noniocal seli-energies

variation of ' ¢, G for constant fields. For an early dis- N

;us%si[cig]of this point see Rg¢R6] as well as the comments in SExy)=— S—N[ Le(X,Y)[ da(X) dp(Y) + Fap(X,y)]
ef. .

1
APPENDIX B ~ 21 Y)pan(X,Y) + Pe(X,y)Fap(X,y)

In this appendix we present the equations for the statisti- 1
cal and spectral functions preserving the nested integral — —P,(X,Y) pan(X,y)
structure and keeping the “chain of bubbleKx,y;G) as 4
the basic quantity. N
All local contributions can be combined in an effective p __ N
mass parameter 22606Y)= = gl (YL ¢a(X) do(Y) + Fap(X,y)]

: (B9)

+1 F(X:y)Pab(X,Y) + Pp(xay)Fab(X!y)

2 M2 u( L
MZp(0) =[P+ X ()] 8a+ 55 [ ¢a(X) ¢p(X) + Gan(x,X)], P omW)]. (810

(B1)
The functionslg and|, satisfy[4]
and Eq.(13) can be written as
A N [x0
—[Oy8actM2(X)1Gep(X,Y) lrO0Y) == gy + 35 ] 921, 2)He(zy)
0
=i 0,p00(X—y)+i f 2 2c(X,2)Gep(Z,Y), (B2) ~3N oy dzle(x,2)I1,(zy),
z
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N N [(xO
[,(X,y)=— 3_NH”(X’y)+ 3_Nij dzl,(x,2)IT,(z,y), (B11)

and the nested integrals are

A x0 0
Prc)= = 3| ) = [, 12+, 02021 [ AR, 210213, 29)
XO 0 XO ZO
—fo dzfoy dv Ip(x,z)AF(z,v)Ip(v,y)+fO dzfO dv 1,(x,2)A,(z,v)1e(v,y)

0 0
+ foy dzﬁ) dv IF(X,Z)AP(Z,U)Ip(v,y)], (B12)

and

)\ X0 XO Z0
P,(X,y)=— 3—N[A,J(X,y)—fyodZ[Ap(X.Z)Ip(z,y)JrIp(X.Z)A,J(Z,y)]Jr fyodZLOdv Ip(x,Z)Ap(z,v)lp(v,y)},
(B13)

with Ag(X,y) = — da(X)Fap(X,Y) ¢p(y) andA ,(X,¥) = — da(X) pan(X.Y) dp(Y). The RHS in Eq(65) for the field expectation
value reads

I N [x0
KE 6= 3 Fas0) 000~ | YL 0K P ) 169Dl 3) (). (B14)

Note that the nested time integrals in E®12), (B13) have been eliminated in the equations discussed in Secs. V and VII by
a convenient choice of auxiliary variables.
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