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Far-from-equilibrium dynamics with broken symmetries from the 1 ÕN expansion
of the 2PI effective action
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We derive the nonequilibrium real-time evolution of anO(N)-invariant scalar quantum field theory in the
presence of a nonvanishing expectation value of the quantum field. Using a systematic 1/N expansion of the
2PI effective action to next-to-leading order, we obtain nonperturbative evolution equations which include
scattering and memory effects. The equivalence of the direct method, which requires the resummation of an
infinite number of skeleton diagrams, with the auxiliary-field formalism, which involves only one diagram at
next-to-leading order, is shown.
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I. INTRODUCTION

Nonequilibrium quantum field theory has a wide range
applications, including current and upcoming relativis
heavy-ion collision experiments at the BNL Relativist
Heavy Ion Collider~RHIC! and CERN Large Hadron Col
lider ~LHC!, phase transitions in the early universe or t
formation of Bose-Einstein condensates in the laborat
Important theoretical progress has been achieved with ef
tive descriptions based on a separation of scales in the w
coupling limit @1#, or for systems close to equilibrium usin
approximations such as~non!linear response or gradient ex
pansions @2#. However, the description of far-from
equilibrium dynamics is still in its infancies. The situation
complicated by the fact that typically there is no clear se
ration of scales which is valid at all times and it is ofte
difficult to identify a small expansion parameter. For e
ample, standard perturbation theory is plagued by the p
lem that a secular~unbounded! time evolution prevents the
description of the late-time behavior of quantum fields.

Practicable nonperturbative approximation schemes m
be based on the two-particle irreducible~2PI! generating
functional for Green’s functions@3#. Recently, a systemati
1/N expansion of the 2PI effective action has been propo
and applied to a scalarO(N)-symmetric quantum field
theory @4#. The approach provides a controlled nonpertur
tive description of far-from-equilibrium dynamics at ear
times as well as the late-time approach to thermal equ
rium and can be applied in extreme nonequilibrium situ
tions @4,5#. This is in contrast with the standard 1/N expan-
sion of the 1PI effective action which is secular in time on
direct scattering is taken into account@6#. The 1/N expansion
of the 2PI effective action extends previous successful
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scriptions of the large-time behavior of quantum fields@7,8#,
which employ the loop expansion of the 2PI effective acti
relevant at weak couplings@3,9,10#. For systems in or close
to equilibrium recent applications of the loop expansion c
be found in Refs.@11–14#. A 1/N expansion has the advan
tage over the loop expansion that it is not restricted to sm
couplings, an observation made in the context of nonequi
rium quantum field dynamics already for quite some tim
@15#. However, in order to describe quantum scattering a
thermalization the inclusion of the usually discarded next-
leading order~NLO! contributions is crucial.

In Ref. @4# the 1/N expansion of the 2PI effective actio
has been carried out to NLO in the symmetric regime fo
vanishing expectation valuef of the quantum field. Here, we
derive the evolution equations from the NLO approximati
of the 2PI effective action for nonzerof. A nonvanishing
field expectation value is important to describe the physics
heavy ion collisions, where the presence of a substantial
lar quark-antiquark condensate signals the spontane
breakdown of chiral symmetry.@In the language of theO(4)
linear sigma model for two-flavor QCD one hasf;^q̄q&.#
Important nonequilibrium applications in this context inclu
the formation of disoriented chiral condensates~DCCs, cf.
@16#! or the decay@17# of parity odd metastable states in h
QCD @18#. Similar far-from-equilibrium applications in in-
flationary cosmology concern the phenomenon of preheat
where the dynamics of the inflatonf is expected to trigger
explosive particle production~see, e.g.,@19#!. The availabil-
ity of a quantum field description of the dynamics is impo
tant for cases where the effectively classical approximat
~in the context of inflation, see e.g.@20#! may not be appro-
priate.

In this work, we perform a systematic 1/N expansion of
the 2PI effective action to next-to-leading order. A detail
discussion of the classification of diagrams is given in S
III. This allows us to give the effective action~Sec. IV! and
the equations of motion~Sec. V! in a straightforward man-
ner. In Sec. VI it is shown how this result is obtained usi
the auxiliary-field formalism@21#. The causal equations fo
the spectral and statistical functions are listed in Sec. VII a
©2002 The American Physical Society08-1
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a perturbative approximation to second order in the coup
constant is given in Sec. VIII. In two Appendixes we discu
further features of the equations and the realization of Go
stone’s theorem.

II. THE 2PI EFFECTIVE ACTION

We consider a real scalarN-component quantum fieldwa
(a51, . . . ,N) with a classicalO(N)-invariant action

S@w#5E dd11xF1

2
]x0wa]x0wa2

1

2
]xwa]xwa2

1

2
m2wawa

2
l

4!N
~wawa!2G . ~1!

Summation over repeated indices is implied andx[(x0,x).
All correlation functions of the quantum theory can be o
tained from the effective actionG@f,G#, the two-particle
irreducible~2PI! generating functional for Green’s function
parametrized by the macroscopic fieldfa(x) and the com-
posite fieldGab(x,y), given by

fa~x!5^wa~x!&, ~2!

Gab~x,y!5^TCwa~x!wb~y!&2^wa~x!&^wb~y!&. ~3!

The brackets denote the expectation value with respect to
density matrix andTC denotes time-ordering along a conto
C in the complex time plane. At this stage the explicit for
of the contour is not needed.

A discussion of the defining functional integral of the 2
effective action can be found in Ref.@3#. Following @3# it is
convenient to parametrize the 2PI effective action as

G@f,G#5S@f#1
i

2
Tr lnG211

i

2
Tr G0

21~f!G1G2@f,G#

1const. ~4!

Here the classical inverse propagatoriG0
21(f) is given by

iG0,ab
21 ~x,y;f![

d2S@f#

dfa~x!dfb~y!

52S Fhx1m21
l

6N
f2~x!Gdab

1
l

3N
fa~x!fb~x! D dC~x2y! ~5!
04500
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with f2[fafa and dC(x2y)[dC(x02y0)dd(x2y). The
contributionG2@f,G# is given by all closed 2PI graphs1 with
the propagator lines set equal toG @3#. The effective interac-
tion vertices are obtained from the terms cubic and highe
w in the classical action~1! after shifting the fieldw→f
1w. In presence of the nonvanishing expectation valuef
this results in a cubic and a quartic vertex

Lint~x;f,w!52
l

6N
fa~x!wa~x!wb~x!wb~x!

2
l

4!N
@wa~x!wa~x!#2. ~6!

Dynamical equations forfa andGab can be found by mini-
mizing the effective action. In the absence of extern
sources physical solutions require

dG@f,G#

dfa~x!
50, ~7!

which leads to the macroscopic field evolution equation

2S hx1m21
l

6N
@f2~x!1Gbb~x,x!# Dfa~x!

5
l

3N
fb~x!Gba~x,x!2

dG2@f,G#

dfa~x!
, ~8!

as well as

dG@f,G#

dGab~x,y!
50, ~9!

which leads to

Gab
21~x,y!5G0,ab

21 ~x,y!2Sab~x,y;f,G! ~10!

with

Sab~x,y;f,G![2i
dG2@f,G#

dGab~x,y!
. ~11!

Equation ~10! can be rewritten as a partial differentia
equation suitable for initial value problems by convolutio
with G,

1A graph is two-particle irreducible if it does not become disco
nected upon opening two propagator lines.
8-2
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E
z
G0,ab

21 ~x,z!Gbc~z,y!

5E
z
Sac~x,z!Gcb~z,y!1dabdC~x2y!, ~12!

where the shorthand notation*z5*C dz0*dz is employed.
With the classical inverse propagator~5! this differential
equation reads explicitly

2Fhx1m21
l

6N
f2~x!GGab~x,y!

5
l

3N
fa~x!fc~x!Gcb~x,y!

1 i E
z
Sac~x,z;f,G!Gcb~z,y!1 idabdC~x2y!.

~13!

The evolution offa andGab is determined by Eqs.~8! and
~13!, onceG2@f,G# is specified.

III. THE 1 ÕN EXPANSION OF THE 2PI
EFFECTIVE ACTION

In this section we discuss the 1/N expansion of the 2P
effective action proposed in Ref.@4# in more detail. We
present a simple classification scheme based onO(N) invari-
ants which parametrize the 2PI diagrams contributing
G@f,G#. The effective action at a given order in 1/N can
then be obtained from a straightforward summation of
diagrams contributing at that order. The NLO result f
G@f,G# for general field configurations (f, G) is presented
in Sec. IV. Below we will compare the direct summatio
procedure described here with an alternative method, wh
employs an auxiliary field to simplify the summation~cf.
Sec. VI!.

A. Counting rules for irreducible O„N… invariants

Following standard procedures@22# the interaction term
of the classical action in Eq.~1! is written such thatS@f#
scales proportional toN. From the fieldsfa alone one can
construct only one independent invariant underO(N) rota-
tions, which can be taken as trff[f25fafa;N. The
minimum f0 of the classical effective potential for thi
theory is given byf0

25N(26m2/l) for negative mass-
squaredm2 and scales proportional toN. Similarly, the trace
with respect to the field indices of the classical propaga
G0 is of orderN.

The 2PI effective action is a singlet underO(N) rotations
and parametrized by the two fieldsfa and Gab . To write
down the possibleO(N) invariants, which can be con
structed from these fields, we note that the number of
fields has to be even in order to construct anO(N) singlet.
For a compact notation we use (ff)ab5fafb . Consider a
general singlet composed of arbitrary powers of (ff)ab and
04500
o

e
r

h
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Gab ~we neglect all space-time dependencies!

s5tr@~ff!p1Gq1
•••~ff!pnGqn#

5~f2!p11•••1pn2ntr~ff Gq1!•••tr~ff Gqn! ~14!

for piÞ0, where thepi andqi ( i 51, . . . ,n) are any positive
integer.@For all pi50 the right-hand side~RHS! is given by
tr Gq11•••1qn.# The second line in the above equation fo
lows from simple contraction of the field indices and corr
sponds to the fact that all functions off and G, which are
singlets underO(N), can be built from the irreducible~i.e.
nonfactorizable in field-index space! invariants

f2, tr~Gn! and tr~ffGn!. ~15!

We note that for givenN only the invariants withn<N are
irreducible. However, we will see below that for lower orde
in 1/N and for sufficiently largeN one hasn,N. In particu-
lar, for the next-to-leading order approximation one finds t
only invariants withn<2 appear.

Since each single graph contributing toG@f,G# is an
O(N) singlet, we can express them with the help of the se
invariants in Eq.~15!. The factors ofN in a given graph have
two origins: each irreducible invariant is taken to scale p
portional to N since it contains exactly one trace over t
field indices, while each vertex provides a factor of 1/N. The
leading order~LO! graphs then scale proportional toN ~as
the classical actionS), next-to-leading order~NLO! contri-
butions are of order one, the next-to-next-to-leading or
~NNLO! scales as 1/N and so on. This provides a well
defined expansion ofG@f,G# in powers of 1/N. We stress
that by construction each order in the 1/N expansion of the
2PI effective action respectsO(N) symmetry. In particular,
this is crucial for the validity of Goldstone’s theorem in th
case of spontaneous symmetry breaking. For cons
fÞ0 one observes that the mass mat
;d2G@f,G(stat)(f)#/dfadfb , with G(stat)(f) being the so-
lution of Eq. ~9!, contains (N21) massless ‘‘transverse
modes and one massive ‘‘longitudinal’’ mode~see Appendix
A for a discussion!.

B. Classification of diagrams

In the following we will classify the various diagram
contributing toG@f,G#. The expression~4! for the 2PI ef-
fective action contains, besides the classical action, the o
loop contribution proportional to Tr lnG211Tr G0

21(f)G
and a nonvanishingG2@f,G# if higher loops are taken into
account. The one-loop term contains both LO and NLO c
tributions. The logarithmic term corresponds, in absence
other terms, simply to the free field effective action a
scales proportional to the number of field componentsN. To
separate the LO and NLO contributions at the one-loop le
consider the second term TrG0

21(f)G. From the form of the
classical propagator~5! one observes that it can be decom
posed into a term proportional to tr(G);N and terms~ne-
glecting all the space-time structure!
8-3



hs

e
s
e

s
ro
er
or
t
tio
n
n
i-
d
, i

to
to
in

bl
on

fo
de

ns

er

ig.
in

m-

t is
wo
nd

n-
le
O
we
an

,

-

then
by

nect
ns

AARTS, AHRENSMEIER, BAIER, BERGES, AND SERREAU PHYSICAL REVIEW D66, 045008 ~2002!
;
l

6N
@ tr~ff!tr~G!12 tr~ffG!#. ~16!

This can be seen as the sum of two ‘‘2PI one-loop grap
with field insertion ;fafa and ;fafb , respectively.
Counting the factors ofN coming from the traces and th
prefactor, one observes that only the first of the two term
Eq. ~16! contributes at LO, while the second one is of ord
one ~see Fig. 1!.

We now turn toG2@f,G# which contains all 2PI diagram
beyond the one-loop level. The graphs are constructed f
the three-point vertex and the four-point vertex in the int
action Lagrangian~6! with G associated to the propagat
lines. From the three-vertex;fa one easily observes tha
one cannot construct a diagram which has a field inser
;f25fafa . As a consequence, all loop diagrams beyo
the one-loop level can only depend on the basic invaria
tr(Gn) and tr(ff Gn). Furthermore, we note that the invar
ant tr(G)5Gaa can only appear if the graph contains a ta
pole as shown in Figs. 2 and 3. The first graph, Fig. 2
proportional to the product of the term@ tr(G)#2 and a factor
1/N from the quartic vertex. It therefore contributes at LO
the effective action. The graph in Fig. 3 is proportional
tr(G2)/N and is of order one. The two-loop graphs shown
these figures are indeed the only two-particle irreduci
graphs which contain a tadpole. As a consequence, the
invariants that can arise beyond two loops are tr(Gn>2) and
tr(ff Gn>1).

Using these considerations, one can now straight
wardly continue to classify all the diagrams at a given or
of the 1/N expansion. Consider a graph withV3 three-point
andV4 four-point vertices. The number of internal linesI is
determined by the familiar relation

2I 53V314V4 . ~17!

We observe again thatV3 has to be even. This graph contai
V3/2 field insertions;ff, 2V41 3

2 V3 propagatorsG and

FIG. 1. Graphical representation of thef-dependent contribu-
tions forG2[0. The crosses denote field insertions;fafa for the
left figure, which contributes at leading order, and;fafb for the
right figure contributing at next-to-leading order.

FIG. 2. LO contribution to the 2PI effective action.
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comes with a factor (l/N)V31V4 from the vertices. The high-
est power ofN is obtained by contracting thef and theG
field such that the largest number of invariants tr(Gn>2) and
tr(ff Gn>1) appears. The structure with the highest pow
of N,

;F l

NGV31V4

@ tr~ffG!#V3/2@ tr~G2!#V41V3/2, ~18!

is of order one and contributes therefore at NLO.
For V350 the corresponding diagrams are shown in F

4 @4#. For V352 the infinite series of graphs is presented
Fig. 5. We will now argue that graphs withV3>4 are not
two-particle irreducible such that we have classified the co
plete NLO contribution. We note that the invariant tr(ffG)
connects the field insertion;fafb with a single propagator
line. If a diagram contains that invariant more than once i
always possible to disconnect the graph by cutting t
lines.2 Consequently, a diagram with the above structure a
with V3>4 is not two-particle irreducible and does not co
tribute toG@f,G#. We therefore have classified all possib
diagrams which contribute to the 2PI effective action at NL
and present the result in the next section. In Appendix A
discuss possible further approximations consistent with
expansion in powers of 1/N.

IV. THE 2PI EFFECTIVE ACTION AT NLO

We write

G2@f,G#5G2
LO@G#1G2

NLO@f,G#1••• ~20!

where G2
LO denotes the leading order~LO! and G2

NLO the
next-to-leading order~NLO! contributions. The LO contribu-
tion to G2@G# is given by the diagram presented in Fig. 2

2To see this, note that the number of loopsL in these diagrams is
given by the standard relation

L5I2V32V4115V41
V3

2
11, ~19!

where we have used Eq.~17! for the second equality. Tadpole dia
grams are forbidden in those graphs and each ‘‘bubble’’ tr(G2)
corresponds to one closed loop. From the above relation one
observes that the total number of loops in the diagram is given
the number of bubbles plus one. In particular, one can discon
the diagram by cutting two lines connecting the fields insertio
@the terms;tr(ffG)].

FIG. 3. NLO ‘‘double bubble’’ contribution.
8-4
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FIG. 4. NLOf-independent contribution to the 2PI effective action. Higher loop diagrams in the infinite series can be obtained f
previous one by introducing another ‘‘rung’’ with two propagator lines at each vertex. The resummed series including the prefac
displayed in the figure is given by the first term in Eq.~22!.
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G2
LO@G#52

l

4!NEx
Gaa~x,x!Gbb~x,x!. ~21!

This contribution isf independent.
The NLO contribution consists of an infinite series of d

grams which fall into two classes. The first class is indep
dent of f and is constructed with only quartic vertices.
contains the complete NLO contribution whenf50 and has
been resummed in Ref.@4#. The diagrams are shown i
Fig. 4. The second class depends onf and contributes for
the case of a nonzero field expectation value. This serie
diagrams is shown in Fig. 5 and can be resummed as w
As a result, the NLO contribution toG2@f,G# is given by
the sum of the two resummed expressions and reads3

G2
NLO@f,G#5

i

2
TrCLn@B~G!#1

il

6N

3E
xy

I ~x,y;G!fa~x!Gab~x,y!fb~y!. ~22!

In the above equation we have defined

B~x,y;G!5dC~x2y!1 i
l

6N
Gab~x,y!Gab~x,y!, ~23!

and the logarithm in Eq.~22! sums the infinite series show
in Fig. 4,

TrCLn@B~G!#5E
x
S i

l

6N
Gab~x,x!Gab~x,x! D

2
1

2Exy
S i

l

6N
Gab~x,y!Gab~x,y! D

3S i
l

6N
Ga8b8~y,x!Ga8b8~y,x! D1•••.

~24!

3Besides the dynamical field degrees of freedomf andG we will
introduce a number of quantities which are~resummed! functions of
these fields. These functions will be denoted by either boldfac
Greek letters in the following.
04500
-

of
ll.

The functionI (x,y;G) is defined by

I ~x,y;G!5
l

6N
Gab~x,y!Gab~x,y!

2 i
l

6NEz
I ~x,z;G!Gab~z,y!Gab~z,y!, ~25!

and resums the infinite chain of ‘‘bubble’’ graphs, which c
be seen by re-expanding the series. The functionsI (x,y;G)
and the inverse ofB(x,y;G) are closely related by

B21~x,y;G!5dC~x2y!2 i I ~x,y;G!, ~26!

which follows from convoluting Eq.~23! with B21 and using
Eq. ~25!. We note thatB and I do not depend onf, and
G2@f,G# is only quadratic inf at NLO. Hence, the com-
plete effective action at NLO contains only quadratic a
quartic terms inf.

V. THE EQUATIONS OF MOTION

From the 2PI effective actionG@f,G# at NLO we find
equations of motion for the macroscopic fieldsf andG, as
indicated in Sec. II. The equation for the field expectati
value ~8! reads at NLO

2S hx1m21
l

6N
@f2~x!1Gcc~x,x!# Dfa~x!5Ka~x,x!.

~27!

or

FIG. 5. NLO f-dependent contribution to the 2PI effective a
tion. Each diagram in the infinite series can be obtained from
previous one by introducing another ‘‘rung’’ with two propagat
lines at each vertex. The resummed series is given by the se
term in Eq.~22!. The complete NLO contribution is given by th
sum of the diagrams in Figs. 4 and 5.
8-5
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We have written the LO contribution of the evolution equ
tion on the LHS and combined the NLO contribution as4

Ka~x,y![Ka~x,y;f,G!

[
l

3NEz
B21~x,z;G!Gab~y,z!fb~z!, ~28!

evaluated atx5y. We have writtenKa(x,y) as a function of
x andy for later convenience.

Equation~10! for Gab
21(x,y) can be completed using Eq

~11! for the self-energy. The LO contribution is simply

Sab
LO~x,y!52 i

l

6N
Gcc~x,x!dabdC~x2y!. ~29!

To obtain the NLO contribution the following identity ma
be helpful

dI ~u,v;G!

dGab~x,y!
5 i

dB21~u,v;G!

dGab~x,y!

5
l

3N
B21~u,x;G!Gab~x,y!B21~y,v;G!, ~30!

where we used that

dB~u,v;G!

dGab~x,y!
5 i

l

3N
Gab~x,y!dC~u2x!dC~v2y!. ~31!

Collecting all the pieces, we find that Eq.~10! for the inverse
propagator can be written as

iGab
21~x,y!5

2S hx1m21
l

6N
@f2~x!1Gcc~x,x!# D dabdC~x2y!

2
l

3N
B21~x,y;G!fa~x!fb~y!1 iD~x,y!Gab~x,y!,

~32!

with the definition

D~x,y![D~x,y;f,G!

[ i
l

3N
B21~x,y;G!1S l

3ND 2E
uv

B21~x,u;G!fa~u!

3Gab~u,v !fb~v !B21~v,y;G!. ~33!

SinceB21 is of order one andD of order 1/N, the second
line on the RHS of Eq.~32! corresponds to the LO and th
third line to the NLO contribution.

4Note that the classical inverse propagatoriG0
21 contains a LO

and a NLO part.
04500
-
Equations~27! and~32! together with Eqs.~28!, ~33! and

~25!, ~26! form the complete set of equations which have
be solved to obtain the 2PI effective action at NLO in t
1/N expansion. FromG@f,G# all correlation functions can
then be found by derivatives with respect to the fields
functions of the knownf and G. We stress that the 1/N
expansion of the 2PI effective action is done on the leve
the effective action. There are no further approximations
volved on the level of the evolution equations.

We note that Eq.~33! contains a double integration ove
the time contourC which can be inconvenient for numerica
purposes. It turns out that it is possible to disentangle
nested integrations by exploiting the functionKa . Convolut-
ing the functionsB andD and using the definitions forB and
Ka in Eqs.~23! and ~28!, one obtains

D~x,y!5 i
l

3N
dC~x2y!1

l

3N
Ka~y,x!fa~x!

2 i
l

6NEz
Gab~x,z!Gab~x,z!D~z,y!. ~34!

We observe that the nested integrals have disappeared in
~34! without any problems. In Appendix B we work out mor
details for the equations preserving the nested-integral st
ture. It is also convenient to rewrite Eq.~28! for Ka such that
B does not appear. By convolutingB andKa , one obtains

Ka~x,y!5
l

3N
fb~x!Gba~x,y!

2 i
l

6NEz
Gbc~x,z!Gbc~x,z!Ka~z,y!. ~35!

As a result, we find thatB and B21 are eliminated com-
pletely from the coupled equations. We also see that the
equations forD andKa are local in one time variable~here
y), which is useful for numerical implementation.

The form of the equation of motion for the inverse prop
gator, Eq.~32!, is suitable for a boundary value problem an
can be used, in particular, to discuss the propagator in t
mal equilibrium by specifying the contourC to the Matsub-
ara contour along the imaginary-time axis. However, to d
with nonequilibrium time evolution, i.e., an initial valu
problem, the form already given in Eq.~13! is more useful.
At NLO we find that the partial differential equation for th
propagator takes the form

2S hx1m21
l

6N
@f2~x!1Gcc~x,x!# DGab~x,y!

5 idabdC~x2y!1fa~x!Kb~x,y!

2 i E
z
D~x,z!Gac~x,z!Gcb~z,y!. ~36!

To summarize, Eqs.~27!, ~36! together with Eqs.~34!, ~35!
form the complete set of equations which have to be solv
They are completely equivalent to our first set containing E
~32! for the inverse propagator.
8-6
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VI. THE AUXILIARY-FIELD METHOD

In this section we show that the equations derived in
previous sections can also be obtained in the auxiliary-fi
formulation. In particular, we discuss the difference betwe
the 1/N expansion of the 2PI effective action and the ‘‘bar
vertex approximation’’ introduced in Ref.@21#.

Following Refs.@21,22# we rewrite the action by intro-
ducing an auxiliary fieldx as

S@w,x#52E
x
F1

2
wa~h1m2!wa2

3N

2l
x21

1

2
xwawaG .

~37!

Integrating outx yields the original action~1!. From the
Heisenberg equations of motion we see that the auxil
field represents the composite operatorx(x)
5l/(6N)wa(x)wa(x). The following one- and two-poin
functions can be written down:

fa~x!5^wa~x!&, x̄~x!5^x~x!&, ~38!

and

Gab~x,y!5^TCwa~x!wb~y!&2^wa~x!&^wb~y!&,

Ka~x,y!5^TCx~x!wa~y!&2^x~x!&^wa~y!&

5K̄a~y,x!, ~39!

D~x,y!5^TCx~x!x~y!&2^x~x!&^x~y!&.

We note that additional ‘‘propagators’’ appear due to the
troduction of the auxiliary field. Sincex is not a dynamical
degree of freedom, onlyGab has the physical meaning of
propagator. The role of the other one- and two-point fu
tions is to implicitly perform infinite resummations, whic
were carried out explicitly in the direct method in the pre
ous sections.

Following @21# the quantum fields are combined in a
extended field withN11 components,

F i5S wa

x
D , ~40!

where i 51, . . . ,N11. One may now formulate the 2PI e
fective action for this quantum field theory by couplin
sources to the fieldF i(x) and the bilocal fieldF i(x)F j (y)
@21#. We would like to point out that in the presence
sources the original quantum theory and the one with
auxiliary field are potentially different. For instance, in th
second formalism one may differentiate with respect to
bilocal source and obtain correlation functions
x(x)wa(y). This possibility is not present in the origina
theory. However, as we will see below, on the level of t
equations of motion in the 1/N expansion of the 2PI effective
action at NLO, the two approaches yield identical results

The inverse of the classical propagator is
04500
e
ld
n
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y

-
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e

e

iG 0,i j
21~x,y;F̄!5

d2S@F̄#

dF̄ i~x!dF̄ j~y!
, ~41!

whereF̄ i5(fa ,x̄) andS@F̄#5S@f,x̄ #. It has the following
components:

d2S@f,x̄ #

dfa~x!dfb~y!
52@hx1m21x̄~x!#dabdC~x2y!,

d2S@f,x̄ #

dx̄~x!dx̄~y!
5

3N

l
dC~x2y!, ~42!

d2S@f,x̄ #

dx̄~x!dfa~y!
52fa~x!dC~x2y!.

These operators are symmetric. Similarly, the matrix conta
ing the two-point functions is defined as

Gi j 5S Gab K̄a

Kb D
D , ~43!

where K̄a(x,y)5Ka(y,x) @21#. Hence, this matrix is also
symmetric.

The 2PI effective action can now be written down a
reads

G@F̄,G#5S@F̄#1
i

2
Tr ln G 211

i

2
Tr G 0

21G1G2@G#1const.

~44!

HereG2 is given by all two-particle irreducible graphs mad
with lines representing the ‘‘propagators’’Gab , Ka , K̄a , and
D, and the vertex2 1

2 x(x)wa(x)wa(x). In the auxiliary-field

formalism,G2 does not depend on the expectation valueF̄ i .
The equations of motion for the field expectation valu

follow by variation ofG with respect tofa and x̄. We find

2@hx1m21x̄~x!#fa~x!5
1

2
@Ka~x,x!1K̄a~x,x!#

5Ka~x,x!, ~45!

and

x̄~x!5
l

6N
@f2~x!1Gcc~x,x!#. ~46!

The equation for the two-point function follows by variatio
with respect toG, which gives

G i j
215G 0,i j

2122i
dG2@G#

dGi j
. ~47!
8-7
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By convoluting this equation from the right withG and de-
composing the self-energy as5

2i
dG2@G#

dGi j
5S Ŝab J̄a

Jb P
D , ~48!

one obtains the following set of coupled equations:

2@hx1m21x̄~x!#Gab~x,y!

5fa~x!Kb~x,y!1 idabdC~x2y!

1 i E
z
@Ŝac~x,z!Gcb~z,y!1J̄a~x,z!Kb~z,y!#, ~49!

3N

l
Ka~x,y!5fb~x!Gba~x,y!1 i E

z
@Jb~x,z!Gba~z,y!

1P~x,z!Ka~z,y!#, ~50!

3N

l
D~x,y!

5fa~x!K̄a~x,y!1 idC~x2y!

1 i E
z
@Ja~x,z!K̄a~z,y!1P~x,z!D~z,y!#, ~51!

2@hx1m21x̄~x!#K̄a~x,y!5fa~x!D~x,y!

1 i E
z
@Ŝab~x,z!K̄b~z,y!

1J̄a~x,z!D~z,y!#. ~52!

We note that Eq.~52! for K̄a is not an independent equatio
sinceK̄a(x,y)5Ka(y,x). Therefore, Eq.~52! is not needed
in practice.

To find explicitly at which order in the 1/N expansion of
the 2PI effective action specific diagrams contribute, we n
that in the auxiliary-field formalism the possible irreducib
O(N) singlets are of the form

tr~Gn!, D, tr~KGnK̄ !, ~53!

with n>1. From Eq.~51! it follows that D;1/N, and from
Eq. ~50! we find that

tr~KGnK̄ !;
1

N2
tr~ffGn12! ~54!

is proportional to 1/N as well. Using this scaling behavior
is straightforward to give the diagrams that contribute

5Note that in the auxiliary-field formalismŜab does not receive a
local LO contribution. It differs therefore from the self-energySab

in the direct method, obtained by varyingG2@f,G#.
04500
te

t

NLO and NNLO in the 1/N expansion of the 2PI effective
action in the auxiliary-field formalism.

We find that the NLO contribution toG2 consists of one
graph only,

G2
NLO@G#5

i

4Exy
Gab~x,y!Gab~x,y!D~x,y!, ~55!

shown in Fig. 6. From this expression the self-energies
fined above follow:

Ŝab
NLO~x,y!52Gab~x,y!D~x,y!,

PNLO~x,y!52
1

2
Gab~x,y!Gab~x,y!,

~56!

Ja
NLO~x,y!50.

Inserting these expressions in Eqs.~49!–~51!, we immedi-
ately recover our final result at NLO, Eqs.~27!, ~34–36!,
obtained by the direct method in Sec. V.6

Only three diagrams contribute in the auxiliary-field fo
mulation at NNLO. They are shown in Fig. 7. We note th
diagrams with the mixed propagatorKa ~resulting in a non-

vanishingJa and J̄a) appear only at NNLO. In Ref.@21#
the first NNLO diagram,

G2
NNLOa@G#5

i

2Exy
Ka~x,y!Gab~x,y!K̄b~x,y!, ~57!

was combined with the NLO diagram of Fig. 6 in the s
called bare-vertex approximation~BVA !. We conclude that in
the presence of a field expectation value the BVA appro
mation is not consistent with the 1/N approximation of the
2PI effective action discussed here. For vanishingf, the 1/N
approximation of the 2PI effective action at NLO and t
BVA ansatz are identical.7

6Therefore, we use the same notation for the functionsK , D and
P in Secs. V to VII.

7For similar approximation schemes see also Ref.@23#.

FIG. 6. NLO contribution in the 1/N expansion of the 2PI ef-
fective action in the auxiliary-field formalism. The full line denote
the scalar propagatorGab , the dashed line the auxiliary-field propa
gatorD.
8-8
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VII. EVOLUTION EQUATIONS FOR THE SPECTRAL AND
STATISTICAL FUNCTIONS AT NLO

In order to describe nonequilibrium dynamics we w
now specify the contourC to the standard Schwinger
Keldysh contour along the real-time axis@24#.8 The two-
point function can be decomposed as

Gab~x,y!5Gab
. ~x,y!QC~x02y0!1Gab

, ~x,y!QC~y02x0!,
~58!

whereGab
. (x,y)5Gab

, * (x,y) are complex functions. For th
real scalar field theory it is convenient to express the evo
tion equations in terms of two independent real-valued tw
point functions, which can be associated to the expecta
values of the commutator and the anti-commutator of t
fields @4,5,8#. We define

Fab~x,y!5
1

2
~Gab

. ~x,y!1Gab
, ~x,y!!5Re@Gab

. ~x,y!#,

~59!

rab~x,y!5 i ~Gab
. ~x,y!2Gab

, ~x,y!!522Im@Gab
. ~x,y!#.

~60!

HereF is the statistical propagator andr denotes the spectra
function, with the properties Fab* (x,y)5Fab(x,y)
5Fba(y,x) andrab* (x,y)5rab(x,y)52rba(y,x).

In order to proceed it is convenient to separate the sin
lar part ofD @see Eq.~34!# and write

D~x,y!5
l

3N
@ idC~x2y!1D̂~x,y!#, ~61!

with

D̂~x,y!5Ka~y,x!fa~x!2
l

3N
P~x,y!

1
il

3NEz
P~x,z!D̂~z,y!. ~62!

For the functionsKa(x,y) @see Eq.~35!# and D̂(x,y) we
define the statistical and spectral components as

8We use a Gaussian initial density matrix. Non-Gaussian ini
density matrices are also possible, see e.g. Refs.@7,10#.

FIG. 7. NNLO contribution in the 1/N expansion of the 2PI
effective action in the auxiliary-field formalism. The full-dashe

lines denote the mixed propagatorsKa , K̄a .
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Ka
F~x,y!5

1

2
„Ka

.~x,y!1Ka
,~x,y!…5Re@Ka

.~x,y!#,

~63!

Ka
r~x,y!5 i „Ka

.~x,y!2Ka
,~x,y!…522 Im@Ka

.~x,y!#,
~64!

and the same forD̂F(x,y) and D̂r(x,y).
Now we have all the necessary definitions and relation

express the time evolution equations for the field expecta
value and Green’s function along the Schwinger-Keldy
contour as real and causal equations. The time evolu
equation for the field reads

2@hx1m21x̄~x!#fa~x!5Ka
F~x,x! ~65!

with

x̄~x!5
l

6N
@f2~x!1Fcc~x,x!#. ~66!

The functionsKa
F andKa

r satisfy the equations

Ka
F~x,y!5

l

3N
fb~x!Fba~x,y!1

l

3NE0

x0

dzPr~x,z!Ka
F~z,y!

2
l

3NE0

y0

dzPF~x,z!Ka
r~z,y!, ~67!

Ka
r~x,y!5

l

3N
fb~x!rba~x,y!1

l

3NEy0

x0

dzPr~x,z!Ka
r~z,y!,

where we employ the notation

E
0

x0

dz[E
0

x0

dz0E dz, ~68!

and

PF~x,y!52
1

2 FFab~x,y!Fab~x,y!2
1

4
rab~x,y!rab~x,y!G ,

Pr~x,y!52Fab~x,y!rab~x,y!. ~69!

The statistical propagator obeys

2@hx1m21x̄~x!#Fab~x,y!

5
l

3N
Fac~x,x!Fcb~x,y!1fa~x!Kb

F~x,y!

1E
0

x0

dzŜac
r ~x,z!Fcb~z,y!

2E
0

y0

dzŜac
F ~x,z!rcb~z,y!, ~70!

and the spectral function
l

8-9
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2@hx1m21x̄~x!#rab~x,y!

5
l

3N
Fac~x,x!rcb~x,y!1fa~x!Kb

r~x,y!

1E
y0

x0

dzŜac
r ~x,z!rcb~z,y!. ~71!

Here we use the notation

Ŝab
F ~x,y!52

l

3N FFab~x,y!D̂F~x,y!2
1

4
rab~x,y!D̂r~x,y!G ,

~72!

Ŝab
r ~x,y!52

l

3N
@rab~x,y!D̂F~x,y!1Fab~x,y!D̂r~x,y!#,

~73!

with

D̂F~x,y!5Ka
F~y,x!fa~x!2

l

3N
PF~x,y!

1
l

3NE0

x0

dzPr~x,z!D̂F~z,y!

2
l

3NE0

y0

dzPF~x,z!D̂r~z,y!,

D̂r~x,y!52Ka
r~y,x!fa~x!2

l

3N
Pr~x,y!

1
l

3NEy0

x0

dzPr~x,z!D̂r~z,y!. ~74!

In the absence of a field-expectation value (fa50) we find
that Ka

F5Ka
r50 and the equations above reduce to tho

treated in@4,5# for diagonal two-point functions.
In order to completely determine the time evolution, E

~65!, ~70! and~71! have to be implemented with initial con
ditions taken atx05y050. For the fieldfa(x) one may
choose nonvanishing valuesfa(x050,x), but vanishing ‘‘ve-
locities’’ ]x0fa(x)ux05050. The initial values for the spec
tral function are completely fixed by the equal-time prop
ties @8#

rab~x,y!ux05y050,

]x0rab~x,y!ux05y05dabd
d~x2y!. ~75!

Nontrivial information about the initial density matrix is con
tained in~derivatives of! the statistical two-point function a
initial time

Fab~x,y!ux05y050 , ]x0Fab~x,y!ux05y050 ,

]x0]y0Fab~x,y!ux05y050 . ~76!

Specification of these three functions is necessary and s
cient to solve the equations of motion.
04500
e
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VIII. WEAK COUPLING EXPANSION

In order to simplify the interrelated set of nonperturbati
NLO equations of motion given in the previous section, w
discuss here a truncated version of the 1/N approximation of
the 2PI effective action for the case that the coupling
weak. It amounts to expanding the effective action to sec
order in explicit factors of the coupling constantl. Since
G2

LO is proportional tol it is preserved completely. For th
NLO contributionG2

NLO in Eq. ~22! we find

G2
NLO@f,G#.

l

6NEx
P~x,x!1 i S l

6ND 2E
xy

P~x,y!P~x,y!

22i S l

6ND 2E
xy

P~x,y!fa~x!Gab~x,y!fb~y!,

~77!

where we use again the notationP(x,y)5
2 1

2 Gab(x,y)Gab(x,y). The corresponding diagrams are pr
sented in Fig. 8.9

The weak-coupling expansion affects the equations
motion through the auxiliary variablesKa and D̂,

Ka~x,y!.
l

3N
fb~x!Gba~x,y!

1 i S l

3ND 2E
z
P~x,z!fb~z!Gba~z,y!,

D̂~x,y!.
l

3N
@fa~x!Gab~x,y!fb~y!2P~x,y!#.

~78!

In the evolution equations~70! and~71! for the statistical and
spectral function Eq.~67! is replaced by

9Here we consider the simple case of a field expectation value
which (l/6N)f2 is small compared to the characteristic mass sc
We stress that for a consistent weak coupling expansion it is im
tant to note that a nonzero minimum atf25f0

2 of the classical
potential in Eq.~1! scales asf0

252(6N/l)m2. Therefore, in a
situation with spontaneously broken symmetry it is not sufficient
count only the powers ofl coming from the vertices, as exempl
fied in this section. A consistentO(l) scheme would have to tak
into account the first and the third graph of Fig. 8, while atO(l2)
the three-loop graphs of Figs. 8 and 5 would have to be taken
account.

FIG. 8. Diagrams contributing in the 1/N expansion of the 2PI
effective action when an additional weak-coupling expansion
second order inl is performed.
8-10
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Ka
F~x,y!.

l

3N
fb~x!Fba~x,y!

1S l

3ND 2E
0

x0

dzPr~x,z!fb~z!Fba~z,y!

2S l

3ND 2E
0

y0

dzPF~x,z!fb~z!rba~z,y!,

~79!

Ka
r~x,y!.

l

3N
fb~x!rba~x,y!

1S l

3ND 2E
y0

x0

dzPr~x,z!fb~z!rba~z,y!,

and Eq.~74! simplifies considerably to

D̂F~x,y!.
l

3N
@fa~x!Fab~x,y!fb~y!2PF~x,y!#,

D̂r~x,y!.
l

3N
@fa~x!rab~x,y!fb~y!2Pr~x,y!#.

~80!

IX. SUMMARY

We have derived the 2PI effective actionG@f,G# for the
O(N) model using the 1/N expansion of the 2PI effective
action to next-to-leading order. A detailed discussion of
classification of diagrams was presented. The equation
motion for the field expectation valuef and the two-point
function G were calculated without further approximation
We showed the equivalence of the direct calculation with
auxiliary-field formulation.

A detailed, but separate investigation would be necess
in order to discuss the question of the nonperturbative re
malizability of G@f,G# and the evolution equations derive
above within the approximations considered in this paper
principle, this problem may be treated following metho
outlined in Ref.@12#. However, concerning the application
we have in mind and which are listed in the Introduction,
emphasize that the physics of these problems is domin
by soft excitations and requires a finite cutoff. Therefo
from the practical point of view the important next step is
solve these equations along the lines of Refs.@4,5# using a
straightforward lattice discretization.
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APPENDIX A

In this section we discuss possible further approximati
consistent with an expansion in powers of 1/N and comment
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on some aspects of Goldstone’s theorem. We note that wi
the NLO approximation the replacement

tr G2→~ tr G!2/N ~A1!

in the expressions for the diagrams discussed in Sec. I
correct up to higher order terms. This corresponds to
replacement Gab(x,y)Gab(x,y)→@Gaa(x,y)#2/N in the
functionsB(G) of Eq. ~23! and I (G) of Eq. ~25!. One ob-
serves that the resulting expressions can no longer be re
sented by the diagrams of Sec. III. To verify this replacem
up to NNLO corrections we note that~for given space-time
coordinates! G can be diagonalized by virtue ofO(N) rota-
tions. In particular,G is diagonal up to subleading correc
tions. This can be seen explicitly from the LO solution of E
~9! for the propagator,Gab

(LO);dab , which follows from the
fact that the LO diagrams depend only on the invariants tG
andf2 ~cf. Sec. III!. Since the invariant trG2 does not ap-
pear in LO diagrams, the replacement~A1! is correct within
the NLO approximation. We stress here that Eq.~A1! has not
been used in the derivation of any equation presented in
paper.

A similar argument cannot be applied to the invaria
tr(ffG)5faGabfb . To see this, it is sufficient to restric
our attention to constant field configurations. In this case
follows from O(N) symmetry that the most general form o
the propagator is

Gab
(stat)~f!5GL~f2!Pab

L 1GT~f2!Pab
T , ~A2!

where Pab
L 5fafb /f2 and Pab

T 5dab2Pab
L are respectively

the longitudinal and transverse projectors with respect to
field direction. Using this decomposition, we first check th
the replacement~A1! is valid at NLO, in agreement with the
above general discussion. Indeed the difference

tr G22
~ tr G!2

N
5~GL2GT!2S 12

1

ND;N0 ~A3!

is subleading~recall that trG2;tr G;N). However,

tr~ffG!2
f2tr G

N
5f2~GL2GT!S 12

1

ND;N ~A4!

demonstrates that tr(ffG) cannot be replaced byf2tr G/N
up to higher order corrections.

In the remainder of this appendix we want to show th
Goldstone’s theorem is satisfied at any order in the 1/N ex-
pansion of the 2PI effective action. Following Sec. III th
2PI effective action can be written as a function of theO(N)
invariants~15! only,

G@f,G#[G@f2,tr~Gn!,tr~ffGp!#. ~A5!

In the case of spontaneous symmetry breaking one ha
constantfÞ0 and the propagator can be parametrized a
Eq. ~A2!. The standard 1PI effective actionG1PI@f# is ob-
tained by evaluating the 2PI effective action at the station
value ~9! for G @3#, and the mass matrixMab can then be
obtained from
8-11
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M ab;
d2G@f,G(stat)~f!#

dfadfb
U

f5const

. ~A6!

If G1PI@f# is calculated from Eqs.~A5! and ~A2! one ob-
serves that indeed the 1PI effective action depends only
one invariant,f2. The form of the mass matrixMab can
now be inferred straightforwardly fromG1PI@f#. To obtain
the effective potentialU(f2/2), we write

G1PI@f#uf5const5Vd11U~f2/2!, ~A7!

where Vd11 is the (d11)-dimensional Euclidean volume
The expectation value of the field is given by the solution
the stationarity equation~7! which becomes

]U~f2/2!

]fa
5faU850, ~A8!

whereU8[]U/](f2/2) and similarly for higher derivatives
The mass matrix reads

M ab
2 5

]2U~f2/2!

]fa]fb

5dabU81fafbU9

5~U81f2U9!Pab
L 1U8Pab

T . ~A9!

In the symmetric phase (fa50) one finds that all mode
have equal mass squaredM ab

2 5U8dab . In the broken
phase, withfaÞ0, Eq. ~A8! implies that the mass of th
transverse modes;U8 vanishes identically in agreemen
with Goldstone’s theorem. For a similar discussion, see R
@25#. Truncations of the 2PI effective action may not sho
manifestly the presence of massless transverse modes i
considers the solutionG(stat) of Eq. ~9! instead of the second
variation ofG@f,G(stat)# for constant fields. For an early dis
cussion of this point see Ref.@26# as well as the comments i
Ref. @12#.

APPENDIX B

In this appendix we present the equations for the stat
cal and spectral functions preserving the nested inte
structure and keeping the ‘‘chain of bubbles’’I (x,y;G) as
the basic quantity.

All local contributions can be combined in an effectiv
mass parameter

Mab
2 ~x!5@m21x̄~x!#dab1

l

3N
@fa~x!fb~x!1Gab~x,x!#,

~B1!

and Eq.~13! can be written as

2@hxdac1Mac
2 ~x!#Gcb~x,y!

5 idabdC~x2y!1 i E
z
Sac~x,z!Gcb~z,y!, ~B2!
04500
n

f

f.

ne

i-
al

with the ‘‘nonlocal’’ self-energy at NLO~we suppress theG
dependence!

Sab~x,y!52
l

3N
$I ~x,y!@fa~x!fb~y!1Gab~x,y!#

1P~x,y!Gab~x,y!%. ~B3!

Here we defined

P~x,y!52
l

3NEuv
B21~x,u!D~u,v !B21~v,y!, ~B4!

D~x,y!52fa~x!Gab~x,y!fb~y!. ~B5!

Eq. ~B2! results in the standard time evolution equations
F andr @8#

@hxdac1Mac
2 ~x!#Fcb~x,y!52E

0

x0

dzSac
r ~x,z!Fcb~z,y!

1E
0

y0

dzSac
F ~x,z!rcb~z,y!,

~B6!

@hxdac1Mac
2 ~x!#rcb~x,y!52E

y0

x0

dzSac
r ~x,z!rcb~z,y!,

~B7!

with

Mab
2 ~x!5@m21x̄~x!#dab1

l

3N
@fa~x!fb~x!1Fab~x,x!#,

~B8!

and the nonlocal self-energies

Sab
F ~x,y!52

l

3N H IF~x,y!@fa~x!fb~y!1Fab~x,y!#

2
1

4
I r~x,y!rab~x,y!1PF~x,y!Fab~x,y!

2
1

4
Pr~x,y!rab~x,y!J , ~B9!

Sab
r ~x,y!52

l

3N
$I r~x,y!@fa~x!fb~y!1Fab~x,y!#

1IF~x,y!rab~x,y!1Pr~x,y!Fab~x,y!

1PF~x,y!rab~x,y!%. ~B10!

The functionsIF and I r satisfy @4#

IF~x,y!52
l

3N
PF~x,y!1

l

3NE0

x0

dz I r~x,z!PF~z,y!

2
l

3NE0

y0

dz IF~x,z!Pr~z,y!,
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I r~x,y!52
l

3N
Pr~x,y!1

l

3NEy0

x0

dz I r~x,z!Pr~z,y!, ~B11!

and the nested integrals are

PF~x,y!52
l

3N H DF~x,y!2E
0

x0

dz@Dr~x,z!IF~z,y!1I r~x,z!DF~z,y!#1E
0

y0

dz@DF~x,z!I r~z,y!1IF~x,z!Dr~z,y!#

2E
0

x0

dzE
0

y0

dv I r~x,z!DF~z,v !I r~v,y!1E
0

x0

dzE
0

z0

dv I r~x,z!Dr~z,v !IF~v,y!

1E
0

y0

dzE
z0

y0

dv IF~x,z!Dr~z,v !I r~v,y!J , ~B12!

and

Pr~x,y!52
l

3N H Dr~x,y!2E
y0

x0

dz@Dr~x,z!I r~z,y!1I r~x,z!Dr~z,y!#1E
y0

x0

dzE
y0

z0

dv I r~x,z!Dr~z,v !I r~v,y!J ,

~B13!

with DF(x,y)52fa(x)Fab(x,y)fb(y) andDr(x,y)52fa(x)rab(x,y)fb(y). The RHS in Eq.~65! for the field expectation
value reads

Ka
F~x,x!5

l

3N
Fab~x,x!fb~x!2

l

3NE0

x0

dy@ I r~x,y!Fab~x,y!1IF~x,y!rab~x,y!#fb~y!. ~B14!

Note that the nested time integrals in Eqs.~B12!, ~B13! have been eliminated in the equations discussed in Secs. V and V
a convenient choice of auxiliary variables.
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