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Transport coefficients and ladder summation in hot gauge theories
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We show how to compute transport coefficients in gauge theories by considering the expansion of the Kubo
formulas in terms of ladder diagrams in the imaginary time formalism. All summations over Matsubara
frequencies are performed and the analytical continuation to get the retarded correlators is done. As an illus-
tration of the procedure, we present a derivation of the transport equation for the shear viscosity in the scalar
theory. Assuming the hard thermal loop approximation for the screening of distant collisions of the hard
particles in the plasma, we derive two integral equations for the effective vertices which, to logarithmic
accuracy, are shown to be identical to the linearized Boltzmann equations previously found by Arnold, Moore,
and Yaffe.
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[. INTRODUCTION time formalism of thermal field theory. In contrast to the
work of Jeon[7], we will not use the series of cut ladder
The development of a transport theory for QCD in thediagrams. Rather, we closely follow a treatment due to Hol-
regime of high temperature has turned out to be a valuablstein[13] who, a long time ago, performed a ladder summa-
pursuit with the advent of heavy ion colliders which provide tion in order to compute the transport properties of the low-
novel tools for the study of the properties of highly excitedenergy electron-phonon gas. In this approach, one first
matter. From a purely theoretical point of view, the compu-identifies the required analytic continuation of the effective
tation of transport coefficients amounts to a challenge evewmertex function entering the current correlator, and then
in weakly coupled theories, because these quantities usuallyrites the integral equation for this vertex, summing all lad-
depend nonanalytically on the coupling constant. In mostlers. As shown below, this approach exactly reproduces the
previous computationgl—-3|, a kinetic approach based on correct transport equation for the shear viscosity in the scalar
the Boltzmann equation has been used. It is only recentlyheory.
within this framework that a reliable computation to logarith-  On the other hand, we will try to derive the logarithmic
mic accuracy in gauge theories has been repddédThe  accuracy of the transport coefficients by only considering the
complete leading order is still unavailable except for the caseole played by the soft degrees of freedom which are ex-
of a gauge theory with a large number of fermionic specieshanged in the collisions between the plasma constituents.
[5]. This requires the use of the hard thermal lagpTL) ap-
However, there exists an alternative approach, based geroximation[14] for the internal lines associated with the
Kubo formulas for appropriate correlation functions, whichrungs of the diagrams, and the introduction of an arbitrary
has been largely used in the context of low-energy manymomentum scale|. separating the hard and soft ranges of
body physicd6]. For the electrical and thermal conductivi- the momentum transfdrl5]. An important step toward the
ties of ordinary metals and superconductors, the computatiocomplete computation of the hard contribution was already
of the current correlators requires the resummation of an inrecently made by the authors of Rgt), who calculated the
finite class of ladder diagrams, a task that in the completénfrared logarithmic divergences of the collision terms of the
relativistic setting of gauge theories usually appears as a velinearized Boltzmann equation written in terms of un-
complex issue, partly motivating the reason for the few usescreened interactions.
of this approach. In relativistic transport theory, the resum- Our main results are two integral equations for the effec-
mation of ladder diagrams was performed for the scalative vertices, encoding the effects of distant collisions in the
theory by Jeon 7], who proved the equivalence with the plasma coming from the soft momentum transferq.. Al-
Boltzmann equation, and has since been repeated a few timd®ugh these equations are necessarily incomplete, they re-
[8,9]. Also, a simplified ladder summation was performed forproduce the required logarithmic dependenceggn which
the computation of the leading-log order of the color conduc-makes possible the eventual cancellation of the arbitrary
tivity [10]. Recently, Arnold, Moore, and Yaffgl1,12 per-  scaleq, in the final result. Hence, they reproduce the known
formed a ladder summation in order to account for the effectesults[4] for the transport coefficients to logarithmic accu-
of multiple scattering in the process of photon productionracy.
from a QCD plasma. The plan of this paper is as follows. In Sec. I, we review
The purpose of this paper is twofold. First, we wish to some standard material on the imaginary time formalism of
explicitly show how to perform the summation of a restrictedthermal field theory and Kubo formulas. Here, we include a
set of ladder diagrams in gauge theories within the imaginaryseful summation formula over Matsubara frequencies and
the procedure of analytic continuation. In Sec. Il we show
how to derive the shear viscosity hip* theory. Section IV
*Electronic address: wtpvabam@I|g.ehu.es deals with the simplifications that appear on summing the
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ladders when only the effect of soft momentum transfer is = dp° oT 1
considered. Then, we derive the corresponding contribution A(z,p)= o 0 p2 3 o
to the transport equations for the electrical conductivity and —= T (P Fey)+lgp -2

the shear viscosity. Section V presents a brief derivation
based on sum rules of the logarithmic terms in the transport = i )
coefficients, and Sec. VI, closing the paper, contains a sum- z¥eptil'ysgriimz)

mary and prospects. There are short appendixes with some ] )

details about spectral densities, sum rules, and the relevahhus. for this case, the functiah(z,p) has a branch cut on

thermal widths to be included in the propagators of hardhe real axis in the complexplane and it has no poles.
particles. At high temperature, the particles entering the collision

processes occurring in the plasma are mostly particles propa-
gating nearly on shell with hard momentuR~T. Their

-1

®

Il. BASIC FORMALISM spectral densities may be approximated by a combination of
A. Single particle spectral densities two Lorentzians:
The basic element of a diagram in the imaginary time 1 r r
formalism is the Matsubara propagator depending on the pb(p)z_( P 5 P 51 (6)
purely imaginary frequencieisv,=iwn/B (with n even for Pl (p°—p)?+ Iy (p%+ p)2+rp
bosons and odd for fermions
2vp N
. =dd® p(Q) Pf(P):( 5 —h+(p)
A(Iwn,Q)—leE . 1) (P°—pP)*+ 7,
— " b5 7
where the real quantity(Q) [with Q“=(q°q), q° reall is +(po+ D)2+ 12 -(P) ] ™
the single particle spectral density. The analytical continua- P

tion i w,—z defines a functiol\(z,q) of a complex variable
z which is analytical off the real axis and the discontinuity
through the branch cut along Irs=0 is proportional to
p(Q). The different Green'’s functions for real frequency can
be constructed from the spectral density. For instance, the

bosonic Wightman functiond ™ =(Q) are given by Tp=- %Im I1'(p°=p,p), ®

whereh. (p)=(¥°F ¥-p)/2, and the thermal widthE, and
p are the imaginary parts of the transverse piece of the
on-shell gluon self-energy and the quark, respectively,

AZ(Q)=[1+ny(q*)]p(Q), L
2) ¥o= = gptTpIME(p"=p.p)]. C)
A=(Q)=np(d)p(Q),

The shift in the real part of the energy can be ignored since it

wheren,(q%)=1/(ef9’— 1) is the bosonic occupation num- is perturbatively small when the energyG¥T).
ber. The retarded and advanced Green’s functions, which will In gauge theories, the imaginary part of the thermal self-

play an important role in our discussion, are energies receives contributions from various scattering pro-
cesses which give a different dependence on the coupling
A™(Q)=A(q°+i0",q), constant. Generically, two-body scattering processes in

3) which a soft bosonic excitation is exchanged vyield a para-
metric dependence at leading order a%,,y,
%« g2T 10g(Amax/ A min), Whereas processes in which a soft fer-
mionic excitation is exchanged yield a parametric depen-
andp(Q) =2 ImA™(Q). o dencel’,,y,g*T?log(q./gT)/p. The cutoffq is a scale
For a free particle, the spectral density is given by a suseparating semihard and hard momentum transfers, restricted
perposglonzof delta_ functhns, with support on the masshy gT<q.<T but otherwise arbitrary, andl ., can be cho-
shell, pg=¢},. If the interactions are weak, a delta function sen of ordergT. As will be explicitly shown below, the in-
can be replaced by a Lorentzian with a small width,  frared sensitivity to the lower cutoff ,j,~g>T entirely dis-
related to the imaginary part of the energy at the poles of th@ppears from the transport coefficients to be computed.
retarded propagatop®= *&,~il',, On the other hand, the temperature Green’s functions for
the soft bosonic and fermionic excitations are determined by
2r, the single particle spectral densities in the hard thermal loop
g a— (4)  approximation, *p, +(w,q) and *A.(w,q), respectively
(P +ep)™+T5 [14,16,21. These are presented in Appendixes B and C. Al-
ready, let us note here that only the Landau damping piece of
which gives rise to an analytical propagator these will contribute to the screening of distant collisions.

A*MQ)=A(q°~i0",0),

2w 8(p°F ep)—
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B. Kubo formulas and the ladder approximation

W + Wn,p

Our starting point is the Kubo formula expressing a given
transport coefficient in terms of the low-frequency, zero mo-
mentum limit of the spectral density for the corresponding
correlation function. For the electrical conductivity and the

A4 (iwm + Wy, wm; p) = ===
vy, 0

shear viscosity the formulas afé,7] W, P
1 1% ;
o==lim lim—p,(,q), (10) FIG. 1. Labels of the effective vertex.
6w~>0q~>0(9w
At this point, let us then introduce an amputated effective
1 J verteX Ap(iwmt+iv,,ion;p), associated with two hard ex-
n=5alim lim—p_ (w,q), (11)  ternal bosonic or fermionic linesi@y,+iv,,p),(iwm,p),
20, oq_od® . . .
0—00— and with an insertion of zero external momentum but non-

. zero frequency i(,,0), corresponding to the appropriate
where, as usual, the spectral densities are related to the FOU; rent @i or m;). This effective vertexFig. 1) is the sum

rier transform of the retarded correlators by of all vertices, each one of them with a numireof rungs
. associated with the exchanged excitations, and presumably
pyfw,q)=2 |mf dtj d3x e @t—ia-x will encode all collision effects at leading order. The vertex
—e having zero rungsA {)(p), does not depend on the frequen-
cies but can depend on the momentpm

X([Ji(1,%),Jk(0) 1) O(1) Si (12
© o C. Summation over Matsubara frequencies and analytic
Prn(®,q)=2 Imf dtJ d3xeletiax continuation
- Let us now examine the summation over Matsubara fre-
X ([ (t,x),m3;(0) 1) (1), (13 guencies, which generically is involved in the evaluation of a

temperature correlatdd o 5(i v, ,0),
and the averages are evaluated in the equilibrium grand ca-
nonical ensemble. An efficient way to compute a retarded
correlatorIlsi(w,q) (with A denoting collectively the indi-
ces of the appropriate currens to exploit the spectral rep- ) ©)
resentation for complex frequeney This provides a direct XG(iwm,p)AL’(P), (14
connection with the temperature Green’s function -
(i v,,q), Via analytic continuationv,— w+i0". Thus, where the Matsubara propagators have spectral densities of
a first step in our basic task is to evaluBlga(i v, ,0) within  the form(6) or (7). _
the imaginary time formalism. To one-loop order, the effective vertex reducesAtfy’

After the laborious diagrammatic analysis explicitly per- and the above sum over frequencies becomes
formed for the scalar theory7], the conclusion is that, in
order to account for all leading-order contributions to the ; _ ; ; ;
shear viscosity, a set of uncrossed ladder diagrams must be H(ivn.p) Twzm Cliontivy.p)Gliom.p). (19
summed. On the other hand, for the processes of photon
production from a QCD plasma, the authors of Rgf4,12  with v, even in any case. Now, the function to be summed is
developed detailed power counting arguments which enforca product of Green’s functions and one may proceed by ex-
the resummation of the uncrossed ladder graphs made ¢Fessing the Green’s functions in terms of their spectral rep-
gauge boson rungs. resentations given by E@l). With this replacement, the re-

A key point for understanding the equal footing of this sulting expression involves a double frequency integral of
class of diagrams is the presence of pairs of propagatoithie product resulting from the spectral densities and the el-
carrying nearly the same momenta, which leads to a depe@mentary sum
dence 1", (or 1/y,) for each such propagator pair. Hence, it

T, Gliwy+ivy,P)Aa(iwy+ivy,ion:p)

®m

is clear that anr{+ 1)-loop diagram wittm uncrossed rungs T 1 1

leads to a dependence proportional d8(1/1,)"**(g?)", evercaddm | @p— @1 i Om+iVy— @y

where the firsta® comes from the two external insertions,

and each rung introduces a facwt. The derived result in ~ _Np (1) —Np (w7) 16
both caseg7] and[11] is a linear integral equation for an T ivgtoi—w,

effective vertex function, which is completely equivalent to

the linearized transport equation for the problem. Here, weavhere ny, ; denote boson or fermion occupation factors.
will proceed by assuming the dominance of the same set dflowever, it is more convenient to use an alternative proce-
ladder diagrams, relying on anposterioricheck of its con-  dure based on contour integration in thplane of an appro-
sistency. priate function.
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FIG. 2. Integration contour for the sumX F (i w,,). The origi-
nal contourC, consists of three dashed circuits encircling the Mat-
subara frequencies. The deformed contGuyoes along both sides
of the branch cuts. A possible pole B{z) at the real axis is de-
picted for its relevance in the summation of the vertex equation.

This procedure was used, a long time ago, by Holstei
[13] to derive diagrammatically the transport properties of a
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Application of this formula to the summation in Ed.4)
requires the determination of the singularities Afy(z
+iv,,z;p). We argue that the only singularities are two
branch cuts at the lines Im{-iv,) =0 and Img)=0. This is
a consequence of the recurrence relation for the vertexrwith
rungs,

Agn)(iwm-i-ivn,iwm;p)
d4

=T>, f Q

vq (2’77')

xAl(Anfl)(iwm+iVn+i1/q,iwm+iyq;p+q)

p(Q)

0_; !
q%—iv,

4G(iwm+ivn+ivq p+0Q)

XG(iontivg,p+Qq) (19

where p(Q) is the spectral density corresponding to the
added rung andi ¢4,q) label the momenta running through
the loop. Fom=1, it is clear that Eq(18) implies thatA (Y
has only the singularities of the product of the Green’s func-
tions. Then, it follows from mathematical induction that
A and hence\ 5, inherit the same property.

Now, we are ready to perform the summation in E)
and the subsequent analytic continuation. Making use of Eq.

:1118) we may write

electron-phonon gas. Here, we closely follow the treatment

of Holstein. To perform the summatigft5), we consider the
function G(z+iv,,p)G(z,p)ny ¢(2), and a contour integra-
tion Cq made of three circuits enclosing the polesngf(z)

at the imaginary axis but avoiding the other possible poles of

GG (in this case these are absgemind the two branch cuts at
Imz=0 and Img+iv,)=0. This contour may be deformed
to C andI" as shown in Fig. 2. The contributions from the
large arcdl” vanish and we are left with the integrals along
C. Then, Eq.(15) becomes after summation

1
H(iv,,p)= tﬁfcdze(zﬂvn P)G(zZ,p)ny £(2)

©

__f d¢ o
=% %ﬁnb,f(f){[ (iva+£,p)

+G(—iv,+£p)]G*MEP) —G™(£,p)

X[G(iVn+§,p)+G(_iVn+§,p)]} (17)

where ¢ is a variable specifying the position at the branch
cuts. More generally, if the functioR(z) to be summed has
poles in the complex plane, the summation formula which
will be extensively used in what follows is

>

even, oddm

T Fiom)=F >, np(z)ResF,z=2)

poles

dé :
2—77inb’f(§)D|SCF.

iZm

cuts J —ox

(18

T Gliwpg+ivy)Aa(iwg+ivy,iwyg)G(ioy)

®Om

o) déﬁ
f_wmnb,f(‘f)

X{G(E+ivg) Ap(E+ivy, E-i107)+G(E—ivy)
XAAE=107,E-1v)]G* M &) —G"(¢)
X[Ap(E+iv,,E+I0T)G(E+iv,)
+AAE+IOT, E—ivy)G(E—ivy)]},

=¥

(20)

where the dependence pnis not explicitly exhibited. Next,
the analytical continuationv,— w+i0" of the previous ex-
pression yields

—fw d§ Gadv
+ _xz_ﬂ_i{nb,f(g'l'w) (é+w,p)

XAp(E+0—i07,=107;p)G*M & p) —np ¢(§)

XG"™®(é+ w,p)Aa(é+w+i07,E+i07;p)

XG'™(£,p) —[Np,(£+ ) —np (£)]G*(é+ w,p)

XAp(é+o+i0%,6-107:p)G* P}, (2D
where we have rearranged some terms by a shift of the inte-
gration variable. At this point, a simplification arises since
the integrand of the above expression contains a large term

coming from the produdB'®'G¥. This is due to the fact that
the two pairs of poles of this product are located at both sides
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contribution of G™'G3¥ to the integral is inversely propor-

tional to the distance between the poles given by the thermal --- = ---- + ---
width. The other product&™'G™ and GG make a

much smaller contribution, due to the cancellation between

the residues at the poles.

Therefore, noting that the effective vertex,(é+i0",& FIG. 3. Equation for the effective vertex in thep* theory. The
—i0*;p) is a real quantity, and Ny 1(£)=—PBnp¢(£)[1  double lines represent the propagators of the hard particles includ-
+n,(é)], the required zero-frequency slope of the retardedng the O(\?) thermal width.
correlator may be written as

on the real axis in thg plane. Thus, in the limitv—0, the /

PN

where the factor 1/2 is due to combinatorics, a‘mﬁ?’(p)
=2p?(p'pl— 8'/3) 2 This equation is shown in Fig. 3. The
spectral density(Q) associated with the bubble in the rung
is given by

d
Zoim A(w,0)

w=0

_ d3p (0) o dg .
_gﬁf (277)3“ (p)f_wznbvf@[l—nb,f(g)] N

0 _ 2
XGI(£ D) ANEHIOT £-10%;p)GNEp), (22 Pl "”‘2'”‘[”2 (2m)?

43

where the prefactof accounts for the symmetric factor as- % 1 1
sociated with the one-loop diagram correspondinglig, . (vq+ v)?+|k+q? v2+k?
This factor is 1/2 or 1 depending on whether taéunctions

correspond to a self-conjugate field or not. It is important to (25)
notice the correspondence between &%) and the expres-

sion for a transport coefficient in terms 6h, . (p), denot-

ing the departure from equilibrium of the single partiGm- By performing the previous surfsee Appendix A and us-
tiparticle) density function. Anticipating a contribution of ing the expression for the free Wightman function,
G"G*™x3 ., §(¢¥|p|)/T,, such a correspondence is clear

with the appropriate identification

di:qO-%—iOJr

Go (P)=[1+ny(p®) 127 sgr(p®) 8(p5—p?), (26)

1
SNp +(P)x=—AA(F|p|+i0",+|p|—i0";p). (23
A= (P) Iy A= [l P P (29 one may write the spectral density for the rung in a symmet-
ric form

Ill. THE TRANSPORT EQUATION FOR SHEAR
VISCOSITY IN A ¢* THEORY

A2 d*K -
With the purpose of making clear the basic procedure to p(Q)= n (qo)j (277)4(30 (—Q=K)Go(K).  (27)
be used in gauge theories, we present a simple alternative b

derivation of the transport equation for the scalar theory in

the form previously obtained by Je¢r. The starting point  The relation of this spectral density with the kerhel, in
is the linear integral equation for the effective vertex beforejne treatment of Jeof7] is therefore

analytic continuation

Ajj(foptivy,ioy;p) 2

p(Q)=—-Lpor — Q). (28)
d*Q Np(q~)
Gllogtivytivg,p+q)

1

Note thatp(Q) is odd ing°.

XAjj(loptivytivg,iontivg;p+q) The formula(18) can be applied in order to perform the

p(Q) summation in the vertex equatid@4). The term associated
XG(iwm+ivg,p+a)—o——, (24)  with the discontinuities giveomitting the prefactor 1/2 and
q —lvg p(Q)]

This follows from mathematical induction, taking into account 2The factor 2 is due to the sum over the two permutations of the
that the zero-order vertezxgo)(p) is real. momenta corresponding to the scalar field.
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= dé G(&—ivy,p+0) D;j(P)=A{(p)
]

- eratemin, lf d'Q G"(P+Q)D;j(P+Q)
X[GAM(£,p+a)Aj(£-10% E—ivy) 2) (2m)* '

. L G(¢é+iv,,p+Q) X G* M P+Q)p(Q)[Np(q°) —Nny(p°+q°)],
—G"™(&,p+a)Aj(£+i0 f‘“«)]ﬂLW (33)
X[GadV(§'p+q)Aij(§+iVn’g_i0+) wh8r+e )we have deflnedD,](p p)= A”(p0+|o+,p

—io*;p
To present a more explicit form of the transport equation,
—G(&p+ A (E+iv,y, E+i07)], (29 it remains to analyze the produGt®(P+ Q)G P+ Q). If

the momentun® (or P+ Q) is nearly on shell, the contribu-
jon associated with the sum of the crossed products reduces
0 a product of two Lorentzians peaked at different values of
p°. In the limitA—0, this fact enables us to neglect the piece

and the pole term associated with the spectral representau(%
of the rung gives

(%) G(q°+i wy+i vy, p+Q) G'¥'G2W+ GG so we may write
XAij(Q°+iwntivy,q°+ion) G™(P+Q)G*(P+Q)
X G(q°+iwm,p+a), (30) 1 1
where we have omitted the dependencepang in the ver- = 4lp+al? (p°+q°F|p+a)?+ F§+q
tex. After this summation, the analytic continuation, (34)
+ivy—p’+w+i0", io,—p°—i0" can be explicitly per-
formed: which, for A—0, behaves as
Ajj(§=107,é=iv) = Ajj(£-i07,é—w—i0"), G™(P+Q)G*P+Q)
A (4107, E—ivy) —Ajj(£+107 - 0—i07), - .
:ﬁ[ 8(p°+q°—[p+a|)
Ajj(E+ivg,6-107) = Ay (é+0+i0%,£-10), [p+al T q

0 0
Ay (41, E+107) = Ay (w+ E+i0%,6+107), Folptrattlptab]

1
. _ 0 0\2__ 2
G(é—iv,,p+q)—GNéE—w,p+Q), _4|p+q|Fp+q2”5((p +9°)°—|p+al’). (35

G(é+ivy,pt+q)—G®(¢{+w,p+0q). Since the imaginary part of the retarded self-energy is odd in

the frequency, the thermal width can be replaced b
If we neglect the product&®'G2¥ and G"™'G™! as argued —sgn(pg+ qO));mEret(P+Q)/(2|p+q|) and Eq.(3EF>)) then y

before, the discontinuity contribution becomes becomes
[ secteropra) G(P+Q)G*(P+Q)
2
1
XAjj(é+w+i07,E-107)G*M & p+ =———27sgnp’+q°
6+ £-10") G £,p+q) PPy Q)2 Sap )
n n
b(&) b(&+ w) 3D x 8((p°+q%)2—|p+q|?)
£ p°—q°+i0" - po—q'—
. . . . . —_— 1 1
;nd the required limito— 0, after the¢ integration, reduces [1+ny(p°+q®)] 2 IMI™(P+Q)
X Gy (P+Q). 36
_nb(p0+q0)Gret(p0+q0'p+q) 0( Q) ( )
><Aij(p°+q°+i0+,p°+q°—i0+) With the aid of the identity
X G*(p°+q°p+q). (32 np(a”) —np(p®+0°) =np(q)[1+ny(p%+ qo)](l—e‘ﬁf(’o),
3
Adding the pole contribution, one finds the integral equation
satisfied by the effective vertex one arrives at the final form of the transport equation:
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d4
Dy(P)= A<°’<p>—<1—efﬂp°>f (234LB.)|&<—Q) PN P/

> D;;(P+Q) --@-
XGo(PHQ) e o) S HP10)’ (39

in complete agreemehwith the results of Ref[7], where

the equivalence with the linearized Boltzmann equation has

been proven. The functlo@,J(P) is real, even inp®, pro- (a) (b)

vided thatp(Q) is odd inq®. ) .
The last step in the evaluation of the shear viscosity is the  FICG- 4. Two ladder rung topologies of the same power counting.

computation of the integrdR?2) for which only the on-shell The dashed lines correspond to the cuts giving the spectral densities

effective vertexD;;(p°=p,p) is required. The insertion of po(P',P) andpy(K',P).

Eq. (36) with P+ Q replaced byP into Eq.(22), and multi-

plication by 1/10 yields the shear viscosity compactly writtenthe two vertices, and the contributi@(\ ~2) from the prod-

as uct G™'Ga%in Eq. (33) causes the integral term in the vertex
equation to have a ne® contribution, like the zero-order
B 0 - ij(P) vertex.
=720 (27 )4 Np(P )A (PG~(P ) m3re(p)’ In a gauge theory, there are two possible topologies with

(39) the same power counting which potentially contribute to the
leading logarithmic order. They are illustrated in Fig. 4. The
spectral density of the soft gauge boson exchange ladder,
labeled(a), is O(1) because of thg? suppression from the
two vertices, and &~ 2T~ 2 contribution from the spectral

In the derivation of the transport equations that we at-density of the soft gauge boson. In teintegration of the
tempt here, we want to emphasize the role played by theertex equation, similar to E433), there is a facton,(q°)
screening effects in the regularization of some infrared diver=0(g ™) and a factorO(g~2) from the imaginary part of
gences which arise in the small momentum transfer regiorthe self-energy in the denominator of the proda¢t'aa®,

The importance of dynamical screening in transport phenomFinally, there is ag® suppression from the soft integration

ena in gauge theories was first recognized in REf.where  d3q [the contribution of the integratiotiq® is cancelled by a

a linearized collision integral free of infrared divergencesdelta term fromA™A%%: see Eqgs.(50) and (51) below].

was stated by using only screened interactions mediated lylence, the net contribution of the integral term in the vertex

gauge bosons. Our aim here is to derive transport equatioregjuation isO(1), the same as the zero-order vertex, when
by means of the summation of a restricted set of ladder diathe spectral density of the rung is al€g{1).

grams, which includes only a specific type of rungs. These Similarly, when the horizontal internal lines are soft gauge

rungs will consist of appropriate effective bosonic or fermi- boson propagators, the spectral density of the box type lad-

onic propagators in the hard thermal loop approximationder rung, labeled aéo) in Fig. 4, isO(1). To perform this
thus accounting for the screening of distant collisions beestimation, it is helpful to write the general form of the spec-
tween all different plasma constituents. Obviously, this ap+ral densities in terms of the squares of the:2 scattering
proximation does not include the effects due to close colli-amplitudes/ M|2. Such formulas are similar to E€R7):

sions and its use requires the imposition of an upper cutoff

gc in the integrals over the momentum transféb]. As a

check of consistency, we will verify that the coefficients of 1

the uv-logarithmic sensitivities tg. match the ir-logarithmic ~ pP’,P)x ?f d*Kd*K' sM(P+K—P’'—K")

divergences previously computed by Arnold, Moore, and np(p""—p°)

Yaff_e_[4] _in their treatment of the hard co_ntributions to the X | M|2A (—K")A™(K), (40)

collision integrals of the Boltzmann equation.

To elucidate more precisely what type of rungs dominate
in the ladder summation which gives the logarithmic accu-

IV. SOFT CONTRIBUTIONS TO THE TRANSPORT
EQUATIONS IN GAUGE THEORIES

racy of transport coefficients, it is necessary to estimate the 4 44D S(4) ,

power counting size of the spectral densities which, in our” po(K',P)=x k’°— 0 d°Kd™P’' S°(P+K—P'—K")
Np( P

treatment, are associated with the ladder rungs. For instance,

consider the spectral density of the rung in the scalar theory X|M|?A”(=P")A”(K), (41

of the previous section, E427). Clearly, it isO(\?) from
where P,K,P’,K' are the on-shell hard momenta for the
30ur notation does not agree with], but the conversion is direct: particle entering into the scattering processes, and the labels
Ai(jo)—>2|w, D;j—2D,, and Im2"®'— -3, for momenta have been chosen with the aim of using the
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same| M(P,K,P’,K")|? within the integrationé. For soft
momentum transfe@=P’'—P=K—K’, this reduces to
|M(P,K,P",K")|? T -
2g*p?k? ¥ AL(Q)+(pxa)- (kX ) *A 1(Q)[?

~0(g¢°%), (42)
where * 4, ; denotes the longitudinal or transverse retarded
boson gauge propagator. Note tiit and K are loop mo- + --- Qe+ --- 1Q
menta associated with the integrations in the vertex equation,
and P corresponds to the fixed momentum of the effective
vertex. In this language, it is easy to recover the power PN N

1 1 ! .
counting size 0p,(P",P): FIG. 5. Equation for the soft contribution to the fermionic ef-

fective vertex. For the case of the electrical conductivity to leading

pa(P,’P)“qofwdknt’, f(k)f koé(qO—R~q)|M|2 order ine, the _soft boson exchanged corresponds to a photon and
0 ' the last graph is zero.

q° 1 q% ? Without screening effects, the boson propagators reduce to
“g'p T | [ALQI 5 1‘@) |AT(Q)|21 *A(Q)=—1/q? and *Ar(Q)=—1/(qi—g?). Thus, the
angular integration over the azimuthal anglekéffollowed
q? by thek® (or q°) integration turns out to be proportional to
xg’p? BL(Q)+ 1—@ Br(Q)|~0O(g°). (43

2
fq dqof d@P,(cosfpy)(1—cosp)?=0.  (46)
For the estimation op,(K',P), the denominator contributes - 0
asg? even thoughk’® andp® are hard energies. The reason _ _ . o
for this is that, in general, their difference does not corre-H€re. the integration over the spatial rangg<q-<gq is

spond to a soft exchange of energy, as shown in Fig..4 enforced by thes(q°—k’-qg). This means that the un-
Consequentlyp(K’,P)=0(1) also. screened box rungs do not contribute to the leading logarith-
However, in the case of the shear viscosity, the subseMic order and, consequently, box ladder rungs made of two
quent integration in the vertex equation over the directions of0ft gauge boson propagators are irrelevant in order to com-
k' and theq® integration cancel the contribution of this box Pute the soft contribution to the shear viscosity. .
type of diagram. To understand this cancellation, we note For the elgctrlcal conductivity at zero chemical potential,
that for small momentum transfgr<p,k, the energys func-  the cancellation of these box ladder rungs comes from the

tion which remains after the three-momentpmintegration ~ ¢harge-conjugation invariance. For each fixedwe have
in Eq. (41) may be expressed a¥q°—k’-q), and two contributions to the integral term of the vertex equation,

corresponding to the insertions of fermions and antifermions
through the loop. These contributions are of opposite sign, so
their sum vanishes.
* +* . . .
ALQ+7Ar(Q) Similarly, there are other box ladder rungs in which the
horizontal lines are soft fermion propagators, which are com-

M(P,K,P’" K")ocg?pk

: (44)

q2
X ( 1- q—g) CoS¢
where ¢ is the angle between the plangsq) and k’,q).
On the other hand, the angular dependenck dfK’) within
the integration oveK’ in the vertex equation is given by the P
contraction ofA (K") with A (P), which is proportional to

P,(cosby), with P, the second Legendre polynomial. For

small g, the required cosine becomey

+ --- @ + =--- lQ
2 2
Yo Yo
COSHpk/z —2+ 1- E COS¢. (45) PR PR,
FIG. 6. Equation for the soft contribution to the bosonic effec-
tive vertex. In the case of the electrical conductivity, all graphs are
“We closely follow the notation of Ref4]. null.
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parable to the soft fermion exchange ladders. They do ndiveen fermions and gauge bosons in non-Abelian theories,
contribute either to the leading logarithmic order because ofvhile the exchange of a soft fermion enters in an annihilation
the cancellation under angular integration of their unscreeneprocess into a fermionic pair, and the inverse process of cre-
counterparts. Now, the unscreened squared amplitudes aagion.
| M|2ec(1—cos¢)/q? [4], and the relevant integration is By following a completely similar treatment to that we
. , have presented for the scalar theory for the summation and
ol _ _ analytical continuation to real frequencies, one arrives at the
f_qdq fo d¢ Pi(CoSfp)(1~c0s$)=0,  (47) coupled equations for the effective vertices:

with [ =1,2 for the electrical conductivity and the shear vis-

4
cosity, respectively. NG ) J dQ e
Next, let us consider the equations for the effective vertex Aa(P)=ART(P)F9 (2m)* YSE(P+Q)
A, of a given fermionic species and the effective vertex g
Al"for a given boson gauge. Here, the superscrigta)( XAA(P+Q)SMP+Q)y”
denote spatial indices corresponding to the boson propaga- 40
tors in Coulomb gauge to be joined to the vertex, aad ¢ * ne(a%) + ne(p°+ q%) 1+ zf
collectively denotes the indices corresponding to the inser- PuQNe(a) +Ne(p7+ a0 ] +g (2m)*
tion of j; or ;. We still do not explicitly indicate any spin, o - adv :
color, or flavor indices. The equations for the effective ver- XGF(P+Q)AN(P+Q)GHNP+Q)y
tices are illustrated in Figs. 5 and 6. These equations sum all % n 0 0. .0
ladders consisting of rungs made of a HTL gauge boson X *p(w,0)y"[ni(q") +np(p"+q°) ], (48
propagator, and also a HTL fermion propagator. The ex-
change of a soft gauge boson takes place in scattering band
|
_ o d‘Q . .
Akm(P)=Ag)Jm(p)+J 2 )4vm (P,Q,—P—Q)V™"(—P,—Q,P+Q)
a
X Gi(P+Q)AR(P+Q)GHMP+Q)* p,.,(Q)[Ny(a%) —np(p°+a°)]
4
2 dQ jqre ady, m % _ . mgretr _ p__
+9 2 )4tr{75 (P+Q)AAP+Q)S*™MP+Q)y"*p(Q)— y"S*(-P-Q)
v
XAA(=P=Q)S*(~=P-Q)¥ *p(Q)}[ns(q%) —n¢(p°+q%)]. (49

Here *p,,,(Q) and *p(Q) denote the spectral densities of mass shell cannot be connected by a soft momentum transfer.
the soft gauge boson and the fermion and, as usuglP) Clearly, a hard momentur® is required in order to create
=AA(p°+i0",p°—i0*;p). Note that we have used the par- two propagating on-shell particles both with hard momen-
ity properties *p(Q)= *p(—Q) and n;(—q°)—n¢(—p°® tum. In contrast, for the case of the scalar theory, we have
— 9% =—[n;(q%) —n¢(p°+q°]. These equations are en- retained both terms in Eq35) because there we have not
tirely similar to the transport equation for the scalar theory.made a distinction between soft and hard momentum trans-
As there, the occupation numbemglf(pOJrqO) arise from  fers. Thus, wherP is on shell andQ<P, we can make the

the branch cut contributions, and the identitieg (& approximations

+nmi)=—n¢ p(€) with n odd have been used, if necessary. -

Further progress requires detailed examination of the explicit re adv " o0 40—

structure of the productS™®A ,S* and G"™'A ,G2%. AZ(P+QAT(P+Q) Yprq S(pTa = lpral
The substitution of the two pieces of the Green’s func-

tions in the producS™S® or G™®'G2% yields four terms; -~

two of them,A"®'A%% or G'*'G2%, can be directly dropped in Yp+q

the limit g—0. Now, by computing the soft contribution to

the transport properties, we have only to consider one of thand

two terms,+ + or — —, d;‘gending c())n whether the external

momentum corresponds o'=p or p°= — p. This important re adv _ &

simplification is due to the fact that, when the external mo- GE(P+QGEYP+Q)= 4plp+q|Tpiq 0

mentumP is on shell, let us sap®=p, the other sheet of the (52

T

8(q°Fp-q), (50)
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On the other hand, in the high temperature limit when all U(p/-i-\q i)you(f) +)=1+0(qg/p)
masses are negligible, the theory is chirally invariant. As a ’ ' ’

consequence, the projection operatdrs(p) can be ex-

pressed in terms of simultaneous eigenspinors of chirality U(;;r\q +)4u(p,+)=p'+0(q/p) (59)
and helicity, ’ ’ ’
h. (p)=u(p,+)u(p,+)+u(p,—)u(p,—), 52 — .
+(P)=u(p, +)u(p,+)+u(p,—)u(p,~) (52 (P +) 7% (P, +)=1+0(q/p),
h-(p)=v(p,+)u(p,+)+v(p,~)v(p,~), (53
where theu(v) spinors have the chirality equédpposite to v(p+9,%)¥v(p,)=—p'+O(a/p), (60)

the helicity. For example, in the chiral representation, with

the momentum along the 3 axis, ) ) )
g corresponding to the leptaiguark and the antileptortanti-

0 0 quark, respectively.
- R 1
u(p,+)= 11 u(p,—)= 0l A. Soft contribution to the transport equation
0 0 for the electrical conductivity
Now, we are ready to write more explicitly the transport
1 0 equations(48) and (49). For the case of the electrical con-
0 0 ductivity, it is suggested to define the nonamputated on-shell
n _ SN vertices for a given charged fermionic specées
+)= =
v(P.H)=| 5| v (54) ) o )
0 1 D} (p)=u(p,*)A¥(p°=p,p)u(p,*), (62)
In the case of the electrical conductivity, the zero-order ) . .
effective vertices are D} (p)=v(p,=)A(p°=—p,—p)v(p,*), (62

A *=qee, (55)
, with the corresponding zero-order vertices which follow
AOIm=q, (56)  from Egs.(59) and (60). Here, the factog? in front of the
_ o o _ integral in Eq.(48) must be replaced bg2e?. At zero elec-
whereq; is the charge of the fermionic constituesin units  trical charge, the bosonic effective vertex for electrical con-
of e. For the shear viscosity, the insertion at zero momentungctivity does not enter because its zero order vanishes, and
of a spatially transverse energy-momentum tensor yields theyry's theorem ensures the vanishing of the term within the

zero-order vertices trace in Eq(49). This leaves a single decoupled equation for
1 5 the fermion vertex.
AO)(p)= _( 0l 4 vipl— . 5ij), 5 Next, we fix the external frequengy’=p. After multi-
i (P= 5| PP gyp 57 plying both sides of Eq(48) by the u eigenspinors, and
) expand the integrand using E¢52) and(50) with + +, we
Ai(f)jm(p)=2( pipk— %5”(> Sim. (58) obtain a term proportional to
Both of the fermionic vertices are linear in thematrices,  8(gq°—p-q)u(p, =) y“u(p+q, = )u(p+a,*)

and this linear dependence is preserved by summing ladder ~
diagrams because each added rung does not introduce any X y"u(p,*)*p,,(Q)
extra dependence. Thus, the fermionic effective vertices,

2
which appear sandwiched between the projection operators 0 =2 Yo
h.(p) and h.(p+q) require one to consider & matrix (@7=p-a)| AQ) q° Q) La/p]
between eigenspinors of all possible chiralities and helicities. 63)

Obviously, the combinations between spinors of different
chirality, like U(t)y“u(l) or v_(i)y“u(t), are zero.

Moreover, the combinations mixing the particle and antiparwhere the delta function has enforced a spacelike momentum
ticle mass shells, such agp+q,+)y*u(p,+) or u(p+q, transfer corresponding to Landau damping, and we have

+)y*v(p, =), do not need to be retained since they cannotsed the approximationgs9). Finally, the substitution
be connected by a soft momentum transfer. Therefore, we arg'(|p|+p-q,p+9)=A'(|p+4q|,p+q), valid at soft momen-
left with the chirality-independent combinations tum, gives the equation
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1 d* .

q° q°
® o X B+(Q)(l—— +6(Qf 1+ — }
FIG. 7. Subleading contributions to the self-energy of a hard qgezwg
quark(a) and a gluon(b). = 87D [1+ 2nb(|p|)]{ln( \/_ws) 1+In2|,
d* . (66)

DF_(p)=qseH+Q§ezf (254 73(q°~p-q)

where g, is the upper limit of integration which separates

T 1 semihard and hard momentum transfers, age- q2e°T%/8
S §+ n¢(p) is the plasma frequency for the fermionic speaes
q By inserting the expressiai®5) into Eq.(64), after defin-
ing the quantities
Yo (p q)
x| BL(Q)+ 1——) BT(Q) S
To+q -+ & .-+
(64) Xi (p)E$DiS (p), (67)
P

where we have neglected tii g% p) terms in the occupa- _ _ _
tion numbers. Using the parity properties of the zero-ordene obtains a more convenient expression
vertex and noting that the spectral density,,,(Q) is odd in

q°, one may easily show from Eq49 that D} (p)

4
4 s s 0_ A
= —Dis+(p). This equation is formally similar to the integral qse p'= 7( ” (P)+ q f (2m)* m3(q"—p-q)
equation for the complete leading order of the photon emis-
sion rate from the quark-gluon plasma, which was derived in
Ref. [11]. X
Following a similar treatment to that used by Arnold,
Moore, and Yaffd 11], we may reduce the transport equation
a bit more. This proceeds by insertion of the integral for the
thermal width of a hard fermion. As we have already said,
the thermal width receives the leading order contributionfor the soft contribution to the transport equation in the case
from two-body scattering between fermions by exchange off electrical conductivity.
a soft photon. For a given fermionic species, it is given by An important point to notice here concerns the absence of
the integral[16] some subleading corrections to the hard particle width,
whose size is comparable to that included in E#f). Such
40 T corrections ofO(g®) and O(g*Ing™?) arise from the sub-
(2) s=q% f ——78(q°—p-q) — leading part of the bosonic occupation numhgfq®) in the
(2m)* 0 integrand of Eq(65), and they are associated with

2

T 1 do
@2 TP || Q| 1 5B Q)

X[x} (P)—x% (p+a)] (68)

0

X BLQ)+|1

qO) ‘| 0
Br(Q) (65) o T 1
no(q%) = 5 +5=2 E—qo+(2 e ©

o]

Note that the value of this integral remains unaltered when
the termT/q° of the integrand is replaced by/q°—1/2  To understand this absence, consider the transport equation
+n¢(p). This is due to the fact that the added terni/2  (64) whenD/y has been replaced by, as in Eq.(67), and
+n¢(p) is here multiplied by an odd function af’ and, the kernel still containg,(q°) +n;(p). Now, if in the prod-
consequently, is irrelevant. However, this is not true for theuct y,x(p) one were to include the subleading terms from
corresponding term in Eq64), since the vectorial depen- Eq. (69), the same terms would have to be included in the
dence ofD; on p+q can give odd contributions ip-q. occupation number in the kernel of the integral. For srgall

In addition to the dominant contribution, the thermal there is a cancellation between them, and the resulting trans-
width receives another contribution coming from two-bodyport equation would be the same as that in E&f) with
conversion processes which also give rise to a leading-log/q°—1/2+n;(p) replaced byn,(q°) +n¢(p). However,
term in the transport coefficients. This contribution to thewhen the momenturp is hard,n¢(p) =0O(1), andother pole
thermal width corresponds to the imaginary part of the diaterms different from zero in the occupation number are
gram of Fig. 7, and it is expressed by the integral 0O(g). Hence, they may be ignored.
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B. Soft contribution to thg transport equations for shear facdgbedyivk(p Q, —P-Q)V™"(-P,—Q,P+Q)
viscosity
Next, we consider the shear viscosity in a SlJ( gauge X *p,(Q)P5(p+q)PY (p)PTp)
theory withN; fermion fields in a given irreducible represen- _— . .
tation r of dimensiond(r). The generator matrices are de- =49°N:p? BL(Q)+(1-p- g% Br(Q)IPF(p) 6
noted byt?, and the normalization for this representation is /
defined by the consta@(r) in tr(t?t?)=C(r)5ab. The qua- +0(a/p), (74)
dratic Casimir operator is denoted Bp(r). one finds
Since the gluon effective vertex!™" is always joined to
a pair of transverse projectors of the gauge propagators, it is
useful to define the nonamputated on-shell gluon veR
oy i ’ % Dy =D g @
b b
PL(P)AI*(p°=[pl.p)PTAP)=D{(P)PF(P) 5" T 1 DY(p+q)
(70 x| 5= 5+ np) | ——
qQ© 2 Yp+q
and the zero-order vertex corresponding to H§8), d*Q .
D{D%(p)=2(p'p*— 6'%p?/3). On the other hand, and as be- +gZC2(r)f 2 78(q°—p-q)AQ)
fore, we define the nonamputated on-shell quark veRgx (2m)
by g
1 Di(p+0a)
X|=+n —_—, 75
2P [app+ally g 79
Dﬁk(p)EU(E),i)Aik(poz p,p)u(p, =), (71 and a completely similar form for the gluon vertex,
and the zero-order vertex corresponding to E§7), 0
. DI(p)=DM%(p)+gN
D{O%p)=|p|(p'p“— 5*/3). We note that the similar vertex (P)=Dic(P) T g"Nelpl
for annquarks,Dq—vA(— P)v, turns out to be the same as
for quarks, as it is easily checked by examining the corre- T 1 Di(p+q)
sponding zero-order vertices, and noting that each added X @_E_ b(P) lp+q|T
; ) . X p+d
rung in the iteration does not break this property.
Now, in order to derive the transport equations %9,
it only remains to perform the appropriate contraction of +29
Egs. (48) and (49) with a pair of u spinors and a pair of
transverse projectors, respectively. Using the approximations . 1 ( ))Diqk(PJFQ) s
__n —’
> NP Yorq
u(p, =)y B+ (Qh.(a)+B-(Qh-(a)] where
X y"u(p, = )PT"(p+ ) 2
0
~on A on B(Q)= +|1-— 7
= B.(Q)(1=p-8)+ B_(Q)(1+p-3)+O(a/p), (Q=5(Q) z)BT@) 0
(72)
q° q°
FQ)=pB+(Q) 1_E)+'8_(Q)(1+E (78)

and

tr{y™h,, (p+q)y" h
(P @Y1+ (Qh-(a) Note that we have approximated the occupation numbers by
. . O . .
n P™ () PNS their expansions up t@(q") corrections. The prefactor 2 in
B-(Qh-(@LPT(PIPF(P) front of the pieceg?N¢C(r) in the last term of Eq(76) is
_ 1-p- )+ 8. 1+p-4)1P's due to the two possiblg orientations for t_he momentum ip the
[6:(Q1=p-a)+A-(Q(1+pP-]PT(P) quark loop. The remainder of the previous equations is al-
+0(q/p) (73) most obvious, after performing the approximati@b8) and
’ (5).
Finally, as for the case of electrical conductivity, in order
to make more clear the closed resemblance of these equa-
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tions with Boltzmann-type equations, we may define the When|qg|<|p|, we may approximate the integral collision
guantities which will turn out to correspond to the deviationsterms in the transport equations by a derivative expansion of
from the equilibrium distribution functions of quarks and the y functions, in a similar way to the procedure which

gluons, leads to the derivation of Fokker-Planck equations in the
DY context of classical plasm#&$7,18. With the aim of extract-
l(p)= Dik(p) (79 ing the leading-log terms for the transport coefficients, we
Xik Yo only require the insertion into the transport equations of the
second-order approximations for the quantitﬁﬂ@x,sf(p)
P )—2|';|(ﬁ) ©0 X (P+a)] andDBxP) —x(p+)]. Al the same

accuracy, terms of the typexik%(p) — x&%(p+q)] are re-

Then, the substitution of thermal widths by their integralP/2c€d byLxik”(p) — xik"(P)]. These substitutions produce a
representations yields the final form of the soft contributioncOmPination of derivatives of thg functions, whose coeffi-

to the coupled transport equations for these quantities. The§/€Nts are integral expressions involving the Landau damping
become iece of soft spectral densities. Here, the leading-log terms

will arise from the logarithmic dependence on the upper limit

a1 d* . . - Although the computation of the complete leading order
|p|(p pk —§ ) 2Cy( )f 4775(q0—p~q)B(Q) in g of these integrals can need numerical quadrature, the
(2m) leading-log order is easily obtained analytically by means of

the formulas based on sum rules given in Appendix B.
After the angular integration of Eq&31) and(82) and the

subsequent)® integration with the aid of Eqs(B11) and

(B12), the logarithmic terms finally combine to give the fol-

X

T 1+ ()
——=+ns(p
qQ° 2

ZC 5(1) . . . . S
X[ x%(p)— X.k(p+Q)]+ 2 lowing expressions in the case of shear viscosity:
1 d*Q R 2 2
- _A. g°Cy(rymgT 2 1
X 2+nb(p))f(277)4775(q0 p-q) p:_%mgl[xq(p)’% E_T[l_znf(p)]
X FQLxik(P) ~xik(p+a)], (81 5 9?C,(1) 2
and XXq(D)'—EXq(P)] +W|n971[1+2nb(p)]
e 1 d*Q . X[x(p)—x9%(p)], (85)
|p|<pp §8k>=92N f(zw)ﬁé(qo—nq)l?(Q)
gZNCm%T -1 " 2 1
X —Np(p) P=—"71g, M9 | X(P)"+ 6—?[1+2nb(p)]
X D) - o+ @)1+ LceD) ooy~ 2 oy |+ MW, |y
Xik(P) — xik(P+q o] X x?(p) EX (p) +T n
d4 . xX[1-2 —x%p)+x%p)], 86
f(p)>J 5 ?4 5(q°—p-q) [ ne(P)IL—x"(P) +x°(p)] (86)

where Ing~! is the term coming from either lg{/mp) or

9(p)— 14
X AQLxik(P) = xik(P+a)]. (82) In(g./wg) with logarithmic accuracy, and

V. EXTRACTING THE LEADING-LOG TRANSPORT

COEFFICIENTS FROM THE SOFT CONTRIBUTION gZTZ
o . mg = =5—[Ne+N¢C(r)], (87
Rotational invariance fixes the form of thefunctions. In 3
the case of electrical conductivity, they have the form
s~ i sT 212
xi (P)=p'x” (p), (83 g°T
' wi= g Calr). (88)
and for shear viscosity,
a1 Quite remarkably, the termid. = 2n,, ;(p) ]/ T multiplying
g.9 — d.9 d b, f
Xik-(P)= (p P 3 )X (P). (84) the first derivatives and generated by the zero ordefiof
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np(q%) F np 1(p+q°) allow us to write a single functional of [4] in their derivation of the leading-log terms of the linear-
x%(p) and x9(p) whose variation leads to the above equa-ized collision integral of the Boltzmann equation. After mul-
tions for shear viscosity in the leading-log approximation.tiplication of both sides of Egs.(85 and (86) by
This functional fdp £(x,x’) turns out to be exactly the 2d(r)N;p?n¢(p)[1—n;(p)] and d(G)p?ny(p)[1+ ny(p)],
same as that previously found by Arnold, Moore, and Yafferespectively, one finds

9°N;w2d(r)Cy(r)
LOnx') == 201Ny PILL=y(p) 1x(p) ~ d(G)p (P + (P IX(P) + —— o ————Ing ™ "pny(p)
g?Nim3Td(r)Cy(r)
X[L+ny(P)IIX(P) = X(P) P+ —— e ————Ing ™ In((p)[ 1~ ny(P)I[P2X(P) "2+ 6x(p)?]
g°N.m3Td(G)
g Iy L+ () IPPA(P) ?+6x%(P)?], (89

where we have usedl(r)C,(r)=d(G)C(r) with d(G) This equation may be retrieved by varying the functional

=N2-1. 5dpL%(x,x'), whereL® may be chosen as
Using the expression$22) and (11), and noting that -
(p'pk— 8%/3) (p'p*— 5*/3)=2/3, we see that the contribu- L£3=—p?ni(p)[1-n¢(p)Ix® (p)
tion to the shear viscosity of each Dirac fermion is w2
. +Te- e PP 1+ny(P)Ix° (p)?
dpp’n 1-n 9p), 90
L appnpi-nene. @ :

mpT .
+ g5 Ine ni(p)[1-n¢(p)]
while each gauge boson contributes as

8 X[P?x® (p)'?+2x° (p)°]. (99

” 3
30772J0 dpp°ny(P)[1+ns(P) Ix°(p)- (9D Now, the contribution of each charged Dirac fermion to the
electrical conductivity is

Hence, the shear viscosity is exactly the value of the func-

tional —,8/(15q72)f6°d pL for the values ofy solving the B J“’ _ .

motion equations. 377_2 0 dppznf(p)[l nf(p)]X (p), (96)
For the electrical conductivity, the above procedure ap-

plied to Eq.(68) yields the expression which implies that this transport coefficient is given by

—2B/(37) = [5dpLS at the stationary values gf° .

This completes the derivation of the leading-log terms for
the transport coefficients. The agreement with the results of
Ref. [4] is complete when the conversiong®9

——28x38, . x* — —2Bx5yy are performed, and the sum
over charged species is restricted to leptons.

m3T

D — - "
1=—mlne 1{)(5 (p)"+

2 1
o $[1—2nf(P)]

_ 2
Xx* (p) = =x° (p)]
p

2

+gosine L+ 2n,p) " (p), (92

VI. CONCLUSION AND PROSPECTS

In this paper we have shown how to derive transport
where the Debye mass for the photon and the plasma fr€quations in some relativistic many-body theories from the

quency for the charged fermionic specieare given by summation of uncrossed ladder diagrams within the imagi-
nary time formalism. The procedure is similar to the one
e2T2 used in the quite remote past by Holst¢l8] and, for the
m3 = —3 | Nieptons+ d(r)q?arksqg , (93)  case of the scalar field theory, yields the correct results pre-

viously derived by Jeof7]. In this treatment, one first iden-
2 2o tifies the analytic continuation to real frequencies for the ef-
2 UsET fective vertex, and then writes the integral equation which it
= . (99 o ' S :
S 8 satisfies. The two relevant quantities in the vertex equation
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turn out to be the imaginary part of the self-energy and the d3kdw

spectral weight of the ladder rung. p ):f Alnb(a)l)X[po(wl+ q°,9+Kk)po( @y ,k)
For the case of gauge theories, we have derived the trans- (2m)

port equationg68), (81), and (82) by resummation of the ~ po(®1,G+K) pol @1 — G0 K)]. (A2)

ladder series, whose graphs are made of the rungs associated

with resummed propagators in the HTL approximation. The‘l’he second piece of this integral may be rearranged by a
kernels of the integral equations derived in this way are the-Shift of the w, integration,w,— w,+q°. Thus, after the use
same as the integrands of thermal widths for hard particles tge parityl propertypo('w11+q°1q+ k.) : _p’o(_ 01—

Ieadmg and next to leading order. By extracting the_Ioganth-_q_ k), and the substitution
mic terms, the transport equations turn out to be differential
equations similar to Fokker-Planck equations which appear

T L . 1
as apprOX|ma4t|ons to the colllspn mtggrals in Coulqmb plas- po( —k°—q% —q—k) :ﬁeg( —K-0Q),
mas. TheO(g”In 1/g) thermal widths in these equations are 1+n,(—k’°—q")

seen as damping terms, similar to those which arise when the (A3)

Boltzmann equation is treated in the relaxation time approxi-

mation. These differential equations are the same as thoged- (A2) yields the desired result
recently found by Arnold, Moore, and Yaffd] by analyzing
the infrared divergences of the linearized collision integrals B - -

without screened interactions. Thus, this fact constitutes a p(Q)=(e _1)f ( 2Go (=K=Q)Gqg (K).
nontrivial check of the formalism we have used and also of (A%)
the HTL approximation, because of the correct matching of

the uv divergences in our approach with the infrared diver-

gences in the approach of R@4]. APPENDIX B: SUM RULES

With respect to the computation of the complete leading e required integrals over the Landau damping range of
order of the transport coefficients, we believe that, in analogye frequency follow from the sum rulég1] derived from

with the scalar theory, the introduction of all rungs made Ofihe analytic properties of the effective propagators. With the
the one-loop four-point functions may be of interest. ObVi-\giation of Ref[16], these sum rules are

ously, most of these rungs will lead to nondivergent results,
and only a few of them would yield the infrared divergences

d*K
21)

of the hard contribution matching with the logarithmic diver- adg 1 . mé z.(q)
gences we have found here. To carry out these computations j 5. 0 BUlQ=—F——— 5 (BD
e o -q47 q a7(g°+mp) . (q)
within the framework we have presented, the classification of
the four-point functions and the corresponding spectral den-
sities would have to be studied. a dg° m2
f 5-9%* BL(Q)=— —z.(9), (B2)
—q 2 3q2
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(B3)
APPENDIX A: THE SPECTRAL DENSITY OF THE RUNG
IN A ¢* THEORY 0 dg 1 1 z(q)
In this a i ity i [ J' 2 g Pl ):__T—’ (B4
ppendix, the spectral density in E7) is calcu- —q27 P P w(q)?

lated. The product of two free Matsubara propagators is con-
veniently written as the double spectral representation

adq®
Golivg+iv,q+k)Go(ivy,k) quq Br(Q)=1-2z1(q), (B5)

_f f da)ldw2 1
(2m)2 1vg— w3
_ po(@1,0+K)po(w1— wy,K)

ivgtive— o, '

po(wy+ w,,q+K)po(wq,K)
ivg—w,

q dq° m3
f_q%(q°)3*ﬁT(Q)=q2+ =~z or(a)?,
(A1) (B6)

where z_ +(q) are the residues at the quasiparticle poles.
where po(p°,p) =27 sgnp®) 8((p°)?—p?). By performing  With the aim of extracting the logarithmic dependence of the
the sum over,, and taking the imaginary part of the ana- transport equations og., we use the approximations valid
lytic continuationi Vq—>q°+i0+, one obtains at largeq, q>mp,
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82 202 and we find the quadratic terms g which give rise to the
z(q)= —exp —2— | (B7)  logarithmic terms Ing./mp) after theq integration,
D D
1, n=0
2 2 2 L 1
D 1 [ mp a dg’ _ Mp
ZT(Q)=1+—2 1+ §In S—qz) , (B8) J_qﬁ(qo)zn 1*BL(Q)~ﬁX 1/3, n=1,
1/5, n=2,
(B11)
2¢? _ —
o ()2=¢? 1+4exp( —2—12) , (B9) T do mg | M40
mp f_ Z(qo)zn_l*ﬂT(Q)“ aon X T34 n=1,
el (o ‘ . ~11/12, n=2.
wT(q)2=q2+7D+—D2 1+ Eln(_Dz , (B12)
(B10)  The explicit form of the function®, and B+ is
|
4mm3oq6(4°—dp)
BL(Go,q)="———— > 743 (B13)
494q°+mp[1-Q(qo/a) 1} + 7 mp g
(o) 8mm3aoa’(a2—a3) 6(q°—dp) 614
TAMO0 M) — ’
49%{(a?—g5)[20°+ mpQ(do/a) ]+ Mp g} + 7°mpda(a”— dp)
|
where the functiorQ(x) is given by 5 d3q
S(iwn,p)=—0g%Cy(r)T ~
(fwn,p)=—9g°Cy(r) = | om??
X 1+x * QU ; v ;
Q(X)Z Elnm (815) X S(IVH+Iwnvp+q)y G;w(”’nﬂ)-
(C2
APPENDIX C: THERMAL WIDTHS Making use of the spectral representation of the soft fermion

To leading order ing(e), the thermal width of a hard in the HTL approximation,

particle is obtained by the insertion of one HTL glugaho-

ton) propagator into the skeleton graph for the one-loop self- 0« - -

energy. For a hard quarfor a charged fermionic specis}, “Slia q)= foc dg” *A.(Q)h(g)+*A_(Qh_(q)
n» )

the resulting expression [46] w27 °—iw,
(C3)
(2)_ 2 d‘Q o_~ 1
Yy =0 Cz(r)Tf 2 )4775(q —p'Q)@ with * A verifying the parity properties
aa

2
x| BLQ)+ 1—q—2>BT(Q>], (1) *Ax(0’)="Ax(-a%a), (C4)

q

we may perform the Matsubara sum. Then, one may extract

with g2C,(r) replaced byqg2e? in the case of a charged the imaginary part of the continuatiom,—p°+i0". When
fermion. For a hard gluon, the same expression is valid i?°=P, the dominant contribution comes from the piece of
Co(r)—N,. the integrand which multiplies(p®—q°—|p—k|). The re-

Next, we present the expressions for the thermal widthplacement of this delta by(q°—p-q), valid for q<p, se-
for hard particles to ordeg*In g~*. The fermion self-energy lects the Landau damping piece b , and the expansion
is shown in Fig. 7, and is written as of the remaining terms to lowest order dpip yields
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Y= - —tr[rﬁ Im3"®(p°=p,p)]=—u(p, )3 "(p°=p,p)u(p, =)
g°C,(r) d* R
2;( ( b<p)) f ﬁwé(qo—nq)ﬂ@, (C5)

where

qO

0
J—'(Q)EB+(Q)(1—%)+B_(Q)(1+E (C6)

The spectral functiong-.(Q) are given by

- To3a3(a7 o) (02— q3)
B=(qo,q) = - > 5 i o (C7)
[=00a(qFdo) + wo{ = o[ 1 —Q(do/a) ]+ qQ(de/a) } I°+ [ 7 wod5(a+ do) /49 ]

where the frequency plasma for the fermion is;  where the prefactor 2 comes from the two possible ways to
=g2C,(r)T?/8 or q§e2T2/8, The integral(C5 has been arrange a soft fermion propagator in the graph. A similar

treated in Refs[12,19,2Q and, forg.> ws, gives treatment to the fermionic case leads to the result
J d'Q &( )F(Q)= S —1+In2]|.
i - = n
2 728 P | & - L migipo- Sy O C(r)(——n(p))
(o) P P f
The O(g*Ing~ ) thermal width for a hard gauge boson is d*Q 0 -
associated with the imaginary part of the self-energy of the (277)4775((] —P-aAQ), (C10

diagram in Fig. 7. It reads
3

d°q
(2m)®

I,,(iwn,p)= 2NngC<r>TE

wherell(P)=1I1;;(8" — p'p!)/2. For the case of a hard pho-

xtr{y, S(ivyt+io,,p+a)y,* S(iv,,q)}, ton, the correct result is obtained with the substitutions
(C9 gszC(r)_’ezzcharged specitgé and wo— ws.
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