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Transport coefficients and ladder summation in hot gauge theories

Manuel A. Valle Basagoiti*
Departamento de Fı´sica Teo´rica, Universidad del Paı´s Vasco, Apartado 644, E-48080 Bilbao, Spain

~Received 7 May 2002; published 15 August 2002!

We show how to compute transport coefficients in gauge theories by considering the expansion of the Kubo
formulas in terms of ladder diagrams in the imaginary time formalism. All summations over Matsubara
frequencies are performed and the analytical continuation to get the retarded correlators is done. As an illus-
tration of the procedure, we present a derivation of the transport equation for the shear viscosity in the scalar
theory. Assuming the hard thermal loop approximation for the screening of distant collisions of the hard
particles in the plasma, we derive two integral equations for the effective vertices which, to logarithmic
accuracy, are shown to be identical to the linearized Boltzmann equations previously found by Arnold, Moore,
and Yaffe.
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I. INTRODUCTION

The development of a transport theory for QCD in t
regime of high temperature has turned out to be a valua
pursuit with the advent of heavy ion colliders which provi
novel tools for the study of the properties of highly excit
matter. From a purely theoretical point of view, the comp
tation of transport coefficients amounts to a challenge e
in weakly coupled theories, because these quantities usu
depend nonanalytically on the coupling constant. In m
previous computations@1–3#, a kinetic approach based o
the Boltzmann equation has been used. It is only rece
within this framework that a reliable computation to logarit
mic accuracy in gauge theories has been reported@4#. The
complete leading order is still unavailable except for the c
of a gauge theory with a large number of fermionic spec
@5#.

However, there exists an alternative approach, based
Kubo formulas for appropriate correlation functions, whi
has been largely used in the context of low-energy ma
body physics@6#. For the electrical and thermal conductiv
ties of ordinary metals and superconductors, the computa
of the current correlators requires the resummation of an
finite class of ladder diagrams, a task that in the comp
relativistic setting of gauge theories usually appears as a
complex issue, partly motivating the reason for the few u
of this approach. In relativistic transport theory, the resu
mation of ladder diagrams was performed for the sca
theory by Jeon@7#, who proved the equivalence with th
Boltzmann equation, and has since been repeated a few t
@8,9#. Also, a simplified ladder summation was performed
the computation of the leading-log order of the color cond
tivity @10#. Recently, Arnold, Moore, and Yaffe@11,12# per-
formed a ladder summation in order to account for the eff
of multiple scattering in the process of photon product
from a QCD plasma.

The purpose of this paper is twofold. First, we wish
explicitly show how to perform the summation of a restrict
set of ladder diagrams in gauge theories within the imagin
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time formalism of thermal field theory. In contrast to th
work of Jeon@7#, we will not use the series of cut ladde
diagrams. Rather, we closely follow a treatment due to H
stein@13# who, a long time ago, performed a ladder summ
tion in order to compute the transport properties of the lo
energy electron-phonon gas. In this approach, one
identifies the required analytic continuation of the effecti
vertex function entering the current correlator, and th
writes the integral equation for this vertex, summing all la
ders. As shown below, this approach exactly reproduces
correct transport equation for the shear viscosity in the sc
theory.

On the other hand, we will try to derive the logarithm
accuracy of the transport coefficients by only considering
role played by the soft degrees of freedom which are
changed in the collisions between the plasma constitue
This requires the use of the hard thermal loop~HTL! ap-
proximation @14# for the internal lines associated with th
rungs of the diagrams, and the introduction of an arbitr
momentum scaleqc separating the hard and soft ranges
the momentum transfer@15#. An important step toward the
complete computation of the hard contribution was alrea
recently made by the authors of Ref.@4#, who calculated the
infrared logarithmic divergences of the collision terms of t
linearized Boltzmann equation written in terms of u
screened interactions.

Our main results are two integral equations for the eff
tive vertices, encoding the effects of distant collisions in t
plasma coming from the soft momentum transferq,qc . Al-
though these equations are necessarily incomplete, they
produce the required logarithmic dependence onqc , which
makes possible the eventual cancellation of the arbitr
scaleqc in the final result. Hence, they reproduce the kno
results@4# for the transport coefficients to logarithmic acc
racy.

The plan of this paper is as follows. In Sec. II, we revie
some standard material on the imaginary time formalism
thermal field theory and Kubo formulas. Here, we include
useful summation formula over Matsubara frequencies
the procedure of analytic continuation. In Sec. III we sho
how to derive the shear viscosity oflf4 theory. Section IV
deals with the simplifications that appear on summing
©2002 The American Physical Society05-1
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ladders when only the effect of soft momentum transfer
considered. Then, we derive the corresponding contribu
to the transport equations for the electrical conductivity a
the shear viscosity. Section V presents a brief derivat
based on sum rules of the logarithmic terms in the trans
coefficients, and Sec. VI, closing the paper, contains a s
mary and prospects. There are short appendixes with s
details about spectral densities, sum rules, and the rele
thermal widths to be included in the propagators of h
particles.

II. BASIC FORMALISM

A. Single particle spectral densities

The basic element of a diagram in the imaginary tim
formalism is the Matsubara propagator depending on
purely imaginary frequenciesivn5 ipn/b ~with n even for
bosons and odd for fermions!,

D~ ivn ,q!5E
2`

` dq0

2p

r~Q!

q02 ivn

, ~1!

where the real quantityr(Q) @with Qm5(q0,q), q0 real# is
the single particle spectral density. The analytical contin
tion ivn→z defines a functionD(z,q) of a complex variable
z which is analytical off the real axis and the discontinu
through the branch cut along Imz50 is proportional to
r(Q). The different Green’s functions for real frequency c
be constructed from the spectral density. For instance,
bosonic Wightman functionsD.,,(Q) are given by

D.~Q!5@11nb~q0!#r~Q!,
~2!

D,~Q!5nb~q0!r~Q!,

wherenb(q0)51/(ebq0
21) is the bosonic occupation num

ber. The retarded and advanced Green’s functions, which
play an important role in our discussion, are

D ret~Q!5D~q01 i01,q!,
~3!

Dadv~Q!5D~q02 i01,q!,

andr(Q)52 ImD ret(Q).
For a free particle, the spectral density is given by a

perposition of delta functions, with support on the ma
shell, p0

25«p
2 . If the interactions are weak, a delta functio

can be replaced by a Lorentzian with a small widthGp ,
related to the imaginary part of the energy at the poles of
retarded propagator,p056«p2 iGp ,

2pd~p07«p!°
2Gp

~p07«p!21Gp
2

, ~4!

which gives rise to an analytical propagator
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D~z,p!5E
2`

` dp0

2p

2Gp

~p07«p!21Gp
2

1

p02z

5
21

z7«p1 iGp sgn~ Im z!
. ~5!

Thus, for this case, the functionD(z,p) has a branch cut on
the real axis in the complexz plane and it has no poles.

At high temperature, the particles entering the collisi
processes occurring in the plasma are mostly particles pr
gating nearly on shell with hard momentumP;T. Their
spectral densities may be approximated by a combinatio
two Lorentzians:

rb~P!5
1

p S Gp

~p02p!21Gp
2

2
Gp

~p01p!21Gp
2D , ~6!

r f~P!5S 2gp

~p02p!21gp
2

h1~ p̂!

1
2gp

~p01p!21gp
2

h2~ p̂!D , ~7!

whereh6(p̂)5(g07g•p̂)/2, and the thermal widthsGp and
gp are the imaginary parts of the transverse piece of
on-shell gluon self-energy and the quark, respectively,

Gp52
1

2p
Im PT

ret~p05p,p!, ~8!

gp52
1

4p
tr@p” Im S ret~p05p,p!#. ~9!

The shift in the real part of the energy can be ignored sinc
is perturbatively small when the energy isO(T).

In gauge theories, the imaginary part of the thermal s
energies receives contributions from various scattering p
cesses which give a different dependence on the coup
constant. Generically, two-body scattering processes
which a soft bosonic excitation is exchanged yield a pa
metric dependence at leading order asGp ,gp
}g2T log(Lmax/Lmin), whereas processes in which a soft fe
mionic excitation is exchanged yield a parametric dep
denceGp ,gp}g4T2 log(qc /gT)/p. The cutoff qc is a scale
separating semihard and hard momentum transfers, restr
by gT!qc!T but otherwise arbitrary, andLmax can be cho-
sen of ordergT. As will be explicitly shown below, the in-
frared sensitivity to the lower cutoffLmin;g2T entirely dis-
appears from the transport coefficients to be computed.

On the other hand, the temperature Green’s functions
the soft bosonic and fermionic excitations are determined
the single particle spectral densities in the hard thermal l
approximation, * rL,T(v,q) and * D6(v,q), respectively
@14,16,21#. These are presented in Appendixes B and C.
ready, let us note here that only the Landau damping piec
these will contribute to the screening of distant collisions
5-2
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B. Kubo formulas and the ladder approximation

Our starting point is the Kubo formula expressing a giv
transport coefficient in terms of the low-frequency, zero m
mentum limit of the spectral density for the correspond
correlation function. For the electrical conductivity and t
shear viscosity the formulas are@6,7#

s5
1

6
lim
v→0

lim
q→0

]

]v
rJJ~v,q!, ~10!

h5
1

20
lim
v→0

lim
q→0

]

]v
rpp~v,q!, ~11!

where, as usual, the spectral densities are related to the
rier transform of the retarded correlators by

rJJ~v,q!52 ImE
2`

`

dtE d3xeivt2 iq•x

3^@Ji~ t,x!,Jk~0!#&u~ t !d ik , ~12!

rpp~v,q!52 ImE
2`

`

dtE d3xeivt2 iq•x

3^@p i j ~ t,x!,p i j ~0!#&u~ t !, ~13!

and the averages are evaluated in the equilibrium grand
nonical ensemble. An efficient way to compute a retard
correlatorPAA

ret (v,q) ~with A denoting collectively the indi-
ces of the appropriate current! is to exploit the spectral rep
resentation for complex frequencyz. This provides a direct
connection with the temperature Green’s functi
PAA( inn ,q), via analytic continuationinn→v1 i01. Thus,
a first step in our basic task is to evaluatePAA( inn ,0) within
the imaginary time formalism.

After the laborious diagrammatic analysis explicitly pe
formed for the scalar theory@7#, the conclusion is that, in
order to account for all leading-order contributions to t
shear viscosity, a set of uncrossed ladder diagrams mus
summed. On the other hand, for the processes of ph
production from a QCD plasma, the authors of Refs.@11,12#
developed detailed power counting arguments which enfo
the resummation of the uncrossed ladder graphs mad
gauge boson rungs.

A key point for understanding the equal footing of th
class of diagrams is the presence of pairs of propaga
carrying nearly the same momenta, which leads to a dep
dence 1/Gp ~or 1/gp) for each such propagator pair. Hence
is clear that an (n11)-loop diagram withn uncrossed rungs
leads to a dependence proportional toa2(1/Gp)n11(g2)n,
where the firsta2 comes from the two external insertion
and each rung introduces a factorg2. The derived result in
both cases@7# and @11# is a linear integral equation for a
effective vertex function, which is completely equivalent
the linearized transport equation for the problem. Here,
will proceed by assuming the dominance of the same se
ladder diagrams, relying on ana posterioricheck of its con-
sistency.
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At this point, let us then introduce an amputated effect
vertexLA( ivm1 inn ,ivm ;p), associated with two hard ex
ternal bosonic or fermionic lines (ivm1 inn ,p),(ivm ,p),
and with an insertion of zero external momentum but no
zero frequency (inn ,0), corresponding to the appropriat
current (Ji or p i j ). This effective vertex~Fig. 1! is the sum
of all vertices, each one of them with a numbern of rungs
associated with the exchanged excitations, and presum
will encode all collision effects at leading order. The vert
having zero rungs,LA

(0)(p), does not depend on the freque
cies but can depend on the momentump.

C. Summation over Matsubara frequencies and analytic
continuation

Let us now examine the summation over Matsubara
quencies, which generically is involved in the evaluation o
temperature correlatorPAA( inn ,0),

T(
vm

G~ ivm1 inn ,p!LA~ ivm1 inn ,ivm ;p!

3G~ ivm ,p!LA
(0)~p!, ~14!

where the Matsubara propagators have spectral densitie
the form ~6! or ~7!.

To one-loop order, the effective vertex reduces toLA
(0)

and the above sum over frequencies becomes

H~ inn ,p!5T(
vm

G~ ivm1 inn ,p!G~ ivm ,p!, ~15!

with nn even in any case. Now, the function to be summed
a product of Green’s functions and one may proceed by
pressing the Green’s functions in terms of their spectral r
resentations given by Eq.~1!. With this replacement, the re
sulting expression involves a double frequency integral
the product resulting from the spectral densities and the
ementary sum

T (
even, odd m

1

ivm2v1

1

ivm1 inn2v2

57
nb, f~v1!2nb, f~v2!

inn1v12v2
, ~16!

where nb, f denote boson or fermion occupation facto
However, it is more convenient to use an alternative pro
dure based on contour integration in thez plane of an appro-
priate function.

FIG. 1. Labels of the effective vertex.
5-3
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This procedure was used, a long time ago, by Holst
@13# to derive diagrammatically the transport properties of
electron-phonon gas. Here, we closely follow the treatm
of Holstein. To perform the summation~15!, we consider the
function G(z1 inn ,p)G(z,p)nb, f(z), and a contour integra
tion C0 made of three circuits enclosing the poles ofnb, f(z)
at the imaginary axis but avoiding the other possible pole
GG ~in this case these are absent!, and the two branch cuts a
Im z50 and Im(z1 inn)50. This contour may be deforme
to C and G as shown in Fig. 2. The contributions from th
large arcsG vanish and we are left with the integrals alon
C. Then, Eq.~15! becomes after summation

H~ inn ,p!56
1

2p i EC
dzG~z1 inn ,p!G~z,p!nb, f~z!

57E
2`

` dj

2p i
nb, f~j!$@G~ inn1j,p!

1G~2 inn1j,p!#Gadv~j,p!2Gret~j,p!

3@G~ inn1j,p!1G~2 inn1j,p!#% ~17!

wherej is a variable specifying the position at the bran
cuts. More generally, if the functionF(z) to be summed has
poles in the complexz plane, the summation formula whic
will be extensively used in what follows is

T (
even, odd m

F~ ivm!57 (
poles

nb, f~zi !Res~F,z5zi !

6(
cuts

E
2`

` dj

2p i
nb, f~j!DiscF.

~18!

FIG. 2. Integration contour for the sumT(mF( ivm). The origi-
nal contourC0 consists of three dashed circuits encircling the M
subara frequencies. The deformed contourC goes along both side
of the branch cuts. A possible pole ofF(z) at the real axis is de-
picted for its relevance in the summation of the vertex equation
04500
n
n
t

f

Application of this formula to the summation in Eq.~14!
requires the determination of the singularities ofLA(z
1 inn ,z;p). We argue that the only singularities are tw
branch cuts at the lines Im(z1 inn)50 and Im(z)50. This is
a consequence of the recurrence relation for the vertex win
rungs,

LA
(n)~ ivm1 inn ,ivm ;p!

5T(
nq

E d4Q

~2p!4
G~ ivm1 inn1 inq ,p1q!

3LA
(n21)~ ivm1 inn1 inq ,ivm1 inq ;p1q!

3G~ ivm1 inq ,p1q!
r~Q!

q02 inq

, ~19!

where r(Q) is the spectral density corresponding to t
added rung and (inq ,q) label the momenta running throug
the loop. Forn51, it is clear that Eq.~18! implies thatLA

(1)

has only the singularities of the product of the Green’s fu
tions. Then, it follows from mathematical induction th
LA

(n) , and henceLA , inherit the same property.
Now, we are ready to perform the summation in Eq.~14!

and the subsequent analytic continuation. Making use of
~18! we may write

T(
vm

G~ ivm1 inn!LA~ ivm1 inn ,ivm!G~ ivm!

57E
2`

` dj

2p i
nb, f~j!

3$@G~j1 inn!LA~j1 inn ,j2 i01!1G~j2 inn!

3LA~j2 i01,j2 inn!#Gadv~j!2Gret~j!

3@LA~j1 inn ,j1 i01!G~j1 inn!

1LA~j1 i01,j2 inn!G~j2 inn!#%, ~20!

where the dependence onp is not explicitly exhibited. Next,
the analytical continuationinn→v1 i01 of the previous ex-
pression yields

7E
2`

` dj

2p i
$nb, f~j1v!Gadv~j1v,p!

3LA~j1v2 i01,j2 i01;p!Gadv~j,p!2nb, f~j!

3Gret~j1v,p!LA~j1v1 i01,j1 i01;p!

3Gret~j,p!2@nb, f~j1v!2nb, f~j!#Gret~j1v,p!

3LA~j1v1 i01,j2 i01;p!Gadv~j,p!%, ~21!

where we have rearranged some terms by a shift of the i
gration variable. At this point, a simplification arises sin
the integrand of the above expression contains a large t
coming from the productGretGadv. This is due to the fact tha
the two pairs of poles of this product are located at both si

-

5-4
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on the real axis in thej plane. Thus, in the limitv→0, the
contribution ofGretGadv to the integral is inversely propor
tional to the distance between the poles given by the ther
width. The other productsGretGret and GadvGadv make a
much smaller contribution, due to the cancellation betwe
the residues at the poles.

Therefore, noting that the effective vertexLA(j1 i01,j
2 i01;p) is a real quantity,1 and nb, f8 (j)52bnb, f(j)@1
6nb,f(j)#, the required zero-frequency slope of the retard
correlator may be written as

]

]v
Im PAA

ret ~v,0!U
v50

5zbE d3p

~2p!3
LA

(0)~p!E
2`

` dj

2p
nb, f~j!@16nb, f~j!#

3Gret~j,p!LA~j1 i01,j2 i01;p!Gadv~j,p!, ~22!

where the prefactorz accounts for the symmetric factor a
sociated with the one-loop diagram corresponding toPAA .
This factor is 1/2 or 1 depending on whether theG functions
correspond to a self-conjugate field or not. It is important
notice the correspondence between Eq.~22! and the expres-
sion for a transport coefficient in terms ofdnA,6(p), denot-
ing the departure from equilibrium of the single particle~an-
tiparticle! density function. Anticipating a contribution o
GretGadv}(6d(j7upu)/Gp , such a correspondence is cle
with the appropriate identification

dnA,6~p!}
1

Gp
LA~6upu1 i01,6upu2 i01;p!. ~23!

III. THE TRANSPORT EQUATION FOR SHEAR
VISCOSITY IN lf4 THEORY

With the purpose of making clear the basic procedure
be used in gauge theories, we present a simple alterna
derivation of the transport equation for the scalar theory
the form previously obtained by Jeon@7#. The starting point
is the linear integral equation for the effective vertex befo
analytic continuation

L i j ~ ivm1 inn ,ivm ;p!

5L i j
(0)~p!1

1

2
T(

nq

E d4Q

~2p!4
G~ ivm1 inn1 inq ,p1q!

3L i j ~ ivm1 inn1 inq ,ivm1 inq ;p1q!

3G~ ivm1 inq ,p1q!
r~Q!

q02 inq

, ~24!

1This follows from mathematical induction, taking into accou
that the zero-order vertexLA

(0)(p) is real.
04500
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where the factor 1/2 is due to combinatorics, andL i j
(0)(p)

52p2( p̂i p̂ j2d i j /3).2 This equation is shown in Fig. 3. Th
spectral densityr(Q) associated with the bubble in the run
is given by

r~q0,q!52 Im H l2T(
nk

E d3k

~2p!3

3
1

~nq1nk!
21uk1qu2

1

nk
21k2J U

inq5q01 i01

.

~25!

By performing the previous sum~see Appendix A!, and us-
ing the expression for the free Wightman function,

G0
.~P!5@11nb~p0!#2p sgn~p0!d~p0

22p2!, ~26!

one may write the spectral density for the rung in a symm
ric form

r~Q!5
l2

nb~q0!
E d4K

~2p!4
G0

.~2Q2K !G0
.~K !. ~27!

The relation of this spectral density with the kernelLBoltz in
the treatment of Jeon@7# is therefore

r~Q!5
2

nb~q0!
LBoltz~2Q!. ~28!

Note thatr(Q) is odd inq0.
The formula~18! can be applied in order to perform th

summation in the vertex equation~24!. The term associated
with the discontinuities gives@omitting the prefactor 1/2 and
r(Q)#

2The factor 2 is due to the sum over the two permutations of
momenta corresponding to the scalar field.

FIG. 3. Equation for the effective vertex in thelf4 theory. The
double lines represent the propagators of the hard particles inc
ing theO(l2) thermal width.
5-5
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E
2`

` dj

2p i
nb~j!H G~j2 inn ,p1q!

j2q02 ivm2 inn

3@Gadv~j,p1q!L i j ~j2 i01,j2 inn!

2Gret~j,p1q!L i j ~j1 i01,j2 inn!#1
G~j1 inn ,p1q!

j2q02 ivm

3@Gadv~j,p1q!L i j ~j1 inn ,j2 i01!

2Gret~j,p1q!L i j ~j1 inn ,j1 i01!#J , ~29!

and the pole term associated with the spectral represent
of the rung gives

nb~q0!G~q01 ivm1 inn ,p1q!

3L i j ~q01 ivm1 inn ,q01 ivm!

3G~q01 ivm ,p1q!, ~30!

where we have omitted the dependence onp1q in the ver-
tex. After this summation, the analytic continuationivm
1 inn→p01v1 i01, ivm→p02 i01 can be explicitly per-
formed:

L i j ~j2 i01,j2 inn!→L i j ~j2 i01,j2v2 i01!,

L i j ~j1 i01,j2 inn!→L i j ~j1 i01,j2v2 i01!,

L i j ~j1 inn ,j2 i01!→L i j ~j1v1 i01,j2 i01!,

L i j ~j1 inn ,j1 i01!→L i j ~v1j1 i01,j1 i01!,

G~j2 inn ,p1q!→Gadv~j2v,p1q!,

G~j1 inn ,p1q!→Gret~j1v,p1q!.

If we neglect the productsGadvGadv and GretGret as argued
before, the discontinuity contribution becomes

E
2`

` dj

2p i
Gret~j1v,p1q!

3L i j ~j1v1 i01,j2 i01!Gadv~j,p1q!

3F nb~j!

j2p02q01 i01
2

nb~j1v!

j2p02q02 i01G , ~31!

and the required limitv→0, after thej integration, reduces
to

2nb~p01q0!Gret~p01q0,p1q!

3L i j ~p01q01 i01,p01q02 i01!

3Gadv~p01q0,p1q!. ~32!

Adding the pole contribution, one finds the integral equat
satisfied by the effective vertex
04500
ion

n

Di j ~P!5L i j
(0)~p!

1
1

2E d4Q

~2p!4
Gret~P1Q!Di j ~P1Q!

3Gadv~P1Q!r~Q!@nb~q0!2nb~p01q0!#,

~33!

where we have definedDi j (p0,p)[L i j (p01 i01,p0

2 i01;p).
To present a more explicit form of the transport equatio

it remains to analyze the productGret(P1Q)Gadv(P1Q). If
the momentumP ~or P1Q) is nearly on shell, the contribu
tion associated with the sum of the crossed products red
to a product of two Lorentzians peaked at different values
p0. In the limit l→0, this fact enables us to neglect the pie
G1

retG2
adv1G2

retG1
adv, so we may write

Gret~P1Q!Gadv~P1Q!

5(
6

1

4up1qu2

1

~p01q07up1qu!21Gp1q
2

~34!

which, for l→0, behaves as

Gret~P1Q!Gadv~P1Q!

5
p

4up1qu2Gp1q

@d~p01q02up1qu!

1d~p01q01up1qu!#

5
1

4up1quGp1q
2pd„~p01q0!22up1qu2

…. ~35!

Since the imaginary part of the retarded self-energy is od
the frequency, the thermal width can be replaced
2sgn(p01q0) Im S ret(P1Q)/(2up1qu), and Eq.~35! then
becomes

Gret~P1Q!Gadv~P1Q!

52
1

2 ImS ret~P1Q!
2p sgn~p01q0!

3d„~p01q0!22up1qu2
…

52
1

@11nb~p01q0!#

1

2 ImS ret~P1Q!

3G0
.~P1Q!. ~36!

With the aid of the identity

nb~q0!2nb~p01q0!5nb~q0!@11nb~p01q0!#~12e2bp0
!,

~37!

one arrives at the final form of the transport equation:
5-6
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Di j ~P!5L i j
(0)~p!2~12e2bp0

!E d4Q

~2p!4
LBoltz~2Q!

3G0
.~P1Q!

Di j ~P1Q!

2ImS ret~P1Q!
, ~38!

in complete agreement3 with the results of Ref.@7#, where
the equivalence with the linearized Boltzmann equation
been proven. The functionDi j (P) is real, even inp0, pro-
vided thatr(Q) is odd inq0.

The last step in the evaluation of the shear viscosity is
computation of the integral~22! for which only the on-shell
effective vertexDi j (p05p,p) is required. The insertion o
Eq. ~36! with P1Q replaced byP into Eq. ~22!, and multi-
plication by 1/10 yields the shear viscosity compactly writt
as

h52
b

20E d4P

~2p!4
nb~p0!L i j

(0)~p!G.~P!
Di j ~P!

2 ImS ret~P!
.

~39!

IV. SOFT CONTRIBUTIONS TO THE TRANSPORT
EQUATIONS IN GAUGE THEORIES

In the derivation of the transport equations that we
tempt here, we want to emphasize the role played by
screening effects in the regularization of some infrared div
gences which arise in the small momentum transfer reg
The importance of dynamical screening in transport phen
ena in gauge theories was first recognized in Ref.@1#, where
a linearized collision integral free of infrared divergenc
was stated by using only screened interactions mediate
gauge bosons. Our aim here is to derive transport equat
by means of the summation of a restricted set of ladder
grams, which includes only a specific type of rungs. Th
rungs will consist of appropriate effective bosonic or ferm
onic propagators in the hard thermal loop approximati
thus accounting for the screening of distant collisions
tween all different plasma constituents. Obviously, this
proximation does not include the effects due to close co
sions and its use requires the imposition of an upper cu
qc in the integrals over the momentum transfer@15#. As a
check of consistency, we will verify that the coefficients
the uv-logarithmic sensitivities toqc match the ir-logarithmic
divergences previously computed by Arnold, Moore, a
Yaffe @4# in their treatment of the hard contributions to th
collision integrals of the Boltzmann equation.

To elucidate more precisely what type of rungs domin
in the ladder summation which gives the logarithmic ac
racy of transport coefficients, it is necessary to estimate
power counting size of the spectral densities which, in
treatment, are associated with the ladder rungs. For insta
consider the spectral density of the rung in the scalar the
of the previous section, Eq.~27!. Clearly, it is O(l2) from

3Our notation does not agree with@7#, but the conversion is direct
L i j

(0)→2I p , Di j →2Dp , and ImS ret→2S I .
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the two vertices, and the contributionO(l22) from the prod-
uct GretGadv in Eq. ~33! causes the integral term in the verte
equation to have a netg0 contribution, like the zero-orde
vertex.

In a gauge theory, there are two possible topologies w
the same power counting which potentially contribute to
leading logarithmic order. They are illustrated in Fig. 4. T
spectral density of the soft gauge boson exchange lad
labeled~a!, is O(1) because of theg2 suppression from the
two vertices, and ag22T22 contribution from the spectra
density of the soft gauge boson. In theQ integration of the
vertex equation, similar to Eq.~33!, there is a factornb(q0)
5O(g21) and a factorO(g22) from the imaginary part of
the self-energy in the denominator of the productD retDadv.
Finally, there is ag3 suppression from the soft integratio
d3q @the contribution of the integrationdq0 is cancelled by a
delta term fromD retDadv; see Eqs.~50! and ~51! below#.
Hence, the net contribution of the integral term in the ver
equation isO(1), the same as the zero-order vertex, wh
the spectral density of the rung is alsoO(1).

Similarly, when the horizontal internal lines are soft gau
boson propagators, the spectral density of the box type
der rung, labeled as~b! in Fig. 4, is O(1). To perform this
estimation, it is helpful to write the general form of the spe
tral densities in terms of the squares of the 2↔2 scattering
amplitudesuMu2. Such formulas are similar to Eq.~27!:

ra~P8,P!}
1

nb~p802p0!
E d4Kd4K8d (4)~P1K2P82K8!

3uMu2D.~2K8!D.~K !, ~40!

rb~K8,P!}
1

nb~k802p0!
E d4Kd4P8d (4)~P1K2P82K8!

3uMu2D.~2P8!D.~K !, ~41!

where P,K,P8,K8 are the on-shell hard momenta for th
particle entering into the scattering processes, and the la
for momenta have been chosen with the aim of using

FIG. 4. Two ladder rung topologies of the same power counti
The dashed lines correspond to the cuts giving the spectral den
ra(P8,P) andrb(K8,P).
5-7



e

tio
ive

e

s
n

re

s
o

x
ot

e

or

e to

o

-
ith-
two
om-

al,
the

n,
ns

, so

he
m-

f-
ing
and

c-
are
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sameuM(P,K,P8,K8)u2 within the integrations.4 For soft
momentum transferQ5P82P5K2K8, this reduces to

uM~P,K,P8,K8!u2

}g4p2k2u * DL~Q!1~ p̂3q̂!•~ k̂3q̂! * D T~Q!u2

;O~g0!, ~42!

where * DL, T denotes the longitudinal or transverse retard
boson gauge propagator. Note thatP8 and K are loop mo-
menta associated with the integrations in the vertex equa
and P corresponds to the fixed momentum of the effect
vertex. In this language, it is easy to recover the pow
counting size ofra(P8,P):

ra~P8,P!}q0E
0

`

dknb, f8 ~k!E dVkd~q02 k̂•q!uMu2

}g4p2T2
q0

q F uDL~Q!u21
1

2 S 12
q0

2

q2D 2

uDT~Q!u2G
}g2p2FbL~Q!1S 12

q0
2

q2D bT~Q!G;O~g0!. ~43!

For the estimation ofrb(K8,P), the denominator contribute
asg0 even thoughk80 andp0 are hard energies. The reaso
for this is that, in general, their difference does not cor
spond to a soft exchange of energy, as shown in Fig. 4~b!.
Consequently,rb(K8,P)5O(1) also.

However, in the case of the shear viscosity, the sub
quent integration in the vertex equation over the directions
k8 and theq0 integration cancel the contribution of this bo
type of diagram. To understand this cancellation, we n
that for small momentum transferq!p,k, the energyd func-
tion which remains after the three-momentump8 integration
in Eq. ~41! may be expressed asd(q02 k̂8•q), and

M~P,K,P8,K8!}g2pkF * DL~Q!1* DT~Q!

3S 12
q0

2

q2D cosfG , ~44!

wheref is the angle between the planes (p,q) and (k8,q).
On the other hand, the angular dependence ofLp(K8) within
the integration overK8 in the vertex equation is given by th
contraction ofLp(K8) with Lp(P), which is proportional to
P2(cosupk8), with P2 the second Legendre polynomial. F
small q, the required cosine becomes@4#

cosupk8.
q0

2

q2
1S 12

q0
2

q2D cosf. ~45!

4We closely follow the notation of Ref.@4#.
04500
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Without screening effects, the boson propagators reduc
* DL(Q)521/q2 and * DT(Q)521/(q0

22q2). Thus, the
angular integration over the azimuthal angle ofk8 followed
by thek0 ~or q0) integration turns out to be proportional t

E
2q

q

dq0E
0

2p

dfP2~cosupk8!~12cosf!250. ~46!

Here, the integration over the spatial range2q,q0,q is
enforced by thed(q02 k̂8•q). This means that the un
screened box rungs do not contribute to the leading logar
mic order and, consequently, box ladder rungs made of
soft gauge boson propagators are irrelevant in order to c
pute the soft contribution to the shear viscosity.

For the electrical conductivity at zero chemical potenti
the cancellation of these box ladder rungs comes from
charge-conjugation invariance. For each fixedP, we have
two contributions to the integral term of the vertex equatio
corresponding to the insertions of fermions and antifermio
through the loop. These contributions are of opposite sign
their sum vanishes.

Similarly, there are other box ladder rungs in which t
horizontal lines are soft fermion propagators, which are co

FIG. 5. Equation for the soft contribution to the fermionic e
fective vertex. For the case of the electrical conductivity to lead
order in e, the soft boson exchanged corresponds to a photon
the last graph is zero.

FIG. 6. Equation for the soft contribution to the bosonic effe
tive vertex. In the case of the electrical conductivity, all graphs
null.
5-8
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parable to the soft fermion exchange ladders. They do
contribute either to the leading logarithmic order because
the cancellation under angular integration of their unscree
counterparts. Now, the unscreened squared amplitudes
uMu2}(12cosf)/q2 @4#, and the relevant integration is

E
2q

q

dq0E
0

2p

df Pl~cosupk8!~12cosf!50, ~47!

with l 51,2 for the electrical conductivity and the shear v
cosity, respectively.

Next, let us consider the equations for the effective ver
LA of a given fermionic species and the effective vert
LA

jmfor a given boson gauge. Here, the superscripts (jm)
denote spatial indices corresponding to the boson prop
tors in Coulomb gauge to be joined to the vertex, andA
collectively denotes the indices corresponding to the ins
tion of j i or p ik . We still do not explicitly indicate any spin
color, or flavor indices. The equations for the effective v
tices are illustrated in Figs. 5 and 6. These equations sum
ladders consisting of rungs made of a HTL gauge bo
propagator, and also a HTL fermion propagator. The
change of a soft gauge boson takes place in scattering
of
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tween fermions and gauge bosons in non-Abelian theor
while the exchange of a soft fermion enters in an annihilat
process into a fermionic pair, and the inverse process of
ation.

By following a completely similar treatment to that w
have presented for the scalar theory for the summation
analytical continuation to real frequencies, one arrives at
coupled equations for the effective vertices:

LA~P!5LA
(0)~p!1g2E d4Q

~2p!4
gmS ret~P1Q!

3LA~P1Q!Sadv~P1Q!gn

3 * rmn~Q!@nb~q0!1nf~p01q0!#1g2E d4Q

~2p!4

3Gi j
ret~P1Q!LA

jm~P1Q!Gmn
adv~P1Q!g i

3 * r~v,q!gn@nf~q0!1nb~p01q0!#, ~48!

and
LA
jm~P!5LA

(0) jm~p!1E d4Q

~2p!4
Vj mk~P,Q,2P2Q!Vmnn~2P,2Q,P1Q!

3Gki
ret~P1Q!LA

il ~P1Q!Gln
adv~P1Q!* rmn~Q!@nb~q0!2nb~p01q0!#

1g2E d4Q

~2p!4
tr$g jSret~P1Q!LA~P1Q!Sadv~P1Q!gm * r~Q!2gmSret~2P2Q!

3LA~2P2Q!Sadv~2P2Q!g j * r~Q!%@nf~q0!2nf~p01q0!#. ~49!
sfer.

n-
ave
ot
ns-
Here * rmn(Q) and * r(Q) denote the spectral densities
the soft gauge boson and the fermion and, as usual,LA(P)
[LA(p01 i01,p02 i01;p). Note that we have used the pa
ity properties * r(Q)5 * r(2Q) and nf(2q0)2nf(2p0

2q0)52@nf(q
0)2nf(p01q0)#. These equations are en

tirely similar to the transport equation for the scalar theo
As there, the occupation numbersnb, f(p01q0) arise from
the branch cut contributions, and the identitiesnb, f(j
1np i )52nf ,b(j) with n odd have been used, if necessa
Further progress requires detailed examination of the exp
structure of the productsSretLASadv andGretLAGadv.

The substitution of the two pieces of the Green’s fun
tions in the productSretSadv or GretGadv yields four terms;
two of them,D6

retD7
adv or G6

retG7
adv, can be directly dropped in

the limit g→0. Now, by computing the soft contribution t
the transport properties, we have only to consider one of
two terms,11 or 22, depending on whether the extern
momentum corresponds top05p or p052p. This important
simplification is due to the fact that, when the external m
mentumP is on shell, let us sayp05p, the other sheet of the
.

.
it

-

e

-

mass shell cannot be connected by a soft momentum tran
Clearly, a hard momentumQ is required in order to create
two propagating on-shell particles both with hard mome
tum. In contrast, for the case of the scalar theory, we h
retained both terms in Eq.~35! because there we have n
made a distinction between soft and hard momentum tra
fers. Thus, whenP is on shell andQ!P, we can make the
approximations

D6
ret~P1Q!D6

adv~P1Q!5
p

gp1q
d~p01q07up1qu!

.
p

gp1q
d~q07p̂•q!, ~50!

and

G6
ret~P1Q!G6

adv~P1Q!.
p

4pup1quGp1q
d~q07p̂•q!.

~51!
5-9
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On the other hand, in the high temperature limit when
masses are negligible, the theory is chirally invariant. A
consequence, the projection operatorsh6(p̂) can be ex-
pressed in terms of simultaneous eigenspinors of chira
and helicity,

h1~ p̂!5u~ p̂,1 !ū~ p̂,1 !1u~ p̂,2 !ū~ p̂,2 !, ~52!

h2~ p̂!5v~ p̂,1 !v̄~ p̂,1 !1v~ p̂,2 !v̄~ p̂,2 !, ~53!

where theu(v) spinors have the chirality equal~opposite! to
the helicity. For example, in the chiral representation, w
the momentum along the 3 axis,

u~ p̂,1 !5S 0

0

1

0

D , u~ p̂,2 !5S 0

1

0

0

D ,

v~ p̂,1 !5S 1

0

0

0

D , v~ p̂,2 !5S 0

0

0

1

D . ~54!

In the case of the electrical conductivity, the zero-ord
effective vertices are

L i
(0),s5qseg i , ~55!

L i
(0) jm50, ~56!

whereqs is the charge of the fermionic constituents in units
of e. For the shear viscosity, the insertion at zero momen
of a spatially transverse energy-momentum tensor yields
zero-order vertices

L i j
(0)~p!5

1

2 S g i pj1g j pi2
2

3
g•pd i j D , ~57!

L ik
(0) jm~p!52S pipk2

p2

3
d ikD d jm. ~58!

Both of the fermionic vertices are linear in theg matrices,
and this linear dependence is preserved by summing la
diagrams because each added rung does not introduce
extra dependence. Thus, the fermionic effective vertic
which appear sandwiched between the projection opera
h6(p̂) and h6(p1q̂) require one to consider ag matrix
between eigenspinors of all possible chiralities and helicit
Obviously, the combinations between spinors of differe
chirality, like ū(6)gmu(7) or v̄(6)gmu(6), are zero.
Moreover, the combinations mixing the particle and antip
ticle mass shells, such asv̄(p1q̂,6)gmu(p̂,7) or ū(p1q̂,
6)gmv(p̂,7), do not need to be retained since they can
be connected by a soft momentum transfer. Therefore, we
left with the chirality-independent combinations
04500
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ū~p1q̂,6 !g0u~ p̂,6 !511O~q/p!,

ū~p1q̂,6 !g iu~ p̂,6 !5 p̂i1O~q/p!, ~59!

v̄~p1q̂,6 !g0v~ p̂,6 !511O~q/p!,

v̄~p1q̂,6 !g iv~ p̂,6 !52 p̂i1O~q/p!, ~60!

corresponding to the lepton~quark! and the antilepton~anti-
quark!, respectively.

A. Soft contribution to the transport equation
for the electrical conductivity

Now, we are ready to write more explicitly the transpo
equations~48! and ~49!. For the case of the electrical con
ductivity, it is suggested to define the nonamputated on-s
vertices for a given charged fermionic speciess,

D i
s2

~p![ū~ p̂,6 !L i
s~p05p,p!u~ p̂,6 !, ~61!

D i
s1

~p![ v̄~ p̂,6 !L i
s~p052p,2p!v~ p̂,6 !, ~62!

with the corresponding zero-order vertices which follo
from Eqs.~59! and ~60!. Here, the factorg2 in front of the
integral in Eq.~48! must be replaced byqs

2e2. At zero elec-
trical charge, the bosonic effective vertex for electrical co
ductivity does not enter because its zero order vanishes,
Furry’s theorem ensures the vanishing of the term within
trace in Eq.~49!. This leaves a single decoupled equation
the fermion vertex.

Next, we fix the external frequencyp05p. After multi-
plying both sides of Eq.~48! by the u eigenspinors, and
expand the integrand using Eqs.~52! and~50! with 11, we
obtain a term proportional to

d~q02p̂•q!ū~ p̂,6 !gmu~p1q̂,6 !ū~p1q̂,6 !

3gnu~ p̂,6 !* rmn~Q!

5d~q02p̂•q!FbL~Q!1S 12
q0

2

q2D bT~Q!G1O@q/p#,

~63!

where the delta function has enforced a spacelike momen
transfer corresponding to Landau damping, and we h
used the approximations~59!. Finally, the substitution
L i(upu1p̂•q,p1q)5L i(up1qu,p1q), valid at soft momen-
tum, gives the equation
5-10
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D i
s2

~p!5qsep̂i1qs
2e2E d4Q

~2p!4
pd~q02p̂•q!

3S T

q0
2

1

2
1nf~p!D

3FbL~Q!1S 12
q0

2

q2D bT~Q!GD i
s2

~p1q!

gp1q
s

,

~64!

where we have neglected theO(q0/p) terms in the occupa
tion numbers. Using the parity properties of the zero-or
vertex and noting that the spectral density* rmn(Q) is odd in

q0, one may easily show from Eq.~49! that D i
s2

(p)

52D i
s1

(p). This equation is formally similar to the integra
equation for the complete leading order of the photon em
sion rate from the quark-gluon plasma, which was derived
Ref. @11#.

Following a similar treatment to that used by Arnol
Moore, and Yaffe@11#, we may reduce the transport equati
a bit more. This proceeds by insertion of the integral for
thermal width of a hard fermion. As we have already sa
the thermal width receives the leading order contribut
from two-body scattering between fermions by exchange
a soft photon. For a given fermionic species, it is given
the integral@16#

gp
(2),s5qs

2e2E d4Q

~2p!4
pd~q02p̂•q!

T

q0

3FbL~Q!1S 12
q0

2

q2D bT~Q!G . ~65!

Note that the value of this integral remains unaltered wh
the term T/q0 of the integrand is replaced byT/q021/2
1nf(p). This is due to the fact that the added term21/2
1nf(p) is here multiplied by an odd function ofq0 and,
consequently, is irrelevant. However, this is not true for
corresponding term in Eq.~64!, since the vectorial depen
dence ofDi on p1q can give odd contributions inp•q.

In addition to the dominant contribution, the therm
width receives another contribution coming from two-bo
conversion processes which also give rise to a leading
term in the transport coefficients. This contribution to t
thermal width corresponds to the imaginary part of the d
gram of Fig. 7, and it is expressed by the integral

FIG. 7. Subleading contributions to the self-energy of a h
quark ~a! and a gluon~b!.
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gp
(4),s5qs

2e2S 1

2
1nb~ upu! D p

2pE d4Q

~2p!4
d~q02p̂•q!

3Fb1~Q!S 12
q0

q D1b2~Q!S 11
q0

q D G
5

qs
2e2vs

2

8pp
@112nb~ upu!#F lnS qc

A2vs
D 211 ln 2G ,

~66!

where qc is the upper limit of integration which separate
semihard and hard momentum transfers, andvs

25qs
2e2T2/8

is the plasma frequency for the fermionic speciess.
By inserting the expression~65! into Eq.~64!, after defin-

ing the quantities

x i
s2,1

~p![
qse

gp
s

D i
s2,1

~p!, ~67!

one obtains a more convenient expression

qs
2e2p̂i5gp

(4),sx i
s2

~p!1qs
2e2E d4Q

~2p!4
pd~q02p̂•q!

3S T

q0
2

1

2
1nf~p!D FbL~Q!1S 12

q0
2

q2D bT~Q!G
3@x i

s2

~p!2x i
s2

~p1q!# ~68!

for the soft contribution to the transport equation in the ca
of electrical conductivity.

An important point to notice here concerns the absenc
some subleading corrections to the hard particle wid
whose size is comparable to that included in Eq.~66!. Such
corrections ofO(g3) and O(g4 ln g21) arise from the sub-
leading part of the bosonic occupation numbernb(q0) in the
integrand of Eq.~65!, and they are associated with

nb~q0!2
T

q0
1

1

2
52T(

n51

`
q0

q0
21~2pnT!2

. ~69!

To understand this absence, consider the transport equ
~64! whenD/g has been replaced byx, as in Eq.~67!, and
the kernel still containsnb(q0)1nf(p). Now, if in the prod-
uct gpx(p) one were to include the subleading terms fro
Eq. ~69!, the same terms would have to be included in t
occupation number in the kernel of the integral. For smalq,
there is a cancellation between them, and the resulting tr
port equation would be the same as that in Eq.~68! with
T/q021/21nf(p) replaced by nb(q0)1nf(p). However,
when the momentump is hard,nf(p)5O(1), andother pole
terms different from zero in the occupation number a
O(g). Hence, they may be ignored.

d

5-11
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B. Soft contribution to the transport equations for shear
viscosity

Next, we consider the shear viscosity in a SU(Nc) gauge
theory withNf fermion fields in a given irreducible represe
tation r of dimensiond(r ). The generator matrices are d
noted byt r

a , and the normalization for this representation
defined by the constantC(r ) in tr(t r

at r
b)5C(r )dab. The qua-

dratic Casimir operator is denoted byC2(r ).
Since the gluon effective vertexL ik

jm,ab is always joined to
a pair of transverse projectors of the gauge propagators,
useful to define the nonamputated on-shell gluon vertexD ik

g

by

PT
r j ~ p̂!L ik

jm,ab~p05upu,p!PT
ms~ p̂![D ik

g ~p!PT
rs~ p̂!dab,

~70!

and the zero-order vertex corresponding to Eq.~58!,
D ik

(0)g(p)52(pipk2d ikp2/3). On the other hand, and as b
fore, we define the nonamputated on-shell quark vertexD ik

q

by

D ik
q ~p![ū~ p̂,6 !L ik~p05p,p!u~ p̂,6 !, ~71!

and the zero-order vertex corresponding to Eq.~57!,
D ik

(0)q(p)5upu( p̂i p̂k2d ik/3). We note that the similar verte

for antiquarks,D q̄5 v̄L(2P)v, turns out to be the same a
for quarks, as it is easily checked by examining the cor
sponding zero-order vertices, and noting that each ad
rung in the iteration does not break this property.

Now, in order to derive the transport equations forD ik
q,g ,

it only remains to perform the appropriate contraction
Eqs. ~48! and ~49! with a pair of u spinors and a pair o
transverse projectors, respectively. Using the approximat

ū~ p̂,6 !gm@b1~Q!h1~q!1b2~Q!h2~q!#

3gnu~ p̂,6 !PT
mn~p1q̂!

5b1~Q!~12p̂•q̂!1b2~Q!~11p̂•q̂!1O~q/p!,

~72!

tr$gmh1~p1q̂!gn@b1~Q!h1~q!

1b2~Q!h2~q!#%PT
mr~ p̂!PT

ns~ p̂!

5@b1~Q!~12p̂•q̂!1b2~Q!~11p̂•q̂!#PT
rs~ p̂!

1O~q/p!, ~73!

and
04500
is

-
ed

f

ns

f acdf bcdVj mk~P,Q,2P2Q!Vmnn~2P,2Q,P1Q!

3 * rmn~Q!PT
kn~p1q̂!PT

j r ~ p̂!PT
ms~ p̂!

54g2Ncp
2@bL~Q!1~12p̂•q̂2!bT~Q!#PT

rs~ p̂!dab

1O~q/p!, ~74!

one finds

D ik
q ~p!5D ik

(0)q~p!1g2C2~r !E d4Q

~2p!4
pd~q02p̂•q!B~Q!

3S T

q0
2

1

2
1nf~p!DD ik

q ~p1q!

gp1q

1g2C2~r !E d4Q

~2p!4
pd~q02p̂•q!F~Q!

3S 1

2
1nb~p! D D ik

g ~p1q!

4pup1quGp1q
, ~75!

and a completely similar form for the gluon vertex,

D ik
g ~p!5D ik

(0)g~p!1g2Ncupu E d4Q

~2p!4
pd~q02p̂•q!B~Q!

3S T

q0
2

1

2
2nb~p!D D ik

g ~p1q!

up1quGp1q

12g2NfC~r !E d4Q

~2p!4
pd~q02p̂•q!F~Q!

3S 1

2
2nf~p! DD ik

q ~p1q!

gp1q
, ~76!

where

B~Q![bL~Q!1S 12
q0

2

q2D bT~Q!, ~77!

F~Q![b1~Q!S 12
q0

q D1b2~Q!S 11
q0

q D . ~78!

Note that we have approximated the occupation numbers
their expansions up toO(q0) corrections. The prefactor 2 in
front of the pieceg2NfC(r ) in the last term of Eq.~76! is
due to the two possible orientations for the momentum in
quark loop. The remainder of the previous equations is
most obvious, after performing the approximations~50! and
~51!.

Finally, as for the case of electrical conductivity, in ord
to make more clear the closed resemblance of these e
5-12
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tions with Boltzmann-type equations, we may define
quantities which will turn out to correspond to the deviatio
from the equilibrium distribution functions of quarks an
gluons,

x ik
q ~p![

D ik
q ~p!

gp
, ~79!

x ik
g ~p![

D ik
g ~p!

2upuGp
. ~80!

Then, the substitution of thermal widths by their integ
representations yields the final form of the soft contribut
to the coupled transport equations for these quantities. T
become

upuS p̂i p̂k2
1

3
d ikD5g2C2~r !E d4Q

~2p!4
pd~q02p̂•q!B~Q!

3S T

q0
2

1

2
1nf~p!D

3@x ik
q ~p!2x ik

q ~p1q!#1
g2C2~r !

2upu

3S 1

2
1nb~p! D E d4Q

~2p!4
pd~q02p̂•q!

3F~Q!@x ik
q ~p!2x ik

g ~p1q!#, ~81!

and

upuS p̂i p̂k2
1

3
d ikD5g2NcE d4Q

~2p!4
pd~q02p̂•q!B~Q!

3S T

q0
2

1

2
2nb~p!D

3@x ik
g ~p!2x ik

g ~p1q!#1
g2NfC2~r !

upu

3S 1

2
2nf~p! D E d4Q

~2p!4
pd~q02p̂•q!

3F~Q!@x ik
g ~p!2x ik

q ~p1q!#. ~82!

V. EXTRACTING THE LEADING-LOG TRANSPORT
COEFFICIENTS FROM THE SOFT CONTRIBUTION

Rotational invariance fixes the form of thex functions. In
the case of electrical conductivity, they have the form

x i
s2

~p!5 p̂ixs2
~p!, ~83!

and for shear viscosity,

x ik
q,g~p!5S p̂i p̂k2

1

3
d ikDxq,g~p!. ~84!
04500
e

l

ey

Whenuqu!upu, we may approximate the integral collisio
terms in the transport equations by a derivative expansio
the x functions, in a similar way to the procedure whic
leads to the derivation of Fokker-Planck equations in
context of classical plasmas@17,18#. With the aim of extract-
ing the leading-log terms for the transport coefficients,
only require the insertion into the transport equations of

second-order approximations for the quantitiesp̂i@x i
s2

(p)

2x i
s2

(p1q)# and p̂i p̂k@x ik
q,g(p)2x ik

q,g(p1q)#. At the same
accuracy, terms of the type@x ik

q,g(p)2x ik
g,q(p1q)# are re-

placed by@x ik
q,g(p)2x ik

g,q(p)#. These substitutions produce
combination of derivatives of thex functions, whose coeffi-
cients are integral expressions involving the Landau damp
piece of soft spectral densities. Here, the leading-log te
will arise from the logarithmic dependence on the upper lim
qc . Although the computation of the complete leading ord
in g of these integrals can need numerical quadrature,
leading-log order is easily obtained analytically by means
the formulas based on sum rules given in Appendix B.

After the angular integration of Eqs.~81! and~82! and the
subsequentq0 integration with the aid of Eqs.~B11! and
~B12!, the logarithmic terms finally combine to give the fo
lowing expressions in the case of shear viscosity:

p52
g2C2~r !mD

2 T

16p
ln g21H xq~p!91F2

p
2

1

T
@122nf~p!#G

3xq~p!82
6

p2
xq~p!J 1

g2C2~r !v0
2

8pp
ln g21@112nb~p!#

3@xq~p!2xg~p!#, ~85!

p52
g2NcmD

2 T

16p
ln g21H xg~p!91F2

p
2

1

T
@112nb~p!#G

3xg~p!82
6

p2
xg~p!J 1

g2NfC~r !v0
2

4pp
ln g21

3@122nf~p!#@2xq~p!1xg~p!#, ~86!

where lng21 is the term coming from either ln(qc /mD) or
ln(qc /v0) with logarithmic accuracy, and

mD
2 5

g2T2

3
@Nc1NfC~r !#, ~87!

v0
25

g2T2

8
C2~r !. ~88!

Quite remarkably, the terms@162nb, f(p)#/T multiplying
the first derivatives and generated by the zero order inq0 of
5-13
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nb(q0)7nb, f(p1q0) allow us to write a single functional o
xq(p) and xg(p) whose variation leads to the above equ
tions for shear viscosity in the leading-log approximatio
This functional*0

`dpL(x,x8) turns out to be exactly the
same as that previously found by Arnold, Moore, and Ya
-

nc

ap

fr

04500
-
.

@4# in their derivation of the leading-log terms of the linea
ized collision integral of the Boltzmann equation. After mu
tiplication of both sides of Eqs.~85! and ~86! by
2d(r )Nfp

2nf(p)@12nf(p)# and d(G)p2nb(p)@11nb(p)#,
respectively, one finds
L~x,x8!522d~r !Nfp
3nf~p!@12nf~p!#xq~p!2d~G!p3nb~p!@11nb~p!#xg~p!1

g2Nfv0
2d~r !C2~r !

8p
ln g21pnf~p!

3@11nb~p!#@xq~p!2xg~p!#21
g2NfmD

2 Td~r !C2~r !

16p
ln g21nf~p!@12nf~p!#@p2xq~p!8216xq~p!2#

1
g2NcmD

2 Td~G!

32p
ln g21nb~p!@11nb~p!#@p2xg~p!8216xg~p!2#, ~89!
al

he

for
s of

ort
the
gi-
ne

re-
-
ef-

it
tion
where we have usedd(r )C2(r )5d(G)C(r ) with d(G)
5Nc

221.
Using the expressions~22! and ~11!, and noting that

( p̂i p̂k2d ik/3)(p̂i p̂k2d ik/3)52/3, we see that the contribu
tion to the shear viscosity of each Dirac fermion is

b

15p2E0

`

dpp3nf~p!@12nf~p!#xq~p!, ~90!

while each gauge boson contributes as

b

30p2E0

`

dpp3nb~p!@11nb~p!#xg~p!. ~91!

Hence, the shear viscosity is exactly the value of the fu
tional 2b/(15p2)*0

`dpL for the values ofx solving the
motion equations.

For the electrical conductivity, the above procedure
plied to Eq.~68! yields the expression

152
mD

2 T

16p
ln e21H xs2

~p!91F2

p
2

1

T
@122nf~p!#G

3xs2
~p!82

2

p2
xs2

~p!J
1

vs
2

8pp
ln e21@112nb~p!#xs2

~p!, ~92!

where the Debye mass for the photon and the plasma
quency for the charged fermionic speciess are given by

mD
2 5

e2T2

3 S Nleptons1d~r ! (
quarks

qs
2D , ~93!

vs
25

qs
2e2T2

8
. ~94!
-

-

e-

This equation may be retrieved by varying the function
*0

`dpL s(x,x8), whereL s may be chosen as

L s52p2nf~p!@12nf~p!#xs2
~p!

1
vs

2

16p
ln e21pnf~p!@11nb~p!#xs2

~p!2

1
mD

2 T

32p
ln e21nf~p!@12nf~p!#

3@p2xs2
~p!8212xs2

~p!2#. ~95!

Now, the contribution of each charged Dirac fermion to t
electrical conductivity is

b

3p2E0

`

dpp2nf~p!@12nf~p!#xs2
~p!, ~96!

which implies that this transport coefficient is given by
22b/(3p2)(s*0

`dpL s at the stationary values ofxs2
.

This completes the derivation of the leading-log terms
the transport coefficients. The agreement with the result
Ref. @4# is complete when the conversionsxq,g

→22bxAMY
q,g , xs2→22bxAMY

e1
are performed, and the sum

over charged species is restricted to leptons.

VI. CONCLUSION AND PROSPECTS

In this paper we have shown how to derive transp
equations in some relativistic many-body theories from
summation of uncrossed ladder diagrams within the ima
nary time formalism. The procedure is similar to the o
used in the quite remote past by Holstein@13# and, for the
case of the scalar field theory, yields the correct results p
viously derived by Jeon@7#. In this treatment, one first iden
tifies the analytic continuation to real frequencies for the
fective vertex, and then writes the integral equation which
satisfies. The two relevant quantities in the vertex equa
5-14
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turn out to be the imaginary part of the self-energy and
spectral weight of the ladder rung.

For the case of gauge theories, we have derived the tr
port equations~68!, ~81!, and ~82! by resummation of the
ladder series, whose graphs are made of the rungs assoc
with resummed propagators in the HTL approximation. T
kernels of the integral equations derived in this way are
same as the integrands of thermal widths for hard particle
leading and next to leading order. By extracting the logar
mic terms, the transport equations turn out to be differen
equations similar to Fokker-Planck equations which app
as approximations to the collision integrals in Coulomb pl
mas. TheO(g4 ln 1/g) thermal widths in these equations a
seen as damping terms, similar to those which arise when
Boltzmann equation is treated in the relaxation time appro
mation. These differential equations are the same as th
recently found by Arnold, Moore, and Yaffe@4# by analyzing
the infrared divergences of the linearized collision integr
without screened interactions. Thus, this fact constitute
nontrivial check of the formalism we have used and also
the HTL approximation, because of the correct matching
the uv divergences in our approach with the infrared div
gences in the approach of Ref.@4#.

With respect to the computation of the complete lead
order of the transport coefficients, we believe that, in anal
with the scalar theory, the introduction of all rungs made
the one-loop four-point functions may be of interest. Ob
ously, most of these rungs will lead to nondivergent resu
and only a few of them would yield the infrared divergenc
of the hard contribution matching with the logarithmic dive
gences we have found here. To carry out these computa
within the framework we have presented, the classification
the four-point functions and the corresponding spectral d
sities would have to be studied.
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APPENDIX A: THE SPECTRAL DENSITY OF THE RUNG
IN lf4 THEORY

In this appendix, the spectral density in Eq.~27! is calcu-
lated. The product of two free Matsubara propagators is c
veniently written as the double spectral representation

G0~ inq1 ink ,q1k!G0~ ink ,k!

5E E dv1dv2

~2p!2

1

inq2v2
Fr0~v11v2 ,q1k!r0~v1 ,k!

ink2v1

2
r0~v1 ,q1k!r0~v12v2 ,k!

inq1 ink2v1
G , ~A1!

where r0(p0,p)52p sgn(p0)d„(p0)22p2
…. By performing

the sum overnk , and taking the imaginary part of the an
lytic continuationinq→q01 i01, one obtains
04500
e

s-

ted
e
e
to
-
l

ar
-

he
i-
se

s
a
f
f

r-

g
y
f
-
,

s

ns
f

n-

n-

r~Q!5E d3kdv1

~2p!4
nb~v1!3@r0~v11q0,q1k!r0~v1 ,k!

2r0~v1 ,q1k!r0~v12q0,k!#. ~A2!

The second piece of this integral may be rearranged b
shift of thev1 integration,v1→v11q0. Thus, after the use
of the parity propertyr0(v11q0,q1k)52r0(2v12q0,
2q2k), and the substitution

r0~2k02q0,2q2k!5
1

11nb~2k02q0!
G0

.~2K2Q!,

~A3!

Eq. ~A2! yields the desired result

r~Q!5~ebq0
21!E d4K

~2p!4
G0

.~2K2Q!G0
.~K !.

~A4!

APPENDIX B: SUM RULES

The required integrals over the Landau damping range
the frequency follow from the sum rules@21# derived from
the analytic properties of the effective propagators. With
notation of Ref.@16#, these sum rules are

E
2q

q dq0

2p

1

q0
* bL~Q!5

mD
2

q2~q21mD
2 !

2
zL~q!

vL~q!2
, ~B1!

E
2q

q dq0

2p
q0 * bL~Q!5

mD
2

3q2
2zL~q!, ~B2!

E
2q

q dq0

2p
~q0!3 * bL~Q!5

mD
2

5
1

mD
4

9q2
2zL~q!vL~q!2,

~B3!

E
2q

q dq0

2p

1

q0
* bT~Q!5

1

q2
2

zT~q!

vT~q!2
, ~B4!

E
2q

q dq0

2p
q0 * bT~Q!512zT~q!, ~B5!

E
2q

q dq0

2p
~q0!3 * bT~Q!5q21

mD
2

3
2zT~q!vT~q!2,

~B6!

where zL,T(q) are the residues at the quasiparticle pol
With the aim of extracting the logarithmic dependence of
transport equations onqc , we use the approximations vali
at largeq, q@mD ,
5-15
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zL~q!5
8q2

mD
2

expS 222
2q2

mD
2 D , ~B7!

zT~q!511
3mD

2

4q2 F11
1

3
lnS mD

2

8q2D G , ~B8!

vL~q!25q2F114 expS 222
2q2

mD
2 D G , ~B9!

vT~q!25q21
mD

2

2
1

mD
4

4q2 F11
1

2
lnS mD

2

8q2D G ,

~B10!
el

d

th

04500
and we find the quadratic terms inmD
2 which give rise to the

logarithmic terms ln(qc /mD) after theq integration,

E
2q

q dq0

2p
~q0!2n21 * bL~Q!'

mD
2

q422n
3H 1, n50,

1/3, n51,

1/5, n52,
~B11!

E
2q

q dq0

2p
~q0!2n21 * bT~Q!'

mD
2

q422n
3H 21/4, n50,

23/4, n51,

211/12, n52.
~B12!

The explicit form of the functionsbL andbT is
bL~q0 ,q!5
4pmD

2 q0qu~q22q0
2!

4q2$q21mD
2 @12Q~q0 /q!#%21p2mD

4 q0
2

, ~B13!

bT~q0 ,q!5
8pmD

2 q0q3~q22q0
2! u~q22q0

2!

4q2$~q22q0
2!@2q21mD

2 Q~q0 /q!#1mD
2 q0

2%21p2mD
4 q0

2~q22q0
2!2

, ~B14!
ion

ract

of
where the functionQ(x) is given by

Q~x!5
x

2
ln

11x

12x
. ~B15!

APPENDIX C: THERMAL WIDTHS

To leading order ing(e), the thermal width of a hard
particle is obtained by the insertion of one HTL gluon~pho-
ton! propagator into the skeleton graph for the one-loop s
energy. For a hard quark~or a charged fermionic speciess),
the resulting expression is@16#

gp
(2)5g2C2~r !TE d4Q

~2p!4
pd~q02p̂•q!

1

q0

3FbL~Q!1S 12
q0

2

q2D bT~Q!G , ~C1!

with g2C2(r ) replaced byqs
2e2 in the case of a charge

fermion. For a hard gluon, the same expression is valid
C2(r )→Nc .

Next, we present the expressions for the thermal wid
for hard particles to orderg4 ln g21. The fermion self-energy
is shown in Fig. 7, and is written as
f-

if

s

S~ ivn ,p!52g2C2~r !T(
nn

E d3q

~2p!3
gm

3 * S~ inn1 ivn ,p1q!gnGmn~ inn ,q!.

~C2!

Making use of the spectral representation of the soft ferm
in the HTL approximation,

* S~ ivn ,q!5E
2`

` dq0

2p

* D1~Q!h1~ q̂!1 * D2~Q!h2~ q̂!

q02 ivn

,

~C3!

with * D6 verifying the parity properties

* D6~q0,q!5 * D7~2q0,q!, ~C4!

we may perform the Matsubara sum. Then, one may ext
the imaginary part of the continuationivn→p01 i01. When
p05p, the dominant contribution comes from the piece
the integrand which multipliesd(p02q02up2ku). The re-
placement of this delta byd(q02p̂•q), valid for q!p, se-
lects the Landau damping piece of* D6 , and the expansion
of the remaining terms to lowest order inq/p yields
5-16
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gp
(4)52

1

4p
tr@p” Im S ret~p05p,p!#52ū~ p̂,6 !S ret~p05p,p!u~ p̂,6 !

5
g2C2~r !

2p S 1

2
1nb~p! D E d4Q

~2p!4
pd~q02p̂•q!F~Q!, ~C5!

where

F~Q![b1~Q!S 12
q0

q D1b2~Q!S 11
q0

q D . ~C6!

The spectral functionsb6(Q) are given by

b6~q0 ,q!5
pv0

2q0
2~q7q0!u~q22q0

2!

†6q0q~q7q0!1v0
2$6q0@12Q~q0 /q!#1qQ~q0 /q!%‡21@p2v0

4q0
2~q7q0!2/4q2#

, ~C7!
is
th

to
lar

-
ns
where the frequency plasma for the fermion isv0
2

5g2C2(r )T2/8 or qs
2e2T2/8. The integral~C5! has been

treated in Refs.@12,19,20# and, forqc@vs , gives

E d4Q

~2p!4
pd~q02p̂•q!F~Q!5

v0
2

2p F lnS qc

A2vs
D 211 ln 2G .

~C8!

TheO(g4 ln g21) thermal width for a hard gauge boson
associated with the imaginary part of the self-energy of
diagram in Fig. 7. It reads

Pmn~ ivn ,p!52Nfg
2C~r !T(

nn

E d3q

~2p!3

3tr$gmS~ inn1 ivn ,p1q!gn * S~ inn ,q!%,

~C9!
ll

c

s.

D

s.

04500
e

where the prefactor 2 comes from the two possible ways
arrange a soft fermion propagator in the graph. A simi
treatment to the fermionic case leads to the result

Gp
(4)52

1

2p
Im PT

ret~p05p,p!5
g2NfC~r !

p S 1

2
2nf~p! D

3E d4Q

~2p!4
pd~q02p̂•q!F~Q!, ~C10!

wherePT(P)5P i j (d
i j 2 p̂i p̂ j )/2. For the case of a hard pho

ton, the correct result is obtained with the substitutio
g2NfC(r )→e2(charged speciesqs

2 andv0→vs .
s.

s.

. C
@1# G. Baym, H. Monien, C. J. Pethick, and D. G. Ravenha
Phys. Rev. Lett.64, 1867~1990!.

@2# H. Heiselberg, G. Baym, C. J. Pethick, and J. Popp, Nu
Phys.A544, 569C~1992!; H. Heiselberg, Phys. Rev. Lett.72,
3013 ~1994!; Phys. Rev. D49, 4739~1994!.

@3# G. Baym and H. Heiselberg, Phys. Rev. D56, 5254~1997!.
@4# P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phy

11, 001 ~2000!.
@5# G. D. Moore, J. High Energy Phys.05, 039 ~2001!.
@6# G. D. Mahan, Many-Particle Physics, 3rd ed. ~Kluwer

Academic/Plenum Publishers, New York, 2000!.
@7# S. Jeon, Phys. Rev. D52, 3591~1995!.
@8# M. E. Carrington, H. Defu, and R. Kobes, Phys. Rev. D62,

025010~2000!; Phys. Lett. B523, 221 ~2001!.
@9# E. Wang and U. W. Heinz, Phys. Lett. B471, 208 ~1999!;

hep-th/0201116.
@10# J. M. Martı́nez Resco and M. A. Valle Basagoiti, Phys. Rev.

63, 056008~2001!.
@11# P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phy

11, 057 ~2001!.
,

l.

@12# P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phy
12, 009 ~2001!.

@13# T. Holstein, Ann. Phys.~N.Y.! 29, 410 ~1964!.
@14# E. Braaten and R. D. Pisarski, Nucl. Phys.B337, 569 ~1990!;

J. Frenkel and J. Taylor,ibid. B334, 199 ~1990!; J. Taylor and
S. Wong,ibid. B346, 115 ~1990!.

@15# E. Braaten and T. C. Yuan, Phys. Rev. Lett.66, 2183~1991!; E.
Braaten and M. H. Thoma, Phys. Rev. D44, 1298~1991!.

@16# J. P. Blaizot and E. Iancu, Phys. Rep.359, 355 ~2002!.
@17# S. Gasiorowicz, M. Neumann, and R. J. Ridell, Phys. Rev.101,

922 ~1956!.
@18# M. R. Rosenbluth, W. M. MacDonald, and D. L. Judd, Phy

Rev.107, 1 ~1957!.
@19# J. Kapusta, P. Lichard, and D. Seibert, Phys. Rev. D44, 2774

~1991!; 47, 4171~E! ~1993!.
@20# P. Aurenche, F. Gelis, R. Kobes, and E. Petitgirard, Z. Phys

75, 315 ~1997!.
@21# M. Le Bellac, Thermal Field Theory~Cambridge University

Press, Cambridge, England, 1996!.
5-17


