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Time without time: A stochastic clock model
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We study a classical reparametrization-invariant system, in which “time” isanmtiori defined. It consists
of a nonrelativistic particle moving in five dimensions, two of which are compactified to form a torus. There,
assuming a suitable potential, the internal motion is ergodic or more strongly irregular. We consider quasilocal
observables which measure the system’s “change” in a coarse-grained way. Based on this, we construct a
statistical timelike parameter, particularly with the help of maximum entropy method and Fisher-Rao informa-
tion metric. The emergent reparametrization-invariant “time” does not run smoothly but is simply related to
the proper time on the average. For sufficiently low energy, the external motion is then described by a unitary
quantum mechanical evolution in accordance with the Stihger equation.
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I. INTRODUCTION 1 . A -

L= 5[0+ r2(abo)?+ 12(0:2) "]+ S [rP0?(hF
Motivated by attempts to quantize gravity, based on the

classical theory of general relativity, there has recently been +$2)+2r20%p, d,—E]. ®)

interest in the quantization of “timeless” reparametrization-

invariant systems, see, for example, Réls-4] and further

references therein. . Here\ stands for an arbitrary “lapse” function of the param-

Presently, we begin with the study of a classical system - 3 ,
and address the question of whether local observables can B&"t, d€R” denotes an ordinary vector, angh and ¢,
found which allow us to characterize the evolution in adenote the angular variables corresponding to the toroidally
gauge invariant way. In previous work it has always beerfompactified dimensions with radius respectively;o?, 0
assumed that the global features of the trajectories are acced€ angular velocity squared coupling parameters. The pa-
sible to the observer, which makes it possible, in principle, toameterE fixes the total energy of the “external” and the
express the evolution of an arbitrarily selected degree ofompactified “internal” degrees of freedom.
freedom “relationally” in terms of other§5,6]. Thereby the Suitably redefining the units of length and energy, we set
Hamiltonian and possibly additional constraints have beeR=1 henceforth. The notatiog indicates that the corre-
'?“mm[%ed in favor of Rovelli's “evolving constants of mo- gponding terms i are periodically continued:
ion” [1].

In distinction, we presently attempt to characterize the
evolution by invariant quasilocal statistical properties of the
ergodic internal “clock” motion. Heuristically, we assume
“time is change” and try to quantify the former in terms of

measurements of the latter. Our results indicate that a “de- . . )
parametrized” time evolution can be constructed basedCr @ny integem. Thus, a ratchet type potential results in the

on coarse-graining localized observations in a classicaP12 Plane. Alternatively, we may consider the angular vari-
reparametrization-invariant system which is ergodic. ables to be normalized to the squafl[ X[0,1[, of which

We remark that certain forms of globally incomplete sta-the opposite boundaries are identified, thus describing the
tistical knowledge about a classical system lead to its effecsurface of a torus with main radii 142
tive quantization locallyf7]. This points towards a determin- ~ We remark that the kinetic energy terms in E2). come
istic origin of quantization and certainly raises further with identical signs, signifying that all three coordinates are
interesting questions about the relation to the problem aspacelike. It is possible to change the metric such that the
hand. Indeed we shall find that the external motion of theangular variables are timelike, which recalls one of the char-
particle is described by @liscrete-timg Schralinger evolu-  acteristic relative signs between “kinetic” terms in simplified

$=¢—n, elnn+1[, ©)

tion. cosmological models, as discussed, for example, in Refs.
Let us consider a five dimensional model of a “timeless” [3,4] and references therein. Since this, however, would not
nonrelativistic particle with the action change any of our present results, we consistently consider a

nonrelativistic model here. Furthermore, we choose the po-
tential in the compactified dimensions to be unstable, in or-
S:f dtL, (1)  der to generate a chaotic internal motion which is ergodic
and possibly more strongly irregular.
Varying the action with respect tﬁ, ¢1, and ¢,, we
where the Lagrangian is defined by obtain the equations of motion
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1 /1 . Employing these equations and the definition of the con-
X&I(K’?tq) =0, (4)  straintC in Eq. (13), it follows by explicit calculation that it
does not evolve. Consistently, this is also obtained by
1 /1 o~ o~
N Ol b1 | = (071 +0%;) 1—2 p1—n)|, (5 C={C,H}=\"YH,H}=0, (17)

1 /1 -~ o~ employing the Poisson bracket notation{A,B}
§ oy b2 | = (0 ¢+ Q) ¢1)(1—2 5((!)2—”)), 6)  =3(doAdpB—dpAdgB), where a sum over all coordinates
" and canonical momenta, represented@wnd P, is under-

where the singular terms arise due to the discontinuities oftoed. Therefore, no secondary constraints exist in our

the potential. Variation o8 with respect to\ yields the con-  Model. _
straint We conclude that the system has four physical degrees of

freedom. Its extended phase space, cf. Rgf.is ten dimen-

1 R 1 o sional, corresponding to the Lagrangian variables in (2y.
—2[(atq)2+(&t¢1)2+(at¢z)2]—E[w2(¢§+ #3) and the associated canonical momenta. It is, however, re-
2 duced to a nine dimensional surface by the constraint. Since
the physical phase space is eight dimensional, there must be
one “gauge” degree of freedom, which is related to the rep-
arametrization invariance. The study of this gauge symmetry

which will be recognized as a constraint on the Hamiltonian . ; . :
momentarily. and its consequences will be performed in Sec. I, while the

The canonical momenta are defined as usual: gauge invariant description of the evolution will be devel-
' oped in Sec. lIl. In Sec. IV we demonstrate that under certain
conditions the external motion of the particle can be mapped

+20%p,$,—E]=0, (7

55 &L» = Eé’ta, (8) onto an evolution according to the Schinger equation. We
aaq) M conclude with a brief discussion.
aL 1
= 7= 0o, 9 Il. GAUGE INVARIANCE AND OBSERVABLES
(1) N
We observe indeed that the action is invariant under the
aL 1 0 10 set of gauge transformations:
Toy=——" "= .
2 dad) AR
. . o dt
Incorporating these, we obtain the Hamiltonian t=f(t"), x()=x'(t"), Nt)—=\'(t"), (18
dt’
H=p- oG+ mahy+ mad,—L (1)
\ wherexe{q,$;,¢,}. Corresponding infinitesimal transfor-
_ 5[62+ W§+ Wg_wz(ai_i_ag) mations are generated by
~ 2073, %, + E]=\C. (12 A=t =e(t), (19
In terms ofC, Eq. (7) implies the primary constraint wheree is infinitesimal. This yields immediately
c=0, (13 SX=X(t') =X (') = — e(t")ApX(t'), 20)
which is a weak equality in the sense of Dirac’s formalism of
constraint systemg8]. Consequently, the Hamiltonian pre- SA=N(t) =N (t")=—dp[e(tIN(")].
sents a weak constrairt,=0. (21
Finally, in Hamiltonian form, the equations of motion
(4)—(6) read Employing the definitions of the canonical momenta, Egs.
. (8)—(10), we obtain, from Eq(20),
ap=0, (14
U 89=—e\p, (22
=M’ +Q @)(1—2 6(¢1—n>), (15
O¢p1o= —€NTy . (23

A=A w2hr+ Q%P 1— 2, 8(p,—n)|. 16
(M=o P, ¢1)( ; (¢2 n)) (16) Similarly, with the help of Eqs(14)—(16), we obtain
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55:0’ (24) I1l. ERGODICITY AND COARSE-GRAINED “TIMING”

In order to proceed, we make the crucial assumption that
o~ o~ our model forms an ergodic systdi@]. We also restrict the
o=~ eN(0 1+ Q0 ¢)) 1—; (¢1—n) |, (25  allowed lapse functions\ to be (strictly) positive, thus
avoiding trajectories which trace themselves backwaods

stall) [2].
Smo= — eNw2d+ 02BN 1— S(ha—1) | 26 In the following, we will consider quantitieSl[ ¢4 5](c;)
T2 Mo ¢1)< ; (42 )> (26) which are functionals only of the trajectory determined by

the coordinatesp, , and possibly depend parametrically on
Comparing with the equations of motion, we see that thdurther constraints involving only them. While some explicit
evolution of the coordinates and momenta is generated b§xamples will be studied in detail, generally speaking, we
the gauge transformations. ave quantities in mi|_1d which reflect properties pf Poincare
Obviously, the three-momentuﬁﬂs conserved, in accor- secyons of the full trajectories. Naturglly, we require the con-
dance with translation invariance. Its components preserﬁtraIntSCi tq transfor.m a§ the coordinates under the gauge
three gauge invariant observables which may serve as codfansformationd18), i.e. ¢/ =c;. It follows that such quan-
dinates of the physical phase space. Another invariant is prdiliés are gauge invariant, since they depend only on geo-
vided by the internal contribution to the constraint: metrical properties of a path and related constraints. Being
independent of the momenta, they do not depend on how the
trajectory is parametrized[ ¢; ,](c{)=N[ ¢1,](c;). Thus,
they qualify as coarse-grained observables characterizing the
. . _ . internal motion.
cf. Egs.(12), (13); since the constraint does not evolve, i.e.is oy aim is to construct a timelike variable based on such
invariant, as well ap?, this also holds folC;,,. However, observables. In the following first subsection we do this
being related via the constrair@;,,, is not independent gf.  based on the idea that the geometric path length covered by
The angular momentum suggests itself as a further obserghe system evolving from an initial to a final state is an
able, invariant measure of the “time” that passed. The crucial
point is that this measure can be inferred in an ergodic sys-
3Eﬁ><f) (29) tgm appro_ximately from coarse—graining.Iocaliz.eq observa-
' tions, provided we understand the dynamics sufficiently well.
oL L In the second subsection, however, considering the inter-
due to rotational invariance. ClearlyJ=23qXxXp+qXép  acting nonlinear system, we generalize this approach, in or-
=0. der to extract a “time” from quasilocal measures of the
As expected, the external motion plays a rather passivechange” occurring while the system evolves. In particular,
role in our system, since it can be almost completely dewe will employ a maximum-entropy method together with
scribed in terms of the conserved linear and angular mothe Fisher-Rao information metric, in order to characterize
menta. It only contributes with its kinetic energy to the con-the distance, i.e. the “time” passed, between evolving prob-
straint C. However, note thaﬁ andJ together determine ability distributions. We point out that our approach is some-
only the two constant components @ftransverse t, i.e. ~how orthogonal to the one of ReffL0], although we make
q. . Therefore, in order to predict the evolution of the coor-1>¢ of its formalism. There the author launches the ambitious
: - project to derive dynamics from rules of inference and the
dinateq, we need to construct a reference “clock,” such that

et X : maximum-entropy principle in particular. We instead assume
the longitudinal component of Ed#) is well determined, e reparametrization-invariant dynamics to be given and
when integrated: construct a pertinent notion of “time.”

Cii=p?+E—2C, (27)

ﬁ”(t)=ﬁﬁ°’+ f)jtdt’)\(t'). (29) A. Free internal motion on the torus
0 lllustrating our approach, we begin with the noninteract-
ing case, i.e., withw?=02=0. Even without interactions,
This is one of the objectives of the following section. the internal motion is ergodic for almost all initial conditions.
Furthermore, we remark that we so far obtained fivein particular, if the ratio of the two independent angular ve-
gauge invariant coordinatep, q,) for the eight dimen- locities is not a rational number, then, for sufficiently late
sional physical phase space plus one constr&ntof Cip;), timest, the trajectory will come arbitrarily close to any point
which allows us to eliminate one more of the remaining fouron the surface of the torus. This is easily seen in its paramet-
internal variables ¢, »,7; 5). Because of the intrinsic non- ric representation, Eq31) below. In Fig. 1 we show a typi-
linearity of the gauge tranformations, Eq22)—(26), we are  cal example.
unable to find further invariants in the general, interacting The equations of motion immediately yield the solutions
case. This motivates our attempt to construct other statistical .
observables, in order to obtain an invariant, even if coarse- _ (0 _(0) N
grained, description of the physical phase space. ¢1'2(t)_¢1’2+wl’2fodt MU, (30
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1.0 tion. The reparametrization-invariant value Igf however,
only depends on the path length; thus, it implicitly involves
0.8 nonlocal information.
The incident numbelr; presents a very simple example of
the coarse-grained observables discussed before. There exists
0.6 an unlimited number of different such counting observables.
The more of them we introduce and measure, the more de-
£ 044 tailed will be our reparametrization-invariant description of
< the internal motion. We will also use the incident numbger
which is defined likel 1, however, with the roles of coordi-
0.2+ nates “1” and “2” exchanged.
Furthermore, we may consider one incident number as a
0,0 parametric function of the other:

o os  o0s 1o I,1(k)=maxl, with 19(L)=Kk, (32

&0 where§ is fixed, while the total path length is the implicit

FIG. 1. Atypical trajectory. Initial conditions for the free motion €OMMON varlabl_e. Note thdp, IS unique, since we take the
on the torus ares{®)=0 and 7{¥=1, 7= 3 (arbitrary units. ~ "©SPective maximum of,, which may increase whilé;

Heret=r (proper tim¢; the final time isr=50. stays constant temporarily. _ o
However, the constraint on a given path length is irrel-

where ¢{%) and 7{®) denote the initial coordinates and mo- €Vant for the actual values assigned jcandlz,. One op-
menta, respectively; of courserl,z(t)=7r(1(,’2). Eliminating erationally determines them by counting the localized inci-

the integral of the lapse function, we obtain, for examglg, ~dents, with ¢, At) €[0,6], and recording one incident

in terms of ; numbe_r as a f_unction of the other; no knowledge of the path
length is required.
) Nevertheless, these reparametrization-invariant numbers
bolby) = — E( (©)_ ). (31 c°an be used to determine the corresponding path length by a
GRS ! statistical consideration, since we have sufficient knowledge

of the dynamics of the system in the preséimtegrable
case.

In the absence of interactions the path is composed of
straight line segments. We denote the average length of these
segments byl). It can be calculated easily due to ergodicity:

Following Refs.[1,5], this is a gauge invariant “relational”
description of the motion,(s) gives the value of coordi-
nate ¢,, when(“the time is such that] ¢, has the values.

In this way, ¢; may serve as a time variable, even if not a

unique one. (02 4 ( (0)y271/2 S 712
However, similarly as in the models studied previously, (= [(ms )O (7720) ! = [ZOE”“] 5 (33
there is additional information about the full path, which is 7O+ 7 7O+ 70

necessary to complete this description. In the present case, )

the solution(31) presents a line in theb, , plane, unwrap- WhereEiy denotes the conserved internal energy, cf. Egs.
ping the motion which multiply covers the torus. Thus, when(12) and(27). Here we employed Eq31) and averaged the
folding it back onto the torus, one has to keep track of whichstraight-line paths with the asymptotically uniform density
unit square in the plane a respective piece is coming fromPVer the squarg0,1 X[0,1[, choosing coordinates such that
This can be labeled by two integers ,, which may be m5>0.

interpreted as the winding numbers characterizing addition- Now, each increment of, or I, (i.e. ;) by one unit
ally a given point ¢, ,) on the path. Obviously, this pre- corrgs_pond_s to the_ completion of one line segment. D_ue to
sents highly nonlocaftopologica) information, which will ~ the finite window size5<1, however, only a corresponding
be unavailable for a local observer under more realistic cirfraction of all incidents happening on both coordinate axes
cumstances, such as in the presence of nonlinear interaction¥ll b€ recorded on the average. Correcting for this, invoking

Therefore, we turn to statistical measures of the motion or¢fgedicity as before, the path lengthwhich leads to the
the torus. Consider the “incident number?(L) which ~ measured incident numbers is simply obtained by

cguntsNthe number of times that a given trajectory lds L1yl 4)

[$1(1).42(1)], cuts thee,; axis in the neighborhood of the L=(I) fo 3=<I>T, (34)
observer, i.e., withp, €[0,6<1] and ¢,=0, subject to the

constraint that the total path length equilsaking into ac-  whereds is along the curve of the function,(s). Practi-
count the wrapping around the torus. Because of ergodicityally, what appears on the right-hand side is the total regis-
and assumed nonnegative lapse functidisis a stepwise tered incident number &1,+1,) at a certain instant.

increasing function of, while 7151,2('() e[0,] are of sawtooth In this way, we obtain a measure of the “time” interval
type, with details depending on the particular parametrizaduring whichN incidents occurred:
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T=L/[2E;,]"? (35 1 @
i.e., dividing the path length by the constant velocity.

The point of this rather trivial example is that nowhere do
we make use of the time parametrizing the evolution nor of
the generally unknown path length. Rather, we defiyeom
reparametrization-invariant localized measurements.

Not surprisingly, the resulting “time” will not run
smoothly, due to the coarse-grained description of the inter-2 204
nal motion: as if we were reading an analog “clock” under a g
stroboscopic light. This is precisely the role of a Poincare °
section with respect to the increasing invariant path length of 10
an evolving trajectory.

In order to illustrate the behavior of the “timeT, it is
convenient to introduce the fictitious proper tirffanction): o 10 2 3 4 5 &0

computer time ¢

40

30

ted time T

t
T= fodt N(t"). (36)

100

(b)

Then, keeping the notation as simple as possible, with
x()=x(t) for xe{q,p,¢1,, 712, We obtain gx(t)
=\(t)dx(7). Applying this transformation to the definition
of the canonical momenta and the equations of motion, the
lapse function can be eliminated; this replatdéy = and\
by 1 in Egs.(8)—(10) and Eqs.(14)—(16), respectively. The
resulting equations are reparametrization-invariant. Solutions
of these equations are to be interpreted “physically” by in-
troducing the inverse functiot(7) andx(t)=x(7(t)) [1].
Integrating the free internal motion with respect to the
proper time, which replaces the integral in E8Q) by 7, we

80

60 <

40

calculated time T

20

showT as a function ofr in Fig. 2a and Fig. 2b. For the two 0 — 77— 7T
runs differing in the totalcomputey time 7, we find that 0 20 a0 % % 100 120
after a short while, i.e. already at low incident numbers, the computer time

constructed phy§lcal "time”T appr_OXImates qualitatively FIG. 2. The reparametrization invariant “timeT, Eq. (35),
well the_proper timer. The fluctuations on top of the 0'_0' . based on localized incident counting, as a functior{a@mputey
served linear dependence naturally reflect the stochastic ingoner timer for two different proper time intervals, casé and
ternal motion. The fact that the slopes are consistentlyp). initial conditions as in Fig. 1; window parametat=1/3. The
smaller than one can be attributed to the bias towards longefines result from linear fits.
than-average pieces of trajectory, which is introduced by N ) ) o _
measuring the incidents close to the origin and extrapolatingctions additionally mix the trajectories in phase space, since
from there; see Eq$33) and (34). thg potentials are of mvertgd oscillator type.2 Slightly simpli-
Finally, employing the reparametrization-invariant fying the ensuing calculations, we sef =) _henceforth.
“time,” which runs approximately parallel to the unphysical This leaves the motion parallel to the diagoral= ¢, ex-
proper time, T~ «7 (x cons}, we succeed in describing the ponentially unstable, while the orthogonal motion is free. A
external motion with respect to the physical internal “clock” typical trajectory for the case of still relatively weak interac-

constructed here. Recalling that the external motion is givefon :15 shown in Fig. ?.h _ I - A
by Eq.(29), we obtaind(r) =4(?+ =G0+ k- 1TP. The microstates of the internal part of the system can be

Int tinaly. th ined “i . » Sfint described by the phase space coordinates
nterestingly, thé coarse-grained jumpiness - olintro- =(¢q,¢p,;m1,7,). However, in general, we will not be able

duces a corresponding stochastic component into the externg) 5|, the deterministic evolution through sequences of
motion. Thls Woul_d be r_ecogm_zed if global relational data oryicrostates for any sufficiently complex nonlinear system.
results of increasingly fine-grained local measurements Wergherefore, we develop a coarse-graining statistical approach

available with which to compare the changecipf We will  based on probability distributions. L&(x)dx denote the
further study the consequences of this stroboscopic effect iexpected number of microstates in the volume elerdert
Sec. V. x. Then, we may characterize macrostates of the system by
giving their coordinate®',i=1, ... n in the n-dimensional
B. Quasilocal analysis of “time is change” with interactions state space:
Now we consider the case of the internal motion on the i i
torus with the interactions{(w?,Q?) turned on. The inter- Q'=(e >=J dxP(x)Q(x), (37)
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where Z .,n¢ denotes its configurational factor. It is given
1.0 here in terms of the integral
0.8+ 1 a ,Ba)z b ﬁwz 2
J(a,b)= —J dslf ds,e(s1ts2) (43)
Bw?/0 0
0,6
€ 1 T .
< 044 =-\/—=(a+b)erf[(a+b)Bw?]
2 Bw?
0.2 —aerfilayBw?) —berfilbyBw?))
0,0 1 N (e(a+ b)zﬁwz_ ea2ﬁw2_ ebZBw2+ 1) (44)
T v T v T v T T T T T 1 ZB(UZ
0.0 02 04 06 08 1,0
o0 1 1 1 1 1
=ab| 1+ Bw? za’+ zab+ =b?|+ = (Bw?)? =a*
FIG. 3. A typical trajectory with interaction parameteaus= () 3 2 3 2 S
=3. The initial conditions ar@{%=0 and={")=3, #{")=/5; the 1 5 1 1
final proper time {=7) is 7=30. + §a3b+ §a2b2+ Eab3+ §b4 +0[(Bw?)?]],
with {Q'} denoting the relevant set of observables. It is as- (45)

sumed that all information necessary to answer our particular . . . _ _
questions about the system is encoded in these observabl@yolving the imaginary error  function, erkj

[10]. =27 Y2[3dsexpE®). We will make more use of this inte-
The conserved internal energy, see B), presents an gral in the following.
important observable: For example, incorporating the smdl-expansion, we

calculate the relation betweéth,,, and B:
Hint(X)= 75+ 75— 0*(1+ o), (39)

Hie 1 7 127 -
where we absorbed an inessential factor 2 into the definition 0l ﬁ 6 ﬁ)'g“’ +O[(Bw?)7],
for convenience.

Then, the “prior” distribution P¢(x|H;n;) which best re-  using Eqs(41), (42), and(45). Here the error in comparison
flects our mostly lacking information about the state of thewith the exact result rapidly decreases with energy and is less

system, given the conserved energy, is obtained by maximizhan 5% forH;,,/w?>1. We are presently interested in the

(46)

ing the entropy positive energy regime, since only there the trajectories can
explore all of the torus surface, cf. E@®9).
gP]=— f dxP(x)In P(x), (39) In orc_ier to improve the prior dlstnbu_'qulC W|_th the_help
of quasilocal measurements, we again consider simple ob-

servables for illustration. We define two “window func-
subject to the constraifft;,;) = H;,, with this constant be- tions:”
ing fixed by the initial conditions. The result is the canonical
distribution Thi(x)=0(p1—€)O(5— ¢1)O(d2)O(e—¢,), (47)

Po(X|Hin) =22 e A9 (40) with 0<e<6<1; Z, is defined by the analogous expression
with ¢, and ¢, exchanged. Thug, andZ, project out small
with the partition functionZ, and Lagrange multiplieg, ~ rectangles along the, and ¢, axis, respectively, which do
respectively, to be calculated from npt ov'erlap. nge we e>§pI|c.|tIy mtroducgd the small but fi-
nite window width e, which in any case is necessary for a
correct counting of incidents in numerical simulations with a
InZ., (41) finite resolution. In the following we will adapt to the present
case the measurement of incident numbers.

B
where [dx= [ dm, [ dm,f de, [idb,. Thus we re- We decompose the prior distribution with respect to the
e L mee T27 07 L 0 T windows determined b{; andZ,:

cover expressions which are familiar from statistical me-

chanics. Pe(X|Hind) =[Z1(xX) + To(X) IP(X| Hing) + [ 1— T1(X)
Straightforward calculation yields the partition function (XHind =172 200 IP Hin) + al
_IZ(X)]PC(X|Hint)

J
ZCE J dxe‘ﬁHint(X)’ Hint: -

ar ar
Ze= g Zocon=gI(LD, 42 = PL,(X|Hin) + Pu(X| Hiny)- 49)
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While P,, describes their complement, the distributief) is The present situation differs in an important way from the
the one which is related to measurements within the winlsual one in statistical mechanics, whefg, and(Z;) would
dows. Its normalized counterpa®, is all correspond to conserved guantities and be treated on an
equal footing. Presently, thewindow functions related to
[Z2(X) + Zo(X) IP(X| Hint) the) incident numbers are evolving quantities which we mea-
Pu(X[Hin) = sure in order to learn about the change occurring in the sys-
| ax700+ Z00 1P H0 tem.
The grand-canonical partition function can be calculated
B [Zy(X) +Iy(x)]e™ AHint®) directly, resulting in
27 J(8,€)—JI(¢€,€) 49 - -
employing the configurational integral of E@L3). z= EZCOM_E(MH\Z)[‘](‘S’ )=J(ee)] (59

Then, the distributioP,,(x|H;, ;{Z;)) which best reflects
the information contained in the prior distribution where Z.q,¢ is the configurational factor of this partition
Pw(X|Hin) and in the data from measurements of the win-function. Furthermore, we obtain
dow functions is obtained by maximizing the entrddy] \
|
P(X) <II> )\1+)\2 i=l,2, (56)
PW(X| Hint) '

SP]=- f dX[Z1(x) +Zo(x) IP(x)In

which implies Ny /N, =(Z;)/{(Z,). We set\i=C(Z;)|i=12,
with a common(undeterminel constantC. Incorporating
these results, the distribution follows:

_ ~ BHINT(X) +(T2)Ly(X) ]
PW(X|Hint1<Ii>)_; J(5,6)—J(6,6)

Here we determine the average of the incident functions, i.e. X @~ FHint(x) (57)

the (total) probabilities of observing an incident in the re-

spective windows, in terms of the measured incident numusing(Z;+Z,)=1 and cancelling the common factGr

bers. This obviously presents a crude coarse-graining. An Finally, re-normalizingP,,(x|Hi.:;(Z)) and using the re-
improved description is obtained, for example, by binningsulting distribution in place oP|,, cf. Eq.(48), we obtain
the incident numbers with respect to the main axis of eaclihe properly normalized distribution for the whole phase
window. Many more detailed measurements can be envisspace:

aged, but the simplest ones will suffice here.

It is straightforward to show that this procedure yields a  P(X|Hin;{Z;)) = 2[{Z1)Z1(X) +{Z5) Zo(X) IP(X|Hint)
grand-canonical distribution:
+[1-Z(X) = Zo(X) IPc(X[Hiny),  (58)

subject to the constraints

li
=1,

(51)

i=1,2

Pu(X|Hine (ZT)=Z 7 Zy(X) + Z(X)] o ) o

which is updated by measuring the incident numbersand

X efﬁHint(x)falIl(X)7a212(X), (52) employing Eq(51) '
With the distribution at hand, we could proceed similarly

as in the previous Sec. Il A, trying to estimate the average

path length related to the increasing incident numbers in par-

ticular, in order to gain a measure of the change taking place

where, in this case, the partition function and Lagrange mul
tipliers are determined by

ZEJ AX[Z1(X) +Zr(X)] in the system.
However, in the following we proceed differently, in a
X @~ BHint(¥) — a1 T3 (X) — apT5(X) way which appears more suitable to further generalization.

We introduce the Fisher-Rao information metric for the pur-
B —BH () pose of quantifying the change due to the chaotic, even if
—f A Z ()N 1+ Tp(X) N e Print, deterministic, motion from one configuration to the next
(53) [11,12. It is the uniquely determined Riemannian metric
(except for an overall multiplicative constauain the space of

introducing the fugacities ;= exp(—a))i-1,,, and states which are probability distributiof®0]. In our present
case the states are simply described by the pair of coordi-
(Ii>=—ilnz=)\iilnz ' (54) natesQ'=(Z;)|;-1,€[0,1], considering the coordinate;,
da I\ =12 to be fixed at a constant value. Then, the “distands’be-

tween the state®(x|Hi,;Q%) and P(x|Hn;QX+dQ¥) is
together with the constraints1). Hereg is considered to be given by
a known feature of the prior distributioR;, previously de- o
termined in Eq(46). ds’=g;;dQ'dQ/, (59)

044020-7



HANS-THOMAS ELZE AND OTAVIO SCHIPPER PHYSICAL REVIEW D66, 044020(2002
with the metric

dIn P(x|Hini; Q")

0ij :f dxP(X|Hine; Q%)

Q!
o o
><&In P(X|H_.m,Q ) (60) E
IQ] 8
. | g
_297EE) g 6 &

J(1,2)

employing Eqs(40), (42), (43), and particularly Eq(58) in

the explicit calculation. Note that the coordinates, being

probabilities, are constrained *+Q?=1, which further

simplifies the result obtained here. computer time <
However, we would like to express Eq&9)—(61) in

terms of the directly measured incident numbers. Thus, with FIG- 4. The reparametrization invariant “timd, from Eq.(64)
the help of Egs(51), we obtain with constant prefactor set to one, as a function(edmputey

proper timer for two different sets of initial conditionsqb(l?z):O
(alwayy, 7{0=5, 7= 17 (upper curvg and 7{¥=3, =)

\](5,6)_\](6,6) ||2A|1_|1A|2|

As= 62 = /5 (lower curve; interaction parametersi= () =3; window pa-
J(1,1) VIalo(13+15) (62 rameter:5=1/3. Lines from linear fits.
J(8,€)— (e, €) \/E \ﬁ Coming back to the construction of a reparametrization
= m EAI1+ EAIZ , (63 invariant “time” T, we now set
where the second equality is due to the dichotomous charac- AT= NAs (64)
ter of the pair of incremental,; and Al,; i.e., we have VH; t’

Al,=0,1, however, the two increments present the results of
two mutually exclusive measurements which cannot happewith N=1,+1,, i.e. stretching the time with an extra factor
in coincidence. N, in order to compensate for the aging of the measise
Several remarks are in order here. First, &) is invari-  which we mentioned. Furthermore, we divide out the square-
ant under the similarity transformation— &-1,|,-;, and  root-of-energy factor, which is determined by the initial con-
As—As/&. Thus, generally, the amount of “change per in- ditions. This results in a scaling with energy, similarly as in
cident” decreases inversely with the total number of inci-Sec. lll A. At high energyH;;, Eg. (38), equals(two time9
dents, i.e., loosely speaking, with the age of the evolutiorthe kinetic energy, which might seem more appropriate here.
going on. This seems natural in a statistical context, but lesslowever, it is by itself not a reparametrization invariant
familiar in the context of dynamics, where we are accus-quantity in the present interacting case.
tomed to a linearly flowing time. We calculate the “time” passed by accumulating the time
Second, the dichotomous increments of the incident numstepsAT. The constant, though energy dependent, overall
bers can be mapped on a binary sequence of zeros and onpsefactor contained in the result of E@4) is set equal to
for example, according toAl;=1)—0 and Al,=1)—1. one, recalling that the Fisher-Rao metric which enters here,
Then, the number of zeros and ones in the produced bitstringee Eqs(59)—(61), is unique only up to a constant factor.
is simply related td;—1 andl,— 1, respectively. Thus, one Figure 4 shows the resulting behavior of the parametrization

could compare the behavior of the functidrs with corre-  invariant “time” T as a function of the proper time, Eq.

sponding ones for different dynamical models or with ran-(36), which is also incorporated in the present numerical

domly generated sequences. simulations. For the two initial conditions, differing in the
Third, the statistical factors in the results of E¢§1), initial velocities, we observe the expected scaling with en-

(62), encoding the dynamics, are nicely factorized from theergy. Furthermore, while the size of individual fluctuations is
guantities incorporating the evolving observablesand| ,; comparable to what was found in the noninteracting case of
an analogous factorization is seen in E85). We believe  Fig. 2, we notice here characteristic deviations from the av-
that the very simple structure of our results is indeed of eerage linear dependence over longer proper time scales. Such
more general kind and similarly will be encountered, when-nonlinear behavior becomes even more prominent in Fig. 5,
ever one succeeds in identifying pairs of dichotomous obwith long time excursions.
servables, which somehow reflect the symmetry of the sys- In any case, this demonstrates the existence of a monoto-
tem. nous “time” function also for the present more strongly ir-
Furthermore, the generalization involving n-tuples of ex-regular system, as compared to the ergddiat integrable
clusive observables can be worked out along these lines. one of Sec. lll A. Presumably, an approximately linear de-
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2204 smooth evolution parameter based on them.

200 Anyhow, for given initial conditions, the incident counts
180 as well as the coordinateﬁ;‘(Tn) present discrete physical
160 data which are deterministically determined in our model.

140.] (The constant orthogonal components are of no interest

E ; here) Then, the following question arises: can we still give

= 120 an invariant meaning to and predict the future of the free
£ 1004 external motion, instead of letting the system evolve and
3 80- measuring? In general, the answer is “no,” since neither the
8 604 future discrete values &f, see Eq(64), for example, nor the

value of 7 at those future instants will be predictable.
However, motivated by the two practical examples of Sec.
I, we introduce the notion of a well-behaved “time,” which
will be sufficient to maintain some predictability indeed.
Let a well-behaved “time” T be such that the one-
dimensional motion of a free particle, co-ordinated in a

FIG. 5. Same as Fig. dipper curvg illustrating nonlinear long-  "eParametrization-invariant way by the sequefq€ry,)}, is
time behavior. of limited variation:

40
20

0 1 'Jt'rrrrrrrrrrrryrrrrrr+t1v 1
0 10 20 30 40 50 60 70 80 90 100 110 120
computer time ©

pendence will only become recognizable for much longer {Tn} is well-behaved

runs, i.e. for larger incident numbers. On the other hand, of

course, the statistical construction Bfbased on quasilocal eIrAnm-Ar<7(T)<m+A7r, VneN
observables could be refined by considering a higher- _ o
dimensional state space from the outset, cf. BY), i.e. ©3q,Aq:qn—Aq+q@=<q(T,)<qn+Aq

incorporating more observables.
This completes our discussion of two examples of the

construction of a coarse-grained parametrization invariant —_ _
initial data. This is the next best we can expect from a rea-
sonable “time,” motivated by Newtonian physics here. It is

IV. STROBOSCOPIC QUANTIZATION? important to realize that there is no hope for continuity or

periodicity, since our construction dfis based generally on

the ergodicity of a quasi-periodic process and related Poin-

aresections.

+q(0), VYneN, (65)

It seems worthwhile to draw attention to a possible con
nection between the present subject and dleéerministic
classical systems which are effectively quantum mechanicaf A X I-behaved “time.” that th
as recently discussed by 't Hooft; see Rf3] and further ssuming a wefli-pehaved “lime,” we see that the Se-
references therein quence of point§q(T,)} can be mapped into a regular lat-

The total number of incidents obtained from our exclusivetice of possibly overlapping cells of size\2 and spacing).
observables always increases by one. These are the “ticks 6fs the clock ticks,” i.e.n—n+1, the particle moves from
the clock,” numbered byneN. However, via the con- o©ne cell to the next. On the average this takes a proper time
structed “time” sequencé¢T,}, the proper times(T,) vary 7 and physical “time”T. Here we assume for convenience
irregularly, in general, due to the qua5|-p§r|od|c lnternal MO+that {T,} itself is of limited variation, 3T,AT:T,=Tn
tion. Therefore, the free external motiomy(T)=q;(7(T)) +AT, VneN. In the simplest example, in Sec. Il A, we
=q[?+ 7(T)p, shows stochastic behavior in termsTofWe  haveT=6"*(7{"+ 7%)) " andAT=0, showing a depen-
emphasize that(T) here isnot directly related tor(t) in-  dence on the initial momenta and the scale of localization of

troduced in Eq(36). the observed incidents.

Let us assume that we could exhaust all possiblariant Thus, for a well-behaved “time” sequenc@f limited
guasilocal observableand cannot further resolve the “time variation, we have mappings from “clock ticks” t¢‘time”
between the incidents” marking and T+ 8T. as well ag space intervals. We identify the space intervals,

That there arises a discreteness in the optimal “time” se-containing the respectivg(T,), with primordial states
guence generated in this way in a generic nonintegrable sys-
tem [9] seems plausible for two reasons. First, by realisti- In)=[gn—Aq+q©@,qn+Aq+q®]. (66)
cally restricting the observables to be localized near to the
observer, we lose information about the full trajectories inin order to handle the subtle limit of an infinite system, we
coordinate space. Second, by insisting on gauge invariaritnpose reflecting boundary conditions and distinguish left-
observables, we lose the possibility to make use of additionadnd right-moving states. Finally, then, the evolution is de-
momentum space observablexcept for a possible limited scribed by the deterministic rules:
number of constants of motignor higher proper time de-
rivatives, in order to reconstruct the full trajectories and a n—n+1, neN, (67)
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In)—|n+1), —N+1<n=N-1, Continuing with standard notation, we hagé=S;+SJ
(68 +S2=s(s+1), which suffices to obtain the following iden-
tity:
IN)—|—N+1), (69
with 2N states in alll-N+1), ... ,|N)_; states with a nega- H= 2m _<5)2(+5§+ E) I le' (74)
tive (positive) label correspond to leftright-) moving states, (2s+1)°T 4) 2w

according to negativépositive particle momentum. Reach-
ing the state$0) or |N), the particle changes its direction of Furthermore, using.=S,*iS,, we introduce coordinate
motion. and conjugate momentum operators:

The rules(67)—(69) can altogether be represented by a
unitary evolution operator:

1 1
= _ * =_ *
1 wherea andb are complex coefficients. Calculating the basic
1 commutator with the help ofS, ,S_]1=2S, and using Eq.
(73), we obtain

:e*iﬂ(N‘Fl/Z)/N 1 0 (70)

; (76)

) Sil1-Th
1 0 [va]_| _;

which acts on the B-dimensional vector composed of the \qyided we choosé(a* b)=—2(2s+1)" L. Incorporating
primordial states; the overall phase factor is introduced foknis choice, we calculate

later convenience. HerE is the natural scale for the Hamil-

tonianH. 25+1)2
In the following analysis we apply 't Hooft's method, who S2+ S§=(ST(|a|2p2+ |b|2g%— (Ja- Jb+Ra- Rb)

considered the discrete and strictly periodic motion of a clas-
sical particle on a circle, introducing a Hilbert space based x{q,p})
on the primordial statefl13]. The evolution operator turns B
out to be diagonal with respect to the discrete Fourier trans
forms of the statesn). We define the basis functions:

(77

n order to obtain a reasonably simple Hamiltonian in the
infinite system limit 6—), we finally choose

ikn

<k|n)sz(n)z(2N)1’2exp( N (71 —-\ﬁ 2 \[
=N b= VT (78

They present a complete orthonormal basis, since

SR 2 (0 [K)(K[N) = 8,/ with (n[k)=(kn)*, and not- i — _

ing thatf,(n)=f,(k). This yields indeed Then, definingp=2#/(2s+1)T, the previous Eq(74) be-
comes

[ 3

1
N+§—k/N)©(m’|U|m)

<k’|U|k>:5k/keX[{ _|’7T

1 1 T (1

— T n24 242 -2 2
1 H 2p +2wq+—2ﬂ_(4w +H<4], (79
S+m+§

; (72

s 2 i
~Omm®H T 5511 . . . o .
showing a nonlinearly modified harmonic oscillator Hamil-
where the equivalence follows frons2 1=2N and relabel- tonian at this stage, which corresponds to the result of Ref.
ing and replacing the staté) by stategm), with m=—k  [13]. _ _ o
+1/2 and—s<ms=s. The phase factor of Eq70) contrib- Following our construction of the reparametrization-
utes the additional terms which assure a positive definiténvariant “time,” we presently keed finite while consider-
(bounded spectrum similar to the harmonic oscillator case. ing the infinite system limit. Thus, fos—«, we havew
Recalling the algebra oBSU(2) generators, and with —0 and obtain

S,m)y=m|m) in particular, we obtain the Hamiltonian:

- ? 1/2
_ . 2m 1 H=:(1—(l—— 2) ) (80)

i.e., diagonal with respect ttm) states of the half-integer Which has the low-energy limiti~p?/2. On the other side,
representations determined by the energy is bounded from above kT, since we have
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(?/W)p2:4(23+ 1)*255 (<1, for s—o, when diagonal- A basic ingredient is the assumption of ergodicity, such
ized). that the system explores dynamically the whole allowed en-
Interestingly, towards the upper bound the violation of theergy surface in phase space. Generally, then there will be
basic quantum mechanical commutation relation, as calcwsufficiently frequent usable incidents next to the observer.
lated in Eq.(76), becomes maximal, i.e., thegegandp com- We illustrate this in Sec. Il with a simple timeless model
mute and behave like classical observables. of a nonrelativistic particle moving classically in five dimen-
We conclude here with calculating the matrix elements ofsions, of which two internal ones are compactified to form a
the operators| andp between primordial states. Relating the torus. Defining suitable window functions, localized obser-
primordial stategn) to the|m) states with the help of Eq. vations of incidents correspond here to the trajectory passing
(71) and usingS. |m)=[s(s+1)—m(m=1)]*4m=1), we by the window. Thus, the incidents reflect properties of the

obtain dynamics with respect tgsubsets of Poincare sections.
Roughly, the passing “time” corresponds to the observable
m(n’|S_ =S, |n) change th(_ere. . o

In the first example in Sec. Il A the dynamics is very

1 2 2 simple and even integrab[®]. We know that the system is
=5t 1 exp{ T oer1 n) * ex;{ 55t 1 n’)) ergc')di.c in this case and use thi§ fa}ct in order to cal'culat'e
statistically, based on quasilocal incident counts, the invari-
s 2 i ant path length run by the system. This provides an invariant

X > ex ZSle(n'—n)(m—l/Z)) measure of “time.” We find that the proper time is linearly

me-s related to this, however, subject to stochastic fluctuations.
X[s(s+1)—m(m+1)]*2 (81) In the second example, Sec. Ill B, we have additional in-

teractions which mix the trajectories in a much more com-
plicated way. We assume that the system is ergodic. Our
For larges the summation is replaced by an integral. Then,statistical formalism then allows us to measure the change of
using Egs.(75) and(78), the results areg(— ) the phase space distribution which is updated by the infor-
mation coming from the incident counts. An essential ingre-
dient is the Fisher-Rao information metfit0—12. This cal-

! __ ’

(n'|gln)= l,/w?‘]l(w(n n)n +n, (82  culation again provides an invariant “time” function, which
2 n'—n 2 behaves qualitatively similar to the previous example, how-
ever, with characteristic long-time deviations from an aver-

— age linear relation to proper time.

) 1 [T Iy(m(n"—n)) It will be interesting to generalize the present model to

(n’[pln) =5\ =———, (83) Wi , el
2V7T  non relativistic systems, as well as to generalize the statistical

formalism. A related question is as follows: which are the

(discrete limitations of such a construction of “time” based
where J; denotes an ordinary Bessel function of the firston localized observables, i.e. how close can one get to a
kind. Thus, neither the position nor the momentum operatofinearly flowing Newtonian time, in a generic nonintegrable
is diagonal in the basis of the primordial states. system?

In any case, we find here once more an emergent quantum Finally, we pointed out in Sec. IV a possible connection
model based on a deterministic classical evolution, similar tgf the present subject to the study of quantum mechanical
that in Ref.[13]. _ ~ systems which have an underlying deterministic classical dy-

The interesting feature presently is that the construction ofamical mode[13]. Indeed, we find that for certain “well-

a reparametrization-invariant *time” based on quasilocal 0b-penhayed time sequences” the remaining deterministic aspects
servables naturally induces the particular stochastic featurgsy the induced stochastic classical motion of thie our
in the behavior of the external particle motion. The remain-,, e} external particle can be most simply described by a

ing pr_edictable aspe_cts of i_ts motio_n can then most simply_ ba%}iscrete-time guantum mechanical Salirmer evolution.
described by a unitary discrete-time quantum mechanic his “stroboscopic quantization” may arise under more gen-

evolution. ; . L . -
eral circumstances, if one insists on constructing by statisti-

cal means an invariant “time” from localized observables.
V. CONCLUSIONS

Our construction of a reparametrization-invariant “time”
is motivated by the observation that “time passes” when ACKNOWLEDGMENTS
there is an observable change, which is localized with the
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