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Time without time: A stochastic clock model

Hans-Thomas Elze and Otavio Schipper
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68.528, 21945-970 Rio de Janeiro, RJ, Brazil

~Received 21 May 2002; published 28 August 2002!

We study a classical reparametrization-invariant system, in which ‘‘time’’ is nota priori defined. It consists
of a nonrelativistic particle moving in five dimensions, two of which are compactified to form a torus. There,
assuming a suitable potential, the internal motion is ergodic or more strongly irregular. We consider quasilocal
observables which measure the system’s ‘‘change’’ in a coarse-grained way. Based on this, we construct a
statistical timelike parameter, particularly with the help of maximum entropy method and Fisher-Rao informa-
tion metric. The emergent reparametrization-invariant ‘‘time’’ does not run smoothly but is simply related to
the proper time on the average. For sufficiently low energy, the external motion is then described by a unitary
quantum mechanical evolution in accordance with the Schro¨dinger equation.
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I. INTRODUCTION

Motivated by attempts to quantize gravity, based on
classical theory of general relativity, there has recently b
interest in the quantization of ‘‘timeless’’ reparametrizatio
invariant systems, see, for example, Refs.@1–4# and further
references therein.

Presently, we begin with the study of a classical syst
and address the question of whether local observables ca
found which allow us to characterize the evolution in
gauge invariant way. In previous work it has always be
assumed that the global features of the trajectories are ac
sible to the observer, which makes it possible, in principle
express the evolution of an arbitrarily selected degree
freedom ‘‘relationally’’ in terms of others@5,6#. Thereby the
Hamiltonian and possibly additional constraints have b
eliminated in favor of Rovelli’s ‘‘evolving constants of mo
tion’’ @1#.

In distinction, we presently attempt to characterize
evolution by invariant quasilocal statistical properties of t
ergodic internal ‘‘clock’’ motion. Heuristically, we assum
‘‘time is change’’ and try to quantify the former in terms o
measurements of the latter. Our results indicate that a ‘
parametrized’’ time evolution can be constructed ba
on coarse-graining localized observations in a class
reparametrization-invariant system which is ergodic.

We remark that certain forms of globally incomplete s
tistical knowledge about a classical system lead to its ef
tive quantization locally@7#. This points towards a determin
istic origin of quantization and certainly raises furth
interesting questions about the relation to the problem
hand. Indeed we shall find that the external motion of
particle is described by a~discrete-time! Schrödinger evolu-
tion.

Let us consider a five dimensional model of a ‘‘timeles
nonrelativistic particle with the action

S5E dtL, ~1!

where the Lagrangian is defined by
0556-2821/2002/66~4!/044020~12!/$20.00 66 0440
e
n

be

n
es-
o
f

n

e

e-
d
al

-
c-

at
e

’

L[
1

2l
@~] tqW !21r 2~] tf1!21r 2~] tf2!2#1

l

2
@r 2v2~f̃1

2

1f̃2
2!12r 2V2f̃1f̃22E#. ~2!

Herel stands for an arbitrary ‘‘lapse’’ function of the param

eter t, qW PR3 denotes an ordinary vector, andf1 and f2

denote the angular variables corresponding to the toroid
compactified dimensions with radiusr, respectively;v2,V2

are angular velocity squared coupling parameters. The
rameterE fixes the total energy of the ‘‘external’’ and th
compactified ‘‘internal’’ degrees of freedom.

Suitably redefining the units of length and energy, we

r[1 henceforth. The notationf̃ indicates that the corre
sponding terms inL are periodically continued:

f̃[f2n, fP@n,n11@ , ~3!

for any integern. Thus, a ratchet type potential results in t
f1,2 plane. Alternatively, we may consider the angular va
ables to be normalized to the square@0,1@3@0,1@ , of which
the opposite boundaries are identified, thus describing
surface of a torus with main radii 1/2p.

We remark that the kinetic energy terms in Eq.~2! come
with identical signs, signifying that all three coordinates a
spacelike. It is possible to change the metric such that
angular variables are timelike, which recalls one of the ch
acteristic relative signs between ‘‘kinetic’’ terms in simplifie
cosmological models, as discussed, for example, in R
@3,4# and references therein. Since this, however, would
change any of our present results, we consistently consid
nonrelativistic model here. Furthermore, we choose the
tential in the compactified dimensions to be unstable, in
der to generate a chaotic internal motion which is ergo
and possibly more strongly irregular.

Varying the action with respect toqW , f1, and f2, we
obtain the equations of motion
©2002 The American Physical Society20-1
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1

l
] tS 1

l
] tqW D50, ~4!

1

l
] tS 1

l
] tf1D5~v2f̃11V2f̃2!S 12(

n
d~f12n! D , ~5!

1

l
] tS 1

l
] tf2D5~v2f̃21V2f̃1!S 12(

n
d~f22n! D , ~6!

where the singular terms arise due to the discontinuities
the potential. Variation ofSwith respect tol yields the con-
straint

1

2l2
@~] tqW !21~] tf1!21~] tf2!2#2

1

2
@v2~f̃1

21f̃2
2!

12V2f̃1f̃22E#50, ~7!

which will be recognized as a constraint on the Hamilton
momentarily.

The canonical momenta are defined as usual:

pW [
]L

]~] tqW !
5

1

l
] tqW , ~8!

p1[
]L

]~] tf1!
5

1

l
] tf1 , ~9!

p2[
]L

]~] tf2!
5

1

l
] tf2 . ~10!

Incorporating these, we obtain the Hamiltonian

H5pW •] tqW 1p1] tf11p1] tf22L ~11!

5
l

2
@pW 21p1

21p2
22v2~f̃1

21f̃2
2!

22V2f̃1f̃21E#[lC. ~12!

In terms ofC, Eq. ~7! implies the primary constraint

C50, ~13!

which is a weak equality in the sense of Dirac’s formalism
constraint systems@8#. Consequently, the Hamiltonian pre
sents a weak constraint,H50.

Finally, in Hamiltonian form, the equations of motio
~4!–~6! read

] tpW 50, ~14!

] tp15l~v2f̃11V2f̃2!S 12(
n

d~f12n! D , ~15!

] tp25l~v2f̃21V2f̃1!S 12(
n

d~f22n! D . ~16!
04402
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Employing these equations and the definition of the c
straintC in Eq. ~13!, it follows by explicit calculation that it
does not evolve. Consistently, this is also obtained by

] tC5$C,H%5l21$H,H%50, ~17!

employing the Poisson bracket notation,$A,B%
[((]QA]PB2]PA]QB), where a sum over all coordinate
and canonical momenta, represented byQ and P, is under-
stood. Therefore, no secondary constraints exist in
model.

We conclude that the system has four physical degree
freedom. Its extended phase space, cf. Ref.@1#, is ten dimen-
sional, corresponding to the Lagrangian variables in Eq.~2!
and the associated canonical momenta. It is, however,
duced to a nine dimensional surface by the constraint. S
the physical phase space is eight dimensional, there mus
one ‘‘gauge’’ degree of freedom, which is related to the re
arametrization invariance. The study of this gauge symme
and its consequences will be performed in Sec. II, while
gauge invariant description of the evolution will be deve
oped in Sec. III. In Sec. IV we demonstrate that under cert
conditions the external motion of the particle can be map
onto an evolution according to the Schro¨dinger equation. We
conclude with a brief discussion.

II. GAUGE INVARIANCE AND OBSERVABLES

We observe indeed that the action is invariant under
set of gauge transformations:

t[ f ~ t8!, x~ t ![x8~ t8!, l~ t !
dt

dt8
[l8~ t8!, ~18!

wherexP$qW ,f1 ,f2%. Corresponding infinitesimal transfor
mations are generated by

dt[t2t85e~ t8!, ~19!

wheree is infinitesimal. This yields immediately

dx[x~ t8!2x8~ t8!52e~ t8!] t8x~ t8!, ~20!

dl[l~ t8!2l8~ t8!52] t8@e~ t8!l~ t8!#.
~21!

Employing the definitions of the canonical momenta, E
~8!–~10!, we obtain, from Eq.~20!,

dqW 52elpW , ~22!

df1,252elp1,2. ~23!

Similarly, with the help of Eqs.~14!–~16!, we obtain
0-2
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dpW 50, ~24!

dp152el~v2f̃11V2f̃2!S 12(
n

d~f12n! D , ~25!

dp252el~v2f̃21V2f̃1!S 12(
n

d~f22n! D . ~26!

Comparing with the equations of motion, we see that
evolution of the coordinates and momenta is generated
the gauge transformations.

Obviously, the three-momentumpW is conserved, in accor
dance with translation invariance. Its components pres
three gauge invariant observables which may serve as c
dinates of the physical phase space. Another invariant is
vided by the internal contribution to the constraint:

Cint[pW 21E22C, ~27!

cf. Eqs.~12!, ~13!; since the constraint does not evolve, i.e.
invariant, as well aspW 2, this also holds forCint . However,
being related via the constraint,Cint is not independent ofpW .
The angular momentum suggests itself as a further obs
able,

JW[qW 3pW , ~28!

due to rotational invariance. Clearly,dJW5dqW 3pW 1qW 3dpW
50.

As expected, the external motion plays a rather pas
role in our system, since it can be almost completely
scribed in terms of the conserved linear and angular m
menta. It only contributes with its kinetic energy to the co
straint C. However, note thatpW and JW together determine
only the two constant components ofqW transverse topW , i.e.
qW' . Therefore, in order to predict the evolution of the coo
dinateqW , we need to construct a reference ‘‘clock,’’ such th
the longitudinal component of Eq.~8! is well determined,
when integrated:

qW i~ t !5qW i
(0)1pW E

0

t

dt8l~ t8!. ~29!

This is one of the objectives of the following section.
Furthermore, we remark that we so far obtained fi

gauge invariant coordinates (pW , qW') for the eight dimen-
sional physical phase space plus one constraint (C, or Cint),
which allows us to eliminate one more of the remaining fo
internal variables (f1,2,p1,2). Because of the intrinsic non
linearity of the gauge tranformations, Eqs.~22!–~26!, we are
unable to find further invariants in the general, interact
case. This motivates our attempt to construct other statis
observables, in order to obtain an invariant, even if coa
grained, description of the physical phase space.
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III. ERGODICITY AND COARSE-GRAINED ‘‘TIMING’’

In order to proceed, we make the crucial assumption t
our model forms an ergodic system@9#. We also restrict the
allowed lapse functionsl to be ~strictly! positive, thus
avoiding trajectories which trace themselves backwards~or
stall! @2#.

In the following, we will consider quantitiesN@f1,2#(ci)
which are functionals only of the trajectory determined
the coordinatesf1,2 and possibly depend parametrically o
further constraints involving only them. While some explic
examples will be studied in detail, generally speaking,
have quantities in mind which reflect properties of Poinc´
sections of the full trajectories. Naturally, we require the co
straintsci to transform as the coordinates under the gau
transformations~18!, i.e. ci85ci . It follows that such quan-
tities are gauge invariant, since they depend only on g
metrical properties of a path and related constraints. Be
independent of the momenta, they do not depend on how
trajectory is parametrized:N@f1,28 #(ci8)5N@f1,2#(ci). Thus,
they qualify as coarse-grained observables characterizing
internal motion.

Our aim is to construct a timelike variable based on su
observables. In the following first subsection we do th
based on the idea that the geometric path length covere
the system evolving from an initial to a final state is
invariant measure of the ‘‘time’’ that passed. The cruc
point is that this measure can be inferred in an ergodic s
tem approximately from coarse-graining localized obser
tions, provided we understand the dynamics sufficiently w

In the second subsection, however, considering the in
acting nonlinear system, we generalize this approach, in
der to extract a ‘‘time’’ from quasilocal measures of th
‘‘change’’ occurring while the system evolves. In particula
we will employ a maximum-entropy method together wi
the Fisher-Rao information metric, in order to character
the distance, i.e. the ‘‘time’’ passed, between evolving pro
ability distributions. We point out that our approach is som
how orthogonal to the one of Ref.@10#, although we make
use of its formalism. There the author launches the ambiti
project to derive dynamics from rules of inference and
maximum-entropy principle in particular. We instead assu
the reparametrization-invariant dynamics to be given a
construct a pertinent notion of ‘‘time.’’

A. Free internal motion on the torus

Illustrating our approach, we begin with the nonintera
ing case, i.e., withv25V250. Even without interactions
the internal motion is ergodic for almost all initial condition
In particular, if the ratio of the two independent angular v
locities is not a rational number, then, for sufficiently la
timest, the trajectory will come arbitrarily close to any poin
on the surface of the torus. This is easily seen in its param
ric representation, Eq.~31! below. In Fig. 1 we show a typi-
cal example.

The equations of motion immediately yield the solution

f1,2~ t !5f1,2
(0)1p1,2

(0)E
0

t

dt8l~ t8!, ~30!
0-3
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wheref1,2
(0) and p1,2

(0) denote the initial coordinates and m
menta, respectively; of course,p1,2(t)5p1,2

(0) . Eliminating
the integral of the lapse function, we obtain, for example,f2
in terms off1:

f2~f1!5f2
(0)2

p2
(0)

p1
(0) ~f1

(0)2f1!. ~31!

Following Refs.@1,5#, this is a gauge invariant ‘‘relational’
description of the motion:f2(s) gives the value of coordi-
natef2, when~‘‘the time is such that’’! f1 has the values.
In this way,f1 may serve as a time variable, even if not
unique one.

However, similarly as in the models studied previous
there is additional information about the full path, which
necessary to complete this description. In the present c
the solution~31! presents a line in thef1,2 plane, unwrap-
ping the motion which multiply covers the torus. Thus, wh
folding it back onto the torus, one has to keep track of wh
unit square in the plane a respective piece is coming fr
This can be labeled by two integersn1,2, which may be
interpreted as the winding numbers characterizing addit
ally a given point (f̃1 ,f̃2) on the path. Obviously, this pre
sents highly nonlocal~topological! information, which will
be unavailable for a local observer under more realistic
cumstances, such as in the presence of nonlinear interact

Therefore, we turn to statistical measures of the motion
the torus. Consider the ‘‘incident number’’I 1

d(L) which
counts the number of times that a given trajecto

@f̃1(t),f̃2(t)#, cuts thef1 axis in the neighborhood of th
observer, i.e., withf̃1P@0,d,1# and f̃250, subject to the
constraint that the total path length equalsL, taking into ac-
count the wrapping around the torus. Because of ergodi
and assumed nonnegative lapse functions,I 1 is a stepwise
increasing function oft, while f̃1,2(t)P@0,1@ are of sawtooth
type, with details depending on the particular parametri

FIG. 1. A typical trajectory. Initial conditions for the free motio
on the torus aref1,2

(0)50 andp1
(0)51, p2

(0)5A3 ~arbitrary units!.
Here t5t ~proper time!; the final time ist550.
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tion. The reparametrization-invariant value ofI 1, however,
only depends on the path length; thus, it implicitly involv
nonlocal information.

The incident numberI 1 presents a very simple example
the coarse-grained observables discussed before. There e
an unlimited number of different such counting observabl
The more of them we introduce and measure, the more
tailed will be our reparametrization-invariant description
the internal motion. We will also use the incident numberI 2
which is defined likeI 1, however, with the roles of coordi
nates ‘‘1’’ and ‘‘2’’ exchanged.

Furthermore, we may consider one incident number a
parametric function of the other:

I 21~k![ maxI 2 with I 1
d~L !5k, ~32!

whered is fixed, while the total path lengthL is the implicit
common variable. Note thatI 21 is unique, since we take th
respective maximum ofI 2, which may increase whileI 1
stays constant temporarily.

However, the constraint on a given path length is irr
evant for the actual values assigned toI 1 and I 21. One op-
erationally determines them by counting the localized in
dents, with f̃1,2(t)P@0,d#, and recording one inciden
number as a function of the other; no knowledge of the p
length is required.

Nevertheless, these reparametrization-invariant numb
can be used to determine the corresponding path length
statistical consideration, since we have sufficient knowled
of the dynamics of the system in the present~integrable!
case.

In the absence of interactions the path is composed
straight line segments. We denote the average length of t
segments bŷl &. It can be calculated easily due to ergodicit

^ l &5
@~p1

(0)!21~p2
(0)!2#1/2

p1
(0)1p2

(0)
[

@2Eint#
1/2

p1
(0)1p2

(0)
, ~33!

where Eint denotes the conserved internal energy, cf. E
~12! and~27!. Here we employed Eq.~31! and averaged the
straight-line paths with the asymptotically uniform dens
over the square@0,1@3@0,1@ , choosing coordinates such th
p1,2

(0).0.
Now, each increment ofI 1 or I 21 ~i.e. I 2) by one unit

corresponds to the completion of one line segment. Due
the finite window sized,1, however, only a correspondin
fraction of all incidents happening on both coordinate ax
will be recorded on the average. Correcting for this, invoki
ergodicity as before, the path lengthL which leads to the
measured incident numbers is simply obtained by

L5^ l &E
0

I 1ds

d
5^ l &

I 11I 21~ I 1!

d
, ~34!

whereds is along the curve of the functionI 21(s). Practi-
cally, what appears on the right-hand side is the total re
tered incident number (I[I 11I 2) at a certain instant.

In this way, we obtain a measure of the ‘‘time’’ intervalT
during whichN incidents occurred:
0-4
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TIME WITHOUT TIME: A STOCHASTIC CLOCK MODEL PHYSICAL REVIEW D66, 044020 ~2002!
T[L/@2Eint#
1/2, ~35!

i.e., dividing the path length by the constant velocity.
The point of this rather trivial example is that nowhere

we make use of the time parametrizing the evolution nor
the generally unknown path length. Rather, we deriveT from
reparametrization-invariant localized measurements.

Not surprisingly, the resulting ‘‘time’’ will not run
smoothly, due to the coarse-grained description of the in
nal motion: as if we were reading an analog ‘‘clock’’ under
stroboscopic light. This is precisely the role of a Poinca´
section with respect to the increasing invariant path length
an evolving trajectory.

In order to illustrate the behavior of the ‘‘time’’T, it is
convenient to introduce the fictitious proper time~function!:

t[E
0

t

dt8l~ t8!. ~36!

Then, keeping the notation as simple as possible, w
x(t)[x(t) for xP$qW ,pW ,f1,2,p1,2%, we obtain ] tx(t)
5l(t)]tx(t). Applying this transformation to the definitio
of the canonical momenta and the equations of motion,
lapse function can be eliminated; this replacest by t andl
by 1 in Eqs.~8!–~10! and Eqs.~14!–~16!, respectively. The
resulting equations are reparametrization-invariant. Soluti
of these equations are to be interpreted ‘‘physically’’ by
troducing the inverse functiont(t) andx(t)5x„t(t)… @1#.

Integrating the free internal motion with respect to t
proper time, which replaces the integral in Eq.~30! by t, we
showT as a function oft in Fig. 2a and Fig. 2b. For the two
runs differing in the total~computer! time t, we find that
after a short while, i.e. already at low incident numbers,
constructed physical ‘‘time’’T approximates qualitatively
well the proper timet. The fluctuations on top of the ob
served linear dependence naturally reflect the stochastic
ternal motion. The fact that the slopes are consiste
smaller than one can be attributed to the bias towards lon
than-average pieces of trajectory, which is introduced
measuring the incidents close to the origin and extrapola
from there; see Eqs.~33! and ~34!.

Finally, employing the reparametrization-invaria
‘‘time,’’ which runs approximately parallel to the unphysic
proper time,T'kt (k const!, we succeed in describing th
external motion with respect to the physical internal ‘‘cloc
constructed here. Recalling that the external motion is gi
by Eq. ~29!, we obtainqW i(t)5qW i

(0)1tpW 'qW i
(0)1k21TpW .

Interestingly, the coarse-grained ‘‘jumpiness’’ ofT intro-
duces a corresponding stochastic component into the exte
motion. This would be recognized if global relational data
results of increasingly fine-grained local measurements w
available with which to compare the change ofqW i . We will
further study the consequences of this stroboscopic effec
Sec. IV.

B. Quasilocal analysis of ‘‘time is change’’ with interactions

Now we consider the case of the internal motion on
torus with the interactions (}v2,V2) turned on. The inter-
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actions additionally mix the trajectories in phase space, si
the potentials are of inverted oscillator type. Slightly simp
fying the ensuing calculations, we setv25V2 henceforth.
This leaves the motion parallel to the diagonalf̃15f̃2 ex-
ponentially unstable, while the orthogonal motion is free.
typical trajectory for the case of still relatively weak intera
tion is shown in Fig. 3.

The microstates of the internal part of the system can
described by the phase space coordinatesx
[(f1 ,f2 ;p1 ,p2). However, in general, we will not be abl
to follow the deterministic evolution through sequences
microstates for any sufficiently complex nonlinear syste
Therefore, we develop a coarse-graining statistical appro
based on probability distributions. LetP(x)dx denote the
expected number of microstates in the volume elementdx at
x. Then, we may characterize macrostates of the system
giving their coordinatesQi ,i 51, . . . ,n in then-dimensional
state space:

Qi[^Q i&[E dxP~x!Q i~x!, ~37!

FIG. 2. The reparametrization invariant ‘‘time’’T, Eq. ~35!,
based on localized incident counting, as a function of~computer!
proper timet for two different proper time intervals, cases~a! and
~b!; initial conditions as in Fig. 1; window parameter:d51/3. The
lines result from linear fits.
0-5
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with $Q i% denoting the relevant set of observables. It is
sumed that all information necessary to answer our partic
questions about the system is encoded in these observ
@10#.

The conserved internal energy, see Eq.~27!, presents an
important observable:

Hint~x![p1
21p2

22v2~f̃11f̃2!2, ~38!

where we absorbed an inessential factor 2 into the defini
for convenience.

Then, the ‘‘prior’’ distributionPc(xuHint) which best re-
flects our mostly lacking information about the state of t
system, given the conserved energy, is obtained by maxim
ing the entropy

S@P#[2E dxP~x!ln P~x!, ~39!

subject to the constraint^Hint&5Hint , with this constant be-
ing fixed by the initial conditions. The result is the canonic
distribution

Pc~xuHint!5Zc
21e2bHint(x), ~40!

with the partition functionZc and Lagrange multiplierb,
respectively, to be calculated from

Zc[E dxe2bHint(x), Hint52
]

]b
ln Zc , ~41!

where *dx[*2`
` dp1*2`

` dp2*0
1df1*0

1df1. Thus we re-
cover expressions which are familiar from statistical m
chanics.

Straightforward calculation yields the partition function

Zc5
p

b
Zc,con f5

p

b
J~1,1!, ~42!

FIG. 3. A typical trajectory with interaction parametersv5V
53. The initial conditions aref1,2

(0)50 andp1
(0)53, p2

(0)5A5; the
final proper time (t5t) is t530.
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whereZc,con f denotes its configurational factor. It is give
here in terms of the integral

J~a,b![
1

bv2
E

0

aAbv2
ds1E

0

bAbv2
ds2e(s11s2)2

~43!

5
1

2
A p

bv2
„~a1b!erfi@~a1b!Abv2#

2a erfi~aAbv2!2b erfi~bAbv2!…

2
1

2bv2
~e(a1b)2bv2

2ea2bv2
2eb2bv2

11! ~44!

5abS 11bv2F1

3
a21

1

2
ab1

1

3
b2G1

1

2
~bv2!2F1

5
a4

1
1

2
a3b1

2

3
a2b21

1

2
ab31

1

5
b4G1O@~bv2!3# D ,

~45!

involving the imaginary error function, erfi(x)
[2p21/2*0

xdsexp(s2). We will make more use of this inte
gral in the following.

For example, incorporating the small-b expansion, we
calculate the relation betweenHint andb:

Hint

v2
5

1

bv2
2

7

6
2

127

180
bv21O@~bv2!2#, ~46!

using Eqs.~41!, ~42!, and~45!. Here the error in comparison
with the exact result rapidly decreases with energy and is
than 5% forHint /v2.1. We are presently interested in th
positive energy regime, since only there the trajectories
explore all of the torus surface, cf. Eq.~38!.

In order to improve the prior distributionPc with the help
of quasilocal measurements, we again consider simple
servables for illustration. We define two ‘‘window func
tions:’’

I1~x![Q~f12e!Q~d2f1!Q~f2!Q~e2f2!, ~47!

with 0,e!d,1; I2 is defined by the analogous expressi
with f1 andf2 exchanged. ThusI1 andI2 project out small
rectangles along thef1 andf2 axis, respectively, which do
not overlap. Here we explicitly introduced the small but
nite window widthe, which in any case is necessary for
correct counting of incidents in numerical simulations with
finite resolution. In the following we will adapt to the prese
case the measurement of incident numbers.

We decompose the prior distribution with respect to t
windows determined byI1 andI2:

Pc~xuHint!5@I1~x!1I2~x!#Pc~xuHint!1@12I1~x!

2I2~x!#Pc~xuHint!

[Pw8 ~xuHint!1 P̄w~xuHint!. ~48!
0-6
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While P̄w describes their complement, the distributionPw8 is
the one which is related to measurements within the w
dows. Its normalized counterpartPw is

Pw~xuHint![
@I1~x!1I2~x!#Pc~xuHint!

E dx@I1~x!1I2~x!#Pc~xuHint!

5
b

2p

@I1~x!1I2~x!#e2bHint(x)

J~d,e!2J~e,e!
, ~49!

employing the configurational integral of Eq.~43!.
Then, the distributionPw(xuHint ;^Ii&) which best reflects

the information contained in the prior distributio
Pw(xuHint) and in the data from measurements of the w
dow functions is obtained by maximizing the entropy@10#

S@P#[2E dx@I1~x!1I2~x!#P~x!ln
P~x!

Pw~xuHint!
,

~50!

subject to the constraints

^Ii&5
I i

I 11I 2
U

i 51,2

. ~51!

Here we determine the average of the incident functions,
the ~total! probabilities of observing an incident in the r
spective windows, in terms of the measured incident nu
bers. This obviously presents a crude coarse-graining.
improved description is obtained, for example, by binni
the incident numbers with respect to the main axis of e
window. Many more detailed measurements can be en
aged, but the simplest ones will suffice here.

It is straightforward to show that this procedure yields
grand-canonical distribution:

Pw~xuHint ;^Ii&!5Z21@I1~x!1I2~x!#

3e2bHint(x)2a1I1(x)2a2I2(x), ~52!

where, in this case, the partition function and Lagrange m
tipliers are determined by

Z[E dx@I1~x!1I2~x!#

3e2bHint(x)2a1I1(x)2a2I2(x)

5E dx@I1~x!l11I2~x!l2#e2bHint(x),

~53!

introducing the fugacitiesl i[ exp(2ai)ui51,2, and

^Ii&52
]

]a i
ln Z5l i

]

]l i
ln ZU

i 51,2

, ~54!

together with the constraints~51!. Hereb is considered to be
a known feature of the prior distributionPc , previously de-
termined in Eq.~46!.
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The present situation differs in an important way from t
usual one in statistical mechanics, whereHint and^Ii& would
all correspond to conserved quantities and be treated o
equal footing. Presently, the~window functions related to
the! incident numbers are evolving quantities which we me
sure in order to learn about the change occurring in the s
tem.

The grand-canonical partition function can be calcula
directly, resulting in

Z5
p

b
Zcon f5

p

b
~l11l2!@J~d,e!2J~e,e!#, ~55!

where Zcon f is the configurational factor of this partitio
function. Furthermore, we obtain

^Ii&5
l i

l11l2
U

i 51,2

, ~56!

which implies l1 /l25^I1&/^I2&. We setl i5C^Ii&u i 51,2,
with a common~undetermined! constantC. Incorporating
these results, the distribution follows:

Pw~xuHint ;^Ii&!5
b

p

@^I1&I1~x!1^I2&I2~x!#

J~d,e!2J~e,e!

3e2bHint(x), ~57!

using ^I11I2&51 and cancelling the common factorC.
Finally, re-normalizingPw(xuHint ;^Ii&) and using the re-

sulting distribution in place ofPw8 , cf. Eq. ~48!, we obtain
the properly normalized distribution for the whole pha
space:

P~xuHint ;^Ii&!52@^I1&I1~x!1^I2&I2~x!#Pc~xuHint!

1@12I1~x!2I2~x!#Pc~xuHint!, ~58!

which is updated by measuring the incident numbersI 1,2 and
employing Eq.~51!.

With the distribution at hand, we could proceed similar
as in the previous Sec. III A, trying to estimate the avera
path length related to the increasing incident numbers in p
ticular, in order to gain a measure of the change taking pl
in the system.

However, in the following we proceed differently, in
way which appears more suitable to further generalizati
We introduce the Fisher-Rao information metric for the p
pose of quantifying the change due to the chaotic, eve
deterministic, motion from one configuration to the ne
@11,12#. It is the uniquely determined Riemannian metr
~except for an overall multiplicative constant! on the space of
states which are probability distributions@10#. In our present
case the states are simply described by the pair of coo
natesQi[^Ii&u i 51,2P@0,1#, considering the coordinateHint
to be fixed at a constant value. Then, the ‘‘distance’’ds be-
tween the statesP(xuHint ;Qk) and P(xuHint ;Qk1dQk) is
given by

ds25gi j dQidQj , ~59!
0-7
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with the metric

gi j 5E dxP~xuHint ;Qk!
] ln P~xuHint ;Qk!

]Qi

3
] ln P~xuHint ;Qk!

]Qj
~60!

52
J~d,e!2J~e,e!

J~1,1!
~Qi !21d i j , ~61!

employing Eqs.~40!, ~42!, ~43!, and particularly Eq.~58! in
the explicit calculation. Note that the coordinates, be
probabilities, are constrained byQ11Q251, which further
simplifies the result obtained here.

However, we would like to express Eqs.~59!–~61! in
terms of the directly measured incident numbers. Thus, w
the help of Eqs.~51!, we obtain

Ds52
J~d,e!2J~e,e!

J~1,1!

uI 2DI 12I 1DI 2u

AI 1I 2~ I 11I 2!
~62!

52
J~d,e!2J~e,e!

J~1,1!~ I 11I 2!
SAI 2

I 1
DI 11AI 1

I 2
DI 2D , ~63!

where the second equality is due to the dichotomous cha
ter of the pair of incrementsDI 1 and DI 2; i.e., we have
DI k50,1, however, the two increments present the result
two mutually exclusive measurements which cannot hap
in coincidence.

Several remarks are in order here. First, Eq.~63! is invari-
ant under the similarity transformationI k→j•I kuk51,2 and
Ds→Ds/j. Thus, generally, the amount of ‘‘change per i
cident’’ decreases inversely with the total number of in
dents, i.e., loosely speaking, with the age of the evolut
going on. This seems natural in a statistical context, but
familiar in the context of dynamics, where we are acc
tomed to a linearly flowing time.

Second, the dichotomous increments of the incident nu
bers can be mapped on a binary sequence of zeros and
for example, according to (DI 151)→0 and (DI 251)→1.
Then, the number of zeros and ones in the produced bitst
is simply related toI 121 andI 221, respectively. Thus, one
could compare the behavior of the functionDs with corre-
sponding ones for different dynamical models or with ra
domly generated sequences.

Third, the statistical factors in the results of Eqs.~61!,
~62!, encoding the dynamics, are nicely factorized from
quantities incorporating the evolving observablesI 1 and I 2;
an analogous factorization is seen in Eq.~35!. We believe
that the very simple structure of our results is indeed o
more general kind and similarly will be encountered, whe
ever one succeeds in identifying pairs of dichotomous
servables, which somehow reflect the symmetry of the s
tem.

Furthermore, the generalization involving n-tuples of e
clusive observables can be worked out along these lines
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Coming back to the construction of a reparametrizat
invariant ‘‘time’’ T, we now set

DT[
NDs

AHint

, ~64!

with N[I 11I 2, i.e. stretching the time with an extra facto
N, in order to compensate for the aging of the measureDs,
which we mentioned. Furthermore, we divide out the squa
root-of-energy factor, which is determined by the initial co
ditions. This results in a scaling with energy, similarly as
Sec. III A. At high energyHint , Eq. ~38!, equals~two times!
the kinetic energy, which might seem more appropriate h
However, it is by itself not a reparametrization invaria
quantity in the present interacting case.

We calculate the ‘‘time’’ passed by accumulating the tim
stepsDT. The constant, though energy dependent, ove
prefactor contained in the result of Eq.~64! is set equal to
one, recalling that the Fisher-Rao metric which enters h
see Eqs.~59!–~61!, is unique only up to a constant facto
Figure 4 shows the resulting behavior of the parametriza
invariant ‘‘time’’ T as a function of the proper timet, Eq.
~36!, which is also incorporated in the present numeri
simulations. For the two initial conditions, differing in th
initial velocities, we observe the expected scaling with e
ergy. Furthermore, while the size of individual fluctuations
comparable to what was found in the noninteracting case
Fig. 2, we notice here characteristic deviations from the
erage linear dependence over longer proper time scales.
nonlinear behavior becomes even more prominent in Fig
with long time excursions.

In any case, this demonstrates the existence of a mon
nous ‘‘time’’ function also for the present more strongly i
regular system, as compared to the ergodic~but integrable!
one of Sec. III A. Presumably, an approximately linear d

FIG. 4. The reparametrization invariant ‘‘time’’T, from Eq.~64!
with constant prefactor set to one, as a function of~computer!
proper timet for two different sets of initial conditions:f1,2

(0)50
~always!, p1

(0)55, p2
(0)5A17 ~upper curve! and p1

(0)53, p2
(0)

5A5 ~lower curve!; interaction parameters:v5V53; window pa-
rameter:d51/3. Lines from linear fits.
0-8



ge
, o
l
e

th
ia

n

ic

ive
s

o

e

se
sy
sti
th
in
ia
n

-

ts
l
el.
rest
e
ee
nd
the

ec.

-
a

ea-
is
or

oin-

e-
t-

ime
e

e

of

ls,

e
ft-
e-

TIME WITHOUT TIME: A STOCHASTIC CLOCK MODEL PHYSICAL REVIEW D66, 044020 ~2002!
pendence will only become recognizable for much lon
runs, i.e. for larger incident numbers. On the other hand
course, the statistical construction ofT based on quasiloca
observables could be refined by considering a high
dimensional state space from the outset, cf. Eq.~37!, i.e.
incorporating more observables.

This completes our discussion of two examples of
construction of a coarse-grained parametrization invar
evolution parameter.

IV. STROBOSCOPIC QUANTIZATION?

It seems worthwhile to draw attention to a possible co
nection between the present subject and thedeterministic
classical systems which are effectively quantum mechan,
as recently discussed by ’t Hooft; see Ref.@13# and further
references therein.

The total number of incidents obtained from our exclus
observables always increases by one. These are the ‘‘tick
the clock,’’ numbered bynPN. However, via the con-
structed ‘‘time’’ sequence$Tn%, the proper timest(Tn) vary
irregularly, in general, due to the quasi-periodic internal m
tion. Therefore, the free external motion,qW i(T)[qW i(t(T))
5qW i

(0)1t(T)pW , shows stochastic behavior in terms ofT. We
emphasize thatt(T) here isnot directly related tot(t) in-
troduced in Eq.~36!.

Let us assume that we could exhaust all possibleinvariant
quasilocal observablesand cannot further resolve the ‘‘tim
between the incidents’’ markingT andT1dT.

That there arises a discreteness in the optimal ‘‘time’’
quence generated in this way in a generic nonintegrable
tem @9# seems plausible for two reasons. First, by reali
cally restricting the observables to be localized near to
observer, we lose information about the full trajectories
coordinate space. Second, by insisting on gauge invar
observables, we lose the possibility to make use of additio
momentum space observables~except for a possible limited
number of constants of motion!, or higher proper time de
rivatives, in order to reconstruct the full trajectories and

FIG. 5. Same as Fig. 4~upper curve!, illustrating nonlinear long-
time behavior.
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smooth evolution parameter based on them.
Anyhow, for given initial conditions, the incident coun

as well as the coordinatesqW i(Tn) present discrete physica
data which are deterministically determined in our mod
~The constant orthogonal components are of no inte
here.! Then, the following question arises: can we still giv
an invariant meaning to and predict the future of the fr
external motion, instead of letting the system evolve a
measuring? In general, the answer is ‘‘no,’’ since neither
future discrete values ofT, see Eq.~64!, for example, nor the
value oft at those future instants will be predictable.

However, motivated by the two practical examples of S
III, we introduce the notion of a well-behaved ‘‘time,’’ which
will be sufficient to maintain some predictability indeed.

Let a well-behaved ‘‘time’’ T be such that the one
dimensional motion of a free particle, co-ordinated in
reparametrization-invariant way by the sequence$q(Tn)%, is
of limited variation:

$Tn% is well-behaved

⇔' t̄,Dt: t̄n2Dt<t~Tn!<t̄n1Dt, ;nPN

⇔'q̄,Dq:q̄n2Dq1q(0)<q~Tn!<q̄n1Dq

1q(0), ;nPN, ~65!

with q̄[t̄p(0), Dq[Dtp(0), and whereq(0),p(0) denote the
initial data. This is the next best we can expect from a r
sonable ‘‘time,’’ motivated by Newtonian physics here. It
important to realize that there is no hope for continuity
periodicity, since our construction ofT is based generally on
the ergodicity of a quasi-periodic process and related P
carésections.

Assuming a well-behaved ‘‘time,’’ we see that the s
quence of points$q(Tn)% can be mapped into a regular la
tice of possibly overlapping cells of size 2Dq and spacingq̄.
‘‘As the clock ticks,’’ i.e. n→n11, the particle moves from
one cell to the next. On the average this takes a proper t
t̄ and physical ‘‘time’’ T̄. Here we assume for convenienc
that $Tn% itself is of limited variation, 'T̄,DT:Tn5T̄n
6DT, ;nPN. In the simplest example, in Sec. III A, w
haveT̄5d21(p1

(0)1p2
(0))21 andDT50, showing a depen-

dence on the initial momenta and the scale of localization
the observed incidents.

Thus, for a well-behaved ‘‘time’’ sequence~of limited
variation!, we have mappings from ‘‘clock ticks’’ to~‘‘time’’
as well as! space intervals. We identify the space interva
containing the respectiveq(Tn), with primordial states:

un)[@ q̄n2Dq1q(0),q̄n1Dq1q(0)#. ~66!

In order to handle the subtle limit of an infinite system, w
impose reflecting boundary conditions and distinguish le
and right-moving states. Finally, then, the evolution is d
scribed by the deterministic rules:

n→n11, nPN, ~67!
0-9
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HANS-THOMAS ELZE AND OTAVIO SCHIPPER PHYSICAL REVIEW D66, 044020 ~2002!
un)→un11), 2N11<n<N21,
~68!

uN)→u2N11), ~69!

with 2N states in all,u2N11), . . . ,uN); states with a nega
tive ~positive! label correspond to left-~right-! moving states,
according to negative~positive! particle momentum. Reach
ing the statesu0) or uN), the particle changes its direction o
motion.

The rules~67!–~69! can altogether be represented by
unitary evolution operator:

U~dT5T̄![e2 iHT̄

5e2 ip(N11/2)/NS 0 1

1 0

1 0

� �

1 0

D , ~70!

which acts on the 2N-dimensional vector composed of th
primordial states; the overall phase factor is introduced
later convenience. HereT̄ is the natural scale for the Hami
tonianH.

In the following analysis we apply ’t Hooft’s method, wh
considered the discrete and strictly periodic motion of a c
sical particle on a circle, introducing a Hilbert space bas
on the primordial states@13#. The evolution operator turn
out to be diagonal with respect to the discrete Fourier tra
forms of the statesun). We define the basis functions:

^kun![ f k~n![~2N!21/2expS ipkn

N D . ~71!

They present a complete orthonormal basis, si
(k52N11

N (n8uk&^kun)5dn8n , with (nuk&[^kun)* , and not-
ing that f k(n)5 f n(k). This yields indeed

^k8uUuk&5dk8kexpS 2 ipFN1
1

2
2kG /ND⇔^m8uUum&

5dm8mexpS 2
2p i

2s11 Fs1m1
1

2G D , ~72!

where the equivalence follows from 2s11[2N and relabel-
ing and replacing the statesuk& by statesum&, with m[2k
11/2 and2s<m<s. The phase factor of Eq.~70! contrib-
utes the additional terms which assure a positive defi
~bounded! spectrum similar to the harmonic oscillator cas

Recalling the algebra ofSU(2) generators, and with
Szum&5mum& in particular, we obtain the Hamiltonian:

H5
2p

~2s11!T̄
S Sz1s1

1

2D , ~73!

i.e., diagonal with respect toum& states of the half-intege
representations determined bys.
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Continuing with standard notation, we haveS2[Sx
21Sy

2

1Sz
25s(s11), which suffices to obtain the following iden

tity:

H5
2p

~2s11!2T̄
S Sx

21Sy
21

1

4D1
T̄

2p
H2. ~74!

Furthermore, usingS6[Sx6 iSy , we introduce coordinate
and conjugate momentum operators:

q[
1

2
~aS21a* S1!, p[

1

2
~bS21b* S1!, ~75!

wherea andb are complex coefficients. Calculating the bas
commutator with the help of@S1 ,S2#52Sz and using Eq.
~73!, we obtain

@q,p#5 i S 12
T̄

p
H D , ~76!

provided we chooseI(a* b)[22(2s11)21. Incorporating
this choice, we calculate

Sx
21Sy

25
~2s11!2

4
„uau2p21ubu2q22~Ia•Ib1Ra•Rb!

3$q,p%…. ~77!

In order to obtain a reasonably simple Hamiltonian in t
infinite system limit (s→`), we finally choose

a[ iAT̄

p
, b[

2

2s11
Ap

T̄
. ~78!

Then, definingv[2p/(2s11)T̄, the previous Eq.~74! be-
comes

H5
1

2
p21

1

2
v2q21

T̄

2p S 1

4
v21H2D , ~79!

showing a nonlinearly modified harmonic oscillator Ham
tonian at this stage, which corresponds to the result of R
@13#.

Following our construction of the reparametrizatio
invariant ‘‘time,’’ we presently keepT̄ finite while consider-
ing the infinite system limit. Thus, fors→`, we havev
→0 and obtain

H5
p

T̄
S 12S 12

T̄

p
p2D 1/2D , ~80!

which has the low-energy limitH'p2/2. On the other side
the energy is bounded from above byp/T̄, since we have
0-10
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(T̄/p)p254(2s11)22Sx
2 (<1, for s→`, when diagonal-

ized!.
Interestingly, towards the upper bound the violation of t

basic quantum mechanical commutation relation, as ca
lated in Eq.~76!, becomes maximal, i.e., thereq andp com-
mute and behave like classical observables.

We conclude here with calculating the matrix elements
the operatorsq andp between primordial states. Relating th
primordial statesun) to the um& states with the help of Eq
~71! and usingS6um&5@s(s11)2m(m61)#1/2um61&, we
obtain

m~n8uS26S1un!

5
1

2s11 XexpS 2
2p i

2s11
nD6 expS 2p i

2s11
n8D C

3 (
m52s

s

expS 2p i

2s11
~n82n!~m21/2! D

3@s~s11!2m~m11!#1/2. ~81!

For larges the summation is replaced by an integral. The
using Eqs.~75! and ~78!, the results are (s→`)

~n8uqun!5
1

2
ApT̄

J1„p~n82n!…

n82n

n81n

2
, ~82!

~n8upun!5
1

2
AT̄

p

J1„p~n82n!…

n82n
, ~83!

where J1 denotes an ordinary Bessel function of the fi
kind. Thus, neither the position nor the momentum opera
is diagonal in the basis of the primordial states.

In any case, we find here once more an emergent quan
model based on a deterministic classical evolution, simila
that in Ref.@13#.

The interesting feature presently is that the construction
a reparametrization-invariant ‘‘time’’ based on quasilocal o
servables naturally induces the particular stochastic feat
in the behavior of the external particle motion. The rema
ing predictable aspects of its motion can then most simply
described by a unitary discrete-time quantum mechan
evolution.

V. CONCLUSIONS

Our construction of a reparametrization-invariant ‘‘time
is motivated by the observation that ‘‘time passes’’ wh
there is an observable change, which is localized with
observer. More precisely, necessary are incidents, i.e. obs
able unit changes, which are recorded, and from which
variant quantities characterizing the change of the evolv
system can be derived.
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A basic ingredient is the assumption of ergodicity, su
that the system explores dynamically the whole allowed
ergy surface in phase space. Generally, then there wil
sufficiently frequent usable incidents next to the observe

We illustrate this in Sec. III with a simple timeless mod
of a nonrelativistic particle moving classically in five dime
sions, of which two internal ones are compactified to form
torus. Defining suitable window functions, localized obs
vations of incidents correspond here to the trajectory pas
by the window. Thus, the incidents reflect properties of
dynamics with respect to~subsets of! Poincare´ sections.
Roughly, the passing ‘‘time’’ corresponds to the observa
change there.

In the first example in Sec. III A the dynamics is ve
simple and even integrable@9#. We know that the system is
ergodic in this case and use this fact in order to calcu
statistically, based on quasilocal incident counts, the inv
ant path length run by the system. This provides an invar
measure of ‘‘time.’’ We find that the proper time is linear
related to this, however, subject to stochastic fluctuations

In the second example, Sec. III B, we have additional
teractions which mix the trajectories in a much more co
plicated way. We assume that the system is ergodic.
statistical formalism then allows us to measure the chang
the phase space distribution which is updated by the in
mation coming from the incident counts. An essential ing
dient is the Fisher-Rao information metric@10–12#. This cal-
culation again provides an invariant ‘‘time’’ function, whic
behaves qualitatively similar to the previous example, ho
ever, with characteristic long-time deviations from an av
age linear relation to proper time.

It will be interesting to generalize the present model
relativistic systems, as well as to generalize the statist
formalism. A related question is as follows: which are t
~discrete! limitations of such a construction of ‘‘time’’ base
on localized observables, i.e. how close can one get t
linearly flowing Newtonian time, in a generic nonintegrab
system?

Finally, we pointed out in Sec. IV a possible connecti
of the present subject to the study of quantum mechan
systems which have an underlying deterministic classical
namical model@13#. Indeed, we find that for certain ‘‘well-
behaved time sequences’’ the remaining deterministic asp
of the induced stochastic classical motion of the~in our
model! external particle can be most simply described by
discrete-time quantum mechanical Schro¨dinger evolution.
This ‘‘stroboscopic quantization’’ may arise under more ge
eral circumstances, if one insists on constructing by stat
cal means an invariant ‘‘time’’ from localized observables
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