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Gravity wave analogues of black holes
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It is demonstrated that gravity waves of a flowing fluid in a shallow basin can be used to simulate phenom-
ena around black holes in the laboratory. Since the speed of the gravity waves as well as their high-wave-
number dispersiosubluminal vs superluminatan be adjusted easily by varying the height of the flaiad
its surface tensionthis scenario has certain advantages over the sonic and dielectric black hole analogs, for
example, although its use in testing quantum effects is dubious. It can be used to investigate the various
classical instabilities associated with bla@nd whitg holes experimentally, including positive and negative
norm mode mixing at horizons.
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[. INTRODUCTION analogs established there are based on the observation that
sound waves in flowing fluids arf@nder appropriate condi-

One of the most fascinating predictions of Einstein'stions) governed by the same wave equation as a scalar field
theory of general relativity is the potential existence of blackin a curved space-time. The acoustic horizon, which occurs if
holes—i.e. space-time regions from which nothing is able tathe velocity of the fluid exceeds the speed of sound within
escape. Perhaps no less interesting are their antonyms: whitee liquid, acts on sound waves exactly as a black hole ho-
holes (nothing can penetrateBoth are described by solu- rizon does on, for example, scalar waves.
tions of the Einstein equations and are related to each other After the original proposal in Ref14] the sonic analogs
via time inversion, see e.f1]. have been the subject of several investigations, se¢lég.

As it is well known, these objects feature many novel17]. Although the kinematics of the waves propagating
properties: For example, for orbits sufficiently close to thewithin the black and white hole analogs are governed by the
horizon(i.e. forr<3M) one observeR2] an inversion of the same equation as those in a curved space-time, the dynamics
centrifugal acceleration. of the effective metric itself are not described by the same

Rotating black holes as described by the Kerr metric adtaws as gravity(i.e. the Einstein equatiopin generat
mit unstable modes under certain conditions, i.e. solutions of In this way the analogs allow one to separate the dynami-
the wave equation growing in time without any bound, seecal effects of gravityfollowing from the Einstein equations
e.g.[3,4]. This phenomenon is related to the mechanism ofrom more generalkinematio phenomena, cf.19,20.
superradianc¢5] which allows one to extract energy from In addition to the sonic analogs there exist proposals for
the rotation of the Kerr black hole, df1]. black or white hole analogs based on the propagation of light

White holes are unstablgs] to exponential buildup of in dielectric medialinstead of sound see e.g[20-24, and
energy on the white hole Cauchy horizon on the classicabf other sorts of waves in for example liquid Helium 3, see
level, as well as on the quantum ley&H9]. e.g.[16]. These scenarios avoid some of the difficulties as-

The presence of both Cauchy and particle horizeviste  sociated to the sonic analogs but can have other problems.
and black hole horizons such as in the interior of a The challenge in making such analogs to horizons is in
Reissner-Nordstra metric, can have further instabilities, see preparing a medium in which the waves are stopped from
e.g.[10]. propagating out from some region. In the analogs where the

Another striking effect is the evaporatiddl] of black  flow of a medium is used to drag the waves at a velocity
holes due to quantum effects. This observation can be intecorresponding to the velocity of the waves, one requires a
preted as a confirmation of their thermodynamical interpresufficiently low velocity that the experiment could be con-
tation [12] relating purely geometrical gquantities, such astemplated. The speed of sound depends on the equation of
surface gravity and surface area, to thermal properties, su@dtatep=p(g) only and therefore is hard to adjust by exter-
as temperature and entropy. nal parameters. In the case of the analogs based on light, the

Fortunately it seems unlikely that one can observe blackelocity of the(quas) photons is determined by the effective
holes in the laboratorysee, however, e.d13]). Analogs, permittivity and permeability of the medium, which can also
which obey similar equations of motion to fields around abe hard to manipulate, and especially hard to make a suffi-
black hole raise the possibility of demonstrating some of thesiently low groupandphase velocity of lightcf. [22,24,25).
most unusual properties of black holes in the laboratory. This Consequently we were led to look for another kind of
is the basic idea of the black and white hole anal@smb  waves traveling at a velocity that can be controlled more
holes originally proposed by Unruh in Ref14]. The sonic  easily. One promising candidate is gravity wavssrface

*Electronic address: schuetz@physics.ubc.ca There are, however, possibilities to reproduce the Einstein equa-
TElectronic address: unruh@physics.ubc.ca tions even in non-gravitational systems, $&8].
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z For an irrotational flow profil&/ X v =0 we may simplify

A : A : the Euler equatiori2) via (v-V)v=V(v?)/2 and introduce

| T Nl P s a velocity potentialv =V & arriving at the Bernoulli equa-
-------------- tion

D+ E(V<1>)2=—B—gz—vll 3
2 0 '

The boundary conditions are that the vertical velocity

- _ must be zero at the bottom of the tank, the pressure zero at

. ] . ] the displaced surface, and change in the height of the fluid
FIG. 1. Picture of a gravity wave in the basin and the relevantyatermined by the vertical velocitgf. Fig. 1)
parameters. The assumed relation of the dimensiorisrfigrgravity

wavessh<<hg<<\ is not reproduced for the sake of conciseness. vi(z=0)=0,

waves in a shallow basin filled with a liquid. As we shall see
in the following, long gravity waves within a flowing fluid
arealsogoverned by the same wave equation as a scalar field
in a curved space-time. In addition, the speed of the longnd
gravity waves can be adjusted very easily by varying the
depth of the basin. Furthermore the fluid flow in such a basin
is easily manipulated. Because of the low velocity of these
waves, quantum effects would not be observable, but many

of the classical features of black hol@scluding the positive horizontaj corresponding to small vertical displacemedits

and negative norm mixing at the horizon which is closely g . )
: . -7 of the height of the fluidh. The background flow will be
related to the quantum evaporation eff¢atsuld be investi- assume d to obey

gated. Furthermore, as we shall see, the dispersion relation 0

| dh
vt (z=h)= g =h+(@-V)h, @

p(z=h)=0. (5)

Now, let us consider perturbationty to a background
w vy (which is assumed to be stationary, irrotational, and

these waves at high wave numbers can also be easily ma- V,v5=0, szv”Bwvu~vB=0, (6)
nipulated, allowing easy investigations of the effects of such
changes on horizon effects. i.e., hg=const, and
1
IIl. THE MODEL Evéz—%—gz—v”, 7

We shall begin with the simplest form of the model, in ) .
which we assume a shallow liquid over a flat, horizontalWherepg will be given byg(hg—2). _
bottom. Furthermore, the forces on the liquid will be as- We shall assume that the velocity perturbations are also
sumed to be such that they allow for a purely horizontali'rotational, so that they are given by a potentia®>. The
stationary flow profile resulting in a constant heighte.  Perturbations of the Bernoulli equation are given by
horizontal surfaceof the liquid. Later we shall relax both of

these assumptions. In addition, we shall assume that the lig- 5<i>+v“‘2,-V‘\5CI>= _ @ (8)
uid is viscosity free, incompressible and irrotational in its %
flow.

In such a case the density of the liquid remains constanfN® Poundary conditior5) for the pressure together with
(0 =const) and in terms of its local velocity the equation Ps=9(hs—2) imply

of continuity assumes the simple form sp(z=hg)=ge oh, 9
V.-v=0. (1)  and similarly for the vertical velocity
o o , Sv*(z=hg)= s+ (vl V) oh, (10)
If we neglect the viscosity of the fluid its dynamics are gov-
erned by the non-linear Euler equations, see [26]. as well asév*(z=0)=0.
It is useful to expand the perturbation potentd into a
dv . Vp f Taylor series
a=v+(v~V)v=—?+g+E, (2) " n
SOy, 2)= 2 8Dy (X.Y). (1

with p denoting the pressure amg= — g e, the gravitational
acceleration; andi= —QVHVH is some horizontal force nec- The boundary condition in Eq4) implies 6®;y=0. An-
essary to establish the stationary horizontal flow; cf. Fig. 1.other constraint arises from the equation of continity
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2
Viotot oPe=0. 12 P+ nij(aid))(ajq))—l—(azﬂb)z:—B—V(Xi,z), (20
and so on for larger values of We assume that the wave- e
length N of the perturbation is much longer than the depthyth
hg. In this case the higher-order terms in the Taylor expan-

sion (11) are suppressed by powers lof/A<<1 since we vi= nijvj=ai(13, (21
have VﬁzO(l/)\z). Keeping only the two lowest{non-
trivial) terms in Eq.(12) we find that and

svt(z=hg)=—hgV{ 5D o). (13) v,=v’=3d,D. (22)
This enables us to combine Ed8), (9), and(10) Here the potentiaV/(x',z) already includes the gravitational

acceleration—in contrast to the potentidl used in the pre-
I 2 5 B vious section. .
s Tve V| 6%~ ghsV[dP=0. (14 The surface of the liquid, defined =h(x'), is where
the pressure goes to zero and obeys, cf.(Ep.
This wave equation, however, equals the Klein-Fock-Gordon S
(KFG) equation h+v'd;h=v? (23

1 wherev' andv? are evaluated at the surface.
D5®(0)=fﬁﬂ(v—g 973, 6®))=0, (19 Let us now expand these expressions in powers of the
9 vertical heightz above the bottom at=0. The velocity po-

with the effective metric(rememberVH-vaO and ghg tential ®, the metricy", and the potential/ can be written

=const) as
1 H z*
v [N o o i 3
gly= H ” H B . (16 D (x,2)=Dg)(x")+ 5 D 5)(x") +0(2%),
UB vB® UB_ g hBl
1] (1 — ] i ij i 2
Except for replacing the velocity of the gravity waveghg 77 (X,2) = 770)(X) + 2773 (X') + O(27), (24)
by the speed of sound it is exactly the same effective metrig
as for the sonic analogs. Calculating the inveg;%’é of the
effective metric one obtains V(Xi,z)z\/(o)(xi) +2g,(x"+0O(2?), (25)
off v‘,‘3 2 where we already have incorporated the boundary condition
goo=1— (17 y,(z=0)=0 and introduced the gravitational acceleration
vgh
B

perpendicular to the bottorg,=V ). Similarly we obtain

As one would expect, the condition of an ergosphggl  fOr the pressure

=0 is satisfied where the velocity of the fluaiﬂ‘3 equals the —(h-z +O(Th=212 26
speed of the gravity wavegghg. p=(h=2)pe*+O(Lh=2. (28
In analogy to the previous section we assume the héigliit
Ill. ARBITRARY BOTTOM AND HEIGHT the fluid to be much smaller than the horizontal length scales

on which the features of the flow profile.g.®, %', V, and

Let us now relax the previous assumptions that the bottonb) chan P :
ge significantly—such as the wavelengthlin this
and the background flow surface are both flat and para"ellong—wavelength limit the higher-order terms of the above

We mtyoduce arpnrary coordinates on the bottom and defin aylor expansions are supressed by powerk/afand thus
a vertical coordinate as orthogonal to the bottom of the can be neglected

icnotgt?rl]r;efroar\rr:]d geodesic. The spatial metric can always be cast The continuity equatioril) enforces again

v dxidx 1 .
dri=dz"+ 7;;dxdx’, (18 e (N0 oy P (0)) + P (2)= V@ (0)+ P (5)=0.
whereij go over values 1 and gEinstein summation con- © (27)
vention, and represent the coordinates within the bottom of
the container. The equation of continuit}) is now Evaluated ar=h the equatior{23) for the height in terms of
_ the velocity reads
(') + () =0, (19 o
h+71[3,®(x*,h)]d;h= 3, (x*,h), (28)
with »=det(s;;) and, assuming irrotational flow, the Ber-
noulli equation(3) becomes which again to lowest order in=h becomes
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h-+ ﬂi(jO)(ﬁi@(O))ﬁjh:—hvﬁq’(oﬁ' O(h?), (29

or, equivalently,

. 1
h+ \/_(9 {(N70)1(0yh P (0)) =0, (30

7(0)

which can be interpreted as an effective conservationdaw

+V)-(hvl)=0.
The Bernoulli equation transforms into
By + =i+ 2701 (5,0 003 D) = — P
T E( N0yt 27(1)) (3P (0)) (9} P (0)) = — 0 (h—2)
—V(oy—2g,+ O(h?). (31
From the terms linear iz we may infer
Pa 1
o =9t 57 0) (9P, (32

We can define an effective gravitational acceleration as

1
9=0:+ 5 71 P(0) (9P (0))- (33

Note that the eigenvalues of 1;(1) with respect ton(o)

00X = K MoyX; (34)

are just twice the inverse of the principle radii of curvature of = gh...

PHYSICAL REVIEW D 66, 044019 (2002

1(1 v
¢ j v BU B ghB77(0)

where bothg andhg can depend on the coordinates We
can thus sculpt the effective metric within which these waves
flow both by altering the velocity of the background flow, by
changingg from place to placeprimarily by sloping the
bottom of the tank or by altering the height of the back-
ground flow.(Of course the backgrourt is determined by

the background flowg and the potentiaV’.) If one has only
the gravitational field as a force on the fluid, the slope of the
bottom can be used to generate a potertjadnd also, with

more severe slopes, to change the valug dfom place to
place.

The ergoregion is defined as the zone where, in order to
be travelling at less than the velocity of the wave in the rest
frame of the fluid, one cannot be standing still in the lab
frame. This is the region where the velocity of the fluid is

higher than the local velocity of the wavgghg.
If we assume that the bottom is fli@o that'! = §"), and
that the flow is driven by changes iy, we have

1,
EvB+ghB=const. (39

But Jghg is the speed of the gravity waves. Far from the
ergosphere, the velocityg is small, so the we have const
Thus at the erogosphere, where the velocity of the

the surface over which the fluid is flowing. Thus the extrafluid is the velocity of the waves, we have

terms in Eq.(33) just represent the vertical centrifugal forces
on the fluid travel over this curved surface, and in all of our

following investigations will be negligible.

h—2h 40

Let us assume again that we have a stationary background _ _
flow which obeys these equations, and we are interested ifimilarly, if we assume that we have a sloping bottom de-
perturbations around this flow. The perturbation equationsigned so that the fluid maintains a constant heigpt

then are(usingv = 7(h,J; () atz=0)

Wa (V0 Eoh)
1 .
=- m&( V7(0) Moyhed; 6P o)), (35)
and
5D 0y + 0159, 6B ()= — g h. (36)

We can combine these equations to get

1 i i 1 BUB
(?t.., (9t+(7 (9'[+ &t (?i =\ 77(0 (9
g g V 7](0)
1 i
- n\/:&ihB vV 77(0) 77(0)(9] 5@(0)2 0. (37)
(0)

This again is a KFG equation with a metric given by

throughout, we would again obtain that the ergosphere

should be at a point such that(x')—V..=ghg/2. If this
potential arises purely from the gravitational potential due to
the slope of the bottom, we must have that the bottom would
have to be at a height df/2 lower than at infinity. l.e., it
does not take much of slope to the bottom to create the
conditions necessary for an analog black hole ergosphere to
form.

We note that in the above, we have only kept terms to
lowest order inz or h. The validity of this approximation is
essentially that all horizontal derivatives have scales which
are much larger thah, the height of the fluid. Furthermore,
the condition that we need only retain the lowest order in the
metric " is also that the curvature of the bottom of the tank
be on scales which are long with respecttd.e., we are in
a “shallow water,” long wavelength approximation in these
derivations.

IV. IRROTATIONAL BACKGROUND FLOW

We can use the equations of motion of the fluid to derive
the most general rotationally symmetric and locally irrota-
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tional backgound flow profile. Let us assume that the bottonyith g=g,=g/\/1+f'(r)? denoting the effective gravita-

of the tank is defined by the relation
Z=1(R), (47

in the usual cylindrical coordinateZ (R, ¢), wheref denotes

some moderately curved function. Switching to the adapte

coordinates %,r,¢) described in the previous sectioZ (
=f(R)«~z=0;r=R) gives the spatial metric

dr=dZ?+dr?(1+f'(r)?)

X(l m) A RN

(42)
for which the lowest order metric is
driy)=dZ2+ 1+ (r))dr?+ride?. (43)

To lowest order inh the flow equations are the effective
continuity equatiorn(30)

3,(V1+f'(r)°rhv")=0, (44)
the condition for a locally irrotational flow
L
vf=—, (45)

r

tional acceleration.

In summary the analogy to a curved space-time and the
concept of an effective metric can still be applied in the case
of non-horizontal flow provided that the local variation of the

Height of the fluid and the slope of its bottom are sufficiently

small. Nevertheless, the global changes may well be signifi-
cant.

A variation ofh andg,, the component of the force per-
pendicular to the bottom, does in general also entail a change
of the local velocityy/g,h of the gravity waves. Such a spa-
tial dependence may lead to further interesting effects: In
analogy to optics one may introduce an effective index of
refraction which then also acquires a non-negligible gradient.
In such a situation the gravity waves may be scattered by this
gradient or even the phenomenon of total reflection could
occur. As we shall see later in Sec. X, this mechanism may
be one ingredient for generating an instability.

V. SURFACE TENSION

So far we have considered ideal fluids without any inter-
nal forces. However, if we take the surface tension of the
liquid into account, the pressure at its surface no longer van-
ishes. Accordingly, the upper boundary conditi® for the
pressure is modified to

p(z=h)=—aVfh, (50)

with L being some constant related to the angular momenwherea denotes the fluid’s surface-tension coefficient and

tum, and finally the Bernoulli equation

g Vi+f' ( r)?

A+ +r2(ve)?=— —gf(r),

(46)

where we have neglected the “centrifugal” term in E§3)
as it will be very small for our situation. These give

—— (47)
™ 1+f/(r)?’

and

1[c?h? Lz) h—h., .
| —=+—=|=—9g—————==—9gf(r).
AN A N e T

Thus, we either neet to change as a function of or we

need a non-trivialf(r). Choosingf(r)=—F/r? allows a

consistant solution with contant height h,, for the fluid as

long asF is given byF=(C?+L?)/g. The effective metric
for the fluid is then of the form

(48)

CZ

r2

dt2+2—(x/1+f (r)2 —dtdr

-I-Ldtd(p)—rl—w([1+f'(r)2]dr2+l’2d(p2), (49
g

V\I h is the curvature of its surface in the linear approxima-
tion. Consequently we obtain

5p(hB)=Qg¢Sh—aVH oh, (52)

instead of Eq(9). This results in a extra term in the velocity
perturbation equatiofB)

: 03
5c1>+vL~VH5cI>:—g(5h+5vﬁ5h. (52)
As we shall see below, the effects of surface tension become
relevant for small wavelengths only. In this I|m|t we may
neglect the variation of the background fIcW@vB 0 and
obtain a modified wave equation

(53

2
2 ahB 4

&t
In terms of the capillary constaaf= a/(og) and the veloc-
ity of the unperturbed gravity waves3=ghg this wave
equation results in the following dispersion relation:
(w+vl-K)2=c2(k®+a%k?). (54)
Therefore the incorporation of the effects of surface tension
leads to a “superluminal” dlsperS|on relatigin the termi-
nology of[27]) since(for v =0) the group velocitydw/dk

as well as the phase velocny/k exceedcy for large wave
numbersk.
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However, we should bear in mind that the above calcula-
tions are still based on the assumptioriafg gravity waves
A>hg. For short gravity wavea <hg, on the other hand,
the dispersion relation readfor v|g=0, cf. [26])

_Ak22+ Bk

ag—kz—i%) b= (61)

Definingk viak?=k?+iw/v andR(k)>0 the general solu-
w?=gk(1+a?k?). (55) tion of this equation can be written as

Ak?z+Bk
o vk?

Hence we can use the ratdhg in order to alter the disper-
sion relation for large wave numbeks For a>hg the cap-
illary waves dominate before the wavelength becomes
smaller than the height, and we have a superluminal disper- |n addition to the long-wavelength limik>hg we as-
sion relation, whereas foa<hg the short gravity waves syme the viscosity to be very smallv<wh?. In this case
dominate before the surface tension becomes important, ar%He exponentials expks) are very rapidly varying
thus one initially has a subluminal dispersion relation, befor%unctions—which can be used to simplify the analysis
the capillary waves finally take over at very short wave- Combining the equation of continuitg,dv,+ k- 5vH=b
z z

lengths. . . e :
For example, for mercury the surface tension coefficiem}’vIth the velocity boundary condition in E¢58) one obtains

« is abouta~0.46 N m ! at room temperature 293 K and (97+k?) v (z=hg)=0. In view of[k|>k andkhg>1 this
hence its capillary constaat~1.9 mm. For water at 293 K implies thatC is extremely smalCxexp(— khg)/k? and thus
we have a~0.0725 N m? and hencea~2.7 mm. This can be neglected.

guantity can easily be manipulated by changing the tempera- On the other hand, fromfv,(z=0)=0 we obtain D

Sv,= +Ce k21 pe (62)

ture, adding surfactants, or by changing the fluid used. =BK/(e v~k2). Therefore, the terr® exp(—T<z) in Eq.(62) is
relevant in a very thin boundary layer of ordér/ w over the
VI. VISCOSITY bottom only, cf.[26].

In analogy to Eq(9) we may linearize the boundary con-

The dynamics of a viscous but still incompressible ﬂUiddition for the pressure in Eq57) which fixes the integration

are governed by the Navier-Stokes equations

constantA.
v Vp The remaining conditiory|(z=0)=0, i.e. d,0v,(z=0)
a=v+(v-V)v= - ?+g+ vV, (56) =0, can be used to eliminat® and henceB. As one might

expect, the solution fobv, in the presence of a small vis-

cosity displays only slight deviations(is of order/v) from

the linear profiledv,>z used in the previous sections—as

|long as one is well above the aforementioned boundary layer.
Finally, Eq.(4), i.e. dv,(z=hg)=1wdh, enables us to de-

rive the dispersion relation

wherep v denotes the dynamic viscosity of the liquid and
its kinematic viscosity.

The boundary conditions have to be modified as wel
Instead of Eq(5) we have now

P(z=h)=20vdv,(z=h), (57)
14
and there are two additional restrictions @ w®=ghgk?—gk? Vie© O(v). (63)
I |(z=h)==Vjp,(z=h), (58) " Here one can read off the characteristic damping tinaéter
and which the viscosity effects become significant:
v|(z=0)=0. (59) e 64
VVw

Let us investigate the effects of a finite but small viscosity

on the wave propagation—where we restrict our examinatiogyne gpserves that high frequencies are damped faster. This

to the case of a vanishing background flow=0 for sim-  on4ency becomes much stronger in the regime of short grav-
plicity and employ the plane-wave ansatz with a frequancy ity waves where

and a wave numbek.

For an incompressible fluid the divergence of the linear- 1 g2
ized Eq.(56) yields (for vg=0) —_—~— = (65)
vk? vt
V26p=(92—k?) 6p=0, (60)

holds, see e.d26]. As a result, the at a first glance undesir-
which has the solutiordp=A coshkz)+Bsinhkz with k  able effects of viscosity can be utilized to damp out potential

=1k|. high-frequency noise and so single out the interesting
In the long-wavelength limikhg<<1 we may approximate (medium-wave-numbeinstabilities by tuningy.
sinhk2~kz and costk2)~1+(k2?%2. Inserting the resulting For example, water at room temperature has a kinematic

expression back into the Navier-Stokes equati@®s yields  viscosity of v~1mn?fs 1. Assuming a heightg=10 cm
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and a frequencyw=1Hz we infer from Eq(64) a damping VIl. ENERGY
time of the order of one minute—which still seems to be  There are two different concepts of a metric in our model:
sufficient. First, the Minkowski metric determining the length and time

The kinematic effect of the friction within the liquid could gcgles within our laboratory; and, secondly, the effective
be diminished by selecting a fluid with a relatively high den-metric—which is experienced by the gravity waves only.
sity ¢ (e.g. mercur§) in comparison with its inner viscosity.  These two concepts lead to two distinct notions of energy:
For mercury at room temperature is given by v  For time-independent external forc@sd inviscid fluids the
~0.12 mnts 1. Noether theorem demands the conservation of the total en-
However, there is also another problem induced by theergy of the flow. In addition, assuming a stationary back-
finite viscosity: the ansatz for theindependent background ground flow profile, we may find a conserved energy associ-
flow profile used in the previous sections is not appropriateited to the gravity waves.
anymore since the fluid sticks to the bottom of the basin, cf. At the boundarysG of the basin, the normal component
Eq. (59). of the velocityv -n has to vanish. In terms of the velocity
One way to solve this problem is to move the bottom SopotentiaICD this corresponds to Neumann boundary condi-
that its velocity is the same as that of the fluid—at least inloNS
the interesting region, for example near the horiz@ne
might also imagine manipulating the fluid near the bottom

and thereby effectively simulating this motiow(fter trans- s enables us to accomplish a spatial integration by parts

forming into its rest frame the above calculation demon-g,4 i complete analogy to the 42L)-dimensional curved
strates that the solutions derived in the previous sections ahace-time one may derive a conserved energy

still a very good approximation.
Without moving the bottom the boundary condition in Eq. v 5 0
(59) enforces a significare dependence of the background E:f dx,T §v:f d“rTo, (67)
flow profile. For instance a constant horizontal fofneeded
for maintaining the stationary flowimplies a parabolic flow whereé&*=d/dt denotes the Killing vector associated to the
profile v4xz(2hg—2z). Unfortunately, it is not possible to Physical laboratory time and, the spatial hyper-surface.
cast the full wave equation into an as tractable form as in E¢f-0r the effective metric in Eq(16) we obtain the energy
(14) allowing for the identification of an effective metric in density
this situation(this problem is currently under investigatjon
The main obstacle is that the flow is longer irrotational. 0_ (_
Nevertheless, for other scenarios one might be able to 0 at
overcome this difficulty. If one injects a neadyindependent
stationary inflow(driven by a turbine, for exampleon one  of the perturbationgp= 5® ), i.e. gravity wavegsee also
side of the basin, then the flow will basically remain irrota- [28]).
tional throughout the basin—outside a thin Prandtl boundary We observe that this energy density contains negative
layer at the bottom, cf.26]. parts inside the ergoregioh;L|>\/ﬁ. This observation
In view of the relatively large velocities involved and the points to the possibility of an instability associated to the
supposedly small viscosity this layer may well be turbulent.ergoregion.(A positive definite conserved energy density
However, by an appropriate preparation of the bottom’s surwould prove stability. The total energy of the fluid including
face(e.qg. dolphin skin effegtthe induced drag can be dimin- the background flow is of course always positive.
ished. Note that the energy conservation law derived above is
Since the properties of the flow outside the thin boundaryiolated if G has a hole, such as at the drain, etc. This prob-
layer are nearly the same as in the case without viscosity arlé¢m, however, arises for real black holes as well.
in view of the remarks after Eq62) one would expect that

v-n|,5=0~n-V®|,;=0. (66)

2

+ghB(V|¢)2_(v”B’V|¢)2} (68)

the basic properties of the gravity waves as discussed in the VIII. NON-ROTATING BLACK HOLE
previous sections are not drastically affected by a small in-
ternal friction in this case. If we neglect the small slop&’ (r)<1 of the bottom(cf.

Beside the scenarios described above there is alsée remarks at the end of Sec.)lih Eq. (49) the constant
another—more exotic—solution for the viscosity problemguantitiesg and hg can be absorbed by a simple rescaling
conceivable: a superfluid does not stick to the boundary angnd we arrive at
its vorticity is quantized. But the necessity of using gravity

waves in say liquid helium makes the experimental realiza- 42— ( oh 2412
eff —

tion far more difficult than is desirable. 2

C
)dt2+ Zrdth- 2Ldtde—dr?
"

—r2de?. (69)
>The use of a fluid such as mercury has just another advantage i
since one would be able to detect the gravity waves very easily vidf we takeL=0, we exactly recover a Painledgullstrand-
considering the reflection at the fluid’'s surface in this case. Lematre (PGL) type metric[29]
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dsig=[c—w?(r)]dt?+2w(r)dtdr—dr?—r?de?, 2,2

C
(70 ds§ﬂ=<1— )dt2+ZTdterrZLdtdqo—dr2

r
with c§=ghx andw(r)=1+f'(r)%"=Cl/r. As it is well —r2de2. (73
known, by means of the singular coordinate transformation

The space-time structure of a Kerr black hole is more com-
w(r) 71 plicated than the Schwarzschild geometry for there is a dif-
c2—wa(r)’ (72) ference between the static limior the ergosphere, see e.g.
B [1]) and the horizon: The static limiy,=0 denotes the re-
cqion beyond which no particle can remain at rest. This, as
mentioned above, corresponds to the surface where the ve-
locity of the fluid equals the velocity of the waves, iré.

dt—dt=dt+dr

the stationary PGL metric can be cast into the stati
Schwarzschild form

) =C?+L2. The horizon is the “point of no return,” and for
v Cs n axially symmetric flow, corresponds to the surface where
ds2e=(ci—w?)dt?— dr?—r2de?. 72 @ 1y sy O P .
e (g~ W7) c2—w? ¢ (72 the radial flow velocity equals the velocity of the wawes
=C2.
Obviously the horizon occurs whew?zcézghB, i.e. when The region between these two critical points, in both Kerr

space-time and this model, is called the ergoregion and al-
lows for the occurrence of the superradiant modes.

According to Eq.(68) the energy density may become
negative inside the ergoregiof<C?+L2. As already an-
gf:ipated in Sec. VII, this observation can be interpreted as an
indicator of instability. Indeed, in complete analogy with the
Kerr black hole this analog should exhibit the phenomenon
of superradiance: An incident wave with nonvanishing angu-
lar momentum scatters from the region around the black hole
IX. WHITE HOLE (analog—i.e. the vortex—and the amplitude of the reflected
wave is larger than that of the ingoing wave. The necessary
energy is extracted from the rotational energy of the back-
ground.

the velocity of the(radially) flowing fluid exceeds the speed
of the (long) gravity wavesyghg. An inward flowing liquid
w<0 simulates a black hole whereas an outward flew
>0 evidently corresponds to a white hole. The black hol
branch can be used to observe the inversion of the centrifug
acceleratiori2] mentioned in the Introduction and, of course,
the trapping of the waves inside the horizef= cé.

The white hole branchv>0 of Eq. (70) offers another
interesting phenomenon: As demonstrated in R&f.all in-

Clt(rjetrg V\:]a:jvestpllreb ilter r{ij}t tgle h_orr:izfgeénfhe :heyi fcarr]mc;;[ plen_t Since the metric in Eq(73) possesses two independent
etrate and get arbitrarly blue-shitted there—it one neg eCSKiIIing vectors, d/ gt andd/ d¢ we may find a complete set of

the change in dispersion relation, and thus group velocity, z:?,{ ; .
high wave numbers. In our model, however, the blue-shifte olutions of the waveKFG) equation

waves eventually leave the regime of the long gravity waves.
ghe subsequent behavior depends on the character of the 19t2+2gt9t<9r+2£<9t6’ N E(w N }&rﬂa
ispersion relation, in particular whether it is subluminal or r p2 00 3 e T2
superluminal. In the latter case the incident waves will even-
tually penetrate the horizon, once their wavelength has be- 2
come sufficiently short to alter the group velocity to one +Ff9r — —ljro+
larger than thelow frequency velocity of the waves. In the r
former case, the short wavelengths will be swept out by the ) )
fluid which is now flowing faster at the horizon than the by the following separation ansatz:
group velocity. These features associated with white holes
may thus be observed experimentally for these gravity wave (t,r, o) =exp{ —iwt+ime}d,m(r). (795
analogs. Furthermore, since the dispersion relation can be
adjusted by varying the depth and the surface tension of thRote that an analogous separation ansatt, th¢ is even
liquid, one can study the effect over a wide range of physicapossible in the real (3 1)-dimensional Kerr metric—which
situations. is a less trivial statement.
The remaining functionp,(r) obeys a second-order or-
X. ROTATING BLACK HOLE dinary differential equation. In terms of the Regge-Wheeler
tortoise coordinate defined by

¢

L2 1),
r_4_r_2 dy ¢$=0, (74

Stationary flow profiles containing a componentgndi-
rection (vortex solutions with non-zert) can be used to
model rotating(Kerr) black holes. With a further rescaling dr,=—>—3
and a redefinition of the constan®&andL we may absorb r-—C
the speed of the gravity wavegh,, in Eq. (69) completely
and then the corresponding effective metric assumes the fothe KFG equation(74) at the horizonr?=C?, i.e., r, =
lowing form: —oo, simplifies to

r2

dr, (76)
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finite mass[3] or if one, for example, encloses the rotating
)ar ¢ om=0. (77 black hole by a large spherical mirrpt].

* As explained in Sec. IV, for the gravity wave analogs
there is another mechanism which may force the scattered
wave to “come back”—the total internal reflection. Since
the velocity of the wave is/gh, if one can manipulaté, as
happens for example near the drain of a bathtub, the change
in the effective refractive index may entail effectively trap-
ping the waves—which then can be amplified via superradi-

L ant scattering without bound, or, rather, until nonlinear ef-
- (78)  fects dominate.

c? In summary it is possible that some of the features which
one regularly observes in the vortex flow near the drain of
For a Kerr black hole this quantity is boundey its total  one’s bathtub are in fact the result of instabilities which are
massM via 2Q,<1/M. With the gravity wave analogs, exactly analogous to the behavior of waves neéogating
however, it is possible to generate rather large values oOflack hole. It should be mentioned here that the arguments
2Qy—in particular if one allows for non-negligible slopes— ahove do not explain the formation of the vortex, but refer to
sinceC andL can be varied independently. its linear instability.

The Wronskian associated to the second-order ordinary

differential equation reads at the horizon

Wl b= ¢* 3 d—bd;_¢*+2i(w—Qum) ¢* .

. L
&r*+2| w—am

The two linearly independent solutions to this equation, i.e.
(approximately constant and purely oscillating, respectively,
correspond to ingoing and outgoing modes, respectively.

In analogy to the Kerr metric we may introduce the angu-
lar velocity of horizon

Qy

XI. INNER HORIZON

The instability indicated by negative parts of the energy

(79 density in Eq.(68) is not necessarily restricted to rotating

Inserting the ingoing modé, ¢=0 we obtain black holes: In the presence of an inner horizon in addition to
* the outer one, such as occurring in the Reissner-Nonastro

Wl #1=2i (0 —Qpm)| T2, (80)  Metric, and for an altered dispersion relation, runaway solu-

tions can exist even in the purely one dimensional flow.
where |7, m|?=|¢.ml? denotes the transmission coefficient. ~ This somewhat surprising fact has been demonstrated in

Since we have restricted our solution to be purely ingoing aRef. [27]. In the following we give a brief repetition of the
the horizon, it will contain ingoing as well as outgoing com- basic explanation adapted to subluminal high frequency dis-
ponents(determined by the reflection coefficie®,,) at Persion relation. Note that the terms “sub-" or “superlumi-
spatial  infinity r=o in general ¢xexp(—iwr) nal” do not, despite their origin, refer to light, but rather to
+R,mexplor). In this limit the wave equatiofi74) reduces ~Whether or not the group velocity at high wave numbers is

to the usual form and hence the associated Wronskian rea#®ss than or greater than it is at very low wave nuntbemg
wavelength. They will also refer to regions where the veloc-

W, ¢1=2i0(1—|R oml?). (81 ity of the fluid is smaller or larger than the low-wave-number
velocity of the waves.
For a regular second-order ordinary differential equation on a We shall restrict ourselves to a one-dimensional flow. We
contiguous interval the Wronskian is conserved which im-consider a case where there are two horizons, one a white
plies[5] the following relation between the transmissify,  hole (where the velocity of the fluid drops below the low
and the reflectiork ,,, coefficients: wave number velocity of the wayend the other a black
hole (where the velocity of the fluid goes above the low
82) wave number group velocity It turns out(for not entirely
well understood reasofys that although there are two
branches of the dispersion curifer a static fluid these cor-
As one can easily infer from the equation abovemi€),;  respond to the two directions of propagation of the wave
> w the reflection coefficient is greater than dfe,m|>1,  wave packets remain on one or the other of these branches
i.e. the scattered wave has a larger amplitude than the inceven when interacting with horizons, and spatially varying
dent one. This amplification process corresponds to the phegtows. There seems to be very little backscatter from one
nomenon of superradiance. branch to the other. We shall restrict attention to the one
However, for a massless scalar field in the asymptoticallypranch which at low wave numbers represents waves which
flat Kerr geometry the scattered wave escapes to infinity. Tare traveling in a direction opposite to the fluid flow.
make an amplifier unstable, feedback is required, [S6& Assuming adiabatic motion of this wave packit anal-
That outgoing wave must be reflected back toward the hole
for repeated amplification. This is possible if the field has a——
“The (1+ 1)-dimensional scalar wave equation without dispersion
is conformally invariant which explains the absence of any mixing
30therwise the metric would describe a naked singularity withoutin this case. For a non-trivial dispersion, however, this problem is
ergoregion and horizon, etc. less clear.

w—mQH
1= R gl 2= | T2
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5 number slope of the dispersion curve, and there is now only
S one intersection with the dispersion curve, at negative values
S of Q. Furthermore the group velocity here is positive. These
& wave packets, even though they have low wave number, are
. dragged along with the fluid and travel in the same direction

as the fluid.
/" One can, as for scalar waves, define a “norm” of the
various wave packets by the conserved Klein-Fock-Gordon

@ § .
4 inner product

// |
¥ (q>|q>)=§f d3#(®*9,d—Dd,d*)

i -
= Ef dS#d* 5,0

p i - "
=§f dxd* (d;—v(X)dy)P

FIG. 2. One branch of the dispersion relation where the high
wave number group velocity is smaller than the low frequency.
Plotted are the two lines d@ vs k for different velocities, but the :Q(x)f dx|q)|2,
same value of the lab frame frequeney Note the intersection
points of these straight lines with the dispersion curve indicating the .
possible values ok for the givenw at the given fluid velocity. where we have assumed the wave packet to be sufficiently
localized thatv is constant over the packet. l.e., the sign of
ogy to the geometric optics approximatjothe effect of the ~ the norm is the same as the sign{@f Thus, for positivew
fluid flow is to alter the dispersion relation to the wave packets on the superluminal side will have negative
norm, while those on the subluminal side can be either posi-
w+vk=F(k), (83  tive or negative nornftwo are positive and one is negative
_ Let us consider a wave packet with positive norm, low
where the mode has the forg\(“'*¥9 | e. w is the fre- value of w but large value ok being dragged toward the
quency of the wave in the lab frame, not the rest frame of théylack hole horizon. As it comes closer,increases, and the
fluid. Define Q=w+uvk as the frequency in the fluid rest wavelength of the packet is stretched out, witbecoming
frame. In Fig. 2 we sketch the subluminal dispersion relatiorsmaller and smaller. As it hits the horizon, where the slope of
as a plot ofQ) versusk. To determine the possible values of the line becomes essentially the same as that of the low wave
k for any given value ofw, we can plot the linel—vk  number dispersion curve, the adiabatic assumpii@omet-
= w and look for the intercepts with the dispersion curve. Weric optics approximationfails, and one gets a mixing of the
shall concentrate on small values @f which is also the various possible values &ffor the givenw. However, what-
intercept of the line with th&) axis. ever happens, the wave packet must thereafter leave the ho-
On the subluminal side of the horizon, whereand thus rizon, either on the subluminal side, or the superluminal. On
the slope of the line is less than the dispersion slopk at the subluminal side the only possibility is that the wave exit
=0, there will in general be three points of intersection, andwith the small value ok near zero, as this is the only one of
with very different group velocities. The one near the originthe three possibilities which travels away from the horizon
k=0 has a group velocity, on the subluminal side. On the superluminal side, the only
possibility is that the wave packet leave with negative norm.
dw dF The fluid flow at the horizon will have mixed positive with
YT T gk Y dk’ (84) negative norm solutions. This is precisely the requirement in
the quantum system that particle production take place, since

which is negative, corresponding to travel to the left, againsthis mixing of positive and negative norms is precisely what
the flow of the current. The other two, one at positft¥eand  leads to non-trivial Bogoliubov coefficients
one at negativé€) both have positive group velocity and thus

correspond to packet travel with the current flgiheir rest B= (D |Pyy)-

frame group velocity is so small that even the subluminal
current is sufficiently fast to drag them along For our purpose, what this means is that the wave packet

Because the background current flow is assumed to behich leaves the horizon on the subluminal side must have a
stationary, the frequenay is conserved during the motion of larger norm than did the wave packet which was dragged
a wave packet. Let us consider what the possible wave nunteward the horizon(Since the total norm is conserved, and
bers are for this same value af on the superluminal side. since the norm of the packet on the superluminal side is
The slope of the line is now much greater than the low wavenegative, the subluminal packet must be langer.

(89

(86)
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FIG. 3. Four stages in the process of a wave packet reflecting off FIG. 4. The reflection of a pulse producing low frequency insta-
the white and black hole horizons. The black hole horizon is in thebility. Plotted are three steps in the evolution of a pulEg box
center. These are the real parts of the wave padketsimaginary  after one(middle box and two reflections from the black hole
look similar and were chosen to make the intial pulse purely posihorizon in the center. Note that in each case the pulse on th@rleft
tive norm. the subluminal regionis traveling to the left while the ones on the

right (in the superluminal regigrtravel to the right. After another

This packet will now travel toward the white hole hori- reflection from the black hole horizon, the pulse grows linearly and
zon. Here, there is no packet on the superluminal side whichfter still another, quadratically with distance from the black hole
travels away from the horizon. The only possibility is that horizon.
the packet be blue shifted at the white hole horizon and come
off as a mixture of the positive and negative ladgsolu-  the packet from this horizon. This means that the packet on
tions. While one of these is positive norm, and the other ighe subluminal side will remain positive norm, if it started
negative, they are traveling together toward the black holdhus.
horizon. Here they again emit a negative norm packet into One of the consequences of this instability is that one
the superluminal region, although if the phases were juseéxpects it to be worse for very small values®f Since the
right, the two could cancel and emit nothing into the supernorm mixing at the black hole horizon is proportional to a
luminal side. Assuming that this does not happen, or that thBose-Einstein factor, this diverges for small valueswof
conversion at the white hole is so small so as not to create
any mixture, the subluminal packet's norm increases once 1 ©l0T
again. After many such back and forth reflections, the norm m_’;' (88)
can grow arbitrarily large. One has an instability. In Fig. 3
we have four steps in this process. The black hole horizo®ne would thus expect, and numerical simulations confirm,
occurs in the center of the diagram, while the white holethat after a few back and forth bounces off the black hole
horizon is at the left and right edgéwe assume periodic horizon, the lowest wave number mode of the wade.,
coordinates The low frequency intial wave packet travels constant in spagewould be amplified at each bounce. Nu-
toward the white hole horizon, and reflects as a high fremerical simulation shows that after a couple of bounces, at
guency wave, dragged by the fluid. The third window is aftereach reflection from the black hole horizon, a constant “step
the reflection from the back hole, and the fourth after thefunction like” pulse of ever increasing amplitude is emitted
refection again from the white hole. by the black hole horizon into the subluminal side, cf. Fig. 4.

For smallw the amount of mixing of positive and nega- After the next reflection the spatial growth is linear, then
tive norm modes at each of the horizons is governed by guadratic etc.
thermal Bose-Einstein factor One can, following Corley and Jacobsp27], make a

very similar analysis in the case in which the dispersion re-
87) lation is superluminal

F(k)=c?Vk*+a’k?, (89)
with an effective temperatur€ proportional to the effective
surface gravity, i.e., the rate of change of the velocity or fluidwhich is exactly the situation considered in Sec. V. In that
flow across the haorizon. If one makes the white hole horizorcase one should consider a superluminal region between a
have a very low effective temperature, one can minimize thdlack hole and a white hole horizon. In this case it is the
creation of largé negative norm solutions on “reflection” of wave packet bouncing between these two horizons on the

2~
Bl g =1
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superluminal side which creates the instability. Taking posi- superluminal
tive o modes but with an initial negative norm wave packet, flow
we find that every time the packet hits the black hole horizon black—hole white—hole

it emits a positive norm packet into the subluminal region
beyond that horizonwhich is again exactly the classical
counterpart of Hawking radiationthus increasing the size of
the negative norm packet in the superluminal region, while
every time it bounces off the white hole horizon, it simply
bounces off, possibly mixing in some high frequency posi-
tive norm packet as welldepending again on the effective
temperature of the horizon

Since with gravity waves, we can choose whether to have
a subluminal or superluminal dispersion relation, by choos-
ing the depth and surface tension of the liquid, one can test absorbtion device
both sets of predictions. Furthermore, since this norm mixing
property of the horizon is intimately related to the quantum
emission of radiation by the horizon, one can, with purely FIG. 5. Sketch of a possible experimental setup. A wave packet
classical gravity waves, test the predictions about the thermad bouncing back and forth in the superluminal region between the
behavior of the various types of horizon. inner (white hole and the outerblack hole horizon, emitting a

The transition between short and long gravity waves camiece of “Hawking radiation” at the black hole horizon and thereby
be described by the height-dependent dispersion relation fancreasing its amplitude.
a fluid at res{26]

horizon  horizon

subluminal

flow

(spatial infinity)

case and thus one has to install an additional absorbing de-
vice, which effectively models spatial infinity—in order to
prevent this interference.

According to the remarks in Sec. VI it appears to be rea-

This should be contrasted with the dispersion of the surfacéonable to move the bottorfe.g. made of rubbgrof the

tension waves as derived in EG4) of Sec. V(again for a fluid. In. practice_ one might genera_te a flow with a sIowI_y
fluid at resj increasing velocity until the two horizons are formed. In this

case one should observe an instability of the laminar and
smooth flow profile exactly at this threshold velocity. Of
course one has to ensure that there is no other instability at or

] ) . . _ before this thershold which might spoil the experiment.
Consequently, one obtains a superluminal dispersion relation

for a~hg which implies hg=2 mm for mercury. Fora
<hg, on the other hand, the dispersion relation possesses a
large subluminal regiorishort gravity wavesbefore it be-
comes superlumindbkurface tension wavgggain. In view of the main advantage of the gravity wave
A possible experimental setup for observing this instabil-analogs—the possibility of tuning the velocity of the wave
ity is sketched in Fig. 5. The fluid is flowing within a circular propagation rather independently—one would expect that it
basin with varying depth such that the liquid’s flow velocity is possible to simulate black and white holes in the labora-
as well as the speed of the gravity waves depends on thery and to study their instabilities experimentally. As one
position. As the depth of the basin decreases the velocity gierhaps reasonable hierarchy of the different dimensions in-
the fluid increases and in the same time the speed of theolved sh<hg<\ one could imagine waves of about 1 mm
gravity waves decreases. amplitude h a 1 cmdeep basin with the wavelength being
In this way one may construct a region of superluminalcirca 10 cm and the characteristic size of the black or white
fluid velocity confined between the inner and the outer hori-hole analog(its Schwarzschild radigsapproximately 1 m.
zon. As mentioned above, the gradient of the basin’s deptfihe velocity of those waves—and hence also that of the
(determining the surface gravjtghould be small at the inner fluid—in this case would be about 0.3 msand should be
(white hole horizon whereas it should be as large asrealizable. Aiming for the incorporation of surface tension
possible—without violating the assumption in Sec. Il, e.g. bywaves for large wave numbers it might be suitable to divide
generating a breakdown of the laminar flow—at the outetthe above suggested length scales by a factor of about 10.
(black holg horizon in order to observe the instability de- Here we encounter another advantage of the gravity wave
scribed above. analogs: In contrast to sound waves, for example, the ampli-
On the other hand, one also has to make sure that thieide of the gravity waves can be measured direGly a
wave packets emitted by mode conversion into the other redength and with a very high accuracie.g. via interferom-
gion do not travel around and disturb the system when thegtry using the reflection at the fluid’s surface
come back through the other horizon. For real black holes However, all the suggestions above have to be reconsid-
they escape to infinity. In our system, however, this is not theered when aiming for an experimental verification of the

2

h
wzzgktanl“(khg):gthz( 1— §Bk2 +O(K8). (90)

w?=ghgk?®(1+a%k?).

XIl. DISCUSSION
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Hawking effect[11]. In order to detect this quantum insta- sonic or acoustic black hole analo@umb hole$ and prob-
bility the temperature of the fluid should be as small asably even more so for the gravity wave analogs.
possible—whereas the fluid's velocity and its gradient have
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