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Gravity wave analogues of black holes
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~Received 22 May 2002; published 28 August 2002!

It is demonstrated that gravity waves of a flowing fluid in a shallow basin can be used to simulate phenom-
ena around black holes in the laboratory. Since the speed of the gravity waves as well as their high-wave-
number dispersion~subluminal vs superluminal! can be adjusted easily by varying the height of the fluid~and
its surface tension! this scenario has certain advantages over the sonic and dielectric black hole analogs, for
example, although its use in testing quantum effects is dubious. It can be used to investigate the various
classical instabilities associated with black~and white! holes experimentally, including positive and negative
norm mode mixing at horizons.
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I. INTRODUCTION

One of the most fascinating predictions of Einstein
theory of general relativity is the potential existence of bla
holes—i.e. space-time regions from which nothing is able
escape. Perhaps no less interesting are their antonyms: w
holes ~nothing can penetrate!. Both are described by solu
tions of the Einstein equations and are related to each o
via time inversion, see e.g.@1#.

As it is well known, these objects feature many nov
properties: For example, for orbits sufficiently close to t
horizon~i.e. for r ,3M ) one observes@2# an inversion of the
centrifugal acceleration.

Rotating black holes as described by the Kerr metric
mit unstable modes under certain conditions, i.e. solution
the wave equation growing in time without any bound, s
e.g. @3,4#. This phenomenon is related to the mechanism
superradiance@5# which allows one to extract energy from
the rotation of the Kerr black hole, cf.@1#.

White holes are unstable@6# to exponential buildup of
energy on the white hole Cauchy horizon on the class
level, as well as on the quantum level@7–9#.

The presence of both Cauchy and particle horizons~white
and black hole horizons!, such as in the interior of a
Reissner-Nordstro¨m metric, can have further instabilities, se
e.g. @10#.

Another striking effect is the evaporation@11# of black
holes due to quantum effects. This observation can be in
preted as a confirmation of their thermodynamical interp
tation @12# relating purely geometrical quantities, such
surface gravity and surface area, to thermal properties, s
as temperature and entropy.

Fortunately it seems unlikely that one can observe bl
holes in the laboratory~see, however, e.g.@13#!. Analogs,
which obey similar equations of motion to fields around
black hole raise the possibility of demonstrating some of
most unusual properties of black holes in the laboratory. T
is the basic idea of the black and white hole analogs~Dumb
holes! originally proposed by Unruh in Ref.@14#. The sonic
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analogs established there are based on the observation
sound waves in flowing fluids are~under appropriate condi
tions! governed by the same wave equation as a scalar
in a curved space-time. The acoustic horizon, which occur
the velocity of the fluid exceeds the speed of sound wit
the liquid, acts on sound waves exactly as a black hole
rizon does on, for example, scalar waves.

After the original proposal in Ref.@14# the sonic analogs
have been the subject of several investigations, see e.g.@15–
17#. Although the kinematics of the waves propagati
within the black and white hole analogs are governed by
same equation as those in a curved space-time, the dyna
of the effective metric itself are not described by the sa
laws as gravity~i.e. the Einstein equations! in general.1

In this way the analogs allow one to separate the dyna
cal effects of gravity~following from the Einstein equations!
from more general~kinematic! phenomena, cf.@19,20#.

In addition to the sonic analogs there exist proposals
black or white hole analogs based on the propagation of l
in dielectric media~instead of sound!, see e.g.@20–24#, and
of other sorts of waves in for example liquid Helium 3, s
e.g. @16#. These scenarios avoid some of the difficulties
sociated to the sonic analogs but can have other problem

The challenge in making such analogs to horizons is
preparing a medium in which the waves are stopped fr
propagating out from some region. In the analogs where
flow of a medium is used to drag the waves at a veloc
corresponding to the velocity of the waves, one require
sufficiently low velocity that the experiment could be co
templated. The speed of sound depends on the equatio
statep5p(%) only and therefore is hard to adjust by exte
nal parameters. In the case of the analogs based on light
velocity of the~quasi! photons is determined by the effectiv
permittivity and permeability of the medium, which can al
be hard to manipulate, and especially hard to make a s
ciently low groupandphase velocity of light~cf. @22,24,25#!.

Consequently we were led to look for another kind
waves traveling at a velocity that can be controlled mo
easily. One promising candidate is gravity waves~surface

1There are, however, possibilities to reproduce the Einstein eq
tions even in non-gravitational systems, see@18#.
©2002 The American Physical Society19-1
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waves! in a shallow basin filled with a liquid. As we shall se
in the following, long gravity waves within a flowing fluid
arealsogoverned by the same wave equation as a scalar
in a curved space-time. In addition, the speed of the lo
gravity waves can be adjusted very easily by varying
depth of the basin. Furthermore the fluid flow in such a ba
is easily manipulated. Because of the low velocity of the
waves, quantum effects would not be observable, but m
of the classical features of black holes~including the positive
and negative norm mixing at the horizon which is close
related to the quantum evaporation effects! could be investi-
gated. Furthermore, as we shall see, the dispersion relatio
these waves at high wave numbers can also be easily
nipulated, allowing easy investigations of the effects of su
changes on horizon effects.

II. THE MODEL

We shall begin with the simplest form of the model,
which we assume a shallow liquid over a flat, horizon
bottom. Furthermore, the forces on the liquid will be a
sumed to be such that they allow for a purely horizon
stationary flow profile resulting in a constant height~i.e.
horizontal surface! of the liquid. Later we shall relax both o
these assumptions. In addition, we shall assume that the
uid is viscosity free, incompressible and irrotational in
flow.

In such a case the density of the liquid remains cons
(%5const) and in terms of its local velocityv the equation
of continuity assumes the simple form

“•v50. ~1!

If we neglect the viscosity of the fluid its dynamics are go
erned by the non-linear Euler equations, see e.g.@26#

dv
dt

5v̇1~v•“ !v52
“p

%
1g1

f

%
, ~2!

with p denoting the pressure andg52g ez the gravitational
acceleration; andf52%“ iV

i is some horizontal force nec
essary to establish the stationary horizontal flow; cf. Fig.

FIG. 1. Picture of a gravity wave in the basin and the relev
parameters. The assumed relation of the dimensions forlong gravity
wavesdh!hB!l is not reproduced for the sake of conciseness
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For an irrotational flow profile“3v50 we may simplify
the Euler equation~2! via (v•“)v5“(v2)/2 and introduce
a velocity potentialv5“F arriving at the Bernoulli equa-
tion

Ḟ1
1

2
~“F!252

p

%
2gz2Vi. ~3!

The boundary conditions are that the vertical veloc
must be zero at the bottom of the tank, the pressure zer
the displaced surface, and change in the height of the fl
determined by the vertical velocity~cf. Fig. 1!

v'~z50!50,

v'~z5h!5
dh

dt
5ḣ1~v•“ !h, ~4!

and

p~z5h!50. ~5!

Now, let us consider perturbationsdv to a background
flow vB ~which is assumed to be stationary, irrotational, a
horizontal! corresponding to small vertical displacementsdh
of the height of the fluid,h. The background flow will be
assumed to obey

¹'vB50, vB5vB
i “ i•vB50, ~6!

i.e., hB5const, and

1

2
vB

252
pB

%
2gz2Vi, ~7!

wherepB will be given byg(hB2z).
We shall assume that the velocity perturbations are a

irrotational, so that they are given by a potential,dF. The
perturbations of the Bernoulli equation are given by

dḞ1vB
i
•“ idF52

dp

%
. ~8!

The boundary condition~5! for the pressure together wit
pB5g(hB2z) imply

dp~z5hB!5g% dh, ~9!

and similarly for the vertical velocity

dv'~z5hB!5dḣ1~vB
i
•“ i!dh, ~10!

as well asdv'(z50)50.
It is useful to expand the perturbation potentialdF into a

Taylor series

dF~x,y,z!5 (
n50

`
zn

n!
dF (n)~x,y!. ~11!

The boundary condition in Eq.~4! implies dF (1)50. An-
other constraint arises from the equation of continuity~1!

t

9-2
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“ i
2dF (0)1dF (2)50, ~12!

and so on for larger values ofn. We assume that the wave
length l of the perturbation is much longer than the dep
hB . In this case the higher-order terms in the Taylor exp
sion ~11! are suppressed by powers ofhB /l!1 since we
have “ i

25O(1/l2). Keeping only the two lowest~non-
trivial! terms in Eq.~12! we find that

dv'~z5hB!52hB“ i
2dF (0) . ~13!

This enables us to combine Eqs.~8!, ~9!, and~10!

S ]

]t
1vB

i
•“ i D 2

dF (0)2ghB“ i
2dF (0)50. ~14!

This wave equation, however, equals the Klein-Fock-Gord
~KFG! equation

hdF (0)5
1

A2g
]m~A2g gmn]n dF (0)!50, ~15!

with the effective metric~remember“ i•vB
i 50 and ghB

5const)

geff
mn5S 1 vB

i

vB
i vB

i
^ vB

i 2ghB1D . ~16!

Except for replacing the velocity of the gravity wavesAghB
by the speed of sound it is exactly the same effective me
as for the sonic analogs. Calculating the inversegmn

eff of the
effective metric one obtains

g00
eff512S vB

i

AghB
D 2

. ~17!

As one would expect, the condition of an ergosphereg00
eff

50 is satisfied where the velocity of the fluidvB
i equals the

speed of the gravity wavesAghB.

III. ARBITRARY BOTTOM AND HEIGHT

Let us now relax the previous assumptions that the bot
and the background flow surface are both flat and para
We introduce arbitrary coordinates on the bottom and de
a vertical coordinatez as orthogonal to the bottom of th
container and geodesic. The spatial metric can always be
into the form

dr25dz21h i j dxidxj , ~18!

where i j go over values 1 and 2~Einstein summation con
vention!, and represent the coordinates within the bottom
the container. The equation of continuity~1! is now

] i~Ahv i !1]z~Ahvz!50, ~19!

with h5det(h i j ) and, assuming irrotational flow, the Be
noulli equation~3! becomes
04401
-
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Ḟ1h i j ~] iF!~] jF!1~]zF!252
p

%
2V~xi ,z!, ~20!

with

v i5h i j v
j5] iF, ~21!

and

vz5vz5]zF. ~22!

Here the potentialV(xi ,z) already includes the gravitationa
acceleration—in contrast to the potentialVi used in the pre-
vious section.

The surface of the liquid, defined byz5h(xi), is where
the pressure goes to zero and obeys, cf. Eq.~4!

ḣ1v i] ih5vz, ~23!

wherev i andvz are evaluated at the surface.
Let us now expand these expressions in powers of

vertical heightz above the bottom atz50. The velocity po-
tential F, the metrich i j , and the potentialV can be written
as

F~xi ,z!5F (0)~xi !1
z2

2
F (2)~xi !1O~z3!,

h i j ~xi ,z!5h (0)
i j ~xi !1zh (1)

i j ~xi !1O~z2!, ~24!

and

V~xi ,z!5V(0)~xi !1zgz~xi !1O~z2!, ~25!

where we already have incorporated the boundary condi
vz(z50)50 and introduced the gravitational accelerati
perpendicular to the bottomgz5V(1) . Similarly we obtain
for the pressurep

p5~h2z!p(1)1O~@h2z#2!. ~26!

In analogy to the previous section we assume the heighth of
the fluid to be much smaller than the horizontal length sca
on which the features of the flow profile~e.g.F, h i j , V, and
p) change significantly—such as the wavelengthl. In this
long-wavelength limit the higher-order terms of the abo
Taylor expansions are supressed by powers ofh/l and thus
can be neglected.

The continuity equation~1! enforces again

1

Ah (0)

] i~Ah (0)h (0)
i j ] jF (0)!1F (2)[“ i

2F (0)1F (2)50.

~27!

Evaluated atz5h the equation~23! for the height in terms of
the velocity reads

ḣ1h i j @] iF~xk,h!#] jh5]zF~xk,h!, ~28!

which again to lowest order inz5h becomes
9-3
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ḣ1h (0)
i j ~] iF (0)!] jh52h“ i

2F (0)1O~h2!, ~29!

or, equivalently,

ḣ1
1

Ah (0)

] i~Ah (0)h (0)
i j h] jF (0)!50, ~30!

which can be interpreted as an effective conservation laḣ
1“ i•(hv i)50.

The Bernoulli equation transforms into

Ḟ (0)1
1

2
~h (0)

i j 1zh (1)
i j !~] iF (0)!~] jF (0)!52

p(1)

%
~h2z!

2V(0)2zgz1O~h2!. ~31!

From the terms linear inz we may infer

p(1)

%
5gz1

1

2
h (1)

i j ~] iF (0)!~] jF (0)!. ~32!

We can define an effective gravitational acceleration as

g̃5gz1
1

2
h (1)

i j ~] iF (0)!~] jF (0)!. ~33!

Note that the eigenvaluesk of h (1)
i j with respect toh (0)

i j

h (1)
i j xj5kh (0)

i j xj , ~34!

are just twice the inverse of the principle radii of curvature
the surface over which the fluid is flowing. Thus the ex
terms in Eq.~33! just represent the vertical centrifugal forc
on the fluid travel over this curved surface, and in all of o
following investigations will be negligible.

Let us assume again that we have a stationary backgro
flow which obeys these equations, and we are intereste
perturbations around this flow. The perturbation equati
then are~usingvB

i 5h (0)
i j ] jF (0)

B at z50)

dḣ1
1

Ah (0)

] i~Ah (0)vB
i dh!

52
1

Ah (0)

] i~Ah (0) h (0)
i j hB] jdF (0)!, ~35!

and

dḞ (0)1vB
i ] idF (0)52g̃dh. ~36!

We can combine these equations to get

S ] t

1

g̃
] t1] i

vB
i

g̃
] t1] t

vB
i

g̃
] i1

1

Ah (0)

] i

vB
i vB

j

g̃
Ah (0)] j

2
1

Ah (0)

] ihBAh (0)h (0)
i j ] j D dF (0)50. ~37!

This again is a KFG equation with a metric given by
04401
f

r

nd
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s

geff
mn5

1

hB
2 S 1 vB

i

vB
j vB

i vB
j 2g̃hBh (0)

i j D , ~38!

where bothg̃ andhB can depend on the coordinatesxk. We
can thus sculpt the effective metric within which these wav
flow both by altering the velocity of the background flow, b
changingg̃ from place to place~primarily by sloping the
bottom of the tank!, or by altering the height of the back
ground flow.~Of course the backgroundhB is determined by
the background flow,g̃ and the potentialV.! If one has only
the gravitational field as a force on the fluid, the slope of
bottom can be used to generate a potentialV, and also, with
more severe slopes, to change the value ofg̃ from place to
place.

The ergoregion is defined as the zone where, in orde
be travelling at less than the velocity of the wave in the r
frame of the fluid, one cannot be standing still in the l
frame. This is the region where the velocity of the fluid

higher than the local velocity of the wave,Ag̃hB.
If we assume that the bottom is flat~so thath i j 5d i j ), and

that the flow is driven by changes inhB , we have

1

2
vB

21ghB5const. ~39!

But AghB is the speed of the gravity waves. Far from t
ergosphere, the velocityvB is small, so the we have cons
5gh` . Thus at the erogosphere, where the velocity of
fluid is the velocity of the waves, we have

h5
2

3
h` . ~40!

Similarly, if we assume that we have a sloping bottom d
signed so that the fluid maintains a constant heighthB
throughout, we would again obtain that the ergosph
should be at a point such thatV(xi)2V`5g̃hB/2. If this
potential arises purely from the gravitational potential due
the slope of the bottom, we must have that the bottom wo
have to be at a height ofh/2 lower than at infinity. I.e., it
does not take much of slope to the bottom to create
conditions necessary for an analog black hole ergospher
form.

We note that in the above, we have only kept terms
lowest order inz or h. The validity of this approximation is
essentially that all horizontal derivatives have scales wh
are much larger thanh, the height of the fluid. Furthermore
the condition that we need only retain the lowest order in
metrich i j is also that the curvature of the bottom of the ta
be on scales which are long with respect toh. I.e., we are in
a ‘‘shallow water,’’ long wavelength approximation in thes
derivations.

IV. IRROTATIONAL BACKGROUND FLOW

We can use the equations of motion of the fluid to der
the most general rotationally symmetric and locally irro
9-4
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GRAVITY WAVE ANALOGUES OF BLACK HOLES PHYSICAL REVIEW D66, 044019 ~2002!
tional backgound flow profile. Let us assume that the bott
of the tank is defined by the relation

Z5 f ~R!, ~41!

in the usual cylindrical coordinates (Z,R,w), wheref denotes
some moderately curved function. Switching to the adap
coordinates (z,r ,w) described in the previous section (Z
5 f (R)↔z50;r 5R) gives the spatial metric

dr25dz21dr2
„11 f 8~r !2

…

3S 12z
f 9~r !

A11 f 8~r !2
…

3D 2

1dw2S r 2z
f 8~r !

A11 f 8~r !2D 2

,

~42!

for which the lowest order metric is

dr(0)
2 5dz21„11 f 8~r !2

…dr21r 2dw2. ~43!

To lowest order inh the flow equations are the effectiv
continuity equation~30!

] r„A11 f 8~r !2rhv r
…50, ~44!

the condition for a locally irrotational flow

vw5
L

r 2 , ~45!

with L being some constant related to the angular mom
tum, and finally the Bernoulli equation

„11 f 8~r !2
…~v r !21r 2~vw!252g

h2h`

A11 f 8~r !2
2g f~r !,

~46!

where we have neglected the ‘‘centrifugal’’ term in Eq.~33!
as it will be very small for our situation. These give

v r5
Ch`

rhA11 f 8~r !2
, ~47!

and

1

2 S C2h`
2

h2r 2
1

L2

r 2 D 52g
h2h`

A11 f 8~r !2
2g f~r !. ~48!

Thus, we either needh to change as a function ofr, or we
need a non-trivialf (r ). Choosing f (r )52F/r 2 allows a
consistant solution with contant heighth5h` for the fluid as
long asF is given byF5(C21L2)/g. The effective metric
for the fluid is then of the form

dseff
2 5

h`

g̃
S g̃h`2

C21L2

r 2 D dt212
h`

g̃
SA11 f 8~r !2

C

r
dtdr

1Ldtdw D2
h`

g̃
„@11 f 8~r !2#dr21r 2dw2

…, ~49!
04401
d

n-

with g̃5gz5g/A11 f 8(r )2 denoting the effective gravita
tional acceleration.

In summary the analogy to a curved space-time and
concept of an effective metric can still be applied in the ca
of non-horizontal flow provided that the local variation of th
height of the fluid and the slope of its bottom are sufficien
small. Nevertheless, the global changes may well be sig
cant.

A variation of h andgz , the component of the force pe
pendicular to the bottom, does in general also entail a cha
of the local velocityAgzh of the gravity waves. Such a spa
tial dependence may lead to further interesting effects:
analogy to optics one may introduce an effective index
refraction which then also acquires a non-negligible gradie
In such a situation the gravity waves may be scattered by
gradient or even the phenomenon of total reflection co
occur. As we shall see later in Sec. X, this mechanism m
be one ingredient for generating an instability.

V. SURFACE TENSION

So far we have considered ideal fluids without any int
nal forces. However, if we take the surface tension of
liquid into account, the pressure at its surface no longer v
ishes. Accordingly, the upper boundary condition~5! for the
pressure is modified to

p~z5h!52a“ i
2h, ~50!

wherea denotes the fluid’s surface-tension coefficient a
“ i

2h is the curvature of its surface in the linear approxim
tion. Consequently we obtain

dp~hB!5%gdh2a“ i
2dh, ~51!

instead of Eq.~9!. This results in a extra term in the velocit
perturbation equation~8!

dḞ1vB
i
•“ idF52gdh1

a

%
“ i

2dh. ~52!

As we shall see below, the effects of surface tension beco
relevant for small wavelengths only. In this limit we ma
neglect the variation of the background flow“ i ^ vB

i '0 and
obtain a modified wave equation

S ]

]t
1vB

i
•“ i D 2

dF5ghB“ i
2dF2

ahB

%
“ i

4dF. ~53!

In terms of the capillary constanta25a/(%g) and the veloc-
ity of the unperturbed gravity wavescB

25ghB this wave
equation results in the following dispersion relation:

~v1vB
i
•k!25cB

2~k21a2k4!. ~54!

Therefore the incorporation of the effects of surface tens
leads to a ‘‘superluminal’’ dispersion relation~in the termi-
nology of @27#! since~for vB

i 50) the group velocitydv/dk
as well as the phase velocityv/k exceedcB for large wave
numbersk.
9-5
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However, we should bear in mind that the above calcu
tions are still based on the assumption oflong gravity waves
l@hB . For short gravity wavesl!hB , on the other hand
the dispersion relation reads~for vB

i 50, cf. @26#!

v25gk~11a2k2!. ~55!

Hence we can use the ratioa/hB in order to alter the disper
sion relation for large wave numbersk: For a@hB the cap-
illary waves dominate before the wavelength becom
smaller than the height, and we have a superluminal dis
sion relation, whereas fora!hB the short gravity waves
dominate before the surface tension becomes important,
thus one initially has a subluminal dispersion relation, bef
the capillary waves finally take over at very short wav
lengths.

For example, for mercury the surface tension coeffici
a is abouta'0.46 N m21 at room temperature 293 K an
hence its capillary constanta'1.9 mm. For water at 293 K
we have a'0.0725 N m21 and hencea'2.7 mm. This
quantity can easily be manipulated by changing the temp
ture, adding surfactants, or by changing the fluid used.

VI. VISCOSITY

The dynamics of a viscous but still incompressible flu
are governed by the Navier-Stokes equations

dv
dt

5v̇1~v•“ !v52
“p

%
1g1n“2v, ~56!

where%n denotes the dynamic viscosity of the liquid andn
its kinematic viscosity.

The boundary conditions have to be modified as w
Instead of Eq.~5! we have now

p~z5h!52%n]zvz~z5h!, ~57!

and there are two additional restrictions onv i

]zv i~z5h!52“ ivz~z5h!, ~58!

and

v i~z50!50. ~59!

Let us investigate the effects of a finite but small viscos
on the wave propagation—where we restrict our examina
to the case of a vanishing background flowvB50 for sim-
plicity and employ the plane-wave ansatz with a frequencv
and a wave numberk.

For an incompressible fluid the divergence of the line
ized Eq.~56! yields ~for vB50)

“

2dp5~]z
22k2!dp50, ~60!

which has the solutiondp5A cosh(kz)1Bsinh(kz) with k
5uku.

In the long-wavelength limitkhB!1 we may approximate
sinh(kz)'kz and cosh(kz)'11(kz)2/2. Inserting the resulting
expression back into the Navier-Stokes equations~56! yields
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22k22 i

v

n D dvz5
Ak2z1Bk

%n
. ~61!

Defining k̃ via k̃25k21 iv/n andR( k̃).0 the general solu-
tion of this equation can be written as

dvz52
Ak2z1Bk

%n k̃2
1Ce1 k̃z1De2 k̃z. ~62!

In addition to the long-wavelength limitl@hB we as-
sume the viscosityn to be very smalln!vhB

2 . In this case

the exponentials exp(6k̃z) are very rapidly varying
functions—which can be used to simplify the analysis.

Combining the equation of continuity]zdvz1 ik•dv i50
with the velocity boundary condition in Eq.~58! one obtains
(]z

21k2)dvz(z5hB)50. In view of uk̃u@k and k̃hB@1 this

implies thatC is extremely smallC}exp(2k̃hB)/ k̃2 and thus
can be neglected.

On the other hand, fromdvz(z50)50 we obtain D

5Bk/(%n k̃2). Therefore, the termD exp(2k̃z) in Eq. ~62! is
relevant in a very thin boundary layer of orderAn/v over the
bottom only, cf.@26#.

In analogy to Eq.~9! we may linearize the boundary con
dition for the pressure in Eq.~57! which fixes the integration
constantA.

The remaining conditionv i(z50)50, i.e. ]zdvz(z50)
50, can be used to eliminateD and henceB. As one might
expect, the solution fordvz in the presence of a small vis
cosity displays only slight deviations (B is of orderAn) from
the linear profiledvz}z used in the previous sections—a
long as one is well above the aforementioned boundary la

Finally, Eq.~4!, i.e. dvz(z5hB)5 ivdh, enables us to de
rive the dispersion relation

v25ghBk22gk2A n

iv
1O~n!. ~63!

Here one can read off the characteristic damping timet after
which the viscosity effects become significant:

t;
hB

Anv
. ~64!

One observes that high frequencies are damped faster.
tendency becomes much stronger in the regime of short g
ity waves where

t;
1

nk2
;

g2

nv4
~65!

holds, see e.g.@26#. As a result, the at a first glance undes
able effects of viscosity can be utilized to damp out poten
high-frequency noise and so single out the interest
~medium-wave-number! instabilities by tuningn.

For example, water at room temperature has a kinem
viscosity of n'1mm2 s21. Assuming a heighthB510 cm
9-6
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GRAVITY WAVE ANALOGUES OF BLACK HOLES PHYSICAL REVIEW D66, 044019 ~2002!
and a frequencyv51Hz we infer from Eq.~64! a damping
time of the order of one minute—which still seems to
sufficient.

The kinematic effect of the friction within the liquid coul
be diminished by selecting a fluid with a relatively high de
sity % ~e.g. mercury2! in comparison with its inner viscosity
For mercury at room temperaturen is given by n
'0.12 mm2 s21.

However, there is also another problem induced by
finite viscosity: the ansatz for thez-independent backgroun
flow profile used in the previous sections is not appropri
anymore since the fluid sticks to the bottom of the basin,
Eq. ~59!.

One way to solve this problem is to move the bottom
that its velocity is the same as that of the fluid—at least
the interesting region, for example near the horizon.~One
might also imagine manipulating the fluid near the botto
and thereby effectively simulating this motion.! After trans-
forming into its rest frame the above calculation demo
strates that the solutions derived in the previous sections
still a very good approximation.

Without moving the bottom the boundary condition in E
~59! enforces a significantz dependence of the backgroun
flow profile. For instance a constant horizontal force~needed
for maintaining the stationary flow! implies a parabolic flow
profile vB

z}z(2hB2z). Unfortunately, it is not possible to
cast the full wave equation into an as tractable form as in
~14! allowing for the identification of an effective metric i
this situation~this problem is currently under investigation!.
The main obstacle is that the flow is longer irrotational.

Nevertheless, for other scenarios one might be able
overcome this difficulty. If one injects a nearlyz-independent
stationary inflow~driven by a turbine, for example! on one
side of the basin, then the flow will basically remain irrot
tional throughout the basin—outside a thin Prandtl bound
layer at the bottom, cf.@26#.

In view of the relatively large velocities involved and th
supposedly small viscosity this layer may well be turbule
However, by an appropriate preparation of the bottom’s s
face~e.g. dolphin skin effect! the induced drag can be dimin
ished.

Since the properties of the flow outside the thin bound
layer are nearly the same as in the case without viscosity
in view of the remarks after Eq.~62! one would expect tha
the basic properties of the gravity waves as discussed in
previous sections are not drastically affected by a small
ternal friction in this case.

Beside the scenarios described above there is
another—more exotic—solution for the viscosity proble
conceivable: a superfluid does not stick to the boundary
its vorticity is quantized. But the necessity of using grav
waves in say liquid helium makes the experimental reali
tion far more difficult than is desirable.

2The use of a fluid such as mercury has just another advan
since one would be able to detect the gravity waves very easily
considering the reflection at the fluid’s surface in this case.
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VII. ENERGY

There are two different concepts of a metric in our mod
First, the Minkowski metric determining the length and tim
scales within our laboratory; and, secondly, the effect
metric—which is experienced by the gravity waves only.

These two concepts lead to two distinct notions of ener
For time-independent external forces~and inviscid fluids! the
Noether theorem demands the conservation of the total
ergy of the flow. In addition, assuming a stationary bac
ground flow profile, we may find a conserved energy asso
ated to the gravity waves.

At the boundary]G of the basin, the normal componen
of the velocityv•n has to vanish. In terms of the velocit
potential F this corresponds to Neumann boundary con
tions

v•nu]G50 n•“Fu]G50. ~66!

This enables us to accomplish a spatial integration by p
and in complete analogy to the (211)-dimensional curved
space-time one may derive a conserved energy

E5E dSmTmnjn5E d2rT0
0 , ~67!

wherejm5]/]t denotes the Killing vector associated to th
physical laboratory time andSm the spatial hyper-surface
For the effective metric in Eq.~16! we obtain the energy
density

T0
05

1

2 F S ]f

]t D 2

1ghB~“ if!22~vB
i
•“ if!2G ~68!

of the perturbationsf5dF (0) , i.e. gravity waves~see also
@28#!.

We observe that this energy density contains nega
parts inside the ergoregionuvB

i u.AghB. This observation
points to the possibility of an instability associated to t
ergoregion.~A positive definite conserved energy dens
would prove stability.! The total energy of the fluid including
the background flow is of course always positive.

Note that the energy conservation law derived above
violated if G has a hole, such as at the drain, etc. This pr
lem, however, arises for real black holes as well.

VIII. NON-ROTATING BLACK HOLE

If we neglect the small slopef 8(r )!1 of the bottom~cf.
the remarks at the end of Sec. III! in Eq. ~49! the constant
quantitiesg and hB can be absorbed by a simple rescali
and we arrive at

dseff
2 5S gh`2

C21L2

r 2 D dt212
C

r
dtdr12Ldtdw2dr2

2r 2dw2. ~69!

If we takeL50, we exactly recover a Painleve´-Gullstrand-
Lemaı̂tre ~PGL! type metric@29#

ge
ia
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RALF SCHÜTZHOLD AND WILLIAM G. UNRUH PHYSICAL REVIEW D 66, 044019 ~2002!
dseff
2 5@cB

22w2~r !#dt212w~r !dtdr2dr22r 2dw2,
~70!

with cB
25gh` andw(r )5A11 f 8(r )2v r5C/r . As it is well

known, by means of the singular coordinate transformati

dt→d t̃5dt1dr
w~r !

cB
22w2~r !

, ~71!

the stationary PGL metric can be cast into the sta
Schwarzschild form

dseff
2 5~cB

22w2!d t̃22
cB

2

cB
22w2

dr22r 2dw2. ~72!

Obviously the horizon occurs whenw25cB
25ghB , i.e. when

the velocity of the~radially! flowing fluid exceeds the spee
of the ~long! gravity wavesAghB. An inward flowing liquid
w,0 simulates a black hole whereas an outward floww
.0 evidently corresponds to a white hole. The black h
branch can be used to observe the inversion of the centrif
acceleration@2# mentioned in the Introduction and, of cours
the trapping of the waves inside the horizonw25cB

2 .

IX. WHITE HOLE

The white hole branchw.0 of Eq. ~70! offers another
interesting phenomenon: As demonstrated in Ref.@6#, all in-
cident waves pile up at the horizon~since they cannot pen
etrate! and get arbitrarily blue-shifted there—if one neglec
the change in dispersion relation, and thus group velocity
high wave numbers. In our model, however, the blue-shif
waves eventually leave the regime of the long gravity wav
The subsequent behavior depends on the character o
dispersion relation, in particular whether it is subluminal
superluminal. In the latter case the incident waves will ev
tually penetrate the horizon, once their wavelength has
come sufficiently short to alter the group velocity to o
larger than the~low frequency! velocity of the waves. In the
former case, the short wavelengths will be swept out by
fluid which is now flowing faster at the horizon than th
group velocity. These features associated with white ho
may thus be observed experimentally for these gravity w
analogs. Furthermore, since the dispersion relation can
adjusted by varying the depth and the surface tension of
liquid, one can study the effect over a wide range of phys
situations.

X. ROTATING BLACK HOLE

Stationary flow profiles containing a component inw di-
rection ~vortex solutions with non-zeroL) can be used to
model rotating~Kerr! black holes. With a further rescalin
and a redefinition of the constantsC and L we may absorb
the speed of the gravity wavesgh` in Eq. ~69! completely
and then the corresponding effective metric assumes the
lowing form:
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dseff
2 5S 12

C21L2

r 2 D dt212
C

r
dtdr12Ldtdw2dr2

2r 2dw2. ~73!

The space-time structure of a Kerr black hole is more co
plicated than the Schwarzschild geometry for there is a
ference between the static limit~or the ergosphere, see e.
@1#! and the horizon: The static limitg0050 denotes the re-
gion beyond which no particle can remain at rest. This,
mentioned above, corresponds to the surface where the
locity of the fluid equals the velocity of the waves, i.e.r 2

5C21L2. The horizon is the ‘‘point of no return,’’ and fo
an axially symmetric flow, corresponds to the surface wh
the radial flow velocity equals the velocity of the wavesr 2

5C2.
The region between these two critical points, in both K

space-time and this model, is called the ergoregion and
lows for the occurrence of the superradiant modes.

According to Eq.~68! the energy density may becom
negative inside the ergoregionr 2,C21L2. As already an-
ticipated in Sec. VII, this observation can be interpreted as
indicator of instability. Indeed, in complete analogy with th
Kerr black hole this analog should exhibit the phenomen
of superradiance: An incident wave with nonvanishing an
lar momentum scatters from the region around the black h
~analog!—i.e. the vortex—and the amplitude of the reflect
wave is larger than that of the ingoing wave. The necess
energy is extracted from the rotational energy of the ba
ground.

Since the metric in Eq.~73! possesses two independe
Killing vectors,]/]t and]/]w we may find a complete set o
solutions of the wave~KFG! equation

S ] t
212

C

r
] t] r12

L

r 2
] t]w1

CL

r 3
] r]w1

1

r
] r

CL

r 2
]w

1
1

r
] rS C2

r 2
21D r ] r1S L2

r 4
2

1

r 2D ]w
2 D f50, ~74!

by the following separation ansatz:

f~ t,r ,w!5exp$2 ivt1 imw%fvm~r !. ~75!

Note that an analogous separation ansatz int,q,w is even
possible in the real (311)-dimensional Kerr metric—which
is a less trivial statement.

The remaining functionfvm(r ) obeys a second-order or
dinary differential equation. In terms of the Regge-Whee
tortoise coordinate defined by

dr* 5
r 2

r 22C2
dr, ~76!

the KFG equation~74! at the horizonr 25C2, i.e., r * 5
2`, simplifies to
9-8
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S ] r
*
12i Fv2

L

C2
mG D ] r

*
fvm50. ~77!

The two linearly independent solutions to this equation, i
~approximately! constant and purely oscillating, respective
correspond to ingoing and outgoing modes, respectively.

In analogy to the Kerr metric we may introduce the ang
lar velocity of horizon

VH5
L

C2
. ~78!

For a Kerr black hole this quantity is bounded3 by its total
mass M via 2VH,1/M . With the gravity wave analogs
however, it is possible to generate rather large values
2VH—in particular if one allows for non-negligible slopes—
sinceC andL can be varied independently.

The Wronskian associated to the second-order ordin
differential equation reads at the horizon

Wvm@f#5f* ] r
*
f2f] r

*
f* 12i ~v2VHm!f* f.

~79!

Inserting the ingoing mode] r
*
f50 we obtain

Wvm@f#52i ~v2VHm!uT vmu2, ~80!

where uT vmu25ufvmu2 denotes the transmission coefficien
Since we have restricted our solution to be purely ingoing
the horizon, it will contain ingoing as well as outgoing com
ponents~determined by the reflection coefficientRvm) at
spatial infinity r 5` in general f}exp(2ivr)
1Rvmexp(ivr). In this limit the wave equation~74! reduces
to the usual form and hence the associated Wronskian r

Wvm@f#52iv~12uR vmu2!. ~81!

For a regular second-order ordinary differential equation o
contiguous interval the Wronskian is conserved which i
plies @5# the following relation between the transmissionTvm
and the reflectionRvm coefficients:

12uR vmu25
v2mVH

v
uT vmu2. ~82!

As one can easily infer from the equation above, ifmVH
.v the reflection coefficient is greater than oneuRvmu.1,
i.e. the scattered wave has a larger amplitude than the
dent one. This amplification process corresponds to the p
nomenon of superradiance.

However, for a massless scalar field in the asymptotic
flat Kerr geometry the scattered wave escapes to infinity
make an amplifier unstable, feedback is required, see@30#.
That outgoing wave must be reflected back toward the h
for repeated amplification. This is possible if the field ha

3Otherwise the metric would describe a naked singularity with
ergoregion and horizon, etc.
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finite mass@3# or if one, for example, encloses the rotatin
black hole by a large spherical mirror@4#.

As explained in Sec. IV, for the gravity wave analo
there is another mechanism which may force the scatte
wave to ‘‘come back’’—the total internal reflection. Sinc
the velocity of the wave isAgh, if one can manipulateh, as
happens for example near the drain of a bathtub, the cha
in the effective refractive index may entail effectively tra
ping the waves—which then can be amplified via superra
ant scattering without bound, or, rather, until nonlinear
fects dominate.

In summary it is possible that some of the features wh
one regularly observes in the vortex flow near the drain
one’s bathtub are in fact the result of instabilities which a
exactly analogous to the behavior of waves near a~rotating!
black hole. It should be mentioned here that the argume
above do not explain the formation of the vortex, but refer
its linear instability.

XI. INNER HORIZON

The instability indicated by negative parts of the ener
density in Eq.~68! is not necessarily restricted to rotatin
black holes: In the presence of an inner horizon in addition
the outer one, such as occurring in the Reissner-Nordst¨m
metric, and for an altered dispersion relation, runaway so
tions can exist even in the purely one dimensional flow.

This somewhat surprising fact has been demonstrate
Ref. @27#. In the following we give a brief repetition of the
basic explanation adapted to subluminal high frequency
persion relation. Note that the terms ‘‘sub-’’ or ‘‘superlum
nal’’ do not, despite their origin, refer to light, but rather
whether or not the group velocity at high wave numbers
less than or greater than it is at very low wave number~long
wavelength!. They will also refer to regions where the velo
ity of the fluid is smaller or larger than the low-wave-numb
velocity of the waves.

We shall restrict ourselves to a one-dimensional flow.
consider a case where there are two horizons, one a w
hole ~where the velocity of the fluid drops below the lo
wave number velocity of the wave! and the other a black
hole ~where the velocity of the fluid goes above the lo
wave number group velocity!. It turns out~for not entirely
well understood reasons4! that although there are two
branches of the dispersion curve~for a static fluid these cor-
respond to the two directions of propagation of the wav!,
wave packets remain on one or the other of these bran
even when interacting with horizons, and spatially varyi
flows. There seems to be very little backscatter from o
branch to the other. We shall restrict attention to the o
branch which at low wave numbers represents waves wh
are traveling in a direction opposite to the fluid flow.

Assuming adiabatic motion of this wave packet~in anal-

t

4The (111)-dimensional scalar wave equation without dispers
is conformally invariant which explains the absence of any mix
in this case. For a non-trivial dispersion, however, this problem
less clear.
9-9
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RALF SCHÜTZHOLD AND WILLIAM G. UNRUH PHYSICAL REVIEW D 66, 044019 ~2002!
ogy to the geometric optics approximation!, the effect of the
fluid flow is to alter the dispersion relation to

v1vk5F~k!, ~83!

where the mode has the formei (vt1kx). I.e., v is the fre-
quency of the wave in the lab frame, not the rest frame of
fluid. Define V5v1vk as the frequency in the fluid res
frame. In Fig. 2 we sketch the subluminal dispersion relat
as a plot ofV versusk. To determine the possible values
k for any given value ofv, we can plot the lineV2vk
5v and look for the intercepts with the dispersion curve. W
shall concentrate on small values ofv, which is also the
intercept of the line with theV axis.

On the subluminal side of the horizon, wherev and thus
the slope of the line is less than the dispersion slope ak
50, there will in general be three points of intersection, a
with very different group velocities. The one near the orig
k50 has a group velocity,

vg52
dv

dk
5v2

dF

dk
, ~84!

which is negative, corresponding to travel to the left, aga
the flow of the current. The other two, one at positiveV and
one at negativeV both have positive group velocity and thu
correspond to packet travel with the current flow.~Their rest
frame group velocity is so small that even the sublumi
current is sufficiently fast to drag them along!.

Because the background current flow is assumed to
stationary, the frequencyv is conserved during the motion o
a wave packet. Let us consider what the possible wave n
bers are for this same value ofv on the superluminal side
The slope of the line is now much greater than the low wa

FIG. 2. One branch of the dispersion relation where the h
wave number group velocity is smaller than the low frequen
Plotted are the two lines ofV vs k for different velocities, but the
same value of the lab frame frequencyv. Note the intersection
points of these straight lines with the dispersion curve indicating
possible values ork for the givenv at the given fluid velocity.
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number slope of the dispersion curve, and there is now o
one intersection with the dispersion curve, at negative val
of V. Furthermore the group velocity here is positive. The
wave packets, even though they have low wave number,
dragged along with the fluid and travel in the same direct
as the fluid.

One can, as for scalar waves, define a ‘‘norm’’ of t
various wave packets by the conserved Klein-Fock-Gord
inner product

~FuF!5
i

2E dSm~F* ]mF2F]mF* !

5
i

2E dSmF* ]JmF

5
i

2E dx F* „]J t2v~x! ]Jx…F

5V~x!E dxuFu2, ~85!

where we have assumed the wave packet to be sufficie
localized thatv is constant over the packet. I.e., the sign
the norm is the same as the sign ofV. Thus, for positivev
the wave packets on the superluminal side will have nega
norm, while those on the subluminal side can be either p
tive or negative norm~two are positive and one is negative!.

Let us consider a wave packet with positive norm, lo
value of v but large value ofk being dragged toward the
black hole horizon. As it comes closer,v increases, and the
wavelength of the packet is stretched out, withk becoming
smaller and smaller. As it hits the horizon, where the slope
the line becomes essentially the same as that of the low w
number dispersion curve, the adiabatic assumption~geomet-
ric optics approximation! fails, and one gets a mixing of th
various possible values ofk for the givenv. However, what-
ever happens, the wave packet must thereafter leave the
rizon, either on the subluminal side, or the superluminal.
the subluminal side the only possibility is that the wave e
with the small value ofk near zero, as this is the only one o
the three possibilities which travels away from the horiz
on the subluminal side. On the superluminal side, the o
possibility is that the wave packet leave with negative nor
The fluid flow at the horizon will have mixed positive wit
negative norm solutions. This is precisely the requiremen
the quantum system that particle production take place, s
this mixing of positive and negative norms is precisely wh
leads to non-trivial Bogoliubov coefficients

b5~F in* uFout!. ~86!

For our purpose, what this means is that the wave pac
which leaves the horizon on the subluminal side must hav
larger norm than did the wave packet which was dragg
toward the horizon.~Since the total norm is conserved, an
since the norm of the packet on the superluminal side
negative, the subluminal packet must be larger.!

h
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GRAVITY WAVE ANALOGUES OF BLACK HOLES PHYSICAL REVIEW D66, 044019 ~2002!
This packet will now travel toward the white hole hor
zon. Here, there is no packet on the superluminal side wh
travels away from the horizon. The only possibility is th
the packet be blue shifted at the white hole horizon and co
off as a mixture of the positive and negative largek solu-
tions. While one of these is positive norm, and the othe
negative, they are traveling together toward the black h
horizon. Here they again emit a negative norm packet i
the superluminal region, although if the phases were
right, the two could cancel and emit nothing into the sup
luminal side. Assuming that this does not happen, or that
conversion at the white hole is so small so as not to cre
any mixture, the subluminal packet’s norm increases o
again. After many such back and forth reflections, the no
can grow arbitrarily large. One has an instability. In Fig.
we have four steps in this process. The black hole hori
occurs in the center of the diagram, while the white h
horizon is at the left and right edges~we assume periodic
coordinates!. The low frequency intial wave packet trave
toward the white hole horizon, and reflects as a high f
quency wave, dragged by the fluid. The third window is af
the reflection from the back hole, and the fourth after
refection again from the white hole.

For smallv the amount of mixing of positive and nega
tive norm modes at each of the horizons is governed b
thermal Bose-Einstein factor

ubu2}
1

exp~v/T!21
, ~87!

with an effective temperatureT proportional to the effective
surface gravity, i.e., the rate of change of the velocity or fl
flow across the horizon. If one makes the white hole horiz
have a very low effective temperature, one can minimize
creation of largek negative norm solutions on ‘‘reflection’’ o

FIG. 3. Four stages in the process of a wave packet reflecting
the white and black hole horizons. The black hole horizon is in
center. These are the real parts of the wave packets~the imaginary
look similar and were chosen to make the intial pulse purely p
tive norm!.
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the packet from this horizon. This means that the packet
the subluminal side will remain positive norm, if it starte
thus.

One of the consequences of this instability is that o
expects it to be worse for very small values ofv. Since the
norm mixing at the black hole horizon is proportional to
Bose-Einstein factor, this diverges for small values ofv

1

exp~v/T!21
→
v↓0T

v
. ~88!

One would thus expect, and numerical simulations confi
that after a few back and forth bounces off the black h
horizon, the lowest wave number mode of the wave~i.e.,
constant in space! would be amplified at each bounce. Nu
merical simulation shows that after a couple of bounces
each reflection from the black hole horizon, a constant ‘‘s
function like’’ pulse of ever increasing amplitude is emitte
by the black hole horizon into the subluminal side, cf. Fig.
After the next reflection the spatial growth is linear, th
quadratic etc.

One can, following Corley and Jacobson@27#, make a
very similar analysis in the case in which the dispersion
lation is superluminal

F~k!5c2Ak21a2k4, ~89!

which is exactly the situation considered in Sec. V. In th
case one should consider a superluminal region betwee
black hole and a white hole horizon. In this case it is t
wave packet bouncing between these two horizons on

ff
e

i-

FIG. 4. The reflection of a pulse producing low frequency ins
bility. Plotted are three steps in the evolution of a pulse~top box!
after one ~middle box! and two reflections from the black hol
horizon in the center. Note that in each case the pulse on the lef~in
the subluminal region! is traveling to the left while the ones on th
right ~in the superluminal region! travel to the right. After another
reflection from the black hole horizon, the pulse grows linearly a
after still another, quadratically with distance from the black ho
horizon.
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superluminal side which creates the instability. Taking po
tive v modes but with an initial negative norm wave pack
we find that every time the packet hits the black hole horiz
it emits a positive norm packet into the subluminal regi
beyond that horizon~which is again exactly the classica
counterpart of Hawking radiation!, thus increasing the size o
the negative norm packet in the superluminal region, wh
every time it bounces off the white hole horizon, it simp
bounces off, possibly mixing in some high frequency po
tive norm packet as well~depending again on the effectiv
temperature of the horizon!.

Since with gravity waves, we can choose whether to h
a subluminal or superluminal dispersion relation, by cho
ing the depth and surface tension of the liquid, one can
both sets of predictions. Furthermore, since this norm mix
property of the horizon is intimately related to the quantu
emission of radiation by the horizon, one can, with pur
classical gravity waves, test the predictions about the ther
behavior of the various types of horizon.

The transition between short and long gravity waves
be described by the height-dependent dispersion relation
a fluid at rest@26#

v25gk tanh~khB!5ghBk2S 12
hB

2

3
k2D 1O~k6!. ~90!

This should be contrasted with the dispersion of the surf
tension waves as derived in Eq.~54! of Sec. V~again for a
fluid at rest!

v25ghBk2~11a2k2!.

Consequently, one obtains a superluminal dispersion rela
for a'hB which implies hB'2 mm for mercury. Fora
!hB , on the other hand, the dispersion relation possess
large subluminal region~short gravity waves! before it be-
comes superluminal~surface tension waves! again.

A possible experimental setup for observing this insta
ity is sketched in Fig. 5. The fluid is flowing within a circula
basin with varying depth such that the liquid’s flow veloci
as well as the speed of the gravity waves depends on
position. As the depth of the basin decreases the velocit
the fluid increases and in the same time the speed of
gravity waves decreases.

In this way one may construct a region of superlumin
fluid velocity confined between the inner and the outer ho
zon. As mentioned above, the gradient of the basin’s de
~determining the surface gravity! should be small at the inne
~white hole! horizon whereas it should be as large
possible—without violating the assumption in Sec. II, e.g.
generating a breakdown of the laminar flow—at the ou
~black hole! horizon in order to observe the instability d
scribed above.

On the other hand, one also has to make sure that
wave packets emitted by mode conversion into the other
gion do not travel around and disturb the system when t
come back through the other horizon. For real black ho
they escape to infinity. In our system, however, this is not
04401
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case and thus one has to install an additional absorbing
vice, which effectively models spatial infinity—in order t
prevent this interference.

According to the remarks in Sec. VI it appears to be re
sonable to move the bottom~e.g. made of rubber! of the
fluid. In practice one might generate a flow with a slow
increasing velocity until the two horizons are formed. In th
case one should observe an instability of the laminar
smooth flow profile exactly at this threshold velocity. O
course one has to ensure that there is no other instability a
before this thershold which might spoil the experiment.

XII. DISCUSSION

In view of the main advantage of the gravity wav
analogs—the possibility of tuning the velocity of the wa
propagation rather independently—one would expect tha
is possible to simulate black and white holes in the labo
tory and to study their instabilities experimentally. As o
perhaps reasonable hierarchy of the different dimensions
volveddh!hB!l one could imagine waves of about 1 m
amplitude in a 1 cmdeep basin with the wavelength bein
circa 10 cm and the characteristic size of the black or wh
hole analog~its Schwarzschild radius! approximately 1 m.
The velocity of those waves—and hence also that of
fluid—in this case would be about 0.3 ms21 and should be
realizable. Aiming for the incorporation of surface tensi
waves for large wave numbers it might be suitable to div
the above suggested length scales by a factor of about
Here we encounter another advantage of the gravity w
analogs: In contrast to sound waves, for example, the am
tude of the gravity waves can be measured directly~as a
length! and with a very high accuracy~e.g. via interferom-
etry using the reflection at the fluid’s surface!.

However, all the suggestions above have to be recon
ered when aiming for an experimental verification of t

FIG. 5. Sketch of a possible experimental setup. A wave pac
is bouncing back and forth in the superluminal region between
inner ~white hole! and the outer~black hole! horizon, emitting a
piece of ‘‘Hawking radiation’’ at the black hole horizon and there
increasing its amplitude.
9-12
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Hawking effect@11#. In order to detect this quantum insta
bility the temperature of the fluid should be as small
possible—whereas the fluid’s velocity and its gradient ha
to assume their maximal feasible values. The experime
verification of the Hawking effect seems to be on or ev
still beyond @25# the edge of our present experimen
capabilities—for the dielectric or optical as well as for t
n.

ce

l.

.

04401
s
e
al
n
l

sonic or acoustic black hole analogs~Dumb holes! and prob-
ably even more so for the gravity wave analogs.
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