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We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular
attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges,
the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the
four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative.
As a consequence, the homogeneous and isotropic external space is asymptoticgllyri#elSonnection
between thd-dimensional and the four-dimensional fundamental mass scales sets a restriction on the param-
eters of the considered nonlinear models.
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[. INTRODUCTION tradicting present observations. Therefore the compactifica-
tion scale of the internal space can be of the order of

The multidimensionality of our Universe is one of the
most intriguing assumptions in modern physics. It follows rwvé"?'~10(32/D’)fl7 cm. 2
naturally from theories unifying different fundamental inter-
actions with gravity, e.g., M- or string theofyt]. The idea | this Arkani-Hamed—Dimopoulos—Dval{ADD) model
has received a great deal of renewed attention over the lagf] physically acceptable values correspondtc=3 (see,
few years within the “brane-world” description of the Uni- ¢ g [5]), and forD’ =3 one arrives at a submillimeter com-
verse. In this approach tf@U(3)X SU(2)x U(1) standard  pactification scale~10"° cm of the internal space. Addi-
model (SM) fields are localized on a three-dimensionaltionally, the geometry is assumed to be factorizable as in the
spacelike hypersurfaderang whereas the gravitational field gtandard Kaluza-KleittKK ) model. That is, the topology is
propagates in the wholeoulk) space-time. The framework the direct product of a nonwarped external space-time mani-
also implies that usual four-dimensional physics is located ofgld and internal space manifolds with warp factors which
the brandi.e., our Universg Moreover, brane-world physics gepend on the external coordinates. In addition to this, the
provides a possible solution of the hierarchy problem due tqy.theory inspired Randall-SundrufRS) scenarid 6] repre-
the well known connection between the Planck s®dlg)  sents an interesting approach with a nonfactorizable geom-
and the fundamental scallé, (4, p) of the four-dimensional  etry andD’=1. Here, the four-dimensional space-time is

and the (4-D")-dimensional space-time, respectively: warped with a facto€) which depends on the extra dimen-
sion and Eg. (1) is modified as follows: Mp.

MIZDI(4)~VD'Mi?4D+,D')- (1) ~0"Mgy. In our paper we shall concentrate on the fac-
torizable geometry of the ADD model.

According to observations the internal space should be

Here Vp, denotes the volume of the compactifid extra  static or nearly static at least from the time of primordial

dimensions. It was realized [i2—4] that the localization of nucleosynthesigotherwise the fundamental physical con-

the SM fields on the brane allows one to lowd, 4 p) stants would vary This means that at the present evolution-
down to the electroweak scaMg~1 TeV without con- ary stage of the Universe the compactification scale of the
internal space should either be stabilized and trapped at the

minimum of some effective potential, or it should be slowly

*Present address: Research Center Rossendorf, P.O. Box 51013&rying (similar to the slowly varying cosmological constant
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considered in a number of papésee, e.g., Ref§4,8-14).1  of the extra dimensions is then reduced to the condition that
In the corresponding approaches, a product topology of théhe obtained effective potential for these fields should have a
(4+D’)-dimensional bulk space-time was constructed fromminimum. In Sec. IV a detailed analysis of this problem is
Einstein spaces with scalearp) factors depending only on given for a model with one internal space. The main results
the coordinates of the external four-dimensional componengre summarized and discussed in the concluding Sec. V.

As a consequence, the conformal excitations have the form

of massive scalar fields living in the external space-time. Il. GENERAL THEORY
Within the framework of multidimensional cosmological ) . ) )
models(MCM) such excitations were investigated [ih5— We consider & =(4+D')-dimensional nonlinear pure

17] where they were called gravitational excitons. Later,9ravitational theory with action

since the ADD compactification approach, these geometrical

moduli excitations are known as radiop%9]. It should be 1 = —

noted that over the last years the term radion has been used S= ﬂ MdDX\/Ef(R)' &)
to describe quite different forms of metric perturbations P
within brane-world models. In MCM with warped product — ) . . .
topology of the internal spaces they are understood as cof!Nere f(R) 1S an arbitrary smooth function with mass di-
formal excitations of the additional dimensiofggavitational mens_lon(’)(ﬁ\ ) (m has the unit of magwf a scalar curva-
excitong, whereas in RS-I-type models they describe theture R=R[g] constructed from theD-dimensional metric

relative motion of brane$18].? The differences between g,, (a,b=1,... D).
these two frameworks have been pointed out2®,23.
All of the above mentioned papers are devoted to the KZD=87T/M§4D+D/) 4)

stabilization of large extra dimension in theories with linear
multidimensional gravitational action. String theory suggests . . o
that the usual linear Einstein-Hilbert action should be ex-> the D—dlmir;/llonal gravll\t/latlona_:_hconstar(\subsefquen_tly,
tended with higher order nonlinear curvature terms. In the}'éf t?}?;‘i&%rt regégérfl)]’)w ew)- The equation of motion
present paper we use a simplified approach with a multidi- y

mensional Lagrangian of the forin=f(R), wheref(R) is 1

an arbitrary smooth function of the scalar curvature. Without f'Rap— = f Gap— VaVof '+ gapf’ =0, (5)
connection to stabilization of the extra-dimensions, such 2

models(four-dimensional as well as multidimensional ones o o

were considered, e.g., in R¢R4]. There, it was shown that wheref’=df/dR, R,,=R,[g]. V, is the covariant deriva-

the nonlinear models are equivalent to models with lineag;q \ith respect to the metrig,,; and the corresponding
gravitational action plus a minimally coupled scalar field Laplacian is denoted by

with self-interaction potential.

In the present paper we advance this equivalence towards 1
investigating the problem of extra dimensions stabilization. E:D[a:?b@%: —3a(\/ﬁ E"bﬁb)- (6)
We find that the stabilization of extra dimensions takes place \/E
only if additional internal spaces have a compact hyperbolic
geometry and the effective four-dimensional cosmologicaLEquation(S) can be rewritten in the form
constant is negative. If the external spadg is homoge-
neous and isotropic this implies thilt, becomes asymptoti- 1 .
cally an anti—de Sitter space (Adg. Additionally, we show f'Gapt+ Egab(Rf =) =V Wf +0,,0f =0, (7)
that requiring the extra dimensions to be dynamically stabi-
lized is a sufficient condition for the bulk space-time to ac-
quire a constant negative curvature.

The paper is structured as follows. After explaining the
general setup of our model in Sec. Il, we concretize the ge- (D—l)af’= Ef_f/ﬁ ®)
ometry to a warped product ofinternal spaces. We perform 2
a dimensional reduction of the action functional to a four-
dimensional effective theory withn@1) self-interacting and can be considered as a connection betvieandf.
minimally coupled scalar field§Sec. Il)). The stabilization It is well known that forf’(R)>0 the conformal trans-

formation

whereG,,=R,,— sRgap. The trace of Eq(5) is

YIn most of these papers, moduli stabilization was considered
without regard to the energy-momentum localized on the brane. A
brane matter contribution was taken into account, e.d.14. .

2A detailed discussion of radion stabilization and dynamics in RSW'th
models is given, e.g., ifi19,20. An extended list of references on .
this topic can be found if21]. Q=[f"(R)]¥P~2), (10

Jap=1%gap, (9)
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reduces the nonlinear theo($) to a linear one with an ad- and they can be written as follows:
ditional scalar field. The equivalence of the theories can be
Gab= Tab[d)!g]!

easily proven with the help of the following auxiliary formu- (19)

las:
O=0"2[0+(D-2)g?°Q 10 3],

O0=020-(D-2)g*"00 ,d,, (11)

1 - R
Rap=Rabt 55 (") 72Vl 'Vl "= (1) IV,

D_
1 — IN—1 6

~p—2%a(f) DT, (12

and

— D-1 _
R:(f’)Z/(Z*D) R+ D_2(fr)72gabé,afr&bfr

b-1 IN—=1rfr
—25— (f) 3. (13

Thus Eqs.(7) and(8) can be rewritten as
1 mn
Gap= ¢,a¢,b_ Egabg ¢,m¢,n

1 ‘ _
_ Egabe(*D/v‘m)¢(Rf’_f) (14)

and
1 J D _
D¢:—e(D/\iDZiDli)(b(_f_er),
J(D-2)(D-1) 2
(15
where
df D-2
,:—:: A¢ = _—
f iR et?>0, A D1 (16

Equation(16) can be used to expregsas a function of the

dimensionless fields: R=R(¢). It is easily seen that Egs.

(14) and(15) are the equations of motion for the action

1
S=.— f d°xVIgI[RIG]~g*°b,acb5—2U ()],
2kpIM

(17)
where
1 _ _
U(p)= Ee‘Bd’[R(@eAd’— f(R(®))],
D
B=—«——— (18)
(D-2)(D-1)

Ju
O¢= &E;)) .

Here, Tl #,9] is the standard expression of the energy-
momentum tensor for the minimally coupled scalar field with
potential (18). Equation(20) can be considered as a con-
straint equation following from the reduction of the nonlin-
ear theory(3) to the linear ond17).

Let us consider what will happen if, in some way, the
scalar field¢ tends asymptotically to a constanp— ¢.
From Eq.(16) we see that in this limit the nonlinearity dis-

appears and Eq@3) becomes a linear theor§(R)~c,R
+c, with c;=f"=expA¢y) and a cosmological constant
—C,/(2c,). In the case of homogeneous and isotropic space-
time manifolds, linear purely geometrical theories with a
constantA term necessarily imply aA)dS geometry. Thus

in the limit ¢— ¢4 the D-dimensional theory3) can asymp-
totically lead to an(A)dS with scalar curvature:

(20

(21)

Clearly, the linear theory(17) would reproduce this
asymptotic(A)dS limit for ¢— ¢g:

D _ _
R_’zﬂu(qso): - cocy (P72,

D% (22
Hence, in this limitR/R—c>/(°~2) in accordance with Eq.
(13) andf’=c;. In Sec. IV we shall show that the stabiliza-
tion of the extra dimensions automatically results in the con-
dition ¢— ¢y with U(¢g)<0. Thus the D-dimensional
space-timgbulk) can become asymptotically AgS

In the rest of the paper we consider the quadratic theory:

f(R)=R+aR?—2Ap, (23)

where the parametes has dimensiong)(m~?2). For this
theory we obtain

_ —_ 1
1+ 2aR=eA¢<:>R=Z(eA¢—1) (24)

and

1 1
U(¢)= Ee—Bf/’ E(eA‘ﬁ—l)er 2Ap|. (25)

The conditionf’>0 implies 1+ 2aR>0.

IIl. DIMENSIONAL REDUCTION

In this section we assume that tiedimensional bulk
space-timeéM undergoes a spontaneous compactification to a
warped product manifold
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with metric

n
9=0ap(X)dX2@dXP=g(®+ 2’1 e2f g (27)

The coordinates on theD=dy+ 1)-dimensional manifold
My [usually interpreted as ourD(=4)-dimensional Uni-
versq are denoted by and the corresponding metric by

g@=gP(x)dx“@dx". (28)
Let the internal factor manifoldM; be d;-dimensional Ein-
stein spaces with metrig®) =g, (yi)dyimi®dyini, i.e

mi ,ni:]., e 1di

Rmini[g(i)]:)\igg]i)ni, (29)

and

RlgV]=N\'di=Ri~r; ?, (30
wherer;=(fd%y[g™)¥i is a characteristic size dfl; .
For the metric ansatg27) the scalar curvatur® depends

only onx: R[g]=R(x). Thus ¢ is also a function ofk: ¢
= ¢(X).

The conformally transformed metri®) reads

n
g=02g=(er*)2(O-2)g.=g@ 1+ > eZﬁi(x)g(i) (31)
i=1
with
9203: (eA</>)2/(D 2)5([?3 , (32)
A 33
B=B+5—> (33)

The fact that the fieldgh and 8' depend only orx allows us
to perform the dimensional reduction of acti@v). Without

PHYSICAL REVIEW D66, 044014 (2002

1
S=——| dPoxy[g]
2KO Mg
n .
x11 ediﬁ'[ RI9©]-Gijg"""d,6' 9,5'
i=1
n .
~9 9, ¢0,0+ 2 RigPIe™ —2U(¢) |,
(35
where G;;=d;;—dd; (i,j=1,...,n) is the midisuper-

space metri¢25,26 and

2

2im D

™ (36)
is the Dy-dimensional(four-dimensional gravitational con-
stant. If we take the electroweak scdlg-\, and the Planck
scaleMp, as fundamental ones fd@-dimensional[see Eq.
(4)] and four-dimensional space-timeg3&8m/M3)), re-
spectively, then we reproduce Ed$) and(2).

Action (35) is written in the Brans-Dicke frame. Confor-
mal transformation to the Einstein fram&5,16,

)2/(002)

3= ( H el

g(O)

uv

(37

yields

1 — - - . .
5= @ EOIRE1-5 50 3,8 0,8
Ko Mg

—9O%7g,$,d—2Uei( B, 9)}. (38)

The tensor components of the midisuperspace méaiget
space metric orRY) Gjj (i,j=1,... ), its inverse metric
G'l, and the effective potential are, respectively,

loss of generality we set the compactification scales of the

internal spaces at the present timeBt0 (i=1, ... n).

The corresponding total volume of the internal spaces is

given by
n n
vor=11 fMAddiyVIQ(”I:il:[lr?i, (34)
where Vp: has dimensions@(m*D'), and D'=D-Dg

=3 ,d; is the number of the extra dimensions. After di-
mensional reduction actiof17) reads

Gij:diéij‘f'mdidj, (39)
&1
=__
G T (40)
and
n —[2/(Dg—2)]
Ueti( B, ¢) = H )

3 2R ‘Zﬁi+U(¢)} (41

I\JII—\
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IV. STABILIZATION OF THE INTERNAL SPACE

Without loss of generality,we consider in the present
section a model with only on@;-dimensional internal space.

The corresponding actiof88) reads

1 = ~ ~
S=2d | . 8PTgHRG -5, 00,0

-9O%g,$a,6—2Uer(@, )}, (42)
where
d.(D—-2
p=— \/1';0—_2)31 (43
and

Uetf( @, ¢p) = e2# V01 T(D=2)(Do=2]]

X

1
- ERle2¢~/<E’f?57[a‘1<f’*251 + U(qs)} :

(44)

For simplicity we continue to work with dimensionless sca-
lar fields ¢, ¢ instead of passing to canonical on@sodulo

87): o=@ Mp|, p=¢Mp, andUeg=M3 Ugfs. The res-

toration of the correct dimensionality is obvious.
The equations of motion fop and ¢ are, respectively,

~ JUNT:
where
(9Ueff:

24/ S
I (D—2)(Dg—2) °
Do—2
_ _ -9 " 20 [(D=2)[d{(Dy—2)
AR E w4

et
¢

and

— 2+ ETO=203-21] %j”. 48)

PHYSICAL REVIEW D 66, 044014 (2002

should have a minimum with respect # because without
stabilization of¢ the effective potential remains a dynamical
function and the extremum conditioflJe¢¢/d¢|,—o=0 is
not satisfiedsee Eq(47)]. Furthermore, Eq48) shows that
the extrema of the potentiald.(¢,¢) andU(¢) with re-
spect to the fields coincide with each other. Thus the stabi-
lization of the extra dimension takes place if the figldjoes
to the minimum of the potential(¢). According to the
discussion in Sec. [lsee Eqs(21) and(22)] this results in an
asymptotically constant curvature space-tiffe a nonzero
minimum of U(¢)].

Let us now present a detailed analysis of the quadratic
gravitational theory(23) with potentialU(¢) (25). First, we
shall investigate the range of parameters which ensures a
minimum of U(¢). The extremum condition gives,U=0
so that

(2A—B)x?>+2(B—A)x—(q+1)B=0, (49)

wherex:=e”*?>0 andq:=8aAp . The non-negative solution
of this equation defines the position of the extremum:

on eA¢0

—(B—A)+\(B—A)Z+(2A—B)(q+1)B

2A-B

_ —(B-A)+JA’+(2A-B)Bq

a 2A-B ' 0
From the inequalities

2
B-A= ————>0 (51)
(D—2)(D—1)

and

JA-B=——" >0 for D>4 (52

V(D-2)(D-1)

it follows that the parameteg should be restricted to the
half-line

q=8aAp>—1. (53)

The casegl= —1 corresponds t¢po— — and is not consid-
ered in the following.

The necessary condition for the existence of a minimum
of the potentiall (¢)

In order to obtain a stable compactification of the internal
space, the potentid .¢:( ¢, ) should have a minimum with
respect top and ¢. This is obvious with respect to the field
¢ because it is precisely the stabilization of this field that we 1 1

aim to achieve. It is also clear that potentidl(¢, ) :4_ﬁxa[ZI(D_Z)l[(D_4)XO+2]>0
o D—

A
gU(&)]ex=7 -4 P N[ (2A-B)eMo+ (B-A)]

(54)
3The only difference between a general model with1 internal
spaces and the particular one witl=1 consists of an additional

diagonalization of the geometrical moduli excitations.

requires positive values of the parameter0. From the
explicit expression ofJ(¢) at the extremum
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1 oip-2 ) and Eqs(59), (62), and(63) we see that
U(¢)|extr:_xo[ ( )][(XO— 1) +q], (55)

8a
L _mu(¢)|min>oz>u(¢)|min<0. (66)
it is easy to see thdll|,,i»=0 for Ap=0 andU|,i,<0 for
Ap<0. In the latter case we havel<8aAp<0. This inequality sets strong restrictions on the considered
Let us show now that the total potentid,;i(¢,®) also  nonlinear model.
has a global minimum in the case whieii¢) has a negative (1) According to Eq.(22) it implies that the stabilization
minimum. To prove it, it is convenient to rewrite potential of the extra dimension leads asymptotically to a negative
(44) as constant curvature bulk space-time.
(2) Only models with parameters from the range-0
Ueti( @, d)=F(¢)G(o,d) and —1<8aA <0 will stabilize [see Eqs(54) and (55)].
. All other configurations are excluded.
with (3) The global minimum of the whole effective potential
F((p):equ\/m’ Ucys is also negative:

Do—2 0~
1 Ueff|min:mU(¢)|min:TR1<0. (67)
G(p,¢)=— s Rye** V(P02 [aB-211y(g). '
2 Its value plays the role of By-dimensional effective cosmo-
(56) logical constant\ gt= Uegtf/min -
(4) From Eqgs.(64) and (66) it follows that the compacti-
fied internal space should have negative curvature.

d The latter restriction agrees with the results[@D,13
[Q(Pueff:(Z\ /—1G+0’!¢G) F=0, because the negative value of the effective potential in the
(D=2)(Do—2) minimum violates the null energy condition so that the sta-

bilized internal space should Keompac}t hyperbolic (see

The extremum condition gives

/ d; also[12,13). We note that adding to our nonlinear model
d,G=-2 (D—2)(D0—2)G’ (57 some kind of matter, satisfying the null energy condition, can
shift the effectiveDy-dimensional cosmological constant to
dgUet=F(3,U)=0 = 4,U=0, (58  hon-negative values and the internal space can acquire posi-

tive curvature.
whereas the eigenvalues of the Hessian at the minimum A further restriction on the model follows from Eq),
should be non-negative, (30), and(62). According to these equations the free param-
etersa andAp, or a andq, are strongly connected with the

) | d, compactification radius, of the extra dimensional factor

dgoUeti= 3¢¢G_4WG F>0, (59  gpaceM,, as well as with the fundamental mass scale
M*(4+d1) and the four-dimensional Planck scadl ) :

2 _ 2 2

IygUet=Fd5,U>0 = 05,U>0, (60) 2d, dy(d;—1)

U[‘Z”O(q)aa“extr: Ri=— 2

2 U =21/ da u=0 (61) i .
14 Fo .
p¢-eff (D—=2)(Dy—2) ¢ (M*(4+d1) “

dy
_ M2 .
Mpra) ) *(4+dy)

Choosing the compactification scale of the extra dimension

at B in=¢min=0, we find the following relations at the ex- (68)
tremum: i o ) .
For fixed compactification radius; <o the constrain{68)
2d, forbids the limit Ap— —0, whereasa— 0 is allowed. This
Ri=55 U(#)]extrs (62 behavior is easily understood. According to E2@) the limit

a—0 describes the transition to a linear Einstein gravity
model with D-dimensional cosmological constant,. For

G|ox= EU(@ ' (63) a—0 the mass of thep-field excitations tends to infinity
D-2 extr mfbeoo [see Eq.(74) below] and the field itself becomes
frozen at the minimum positiogho(@— 0)— 0 of the poten-
and hence tial U( )
sign(Ry) =sign[U (&) |exl] =SIgN(Clex).  (64) Ula—0]|ex—Ap, 954U exi—- (69)
Using the obvious relation The resultingD-dimensional space-time has constant scalar

D2 curvatureR= R=2DAp/(D—2) and a stabilization of in-
2 Ao _o 20 o 26 [(Do-2d(D-2)] ternal spaces in such models is poss[iilg] for Ap<0 and
9eC= 24 o) & ©®  r<o.
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In contrast, the transitiol\p— —0 necessarily implies and ¢ is defined by the fundamental mass scMg(4+dl)

U()|exr— —0, Ry— —0 which is connected with a decom- and the four-dimensional Planck scaes 4,
pactificationr ;— o« of the extra dimensions according to Eq.

(68). From the derivative$59)—(61) of the effective poten- M, (4a+d)) 4/dy
tial at the extremum positiongey,= 0,¢0) and A e M—l) Mi(4+dl). (77)
PI(4
_ n/2 @
n — _ 2n—1 R
deUettlexs dl(Do—Z)} 1 V. CONCLUSIONS AND DISCUSSION

d; n2 In the present paper we investigated multidimensional
m} Ulear (70 gravitational models with a non-Einsteinian form of the ac-
tion. In particular, we assumed that the action is an arbitrary
we read off that in the limit\p— — 0 the potential becomes Ssmooth function of the scalar curvatur€R). For such mod-
flat with respect tap: agueffﬁo, whereas it remains well- €ls, we concentrated on the problem of extra dimension sta-

+2"

behaved with respect te: bilization in the case of factorizable geometry. To perform
such an analysis, we reduced the pure nonlinear gravitational

) D-2 model to a linear one with an additional self-interacting sca-

IggUettlext— m>0. (7D lar field. The factorization of the geometry allowed for a

dimensional reduction of the considered models and to ob-
This is due toxo(Ap—0)—1 and Eq.(54). The potential tain an effective four-dimensional model with additional
Ueri(@, @) itself coincides in this case with the effective Minimally coupled scalar fields in the Einstein frame. These

potential of a model with Ricci-flat factor spaté, fields describe conformal excitations of the internal space
scale factors. A detailed stability analysis was carried out for
Ueff((P,d,):eZ¢\/317[(D*25(Do*25]U(d,), (72 a model with quadratic curvature ternf{R)=R+ aR?

—2Ap. It was shown that a stabilization is only possible for
what is known to have no stabilized extra dimensions. Athe parameter range 1<8aA<0.
stabilization could be achieved, e.g., by accounting for addi- This necessarily implies that the extra dimensions are sta-
tional matter field§15-17,217. bilized if the compact internal spackk, i=1, ... n, have
Finally, let us turn to the masses of the excitation fiefds negative constant curvatures. More precisely, these spaces
and ¢ near the minimum ob).¢;. These masses are defined have a quotient structutd;=H%/T";, whereH% andT; are
by the relations hyperbolic spaces and their discrete isometry groups, respec-
tively. In this case, the four-dimensional cosmological con-
stant (which corresponds to the minimum of the effective

2 2
m¢:3¢¢ueff|min:_ D—2U(¢)|mi" four-dimensional potentialis also negative. As a conse-
quence, the homogeneous and isotropic external
__ ER (73) (Dy=4)-dimensional space is asymptotically AQ)SAS the
dg extra dimensional scale factors approach their stability posi-
. ) tion the bulk space-time curvature asymptoticdltlynami-
M=% sUettl min= 54U ()| min cally) tends to a negative constant value. Let us note that this
1 1 would allow, e.g., for a spontaneous compactification sce-

xg120-20[(D—4)x,+2]. (74  hario along the lines

~4aD-1
o AdS,—AdSy XHIYT ;X - - X HIT . (78)
In the decompactification limit;—o, Ap——0,R;——0 0
the mass of the gravexciton vanisheéeo, whereas the
mass of theg field remains nonzermfﬁ—>(D—2)/[4a(D
—1)]>0. For fixed compactification scalg the constraint
(62) and its implication

We further found that the compactification scale com-
pletely defines the effective cosmological constant and the
mass of the internal scale factor excitatioiggavexcitong
near the minimum position. It is also strongly connected with
1 D-2 the parametersx and Ay of the nonlinear modefsee Eq.
S _)(5’/('3*2)[()%_1)%r ql 'Ry (750 (75)]. For example, in the limi\p— 0 the extra dimensions
da d necessarily decompactify {—<0) and the effective potential
Uq; becomes indistinguishable from an effective potential

can be used to express E4) in terms ofx, andR, of a model with Ricci-flat factor spadd . The correspond-

) D—-2 X (D—4)xy+2] R, 76

M= D= . : : : - .
(D—-1)d;  (xq—1)%+q “An explicit generalized de Sitter solution for a similar stabilized
warped product space was obtained[28]. The warped product
This means that in an ADD scenario, where relatié8)  consisted of a Ricci-flat oRx S* external space-time and Einstein

necessarily holds, the basic mass scale of the excitations spaces with positive constant scalar curvatures as internal spaces.
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ing scale factor is then not stabilized and the gravexcitori-or the dimensionality of our observable Univei3g=4,
becomes massless. In contrast to models with possible déhese parameters are restricted to the range
compactification, ADD scenarios are characterized by a com-
pactification scale which is fixed by relatiori$) and (2)
between the fundamental mass scdfgs4) andM, (41 pry -

The same relations enforce in this case a constraint on the

parameters of the nonlinear model. In contrast with therhys, generally speaking, the slow-roll conditions for infla-
masses of gravexcitons, which are completely fixed by tjon are satisfied in this region. The scalar fielctan act as
the compactification scale, the masg of the scalar fieldp  an inflaton and drive the inflation of the external space. It is
(which originates from the nonlinearity of the starting clear that estimate&83) point only to the possibility for in-
mode) can still depend in a specific way on the parameters flation to occur. For the considered model with negative ef-
andAp . fective cosmological constant inflation is not successfully
From a cosmological perspective, it is of interest to con-completed[29] if the reheating due to the decay of the
sider the pOSSlblllty of inflation for the four-dimensional ex- ¢)_f|e|d excitations and gra\/excitons is not sufficient for a
ternal space-time within our nonlinear model. For a linearransition to the radiation dominated era. In any case, for
multidimensional model with an arbitrary scalar fi€ldfla-  scenarios with successful transition or without, the external
ton), such an analysis was carried ouf17]. As described in  space has a turning point at its maximal scale factor where
Sec. I, our pure gravitational quadratic curvature act@8)  the evolution changes from expansion to contracti@bvi-
can be mapped to a scenario linear in the curvature with gusly, for such models the negative effective cosmological
rather specific self-interaction potentie5) for the scalar  constant forbids a late time acceleration of the Universe as
field ¢. This allows us to extend some of the techniques ofindicated by recent observational data. In order to cure this
[17] to our model. problem, the model should be generalized, e.g., by inclusion

It can be shown that there is a possibility for inflation to of additional form fieldd27] or other matter fields.
occur if the scalar fields start to roll down from the region:

3
gse,nl,nzsl for 6=D=<10. (83

(D6-2E0-2]
U()[=[U()]minl >[Ry|e2¢Po~DTHO=T, - (79) ACKNOWLEDGMENTS
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where the effective potentidl4) reads

Ui~ 2@ O=2)00~ 2Ty (). (80)

e(D=2/0O-1)ds, 1 (81)

and hence U(¢)~[1/(8a)]e®A~B)¢=[1/(8a)]

X gl(P=4ND=2) O] the slow-roll parameters and 7, »
(see papefl7]) read

- 2d, (D—4)?
ST (5-2)(Dy-2) | 2(D-2)(D- 1)’
(82

5A discussion of this effect can be found 7] and the recent
paper{30].
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