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Asymptotical AdS space from nonlinear gravitational models with stabilized extra dimensions

U. Günther*
Gravitationsprojekt, Mathematische Physik I, Institut fu¨r Mathematik, Universita¨t Potsdam, Am Neuen Palais 10,

PF 601553, D-14415 Potsdam, Germany

P. Moniz†

Departamento de Fı´sica, Universidade da Beira Interior, Rua Marqueˆs D’Ávila e Bolama, 6200 Covilha˜, Portugal
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We consider nonlinear gravitational models with a multidimensional warped product geometry. Particular
attention is payed to models with quadratic scalar curvature terms. It is shown that for certain parameter ranges,
the extra dimensions are stabilized if the internal spaces have a negative constant curvature. In this case, the
four-dimensional effective cosmological constant as well as the bulk cosmological constant become negative.
As a consequence, the homogeneous and isotropic external space is asymptotically AdS4. The connection
between theD-dimensional and the four-dimensional fundamental mass scales sets a restriction on the param-
eters of the considered nonlinear models.
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I. INTRODUCTION

The multidimensionality of our Universe is one of th
most intriguing assumptions in modern physics. It follow
naturally from theories unifying different fundamental inte
actions with gravity, e.g., M- or string theory@1#. The idea
has received a great deal of renewed attention over the
few years within the ‘‘brane-world’’ description of the Un
verse. In this approach theSU(3)3SU(2)3U(1) standard
model ~SM! fields are localized on a three-dimension
spacelike hypersurface~brane! whereas the gravitational fiel
propagates in the whole~bulk! space-time. The framewor
also implies that usual four-dimensional physics is located
the brane~i.e., our Universe!. Moreover, brane-world physic
provides a possible solution of the hierarchy problem due
the well known connection between the Planck scaleM Pl(4)
and the fundamental scaleM* (41D8) of the four-dimensional
and the (41D8)-dimensional space-time, respectively:

M Pl(4)
2 ;VD8M* (41D8)

21D8 . ~1!

Here VD8 denotes the volume of the compactifiedD8 extra
dimensions. It was realized in@2–4# that the localization of
the SM fields on the brane allows one to lowerM* (41D8)
down to the electroweak scaleMEW;1 TeV without con-
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tradicting present observations. Therefore the compactifi
tion scale of the internal space can be of the order of

r;VD8
1/D8;10(32/D8)217 cm. ~2!

In this Arkani-Hamed–Dimopoulos–Dvali~ADD! model
@2#, physically acceptable values correspond toD8>3 ~see,
e.g.,@5#!, and forD853 one arrives at a submillimeter com
pactification scaler;1026 cm of the internal space. Addi
tionally, the geometry is assumed to be factorizable as in
standard Kaluza-Klein~KK ! model. That is, the topology is
the direct product of a nonwarped external space-time m
fold and internal space manifolds with warp factors whi
depend on the external coordinates. In addition to this,
M-theory inspired Randall-Sundrum~RS! scenario@6# repre-
sents an interesting approach with a nonfactorizable ge
etry and D851. Here, the four-dimensional space-time
warped with a factorṼ which depends on the extra dimen
sion and Eq. ~1! is modified as follows: M Pl(4)

;Ṽ21MEW . In our paper we shall concentrate on the fa
torizable geometry of the ADD model.

According to observations the internal space should
static or nearly static at least from the time of primord
nucleosynthesis~otherwise the fundamental physical co
stants would vary!. This means that at the present evolutio
ary stage of the Universe the compactification scale of
internal space should either be stabilized and trapped at
minimum of some effective potential, or it should be slow
varying ~similar to the slowly varying cosmological consta
in the quintessence scenario@7#!. In both cases, small fluc
tuations over stabilized or slowly varying compactificatio
scales~conformal scales/geometrical moduli! are possible.

Stabilization of extra dimensions~moduli stabilization! in
models with large extra dimensions~ADD models! has been

19,
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U. GÜNTHER, P. MONIZ, AND A. ZHUK PHYSICAL REVIEW D66, 044014 ~2002!
considered in a number of papers~see, e.g., Refs.@4,8–14#!.1

In the corresponding approaches, a product topology of
(41D8)-dimensional bulk space-time was constructed fr
Einstein spaces with scale~warp! factors depending only on
the coordinates of the external four-dimensional compon
As a consequence, the conformal excitations have the f
of massive scalar fields living in the external space-tim
Within the framework of multidimensional cosmologic
models~MCM! such excitations were investigated in@15–
17# where they were called gravitational excitons. Lat
since the ADD compactification approach, these geometr
moduli excitations are known as radions@4,9#. It should be
noted that over the last years the term radion has been
to describe quite different forms of metric perturbatio
within brane-world models. In MCM with warped produ
topology of the internal spaces they are understood as
formal excitations of the additional dimensions~gravitational
excitons!, whereas in RS-I-type models they describe
relative motion of branes@18#.2 The differences betwee
these two frameworks have been pointed out in@22,23#.

All of the above mentioned papers are devoted to
stabilization of large extra dimension in theories with line
multidimensional gravitational action. String theory sugge
that the usual linear Einstein-Hilbert action should be
tended with higher order nonlinear curvature terms. In
present paper we use a simplified approach with a mult
mensional Lagrangian of the formL5 f (R), where f (R) is
an arbitrary smooth function of the scalar curvature. With
connection to stabilization of the extra-dimensions, su
models~four-dimensional as well as multidimensional one!
were considered, e.g., in Ref.@24#. There, it was shown tha
the nonlinear models are equivalent to models with lin
gravitational action plus a minimally coupled scalar fie
with self-interaction potential.

In the present paper we advance this equivalence tow
investigating the problem of extra dimensions stabilizati
We find that the stabilization of extra dimensions takes pl
only if additional internal spaces have a compact hyperb
geometry and the effective four-dimensional cosmologi
constant is negative. If the external spaceM0 is homoge-
neous and isotropic this implies thatM0 becomes asymptoti
cally an anti–de Sitter space (AdSD0

). Additionally, we show
that requiring the extra dimensions to be dynamically sta
lized is a sufficient condition for the bulk space-time to a
quire a constant negative curvature.

The paper is structured as follows. After explaining t
general setup of our model in Sec. II, we concretize the
ometry to a warped product ofn internal spaces. We perform
a dimensional reduction of the action functional to a fo
dimensional effective theory with (n11) self-interacting
minimally coupled scalar fields~Sec. III!. The stabilization

1In most of these papers, moduli stabilization was conside
without regard to the energy-momentum localized on the bran
brane matter contribution was taken into account, e.g., in@14#.

2A detailed discussion of radion stabilization and dynamics in
models is given, e.g., in@19,20#. An extended list of references o
this topic can be found in@21#.
04401
e

t.
m
.

,
al

ed

n-

e

e
r
s
-
e
i-

t
h

r

ds
.
e
ic
l

i-
-

-

-

of the extra dimensions is then reduced to the condition
the obtained effective potential for these fields should hav
minimum. In Sec. IV a detailed analysis of this problem
given for a model with one internal space. The main resu
are summarized and discussed in the concluding Sec. V.

II. GENERAL THEORY

We consider aD5(41D8)-dimensional nonlinear pure
gravitational theory with action

S5
1

2kD
2 EM

dDxAuḡu f ~R̄!, ~3!

where f (R̄) is an arbitrary smooth function with mass d
mensionO(m2) (m has the unit of mass! of a scalar curva-
ture R̄5R@ ḡ# constructed from theD-dimensional metric
ḡab (a,b51, . . . ,D).

kD
2 58p/M

* (41D8)
21D8 ~4!

is the D-dimensional gravitational constant~subsequently,
we assume thatM* (41D8);MEW). The equation of motion
for this theory reads@24#

f 8R̄ab2
1

2
f ḡab2¹̄a¹̄bf 81ḡabh̄ f 850, ~5!

where f 85d f /dR̄, R̄ab5Rab@ ḡ#. ¹̄a is the covariant deriva-
tive with respect to the metricḡab ; and the corresponding
Laplacian is denoted by

h̄5h@ ḡ#5ḡab¹̄a¹̄b5
1

Auḡu
]a~Auḡu ḡab]b!. ~6!

Equation~5! can be rewritten in the form

f 8Ḡab1
1

2
ḡab~R̄f 82 f !2¹̄a¹̄bf 81ḡabh̄ f 850, ~7!

whereḠab5R̄ab2 1
2 R̄ḡab . The trace of Eq.~5! is

~D21!h̄ f 85
D

2
f 2 f 8R̄ ~8!

and can be considered as a connection betweenR̄ and f.
It is well known that for f 8(R̄).0 the conformal trans-

formation

gab5V2ḡab , ~9!

with

V5@ f 8~R̄!#1/(D22), ~10!

d
A

S
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reduces the nonlinear theory~3! to a linear one with an ad
ditional scalar field. The equivalence of the theories can
easily proven with the help of the following auxiliary formu
las:

h5V22@h̄1~D22!ḡabV21V ,a]b#,

h̄5V2h2~D22!gabVV ,a]b , ~11!

Rab5R̄ab1
D21

D22
~ f 8!22¹̄af 8¹̄bf 82~ f 8!21¹̄a¹̄bf 8

2
1

D22
ḡab~ f 8!21h̄ f 8, ~12!

and

R5~ f 8!2/(22D)H R̄1
D21

D22
~ f 8!22ḡab]af 8]bf 8

22
D21

D22
~ f 8!21h̄ f 8J . ~13!

Thus Eqs.~7! and ~8! can be rewritten as

Gab5f ,af ,b2
1

2
gabg

mnf ,mf ,n

2
1

2
gabe

~2D/A(D22)(D21)!f~R̄f 82 f ! ~14!

and

hf5
1

A~D22!~D21!
e~2D/A(D22)(D21)!fS D

2
f 2 f 8R̄D ,

~15!

where

f 85
d f

dR̄
ªeAf.0, AªAD22

D21
. ~16!

Equation~16! can be used to expressR̄ as a function of the
dimensionless fieldf: R̄5R̄(f). It is easily seen that Eqs
~14! and ~15! are the equations of motion for the action

S5
1

2kD
2 EM

dDxAugu@R@g#2gabf ,af ,b22U~f!#,

~17!

where

U~f!5
1

2
e2Bf@R̄~f!eAf2 f „R̄~f!…#,

Bª
D

A~D22!~D21!
~18!
04401
e
and they can be written as follows:

Gab5Tab@f,g#, ~19!

hf5
]U~f!

]f
. ~20!

Here, Tab@f,g# is the standard expression of the energ
momentum tensor for the minimally coupled scalar field w
potential ~18!. Equation ~20! can be considered as a co
straint equation following from the reduction of the nonli
ear theory~3! to the linear one~17!.

Let us consider what will happen if, in some way, th
scalar fieldf tends asymptotically to a constant:f→f0.
From Eq.~16! we see that in this limit the nonlinearity dis
appears and Eq.~3! becomes a linear theoryf (R̄);c1R̄
1c2 with c15 f 85exp(Af0) and a cosmological constant
2c2 /(2c1). In the case of homogeneous and isotropic spa
time manifolds, linear purely geometrical theories with
constantL term necessarily imply an~A!dS geometry. Thus
in the limit f→f0 theD-dimensional theory~3! can asymp-
totically lead to an~A!dS with scalar curvature:

R̄→2
D

D22

c2

c1
. ~21!

Clearly, the linear theory~17! would reproduce this
asymptotic~A!dS limit for f→f0:

R→2
D

D22
U~f0!52

D

D22
c2 c1

2[D/(D22)] . ~22!

Hence, in this limitR̄/R→c1
D/(D22) in accordance with Eq.

~13! and f 85c1. In Sec. IV we shall show that the stabiliza
tion of the extra dimensions automatically results in the c
dition f→f0 with U(f0),0. Thus the D-dimensional
space-time~bulk! can become asymptotically AdSD .

In the rest of the paper we consider the quadratic theo

f ~R̄!5R̄1aR̄222LD , ~23!

where the parametera has dimensionsO(m22). For this
theory we obtain

112aR̄5eAf⇔R̄5
1

2a
~eAf21! ~24!

and

U~f!5
1

2
e2BfF 1

4a
~eAf21!212LDG . ~25!

The conditionf 8.0 implies 112aR̄.0.

III. DIMENSIONAL REDUCTION

In this section we assume that theD-dimensional bulk
space-timeM undergoes a spontaneous compactification t
warped product manifold

M5M03M13•••3Mn ~26!
4-3
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with metric

ḡ5ḡab~X!dXa
^ dXb5ḡ(0)1(

i 51

n

e2b̄ i (x)g( i ). ~27!

The coordinates on the (D05d011)-dimensional manifold
M0 @usually interpreted as our (D054)-dimensional Uni-
verse# are denoted byx and the corresponding metric by

ḡ(0)5ḡmn
(0)~x!dxm

^ dxn. ~28!

Let the internal factor manifoldsMi be di-dimensional Ein-
stein spaces with metricg( i )5gmini

( i ) (yi)dyi
mi ^ dyi

ni , i.e.,

Rmini
@g( i )#5l igmini

( i ) , mi ,ni51, . . . ,di ~29!

and

R@g( i )#5l idi[Ri;r i
22 , ~30!

where r i5(*ddiyAug( i )u)1/di is a characteristic size ofMi .
For the metric ansatz~27! the scalar curvatureR̄ depends
only on x: R̄@ ḡ#5R̄(x). Thus f is also a function ofx: f
5f(x).

The conformally transformed metric~9! reads

g5V2ḡ5~eAf!2/(D22)ḡªg(0)1(
i 51

n

e2b i (x)g( i ) ~31!

with

gmn
(0)5~eAf!2/(D22)ḡmn

(0) , ~32!

b i5b̄ i1
A

D22
f. ~33!

The fact that the fieldsf andb i depend only onx allows us
to perform the dimensional reduction of action~17!. Without
loss of generality we set the compactification scales of
internal spaces at the present time atb i50 (i 51, . . . ,n).
The corresponding total volume of the internal spaces
given by

VD8[)
i 51

n E
Mi

ddiyAug( i )u5)
i 51

n

r i
di , ~34!

where VD8 has dimensionsO(m2D8), and D85D2D0

5( i 51
n di is the number of the extra dimensions. After d

mensional reduction action~17! reads
04401
e

is

S5
1

2k0
2EM0

dD0xAug(0)u

3)
i 51

n

edib
iH R@g(0)#2Gi j g

(0)mn]mb i ]nb j

2g(0)mn]mf]nf1(
i 51

n

R@g( i )#e22b i
22U~f!J ,

~35!

where Gi j 5did i j 2didj ( i , j 51, . . . ,n) is the midisuper-
space metric@25,26# and

k0
2
ª

kD
2

VD8

~36!

is the D0-dimensional~four-dimensional! gravitational con-
stant. If we take the electroweak scaleMEW and the Planck
scaleM Pl as fundamental ones forD-dimensional@see Eq.
~4!# and four-dimensional space-times (k0

258p/M Pl
2 ), re-

spectively, then we reproduce Eqs.~1! and ~2!.
Action ~35! is written in the Brans-Dicke frame. Confor

mal transformation to the Einstein frame@15,16#,

g̃mn
(0)5S )

i 51

n

edib
i D 2/(D022)

gmn
(0) , ~37!

yields

S5
1

2k0
2EM0

dD0xAug̃(0)u$R@ g̃(0)#2Ḡi j g̃
(0)mn]mb i ]nb j

2g̃(0)mn]mf]nf22Ue f f~b,f!%. ~38!

The tensor components of the midisuperspace metric~target
space metric onRT

n) Ḡi j ( i , j 51, . . . ,n), its inverse metric

Ḡi j , and the effective potential are, respectively,

Ḡi j 5did i j 1
1

D022
didj , ~39!

Ḡi j 5
d i j

di
1

1

22D
, ~40!

and

Ue f f~b,f!5S )
i 51

n

edib
i D 2[2/(D022)]

3F2
1

2 (
i 51

n

Rie
22b i

1U~f!G . ~41!
4-4
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IV. STABILIZATION OF THE INTERNAL SPACE

Without loss of generality,3 we consider in the presen
section a model with only oned1-dimensional internal space
The corresponding action~38! reads

S5
1

2k0
2EM0

dD0xAug̃(0)u$R@ g̃(0)#2g̃(0)mn]mw]nw

2g̃(0)mn]mf]nf22Ue f f~w,f!%, ~42!

where

wª2Ad1~D22!

D022
b1 ~43!

and

Ue f f~w,f!5e2wAd1 /[(D22)(D022)]

3F2
1

2
R1e2wA(D022)/[d1(D22)]1U~f!G .

~44!

For simplicity we continue to work with dimensionless sc
lar fieldsw,f instead of passing to canonical ones~modulo
8p): w̃5w M Pl , f̃5f M Pl , andŨe f f5M Pl

2 Ue f f . The res-
toration of the correct dimensionality is obvious.

The equations of motion forw andf are, respectively,

h̃w5
]Ue f f

]w
, ~45!

h̃f5
]Ue f f

]f
, ~46!

where

]Ue f f

]w
52A d1

~D22!~D022!
Ue f f

2R1A D022

d1~D22!
e2wA(D22)/[d1(D022)] ~47!

and

]Ue f f

]f
5e2wAd1 /[(D22)(D022)]

]U~f!

]f
. ~48!

In order to obtain a stable compactification of the inter
space, the potentialUe f f(w,f) should have a minimum with
respect tow andf. This is obvious with respect to the fiel
w because it is precisely the stabilization of this field that
aim to achieve. It is also clear that potentialUe f f(w,f)

3The only difference between a general model withn.1 internal
spaces and the particular one withn51 consists of an additiona
diagonalization of the geometrical moduli excitations.
04401
-

l

e

should have a minimum with respect tof because without
stabilization off the effective potential remains a dynamic
function and the extremum condition]Ue f f /]wuw5050 is
not satisfied@see Eq.~47!#. Furthermore, Eq.~48! shows that
the extrema of the potentialsUe f f(w,f) andU(f) with re-
spect to the fieldf coincide with each other. Thus the stab
lization of the extra dimension takes place if the fieldf goes
to the minimum of the potentialU(f). According to the
discussion in Sec. II@see Eqs.~21! and~22!# this results in an
asymptotically constant curvature space-time@for a nonzero
minimum of U(f)#.

Let us now present a detailed analysis of the quadr
gravitational theory~23! with potentialU(f) ~25!. First, we
shall investigate the range of parameters which ensure
minimum of U(f). The extremum condition gives]fU50
so that

~2A2B!x212~B2A!x2~q11!B50, ~49!

wherexªeAf.0 andqª8aLD . The non-negative solution
of this equation defines the position of the extremum:

x05eAf0

5
2~B2A!1A~B2A!21~2A2B!~q11!B

2A2B

5
2~B2A!1AA21~2A2B!Bq

2A2B
. ~50!

From the inequalities

B2A5
2

A~D22!~D21!
.0 ~51!

and

2A2B5
D24

A~D22!~D21!
.0 for D.4 ~52!

it follows that the parameterq should be restricted to the
half-line

q58aLD.21. ~53!

The caseq521 corresponds tof0→2` and is not consid-
ered in the following.

The necessary condition for the existence of a minim
of the potentialU(f)

]ff
2 U~f!uextr5

A

4a
e(A2B)f0@~2A2B!eAf01~B2A!#

5
1

4a

1

D21
x0

2[2/(D22)]@~D24!x012#.0

~54!

requires positive values of the parametera.0. From the
explicit expression ofU(f) at the extremum
4-5
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U~f!uextr5
1

8a
x0

2[D/(D22)]@~x021!21q#, ~55!

it is easy to see thatUumin>0 for LD>0 andUumin,0 for
LD,0. In the latter case we have21,8aLD,0.

Let us show now that the total potentialUe f f(w,f) also
has a global minimum in the case whenU(f) has a negative
minimum. To prove it, it is convenient to rewrite potenti
~44! as

Ue f f~w,f!5F~w!G~w,f!

with

F~w!5e2wAd1/@~D22!~D022!# ,

G~w,f!52
1

2
R1e2wA~D022!2@d1~D22!#1U~f! .

~56!

The extremum condition gives

]wUe f f5S 2A d1

~D22!~D022!
G1]wGDF50,

]wG522A d1

~D22!~D022!
G, ~57!

]fUe f f5F~]fU !50 ⇒ ]fU50, ~58!

whereas the eigenvalues of the Hessian at the minim
should be non-negative,

]ww
2 Ue f f5F]ww

2 G24
d1

~D22!~D022!
GGF.0, ~59!

]ff
2 Ue f f5F]ff

2 U.0 ⇒ ]ff
2 U.0, ~60!

]wf
2 Ue f f52A d1

~D22!~D022!
F]fU50. ~61!

Choosing the compactification scale of the extra dimens
at bmin

1 5wmin50, we find the following relations at the ex
tremum:

R15
2d1

D22
U~f!uextr, ~62!

GUextr5
D022

D22
U~f!U

extr

, ~63!

and hence

sign~R1!5sign@U~f!uextr#5sign~Guextr!. ~64!

Using the obvious relation

]ww
2 G522

D022

d1~D22!
R1e2wA(D022)/[d1(D22)] ~65!
04401
m

n

and Eqs.~59!, ~62!, and~63! we see that

2
4

D22
U~f!umin.0⇒U~f!umin,0. ~66!

This inequality sets strong restrictions on the conside
nonlinear model.

~1! According to Eq.~22! it implies that the stabilization
of the extra dimension leads asymptotically to a negat
constant curvature bulk space-time.

~2! Only models with parameters from the rangea.0
and 21,8aLD,0 will stabilize @see Eqs.~54! and ~55!#.
All other configurations are excluded.

~3! The global minimum of the whole effective potenti
Ue f f is also negative:

Ue f fumin5
D022

D22
U~f!umin5

D022

2d1
R1,0. ~67!

Its value plays the role of aD0-dimensional effective cosmo
logical constantLe f f5Ue f fumin .

~4! From Eqs.~64! and ~66! it follows that the compacti-
fied internal space should have negative curvature.

The latter restriction agrees with the results of@10,13#
because the negative value of the effective potential in
minimum violates the null energy condition so that the s
bilized internal space should be~compact! hyperbolic ~see
also @12,13#!. We note that adding to our nonlinear mod
some kind of matter, satisfying the null energy condition, c
shift the effectiveD0-dimensional cosmological constant
non-negative values and the internal space can acquire p
tive curvature.

A further restriction on the model follows from Eqs.~2!,
~30!, and~62!. According to these equations the free para
etersa andLD , or a andq, are strongly connected with th
compactification radiusr 1 of the extra dimensional facto
space M1, as well as with the fundamental mass sca
M* (41d1) and the four-dimensional Planck scaleM Pl(4) :

2d1

D22
U@f0~q!,a#uextr5R152

d1~d121!

r 1
2

;2S M* (41d1)

M Pl(4)
D 4/d1

M
* (41d1)
2 .

~68!

For fixed compactification radiusr 1,` the constraint~68!
forbids the limit LD→20, whereasa→0 is allowed. This
behavior is easily understood. According to Eq.~23! the limit
a→0 describes the transition to a linear Einstein grav
model with D-dimensional cosmological constantLD . For
a→0 the mass of thef-field excitations tends to infinity
mf

2 →` @see Eq.~74! below# and the field itself become
frozen at the minimum positionf0(a→0)→0 of the poten-
tial U(f)

U@a→0#uextr→LD , ]ff
2 Uuextr→`. ~69!

The resultingD-dimensional space-time has constant sca
curvatureR̄5R52DLD /(D22) and a stabilization of in-
ternal spaces in such models is possible@15# for LD,0 and
Ri,0.
4-6
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In contrast, the transitionLD→20 necessarily implies
U(f)uextr→20, R1→20 which is connected with a decom
pactificationr 1→` of the extra dimensions according to E
~68!. From the derivatives~59!–~61! of the effective poten-
tial at the extremum position (wextr50,f0) and

]w
nUe f fuextr522n21F D22

d1~D022!G
n/2

R1

12nF d1

~D22!~D022!G
n/2

Uuextr ~70!

we read off that in the limitLD→20 the potential become
flat with respect tow: ]w

nUe f f→0, whereas it remains well
behaved with respect tof:

]ff
2 Ue f fuextr→

D22

4a~D21!
.0. ~71!

This is due tox0(LD→0)→1 and Eq.~54!. The potential
Ue f f(w,f) itself coincides in this case with the effectiv
potential of a model with Ricci-flat factor spaceM1

Ue f f~w,f!5e2wAd1 /[(D22)(D022)]U~f!, ~72!

what is known to have no stabilized extra dimensions
stabilization could be achieved, e.g., by accounting for ad
tional matter fields@15–17,27#.

Finally, let us turn to the masses of the excitation fieldsw
andf near the minimum ofUe f f . These masses are define
by the relations

mw
25]ww

2 Ue f fumin52
4

D22
U~f!umin

52
2

d1
R1 , ~73!

mf
2 5]ff

2 Ue f fumin5]ff
2 U~f!umin

5
1

4a

1

D21
x0

2[2/(D22)]@~D24!x012#. ~74!

In the decompactification limitr 1→`, LD→20, R1→20
the mass of the gravexciton vanishesmw

2→0, whereas the
mass of thef field remains nonzeromf

2 →(D22)/@4a(D
21)#.0. For fixed compactification scaler 1 the constraint
~62! and its implication

1

4a
5

D22

d1
x0

D/(D22)@~x021!21q#21R1 ~75!

can be used to express Eq.~74! in terms ofx0 andR1,

mf
2 5

D22

~D21!d1

x0@~D24!x012#

~x021!21q
R1 . ~76!

This means that in an ADD scenario, where relation~68!
necessarily holds, the basic mass scale of the excitationw
04401
i-

and f is defined by the fundamental mass scaleM* (41d1)

and the four-dimensional Planck scaleM Pl(4)

mw,f
2 ;R1;r 1

22;S M* (41d1)

M Pl(4)
D 4/d1

M
* (41d1)
2 . ~77!

V. CONCLUSIONS AND DISCUSSION

In the present paper we investigated multidimensio
gravitational models with a non-Einsteinian form of the a
tion. In particular, we assumed that the action is an arbitr
smooth function of the scalar curvaturef (R). For such mod-
els, we concentrated on the problem of extra dimension
bilization in the case of factorizable geometry. To perfo
such an analysis, we reduced the pure nonlinear gravitati
model to a linear one with an additional self-interacting s
lar field. The factorization of the geometry allowed for
dimensional reduction of the considered models and to
tain an effective four-dimensional model with addition
minimally coupled scalar fields in the Einstein frame. The
fields describe conformal excitations of the internal spa
scale factors. A detailed stability analysis was carried out
a model with quadratic curvature term:f (R)5R1aR2

22LD . It was shown that a stabilization is only possible f
the parameter range21,8aLD,0.

This necessarily implies that the extra dimensions are
bilized if the compact internal spacesMi , i 51, . . . ,n, have
negative constant curvatures. More precisely, these sp
have a quotient structureMi5Hdi/G i , whereHdi andG i are
hyperbolic spaces and their discrete isometry groups, res
tively. In this case, the four-dimensional cosmological co
stant ~which corresponds to the minimum of the effectiv
four-dimensional potential! is also negative. As a conse
quence, the homogeneous and isotropic exter
(D054)-dimensional space is asymptotically AdSD0

. As the
extra dimensional scale factors approach their stability p
tion the bulk space-time curvature asymptotically~dynami-
cally! tends to a negative constant value. Let us note that
would allow, e.g., for a spontaneous compactification s
nario along the lines4

AdSD→AdSD0
3Hd1/G13•••3Hdn/Gn . ~78!

We further found that the compactification scale co
pletely defines the effective cosmological constant and
mass of the internal scale factor excitations~gravexcitons!
near the minimum position. It is also strongly connected w
the parametersa and LD of the nonlinear model@see Eq.
~75!#. For example, in the limitLD→0 the extra dimensions
necessarily decompactify (r 1→`) and the effective potentia
Ue f f becomes indistinguishable from an effective poten
of a model with Ricci-flat factor spaceM1. The correspond-

4An explicit generalized de Sitter solution for a similar stabiliz
warped product space was obtained in@28#. The warped product
consisted of a Ricci-flat orR3S3 external space-time and Einste
spaces with positive constant scalar curvatures as internal spa
4-7
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ing scale factor is then not stabilized and the gravexci
becomes massless. In contrast to models with possible
compactification, ADD scenarios are characterized by a c
pactification scale which is fixed by relations~1! and ~2!
between the fundamental mass scalesM Pl(4) andM* (41D8) .
The same relations enforce in this case a constraint on
parameters of the nonlinear model. In contrast with
masses of gravexcitonsmw which are completely fixed by
the compactification scale, the massmf of the scalar fieldf
~which originates from the nonlinearity of the startin
model! can still depend in a specific way on the parametera
andLD .

From a cosmological perspective, it is of interest to co
sider the possibility of inflation for the four-dimensional e
ternal space-time within our nonlinear model. For a line
multidimensional model with an arbitrary scalar field~infla-
ton!, such an analysis was carried out in@17#. As described in
Sec. II, our pure gravitational quadratic curvature action~23!
can be mapped to a scenario linear in the curvature wi
rather specific self-interaction potential~25! for the scalar
field f. This allows us to extend some of the techniques
@17# to our model.

It can be shown that there is a possibility for inflation
occur if the scalar fields start to roll down from the regio

uU~f!u>uU~f!uminu @uR1ue2wA(D022)/[d1(D22)], ~79!

where the effective potential~44! reads

Ue f f'e2wAd1 /[(D22)(D022)]U~f!. ~80!

If

eA(D22)/(D21)f@1, ~81!

and hence U(f)'@1/(8a)#e(2A2B)f5@1/(8a)#

3e@(D24)f/A(D22)(D21)#, the slow-roll parameterse andh1,2
~see paper@17#! read

e'h1'h2'
2d1

~D22!~D022!
1

~D24!2

2~D22!~D21!
.

~82!
-

B

li,
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For the dimensionality of our observable UniverseD054,
these parameters are restricted to the range

3

5
<e,h1 ,h2<1 for 6<D<10. ~83!

Thus, generally speaking, the slow-roll conditions for infl
tion are satisfied in this region. The scalar fieldf can act as
an inflaton and drive the inflation of the external space. I
clear that estimates~83! point only to the possibility for in-
flation to occur. For the considered model with negative
fective cosmological constant inflation is not successfu
completed@29# if the reheating due to the decay of th
f-field excitations and gravexcitons is not sufficient for
transition to the radiation dominated era. In any case,
scenarios with successful transition or without, the exter
space has a turning point at its maximal scale factor wh
the evolution changes from expansion to contraction.5 Obvi-
ously, for such models the negative effective cosmologi
constant forbids a late time acceleration of the Universe
indicated by recent observational data. In order to cure
problem, the model should be generalized, e.g., by inclus
of additional form fields@27# or other matter fields.
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