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Dynamics of spherically symmetric spacetimes: Hydrodynamics and radiation
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Using the 3+1 formalism of general relativity the equations governing the dynamics of spherically sym-
metric spacetimes with arbitrary sources are obtained. The case of a perfect fluid accompanied by a flow of
interacting massless or massive partidies., neutrinoswhich are described in terms of relativistic transport
theory is then specialized. | focus on three types of gaudggshe isotropic-maximal gaugé?) radial-polar
gauge, and3) isotropic-polar gauge.
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[. INTRODUCTION ordinates and polar slicing, this latter improving previous
analysis by the incorporation of realistic equations of state

One of the most fascinating phenomena in gravitationafor the nuclear matter.
physics is that of gravitational collapse. Notably, the gravi- The effects of different gauges on the time evolution have
tational collapse of astrophysical bodies culminating in thebeen exhibited for two of the most popular choi¢sstropic
formation of black holes. or radial coordinates with maximal or polar slicindsy com-

The historical controversy on the final fate of gravitational paring with the analytical solution of Oppenheimer-Snyder
collapse of compact objects such as white dwarfs and ned9-11]. For the time being, the discussion of gauges is post-
tron stars raised by the discovery of maximum mass limitponed to Sec. VII.
and the subsequent stability analysis led to finding, at least The analysis of gravitational collapse of compact stars
for the most ideal configurations, definite answers and conand iron cores would not be complete if the influence of
crete predictions depending on the initial conditions and theneutrinos were not taken into account. This has been recog-
equation of state of mattésee Refs[1,2] for a review. The  nized by a long list of authors since the precursor investiga-
simplest situation describing the gravitational collapse endtions of Colgate and Whit€l2], and May and Whitg 13],
ing in black hole formation is that of a spherical ball of who analyzed the effect of neutrinos in supernova explo-
pressureless and homogeneous fluithe well known sions. Later Wilson[14] performed full general relativity
Oppenheimer-Snyder dust collagsd). The solution shows computations with a neutrino flow described in terms of the
the appearance of avent horizorrevealing thus the forma- relativistic Boltzmann equation. Wilson’s analysis included
tion of a black hole after a finite proper time. electron and muon massless neutrinos assuming that the cor-

Since that pioneering investigation, much has been dongesponding antineutrinos contributed in the same basis. The
for more complicated and realistic initial configurations. Oninteraction of neutrinos with the star’s fluid was described by
one hand, the accelerated development in the area of compan opacity function. Unlike previous studies, Wilson’s found
tation and the recent advances on the numerical analysis tiiat the heat conduction by neutrinos is not sufficient to eject
Einstein’s equations have made possible computing the dyany material from a collapsing star. In all those studies black
namics of rather complex spacetimes faster and for longehnole formation was not analyzed but only evolution configu-
term evolutions. On the other hand, the advances in particletions terminating in stable states corresponding to white
and nuclear physics have led to better knowledge of the cordwarfs or neutron stars.
ditions of matter at high densities, providing then more real- An updated analysis was carried out by Mayle, Wilson,
istic models for matter in cores and neutron stars. and Schramnj15] using a Boltzmann code and for a large

Most of the recent analyses of gravitational collapse leadset of mass configurations. Neutrino signals from various
ing to black hole formation have been done in spherical symspecies were analyzed within time scales~of s after the
metry and following a more “modern” point of view in light supernova explosion. Previously Saenz and Shag#phad
of the 3+1 formulation of general relativity and other for- computed a nonspherical quasi-Newtonian collapse accom-
mulations better adapted to numerical stabiljsee Refs. panied by neutrino and gravitational radiation.

[4,5] and references therginAmong these investigations, Burrows and coworkers have also analyzed during the last
there is the one of Shapiro and Teukol$kywho studied the 20 years the mechanism of type Il superng8alll) and the
collapse of polytropes by imposing isotrodigpatia) coor-  role of neutrinogsee[17,18 and references thergihmong
dinates and maximal slicing, with initial conditions provided these investigations, one finds an interesting model of long
by the Tolman-Oppenheimer-Volkoff equation of hydrostaticterm neutrino emission from the hot protoneutron star phase
equilibrium. Later, a similar study was performed by to the final outcome of a stable cold neutron $t8|.
Schinder, Bludman, and Pird] in comoving coordinates Many other recent investigations have confirmed and im-
with a polar slicing, and by Gourgoulhd®,9] in radial co- proved in several aspects previous findings on S(dHe
[20—-25 and references therginFor the case of a core col-
lapse leading to a black hole, two scenarios are recognized
*Email address: marcelo@nuclecu.unam.mx [22]. One callecearly black hole formation which is generi-
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cally associated with accreting protoneutron stars whictabove consists in the accretion of matter by an old neutron
form from the collapse of degenerate cores of massive statar near the maximum mass limit. Gourgoulhon and Haensel
[25,26. The accretion of some tenths to one solar mass caf86] have analyzed the neutrino emission during the collapse
last a second, and the exceeding of the maximum mas®e a black hole within this scenario via nonequilibriug
drives the protoneutron star into a black hole collapse in grocesses, assuming that the nuclear matter is transparent for
typical time scale of~0.5 ms. In this scenario the neutrino neutrinos(i.e., opacities were neglectednstead of using
signal is abruptly cut off after the black hole forms, and theneutrino transport, aegularized geometrical-optics model
typical neutrino luminosities prior to the cutoff are adapted to massless neutrinos was adopted. This model was
~10°? ergls per flavor. thus intended to provide upper bounds in the neutrino burst.
The second scenario calléate black hole formation typi- The collapse lasts typically a millisecorithe time that the
cally arises by a softening of the high-density equation ofblack hole formation takes plageand in the most favorable
state(EOS of the protoneutron std27-30. The phase tran- conditions the total energy of, and v, antineutrinos is
sition from the neutron star matter to a more exotic state~10°! erg, while the energy of the corresponding neutrinos
which includes kaon condensa{&4,32 or hyperon conden- is several orders of magnitude lower. This is even lower for
sates[33] can lower the maximum allowable mass 10 the ,_and, neutrinos. The main conclusion is that a col-
~1.5Mg [28,3(]_, driving _thus a stable proto_neutron star to lapse of this kind at a distance ef10 kpc would be unde-
an unstable regime and finally to a collapse into a black holeytapje by the current neutrino detectors.

This kind of core collapse can last10 s before the cutoff — ginay “another scenario which has been analyzed in the

and_ the_lumlnosny of neutrinos is ten times lower than thepast is the dynamics of collisionless gas of particles which
luminosity of the early case.

. . : mimic spherical star clusters, and the possibility of a cluster
It is encouraging to note that for a SNII at a distance Ofcolla se into a supermassive black hf#@—42. The moti-
~10 kpc which explodes within the early scenario, Su-__.. P b . L
i — vation was to provide a theoretical description for the forma-
perKam_lokande can p_robee masses down to 1.8 eV by tion of supermassive black holes that could exist in the cen-
comparing the arrlv_al times of high and low energy NeUlrinOSerg of galaxies. Recently, a similar study which included
within the reactionv,+p—e* +n in a Cherenkov detector gamma-ray bursts, is the one analyzed by Liekel. [43],
(see Ref[22] for details. where the collapse of supermassive staM~(10°Mg
In fact the very recent announcement on the measure- 1\ .) with emission of thermal neutrinos is considered.
ments of solar neutrinos from the decay @ by the Sud- |, that work, the spacetime is foliated by outgoing null hy-
bury Neutrino ObservatorySNO) [34] via charged current Persurfaces rather than using & Bfoliation of spacetime.
interactions and by the elastic scattering of electrons reveals | view of the different scenarios of gravitational collapse
that neutrinos could be changing flavor as they travel fromyygjlaple today and the miscellaneous predictions within
the sources to the I.Eart_h. This dl_scovery if c_onflrmed couldsach of them it is worth pursuing the investigations along
corroborate the oscillating behavior of neutrinos and theregyese Jines. Only in this way there will be at hand a large set

fore their massive nature. The fluxes measured of the differss mogels which the forthcominge.g.,[35]) and recent ob-
ent flavors are in close agreement with the predictions of thgeryationg34] will validate or rule out.

solar models. The SNO experiment then implies that the up-  Ajthough the paper is written in the same spirit of various
per limit of the mass squared difference betweenithand  papers which deal with the system of equations Einstein-
the v, or v, is less than 10° eV? [34]. This result when pygrodynamics-Boltzmann, several aspects distinguish it
combined with the current bounds an, of 2.8 eV and  from them. For instance, most formalisms treat neutrinos as
Amﬁ ,_(assuming neutrino oscillationprovides a limit for ~ massless particles, except perhaps the one of Harleston and
the sum of the masses of the three neutrino species in t@ollaboratord44,45. Here massive particles are considered
range[0.05,8.4 eV [34]. from the onset and previous equations are recovered in the

One proposal to measure tie and », masses indirectly massless limit. The relativistic Boltzmann equation is written
and that can corroborate the SNO findings is the one whicl! terms of 3+1 variables for generic spacetimes. This had
uses a time-of-flight techniqu@2] for neutrinos emitted in  P&en done in the past only in spherical symmetry. Therefore,
the early black hole formation scenario discussed above. THE€ relativistic Boltzmann equation presented here is coupled
point is that if neutrinos are massive then there is a delaffom the onset to the 81 Einstein's equations. That is, the
(relative to a massless neutrinia the cutoff of the neutrino  curvature effects appear in terms of the lapse, the shift, the
signal as measured on Earth after the black hole forms, and @trinsic curvature, and the three-metric. The hydrodynamic
is given byAt~(m,/E,)? for distances of~10 kpc. This equations are derived also in the context of thelFormal-

delay can affect the event rate measured in a detector. TH&M @nd they couple to the neutrinos via collision integrals.
conclusion is that assuming luminosities- 10°2 erg/s per In particular the equation for the velocity field of the fluid is
flavor at the cutoff time, SuperKamiokande can probewritten in several forms each of which is useful whether one

e-neutrino masses as small as 1.8 eV Ty ~3.5 MeV uses different numerical methods. In this regard, a general
e L

relativistic Euler equation is presented using the tetrad for-
whereas the OMNI$35] or SNO detector can deteat, ,  ajism s quasi-Newtonian form allows an easy interpreta-

masses as small as 6 eV oy, ~8 MeV. tion of several terms, and reduces to well known equations in
A collapse scenario which is rather different from the various limits. Such a Euler equation turns to be better
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adapted for spectral methods than the equation for the maseighboring hypersurface®, and %, 4. The three-vector
mentum current densit{8,9]. The system of equations are N' (the shift-vectol, represents the coordinate three-velocity
then specialized for spherical symmetry using three differenat which the Eulerian observer moves with respect to the
gauges(1) isotropic-maximal gauge) radial-polar gauge, coordinates(x'). In this way, the four-metric reads
and (3) isotropic-polar gauge, where isotropic and radial _ _ o
stand for the spatial coordinate choice, and maximal and po- ~ ds°=—(N?=N'N;)dt*~2N;dtdX +h;;dx'dx, (3)
lar refer to the slicing condition. ) ) ) . ) )

This is the first of a series of papers where the gravitanotlng_that_ in other studies the shift vector is taken with the
tional collapse of various kinds of matter will be analyzed. ©PPOSIte sign. , _

The paper is organized as follows. Section Il presents suc- A useful formula forK;; obtained from Eq(1) is
cinctly the 3+1 formalism of general relativity rather more K. ——Vn——NIt
to fix the notation than to give a detailed description. In Sec. 1 " 1
[Il the case of two interacting sources of matter is special- 1 /oh
ized: a perfect fluid and a flow of relativistic particles de- =— 5| =+ 3VN;+ 3VN; |, (4
scribed in terms of relativistic transport theory. Section IV
treats the relativistic transport theory. Section V deals Wm\Nhere
thermodynamics. In Sec. VI spherical symmetry is consid-
ered and in Sec. VII three gauge conditions are analyzed ary
discussed in light of the previous studies. Finally some re-
marks and the plans for the forthcoming investigations along

3Vj stands for the covariant derivative compatible
ith h;; . This is to be regarded as an evolution equation for
e three-metridy;; .

The trace of the extrinsic curvature is simply given by

this line are found at the end. =—V.n% (5)
[l. THE 3 +1 FORMALISM OF GENERAL RELATIVITY Another useful quantity is the acceleration@®f given by
One of the most popular reformulations of general rela- a*=n"V,n*=3V#[InN], (6)

tivity when tackling numerical problems is thet3 formu-
lation, a particular form of which is the Arnowitt-Deser- which allows for the lapse interpretation of the acceleration
Misner (ADM) formalism[46]. We shall not enter into the potential forOg [48].

details of the derivation of the equatio(see Refs[47-50) The orthogonal decomposition of the energy-momentum
but rather discuss the general idea in order to fix the notatensor in components tangent and orthogona tdeads to
tions. 48

The main idea is as follows: under general assumptiong ]
(see[47,49 and references therein for detaila globally THY'=S*"+J*n"+n*J"+En*n”. (7)
hyperbolic spacetimel\(l“,gw) can be foliated by a family
of space-like hypersurfaces, (Cauchy surfacésEach hy- The tensoS*” is symmetric and corresponds to tiheee-

persurface represents a Riemannian sub-manifid,ig;) ~ energy-momentum tensal* is thethree-momentum density
endowed by arinduced metric |} (the three-metric It is ~ Vector and E is the total energy densityneasured by the
then assumed a local coordinate systepi'] for the space- Eulerian observeOg. Both $*” and J* are orthogonal to
time, the spatial partx) represents a local coordinate sys- n*. For the specific applications considered hé&€, will be
tem for 3,, while t is a global time function that param- the total energy-momentum tensor of matter which can be
etrizesS,. The embedding oF, in spacetime is completed composed by the contribution of different types of sources:
by theextrinsic curvatureof %;. This is defined by
1 TH=2 T ®
|
K,uv:: - E‘Cnh,uvi (1)
This means that
where £,, stands for the Lie derivative along the nornmi
toX; andh,,:=g,,+n,n,. The vector fielch* is time-like _ _ u . v
(n“nﬂ=—1ﬂ) ang theﬂconvention used for its components E_Z Ei ‘]M_Z i ¥ _Z S ©)
with respect to the coordinate base adapted to the spacetime
foliation is as follows: The projection of Einstein equatior®®,,=47Gy(2T,,
i —T49,,) in the directions tangent and orthogonaltpfol-
n#=(N,N"). 2 lowed by the use of the Gauss-Codazzi-Mainardi equations

This convention means that* points towards thduture leads to the 31 form of Einstein equations:

Sincen* is a unit time-like vector, it is customary to inter- 3R+ K2—K; Kl = 16mG,E (10)
pret n* as the four-velocity of the so-called Eulerian ob- ' ’

serverOg. ThescalarquantityN (the lapse functionrepre-  known as the Hamiltonian constraint,

sents thus the rate at whichg sees the flow of its proper-

time as compared with the intervals between two SVIK{' = 3ViK=87G,yJ;, (12)
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known as theanomentum constrairgquations. On the other hand, the projection of E46) on X, leads
Finally, thedynamicEinstein equations read to the momentum conservation equation,
aK + NG K +K ' gN' = K'aN'+ VIV N 3 d'+N'9 3+ PN+ NV ,S)
— R N=NKK;' =NKJ'=(,8'+E,8)VN-3FN, (19
=47GoN[(S—E) 5~ 251, (12 where
whereS=§ is the trace 05**, and all the quantities written 3F=hi Ft=—NF'+hyFl. (20

with a “3” index refer to those computed with the three-
metrich;; . Moreover, under the-81 formalism tensor quan-

- . . Tetrads
tities tangent toX, use the three-metric to raise and lower
their spatial indices. Equatiortd) and(12) are the set of the In many applications the use of tetrad components of ten-
Cauchy-initial-data evolution equations for the gravitationalsors(hereafter physical componep@re better adapted to a
field subject to the constraints Eq4.0) and (11). problem than the coordinate components. This will be the
An evolution equation for the tradé is obtained by tak- case when writing the equations of relativistic transport for
ing the trace in Eq(12): the radiated flow and the equations of motion for the matter.
In the context of the &1 formalism the tetrad used here
aK+N'9,K+ SAN—N(PR+K?) is the local tetrad of the Eulerian observer which is given by

{n*,e};)}, that is, by the time-like vector normal & and by
a triad on3,. The best choice for a triad("’ on 3 will
depend on the particular coordinates used on the hypersur-
face,; (see Sec. VI for the case of spherical symmetry

In covariant notation a tetrad is given by

— 471Gy N[S—3E] (13)

where ®A stands for the Laplacian operator compatible with
This can be simplified by using E¢L0) to give

K+ N'"g K+ 3AN—NK”KIJ:47TGON[S+ E]. (19 e(m:qu%’ (22)
In addition to the gravitational field equations, there are
the matter equations where g/ 9x” denotes the coordinate basis of the spacetime,
v T 15 a_ndq(”ﬂ) are thetetrgd coefficientshat allow the normaliza-
who T tion. For instance, it turns thaf; =n*.

which according to Eqe8), yields The inverse relationship of Eq21) is given by

vV, Th'=—F", (16) 9 _ e, 22
ax®

whereT{" is the energy-momentum tensor of certain fields
that are collectively labeled by and F,:=V,T5¢ are the where the coefficients!”) are related tag(,) by the com-
“forces” exerted by the external fielddields other thany).  pleteness relations{ g/, = 5t3) , ande{“qp, = 8.
For instance, when considering a total energy-momentum A tetrad is not uniquely defined. The Lorentz invariance
tensor given by the combination of a perfect-fluid and a ra-SQ(3,1) leaves the freedom on the choice of the six param-
diated flow of particles: eters that rotate and boost frames. As mentioned, a conve-

nient choice is as follows:

TH=TEL TR (17) .
el :=—elINI, (23)
then T4"=Tgg and TL=TR"; thus the energy-momentum
tensor of the perfect-fluid alone will not conserve by sepa- ei(t) :=0, (24)
rate; F, will represent the “forces” of the radiated flow act-
ing on the perfect fluid in form o€ollisions 0=
! ) e’=N, (25
The energy-momentum conservation equati¢b® can
be written in 3+1 form as well. The projection of Eq16) i :ei(l)e](I)_ (26)

alongn* leads to the energy conservation equation,
The inverse relations are

E,+N'g,E 13V N2J!
dE,+ N9, ¢+N 1(N“J,) i Ni
i An= N (27)
Explicitly n,F”=—NZF". 93, =0, (28)
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qu): N~1, (29 quires the Christoffel symbols, these can be avoided by using
the representation of the RRC in terms of #taucture con-
hil=qf,al,, (30  stants[50-52. o . .
Although the 3+1 Einstein equations can be written fol-
hereei(')qb): 5}e|(i)q'(j)= 58)) ] lowing a tetrad approackb0], for my purposes this will not

This choice of a tetrad is compatible with the 3 decom- b€ necessary and thus | shall not pursue the issue here.
position of the four-metri¢3), so that
IIl. PERFECT FLUIDS WITH SOURCES

ds?=el@elP dx“dx”, 31 o o o .
w S M @)B) @D For the specific applications | have in mind, a combina-

with e(va) given by Eqs(23)—(26) and 7. stands for the tion of a perfect-fluid and a radiated flow will be considered.

Minkowski metric. Then in Eq.(17) | assume

Trivial Lorentz transformations of the chosen tetrad re-
lates the Eulerian observer with other possible frames.

Finally, the transformation law for the components of ten-For the moment the form of the radiating pa” is not
sors tangent t&, from the coordinate base to the triad is as gpecified. This will be treated in detail in Sec. IV.

Tee=(p+p)uu’+pg. (39)

follows: The corresponding-81 matter variables of the fluid are
NO=efN', (32 Epe=(p+P)T—P, (40
NORLIGUE (33) 3= (Epet-p)2u ), (41)
K(j)(i)=e|“’QZ')Km', (34) SI(Dil)Z(j):(EPF+ p)su(i)su(i)+ 5(i)(J')p, (42)
S(j)(i)=e|(i)q??)8m'. (35 Spe=(Eppt p)(PUM)?+3p, (43
The inverse relationships are obtained from above in the ob- [:=—n,ur=ul=[1-(U0)?]*7 (44)

vious way. The triad indicef§.e., spatial indices within ()" ]
are raised and lowered Witﬁ(j)(') (i.e., the triad-covariant
and triad-contravariant components of three-tensors are iden- u® el 1

k R : |

tical to each otheér Four-tensor components transform in a U= —=—(V'-NH=—(vl-NO), (45
similar way using the four-dimensional tetrad coefficients I N N

and 7,y (7)) to lower (raisg indices.

The use of the tetrad formalism will be useful to recast the
3+1 matter equations as well as the relativistic Boltzmann
equation(see Sec. IYin a useful manner. For instance, Eq.
(18) reads

where

Vvi=ulut. (46)

The equation for conservation of enern@6) applied to a
perfect fluid with sources then reafs0,52—-54

IE+ Vol (E+p)*UD]+(E+p)[2°U0ay,

3 i i)3
— SOK,.\,=—FO (36) Q1))
& (1) ' ®
=Tk - (47
wheredy=n*d, .

On the other hand, the momentum conservation equation On the other hand, the momentum conservation equation

(19 can be written as (37) applied to a perfect-fluid with sources can be written as
_ o o o . a Euler equation for the velocity field. This read0,52—
I + 2V SYP DV +[SPD + E 60 D13y - 30K 54],
+IPOF— K =—F0. @7 9 UD+2u0Ry, 200

I remind that the covariant-derivative components with _ 1 [350p+3UMg.p]
respect to a tetrad employs the four-Ricci rotation coeffi- Epetp P Ol
cients(RRC) as a connection. RRC are defined as follows: 30 1() 3¢ 1(1) 31 10)
—ag)+ U U (ag) — "UT K gy ))
O 5 =e"a( V.0l = Apel (950( + Aty ILo)- | _

(39) =3UOOF 0y K+

3 ) £ _ ()
EPF+p( U fR FR)r

The three-RRC have an identical expression by restricting (48)
the above definition to pure spatial indices and using the
three-covariant derivative. While the above definition re-where
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—3
o= ol 9 T8~ [ pepFact p)aP, 53
are the physical components of E). This Euler equation
is the version in physical componerwith the extra dissi- wheredP is the invariant volume of the momenta space on
pative termsF ) of Eq. (2.29 of Ref.[54] (see also Ref. shell[57]:
[55]).
Other formulations of general relativistic hydrodynamics dP=—Nh dg_p (54)
that exploit the hyperbolic character of the equations have p;
been analyzed recent(gee Ref[56] for a review. Some of .
them allow one to handle discontinuous solutions by the us#here d°p:=dp'dp°dp° represents a coordinate three-
of schemes based on high resolution shock capturing instea@lume element ant is the determinant of the three-metric.
of introducing an artificial viscosity. These formulations are ~ The distribution functiorf is related to the dimension-
specially useful in the study of phenomena that lead to largéess distribution functior-g by
density gradients like in type Il supernova.

Or —

Fr=——Fnr, (55)
R g3

IV. RELATIVISTIC TRANSPORT THEORY
The aim is to study the phenomenon of relativistic ransy a6 ¢ is the statistical weight of the particles of the
port of massive and massless particlasreafter radiation specie R(e.g.,gr=1,2 for neutrinos and photons, respec-
within a dense medium. The formalism developed bytively) PIRT '
Lindquist[57] is foIIoweq closely, .bUt the details Wi.” not be_ As in the case of the perfect fluid, it is useful to refer the
repeated here. The rad|ateq partples of the specie R WIIIcomponents of four-momenta to a tetrad. In the context of
be treated classically as point particles except when interac

) i : ; ; . the 3+1 formalism we have
ing with the dense medium. The interactions and its quantum

mechanical effects will be ultimately translated as emission e:=pW=Npt, (56)
rates and opacity functions. The particles will be character-
ized thus by a four-momentum p(i):el(i)(pl_ p'ND), (57)
pM:ZL)\“, (50 with the inverse relationships given by

p'=e/N, (58)
whered\ corresponds to an affine parameffar massless N
part!cles or to the proper-time per mass urifor massive pi:eWJrql(l)p(l)’ (59
particles.

According to this formalism, one postulates the existence

of a scalar functiorFr(x*,p*) (the invariant distributon ~ Where p® are the physical spatial components of the four-
function for the specie Rwhich is a function from the phase Mmomentum(i.e., the spatial physical components of the pro-

. R H .3 e v H i
space coordinatesxt,p”) to the reals. Actually, since we I€ction of p* onto X, : °p#:=h}'p"). The ratiop!/e corre-

will be interested in particles satisfying the mass shell consSponds to the local velocity of particles measured’hy.
dition Introducing the magnitude of the three-momentum as

pz‘zp(i)P(i), (60)

~ it is easy to see that E¢51) simply becomes
wherem=0,1 for massless or massive particles, respectively,
Fr will be a function defined on theeducedphase-space. e’=p%+ m2. (61
For instance, the setP:={(x*,p*):x*e M4,p“eT)'}"4,
9,,P“p"<0,p* future directedl is the one-particle phase-
space(or future-directedtangent bundleB) for particles of
arbitrary (real-valued massesm, and the reduced phase-

9,,p"p’=—m, (51)

Heree is the energy(per mass-unit in the case of massive
particle3 as measured by the Eulerian observer. Therefore,
from Eq. (54), one obtains,

space(or sphere bund)eP,, (the mass shellcorresponds to 4
the subspace dP with tangent vectorp# of fixed length(it dp= \/ﬁﬁpr (62)
has dimension sevén poyer’N'
The invariant distribution function so introduced will be e 1+ EN
such that the number density four-vector and the energy-
momentum tensor of the particles are, respectiy8Hj, where we used p,=e{*p_,,=Npy—pyel'N'=—Ne

_ (OINL
P& N
. When changing variables in momentum space by using
B—
IR f PeFR(X",p)dP, (52 Egs.(59) and(61) a straightforward manipulation leads to

044013-6



DYNAMICS OF SPHERICALLY SYMMETRLC . .. PHYSICAL REVIEW D 66, 044013 (2002

s dp(l)d p(z)d p(3) N p(l)ei(l)Ni
B Jh eN |/’

where the relationship qef(|)]= 1/\Jh was used. Finally

(63 ng::—vﬂjg:_J U,LDMFR(X)‘,D()‘))CIP- (76)

Therefore, the number of particleiNgy with momenta be-
tweenp* and p“+dp* crossing the volume elemedl of

dp®dp@dp® the space-like hypersurfaces orthogonabtoand which is
dP= B — (64)  centered at some point* of spacetime is
. - . . = N Ny —
which has exactly the same form as in Minkowski spacetime. dNg=Fr(x*,p"")(—v,p*)dVdP. (77)

The use of physical spherical variables in momentu

space leads to mI'he quantity dW=(—v ,p*)dVd\ represents the four-

volume spanned by the flow of particlésorld lineg cross-
dP=p2dpdQ,/e=pded),. (65  ing dV, which is given by the element of hypersurfad¥

with normalv# and the particle’s infinitesimal displacement
Indeed, this is a useful expression when dealing with spherierthogonal todV given bydl=v ,p*“d\ [57]. The quantity

cal symmetry. (—v,p*)dV is in fact the correct Lorentz invariant four-
The use of tetrad components allows us to write E§28.  volume element. From the relativistic form of Liouville’'s
and(53) as follows: theorem(see Ref[57] for the detail3 dWdPremains invari-
ant along a given set of trajectories. Therefore, the change in
S — (1) X (V) the number of world lines withidlWdP is proportional to

[ oF &

| X

Y Y JF
TRO= f PR pM)dP.  (67) 8(dNg) dxa+(9—de“]< ~v,p*)dVdP
pa

Therefore, the correspondingtd matter variables are i
dFr ,  dp* dFg

= p“+ —— —|[dWdP (78
ER=f e?Fr(x*,p™M)dP, (68) S d\ ope
The evolution forp* will be thus governed by the equations
Jg):f epMFER(x*, p™M)dP, (69)  of motion of individual particles:
dﬂ—— Tp'TH + Fhyget Fh (79
S(F\I,)(J):J' p(l)p(J)FR(XA,p()\))dP, (70) d)\ - p p ov fields coll *
This equation shows that the trajectory of the particles
S.= 2E_(x*, pM))d P, 71 depends olfl) the spacetime curvatur€) the forces arising
R f PFROCP) 71 from the interaction of the particles with fundamental fields

other than the gravitational one, af®) the interaction with

According to Eq.(9) the total 3+1 matter variables are e particles that can be represented by “collisions.” For

E=Epet Eg, (72) my purposes, | WiII.consider t_hﬂiﬁ?ms: 0. Thgt is_ to say, the
only fundamental field | consider is the gravitational one. All
JO =304 30 73 other interactions like the weak onés the case of neutri-
PFTR nos will be treated phenomenologically as collision terms,
S(i)(j)zsg)(j)+sg)(j) 74 and therefore the set of equations will not include gauge-
F ' fields, but rather involve macroscopic quantities that charac-
S=Spet Sk (75) terize the medium and which are obtained from field theory

in a similar fashion as one obtains the equation of state of

where | remind that the quantities labeled with “PF” are matter. _
given by Egs.(40)—(43). It is understood in these expres- ~ The relativistic Boltzmann equatioiiRBE) then reads,
sions that the sum of the different quantities extends to all

; ; dF
the species R considered. ‘e _| R
LFg ax )coII, (80
A. The Boltzmann equation in curved spacetimes
The “macroscopic” four-current density number of par- where
ticles of the specie R was defined by Ef2). The number P P
density of particles as measured in the local frame of an Li=pt— —p*pTH —, (81)
observerO, (with four-velocity v*) is G " opH
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is the relativistic Liouville operator often written by the _ 1 a(i)N(j) | N(m .
fuzzy notationp*D/dx® (the directional derivative of g 023(1):—§<— N Tdmy del”
along the phase flow and @Fr/dN)cq=

— FR ol IF R Ip®) represents collectively the scattering, ab- | ) )

sorption, and emission processes between the particles of the +agdmer — (=),

specie R and the medium. In the absence of collisions, the

distribution function remain constant along the particle’s 02:%(1):3@8“)_

path(i.e., along the particle’s geodesicén the language of

differential ~geometry, the operator D/dx*=d/dx"*  Here *0{} are the 3-Ricci rotation coefficients, i.e., the
—p*I';,(a/dp*) corresponds to a coordinate basis vector ofRRC associated to the local basis frame Bp and 4
the horizontal part of the tangent bundle over the spacetim&(1/N)((9/gt)+(N(i)/N)a(i)_

M4 [57]. As mentioned before, the distribution function will In this way we obtain

be defined only on the reduced phase spBAge(the mass-

shell, that is, it will be defined only on thephere bundle ) (i) d
(the subbundle of tangent vectors of fixed lengthne can Lpy=(ep”ap—p™p K(i)(i))%
incorporate this restriction in the Liouville operator by treat- , o _ ,
ing the spatial parp' of the four-momenta as independent +(eza(')+ep(')OEB(j)—ep(')K(j)(')
components. Then
+ p(')p(j)soﬂg(j))%- (86)
IFR p

IFR .
D/dX%) ms= —pM —.
( )ms X a\ 0"p|

(82)
Finally, the 3+1 decomposition of Eq83) is

B. Tetrad representation and the 3+1 RBE - i )i J
. i _ edy+p" o)~ (epag —pMpWK )5
It will be convenient to use tetrad components to rewrite

the RBE. By employing the tetrad formalism it is easy to _(e2aM N  _apdki)
show that the RBE reads (e?al’+ep™ Oy —ep Ky

i j |
+pp@ 20 )

dFg
FR<xa,p<°>>=(—) :
dx coll

J J -
(gt . — _ B pla) (9 a (o) I
(p Ula) X pp O(ﬁ)(a)ap(ﬁ) Fr(x*,p*”) apt"
87)
_[dFg (
), (83 Moreover, the properties of RRC impRO &} y=0 (no sum
o convention. Therefore the above equation can be further

Let us consider Eq83), and splitit in terms of temporal and SImEp(;ILfJI;ijén(87) is the 3+1 version of the RBE, here written
spatial contributions. First we define, in terms of physical components. The mass shell condition

e?=p¥p;,+m? can be imposed on the RBE by consider-
) i ing, for instancep() as independent variables. In that case
(d)(@) e Fris to be considered as though it does not depend explicitly

one, i.e.,dFg/de=0. Alternatively, the use of spherical-like

_ J variables in momentum spacsee Sec. VI Cwill allow us
+ p(b)p(a)OEQ)(a)ﬁ, (84 to considere as the independent variable apt=p@p; as
p the dependent one.

Lp.:p(b)p(a)oggg(a) = p(b)p(a)o

op@

where the notatiore=p®) was used. The properties of the
RRC and some straightforward calculations show a useful

relationship between the four-RRC and the physical compo- AS | stressed before, particles may be submitted to colli-
nents of 31 variables. For instance: sional forces arising from the interacting medidire., in the

case of neutrinos these forces come from the weak interac-
tion with baryon$. Let me remind that the collision integral
as conceived originally by Boltzmann assumes that the inter-
acting medium has a known distribution function. That is,

C. Collisions

0 _ () _
Om=0wmm=2x:

0N —o) — k. the distribution function of the medium is a data of the prob-
(O10)] (M (OION lem.
In the present case, the interacting medium is to be con-
O =0 =0 (no summation onu), sidered not as particles but rather as a fluid field, namely a

(85 perfect fluid. Thus, for my purpose, it will be more conve-
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nient to characterize the collision integral in terms of scalawhere
functions as it is usual in transport theory. In this way colli-

sions will be represented macroscopically by the so-called r -3y0r
invariant opacity ¢x*,p*) and the invariant emissivit (w)Py — , 2
Y(Xl’-’pﬁ-)_ p y C( p ) Yy (A(V) ) —3U(I)F 52}))+3U(i)3u(j)rl;l ' (96)
| then assume that the collision integral takes the follow-
ing form: with U given by Eq.(45) andT" by Eq.(44), then for the
dFg time components,
N o e,=T(e—UMp0)=el(1-3UDy®)
In terms of quantities measured in the same frame one can =el'(1—|]2U®]] {lo®]|cod 6R)), (97)
write
where v(:=p()/e represents the velocity of the particles
n(x*,p*) 7' (xX'#*p'*) with respect to the Eulerian frame. In the last formula one
Y= e? - e'? ' (89) recognizes the well known formula for the energy shift due

to the relative motion of observers. The type of skiéd or

here » and e are the matter emissivity and the particle en-blue) will depend on the angl@r between the propagation
ergy, respectively, both measured in the same frame. In theector of the particles ) and the velocity of the fluidu®

same way, one can introduce the matter Opacity as (i.e., blueshift or redshift if the fluid is approaching or reced-
ing, respectively, from the Eulerian obserkerherefore the
o=ex(x*,p*)=e’'x'(x"#,p"*), (90)  transformation formula between opacities yields
where x~1/, | being the mean free path of the particle in X:Xpr(1—||3U(i)|| |lv®]|cog 6r)). (98
the corresponding frame.
The collision term takes then the useful form In the case of massless partic/és?||=1. In a similar way

one can obtain the transformation formulas for the absorp-

91) tion coefficients and the emissivities.

(dFR) (77 .
-/ € =z XxFr
dr coll e3

The opacityy and the absorption coefficiertare related by

D. Conservation equations for the radiated flow

The particle number current and the energy-momentum
X=kKn, (92 tensor of the radiated particles were introduced by E@.
and (53), respectively. For instance, in the case of perfect
wheren is the proper number density of particles that com-quantum gases in thermal equilibriuire., Fermi and Bose
poses the mediunte.g., the baryon densitysuch than:=  gase$ the above definitions allow one to recover the usual
—j*u, wherej* is the four-current of baryons. macroscopic expressions for the energy density, density
In this way, an alternative form of the collision integral is number, and pressure parametrized by the temperature, par-
ticle mass, and chemical potential of the species as measured
(di?) = koN(S—Fp) (93) in the local frame.
dN o € R When collisions are present, both the particle number and
the energy-momentum tensor of the particles will not con-
wherek.,=ex, andS=Y/o is usually referred to as thef-  serve alone since there will be an exchange of energy and
fectivesource function. momentum with the interacting dense fluid. Thus we can
It is to be emphasized that quantities measured in differenéxpect that the conservation equations derived from Eqgs.
frames are related to each other via the invariant quantitie2) and (53) will have sources arising from the collision
and Lorentz transformations, for instance, the relationshipntegral:
between the opacities measured in the Eulerian frame and
those of the proper frame of the fluid are given, according to v .V_f dia) dp 99)
Eq. (90), by AR ) A,

€X=€pXp (94 and

where quantities in the left-hand sidés) refer to the Eule-

rian frame, while the quantities in the right-hand sides) v T,w:f pﬂ(ﬁ) dp. (100
refer to the proper frame of the fluid. Since physical compo- VR dN /o

nents of four vectors in both frames are related by a Lorentz

transformation, for instance, Then we write

Pl = A (M p», (95) V,ik=TRr, (10D
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V,TE = — FE=nwk, (102 dU=6dS—pdV+ u"dNFR, (108

v

where where® and uR are the temperature and the chemical po-
tential of the specie R of the particles composing the fluid,
respectively, defined by

Rei= J’ Kk(X#,pF)[S(xH, p*) — Fr(x*,p*)]dP,

(103 _[o
@—( 0S)nR' (109
w’é:=f PH K (XK, pH)[S(xH,p*) — Fr(x*,p*) ]dP. P
| 2P
(104 “R_(anR) . (110

One can define themean emissivity [energy/(volume
Xtime)] in the fluid frame as Using these definitions, E¢L08) takes the following form in
terms of densitized quantitig¢9]:

D:=—u,V,TR"=—nu,w". (105
p=0s+ uRng—p. (112

Since | have been using quantities measured in the Eulerian
frame, in the above expressions one has to use the corréhis equation is often referred to as the compatibility ther-
sponding quantities with respect to the same observemodynamic condition between Eq4.06) and(107) [9].
Namely, the particle number density: as measured by the The conservation equation for the baryon number reads
Eulerian observer is related to the proper number density of
the perfect fluidn by ne=nI". The same considerations ap-
ply for the remaining collision variables. For instance, the

emlS?tI)Vl_ty measured in the Eulerian framig=—n,nW*  \here | remind thaf*=nu,, is the density current of bary-
=nw'" is related to the proper emissiviy=—u,nW* by  ong andn the proper baryon number density.
D=TDg(1- UMW) where *W® :=wO/w0. This equation can be written explicitly as an evolution
equation for the number density:=—n , j*=nI" measured
V. THERMODYNAMICS by the Eulerian observer as follows:

In this section the thermodynamic description of the dense
matter with which the radiative particles interact will be pre- (%(\/ﬁnE) + ﬁi[\/ﬁnEVi]=0, (113
sented taking into account the mean quantities introduced in .
the previous section. Such a description is performed in thevherel” andV' are given by Eq944) and(46), respectively.
proper frame of the fluid. | then assume that the EOS of théntroducing the physical components of the fluid velocity
dense matte(i.e., the perfect fluiflis given in parametrized field given by Eq.(45), | have the alternative expression,
form as follows:

V,j#=0, (112

a(Vhng)+ [ Vhng(N'+ Ngj;, U0 ]=0. (114

p=p(S,Ny,....Ny), (106 _ _
The equation of conservation of the baryon number leads
to the conserved total baryon number given by

pP=p(S,Ny, ... N, (107
wheres is the entropy density and,, (1=M=m) is the _J’ iy 14243
number density of particles of the sped (e.g., baryons N= . J n#\/ﬁdx dx“dx (119
and the different lepton flavorsall of them measured in the
fluid frame. For instance, in the case of a dense matter in
hydrostatic equilibrium composed by a mixture of neutrons, _ 142423
protons, and electrons, the electron density is obtained di- = Etnl“\/ﬁdx dxdx. (116

rectly from the proper baryon densityby demanding charge

neutrality and chemical equilibrium,= u,+ .. This last  The integral has compact support corresponding to the vol-
condition arising from the equilibrium of the nuclear reac-ume enveloped by the star surface.
tions:n=p+e" [9]. In that case the equation of state de- |n a similar way, the equation for entropy conservation is

pends om solely. obtained from
Now, Egs.(106) and (107) are not independent of each

other but linked through the first principle of thermodynam-
ics u,V, T#"=u,V,(Tee+ TR") =0. (117
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The use of Eq(39) followed by the definitions Eq4109),
(110, and(111), yields

1
V,(su)=— (,uRRRJr D), (118
where
'RR==VM(nRU"‘) (119)
is the rate of particle production and | remind that
D:=—u,V,TR"=u,V,Tp¢ (120

PHYSICAL REVIEW D 66, 044013 (2002

In order to close the whole system of equations presented
so far one needs the input of particle physics. That is, the
EOS for nuclear matter, the rate of particle production, and
the opacitiegsee Ref[2] for a review. In the case of neu-
trinos emitted by nuclear matter out of beta equilibrium via
direct and inversg8 processes during neutron-star collapse,
the rate of particle production, the emissivities, and the
opacities can be given in terms of rather simple formulas
[36,58 (see also Ref[59] for neutrino emissivities from
quark matter in3-equilibrium within neutron stars and Ref.
[60] for neutrino emission from hot and dense atmospbheres
For the case of reaction rates and opacities in Type Il super-
novae see, for instance, R¢L5].

In summary, we can briefly list the variables to be evolved

in time: (@) Gravitational variablesh;; ,K ji are to be evolved

is the particle’s mean emissivity in the fluid frame. Thereforefrom Egs.(4) and (12), respectively, subject to the initial-
the source for entropy generation in a perfect fluid is fromvalue constraints Eqg10) and (11); (b) Perfect-fluid vari-

the particle productior(e.g., neutrinos Equation (119 is
completely equivalent to Eq101) which is given in terms of
the distribution function.

One can define the entropy per baryers/n and use
Egs.(112) and(118) to obtain

1
UV, o=~ @(MRRRJF D). (1212
Explicitly this provides an evolution equation for.
i N R
dio+V z?iUZ—m(,u, R+ D). (122

ables:Eprand U (or J8)) are evolved from Eqg47) and
(48) [or from Eq.(37) for the perfect-fluid cade (c) Radia-
tion variablesFx(t,x,E,p") is evolved from Eq(87) with
the collisional term given, for instance, by E(3). The
remaining observables are computed by integration from
Egs. (68)—(70). Another alternative is to evolve the mean
radiative variablegtogether with a closure relationship be-
tween them: e.g., the diffusion approximationstead of the
distribution function itselfsee Eqs(192) and (193 for the
spherically symmetric cage(d) Thermodynamic variables:
Ng, o, andxg are to be evolved from Eq$114), (123, and
(126), respectively.

The particle-physics input for the above system of evolu-
tion equations is the EOS given by Eq$06) and(107) the
rate of particle productiofRg [see Eq(119)], and the opac-

In the case of a neutron-star collapse with matter out ofty and source functioisee Eq.(93)]. The particular form

B-equilibrium an evolution equation for the temperat@e
can be obtained from Eq122) [36].

Moreover, using Eqs44), (45), and the tetrad approach

of Sec. Il, Eq.(12]) takes the alternative form;

_ 1
3 — R
n“d,0+ 20V 0= - —=o (u"Re+ D). (123

for these depends on the physical problem to be treated.

VI. SPHERICAL SYMMETRY

In this and the following sections | will focus on spheri-
cally symmetric spacetimes. The most general line-element
for such spacetimes according to th¢ Bdecomposition of
the metric Eq.(3) is

In the same way, one can introduce the particle number per

baryonxg=ng/n and write Eq.(119) as

1

UMVMXRZERR’ (124)

which provides an evolution equation feg:

i N
8tXR+V aiXR:ﬁRR, (125)
or alternatively,

~9 xgt+ U0 1 R 126
n 0”#XR ﬁ(I)XR_ﬁ R ( )

ds?= — (N2—N'N,)dt?— 2N, dtdr+ A2dr2

+B?(r2d6?+r?sirf6d ¢?), (127
where all the metric potentials are functions of the coordi-
natesr andt solely. The three-metri;; is easily read-off
from Eq. (127).

On the other hand, the triad coefficients are

ej(i)zdiag[A(t,r),rB(t,r),r sin#B(t,r)]. (128
The inverse coefficientq‘(j) can be obtained trivially from
Eq. (128).

The extrinsic curvature can be computed from E4j. |
find [61]
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A
—N(ﬁtA+arN(r)) 0 0
rB2(N® oy rN(® 9B
(Ky)= ° "N A TBMBTT AR 0 '
0 0 rB2sir(6) N(’)Jrr& +rN(r)arB
N A B AB
(129
1({aA NGA ;
i 0 0 1{éB N4B N 0
(=W ™)= NB B T ’
0 1 &tB+Nr¢9rB+N’
"N\B B 1
1({dA N 0 0
NLA T A
1(9,B NOgB NO
= 0 N FJF AB + ™y 0 , (130
0 0 1/9B NOgB NO
NIB TTAB A

where the index of Eq(130) was raised witth!l from Eq.

(129.
The three-scalar of curvature is given by
s 2 A_Z_ 2 [20,A 2(3,B)(4,A)
r?A%| B? AZ\ TA BA
(3,B)2 64,B 253B
~ g2 B B (131
A. The 3+1 Einstein equations
It is useful to introduce the new variables,
v:=In[N], (132
a:=In[A], (133
B:=In[B]. (139
The Hamiltonian constraint Eq10) reads
1(A? 20,
o 2 () (0) (6)y2 r
r2(82 1 +A%2K 1K () 7+ (K )2+ ;
60,8
——— + 20,a)(8,8) = 3(4,B)° 247, B
=8mGyEA?, (139

where | have used the fact that the nondiagonal components
of K" are null and thak ,?=K ¥ [cf. Eq.(130].

The radial component of the momentum constraints Eq.
(112), reads

1
(K(r)(r)_ K(b‘)(a)) T +dB|— arK(o)(a):47TG0AJ(r) .
(136
Or in terms of the trac,
(r) (6) 1 (r)

The angular components of E¢L1) and the spherical
symmetry lead to the condition,=0=J, which implies
the absence of “angular currents.”

The dynamical equations for the nondiagonal components
of Eq. (12), i.e., for K »", 0K ", 3K, ? with the
fact thatK , V=K, =K, ?=0 [cf. Eq.(130)], leads,
respectively, to the conditions th&, " =S, =S,
=0. Moreover, taking into account the fact this,(”
=K»?, the dynamical equations fogK ,” and
K (5)'? [see Eq.(12)], lead to the conditionS, "
=S4'” corresponding to an “isotropic” energy-momentum
tensor which is compatible with the hypothesis of a space-
time with spherical symmetry. In this way, the only two non-
trivial dynamical equations are
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N K, N (2.0 49 with V":=u'/u'. The spherical symmetry implies’=0
K+ :A O - NKK ) — —2( 4B =u? and therefore) () =0=U(?,
A r r Note that
+ 2(ara><arﬁ>—2(a,ﬂ>2—za?rﬂ) peStry = 2U IS+ p. (148
N_, Equation(47) reads
+ E[arrV+(ﬁrv)2_(ara)(‘9rV)]
N
_ dEppt N'd,Epet —— 3, (AB?r2J;
=47GoN(— Sy " +25,) "~ E), (139 Epr Pt g2 r PP
(r) (6) - (r) (r) (6) (6)
f9tK(9)(0)+N D3K —NKK @ =NCpeSy) Ky '+ 2S5 K + EpK)
A —235,9,N— N2F%,. (149
N|1 A? dra rﬂ
o . + (9, @)(3,B) Or in terms ofJ,=AJ",
N o v N 2,2
—2(8,B)*= 3% B|+ E{((%ﬁ)(ﬁrvH T} HEppt N9, EPF+AB d,(B°r J(r))
= 47GoN(S{} - ). (139 =N(prSi K+ 26659 'K ()" + Epe)
From Eq.(14) the evolution equation for the trace Kf; is A‘](')a N—N2FL,. (150
N g, K

aK+

N
_ ()2 (0274 | 52
NL(K(ry™ )7+ 2(K ) 1+ A2 IV Using Egs.(144), (147), and(148) the latter equation can be

written in conservative form as

,
A

20, v
+(0,v)2— (3, )(d,v) +2(3,B)(dyv) + T} L
atEpFJr 3, (r>V'Epp

=47GoN(S+E), (140

where we recognize the three-covariant Laplace operator in '

spherical coordinates of the slicBs [see Eq(127)]: :EPF( NK+=

1 N
+(9rNr> —ﬁﬁr( I’ZKSU(r)p)

3 17, 20,v 311(N A k(N
AV:E dp v+ T—(ﬁra)(&rv)-i-Z(&r,B)(&rv) . [(9 v+dra+20, 8- UV AK]

(14D +NKp—N2FL. (151

B. Matter equations .
q The momentum conservation EJ.9) reads

In the present case of a perfect fluid in spherical symme-

try we have AP+ N, 3P+ 3P0, N"+ N( 3V, oS
Epr=(p+p)I'—p, (142 =NKI = (pS,"+Eppd,N—3FFN. (152
PFS(r)(r):(EPF+ p)(PUM)Z+p, (143 Explicitly
(6) — ()=
PFS(6) Sie) P, (144 0 IPF+ N9, 37+ IPF9 N + N, PFS(r)(r)
J?r';:(EPF—'— p) U, (149 1 9,B
+2N( PFS(r)(r)_ PFS(e)( )) t 5
r=[1-(3u™)2]~12 (146)
=—(peS) " +Eppa:N+N JFF(K(,)(”+ 2K 5"
where
—3FFN. (153
3u(r):é(VF_Nr): i(\/(r)_N(f)) (147
N N ' Or in terms ofJ,, one has
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A NO N IpU M+ 303,83y
S +J5§T+TarJf’r§ —2,N®

1
=~ 5[ 3Pt Ugp]

= Eprtp

N 2N @1, B
+ 2 0epeSin+ - (peS = peS(p) )| T+
A r B 1
N T2 UKD =a)
== (piSi "+ EpR 5~ TNI (K ()W +2K ()

1
3y =® _ ()
— TN (154 t g (VOFR-FR), (159
When using Eq(130) to replace the time derivative & | where | used the fact that the RRC are antisymmetric so that
find the termsO (). =0=0{ ,, and | remind the explicit ex-
; (1) (r)(r)
pressions
N(f) N .
I+ — o s r? S 1
t(r) (r) r PF (r) ==t~ (159
N N
+2N( s s ())(1 &B)
7 Upr (r) ~ PFY(g) 1
° %9y = 3 (160
— (r) (6)
(S EPF) o I Ko K™ )= "dv- (161

3R
_ N. 1
]:(r) (159 C. The RBE in spherical symmetry

Using Eqgs.(147) and (148, one obtains an equation for ~ The most general four-metric for a spherically symmetric
J(r) in conservative form spacetime is given by Eq127). Then, it is easy to see that

the simplest tetrad choicg,,, associated with Eq127) and
which corresponds to the local tetrad of the Eulerian ob-

1
(9tJ(r)+ Jr(raviIeh) server, reads
190 N N" 9 (162
N € =t o
:K(Jf’ﬁ[ZA(Km““Km“”)— U (G,a+20,p) N ot N ar
190
Al2 &=~ o> 163
—N(FNwaer) —(Epptp)drv—a,p— 3FHA|, O A or (163
(156) 19
®O7 1B 56’ (164
with the alternative form for the rhs,
_ 1 0 16
©4)~ 'Bsing 9’ (165

atJ(r)+ ~ (r2AViIE)
wheredl ax* [with x*=(t,r, 8, ¢)] denote the coordinate ba-
sis.
(r)[ZN(K(r)(r’+ K(ﬁ)(‘”) V'(d,a+20,B) In the Eulerian frame, the spherical symmetry of configu-
ration spacéi.e., spacetimeinduces a symmetry on momen-
2 tum space that can be exploited to simplify the computations.
+N'( dra+ Zarﬁ——) —arN'} It is convenient to define spherical variables on momentum
' space as follows: take a unit vecgy, as the polar axis, i.e.,
N as the symmetry axis on momentum space. Then it is useful
~ AL(Eprtp)drv+dipt SFHALL (157 to introduce new variables, ¢,y in the Eulerian frame as

t— (= (0= gj
Another possibility which has turned out to be very useful in prme P pcosy, P psing cosy.

some numerical studid§,9,36 is the use of the Euler equa- p(@=psinygsiny. (166)
tion for the fluid instead of the equation fdfj. The only

nontrivial component of the Euler equatiof8) in spherical  As mentioned earlier in Sec. '@ is the energy of the radi-
symmetry reads ated particlege.qg., neutrinosin the Eulerian frame ang?
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=p¥pg; ¢ is the angle between the polar axis and the neu- o0 oM —p
. . o) . (t)(r) OI0) r

trino propagation three-vectge'’, and vy is the angle of

rotation arouncey. The above variables are consistent with

the mass shell conditiof6l). For massless particles, then 1
p=e. Under these new variables the RBE3) reads OEP)U):(’)gg(tfDta+NDrN(r),
Jd () _— () — () _ (e
p(a’(e,w,y)Q5a)§—M—p(b)(e, 4, 7)p@(e,1,7) O 0= O =%wn =@
X
N N

XO(d) &B(C) J . (~)_ FR :rAN+DIIB+WDrB1
B} @ gp© | R P)=

d—) 16
dr coll’ ( 7)

o ) O(f) :O(r) :_O(f)) :_O(¢)
where | explicitly stress the dependence of momenta with (0)(0) >~ (£)(4) (6)(r) (4)(r)

respect to the new momenta spherical-like variables

_ _y-1lp-1_
(e,p, ¢,y) represented collectively by. roA D5,
Indeed, the spherical symmetry and the mass shell condi-
tion will be reflected in the RBE by the fact that the distri- ) (%)
bution functionFz depends only on four phase-space coor- Owye=—Owyn=" @COW:
dinates {,r,e,u) or (t,r,p,u) instead of the original eight
(x*,p*) [57,62), whereu:=cosiy . where D:=(1/N) (d/dt) ,D,:=(1/A) (dlor) = 30(r). After
We can now proceed to calculate explicitly the RBE. Theimposing the mass shell condition, the RBEG7) in terms of
only non-null Ricci coefficients arg51] the spherical variables reads expliciffl],
eDFg(t,re u)+ ?JrW)eDrFR(t,r,e,,u)
NGO/ 1 e z
—p? (1= 2| 5 + DB |+ ?Diat (1= p?)D B+ £oD, v+ SoD NG |aFp(tr e, )
N \rA p N
+e(l—u?) E+”N(r) —+D,B8|+u(D ,B—Da)—ED v—EDNO g Frit,r e )= dFr (168
M e N rA r M t t p r N r ut RUG T M d)\ CO”'

The alternative 31 form of the RBE can be computed from E&7) when changing to the spherical variabfg4) in the
momentum space:

pu  NO 2 2 (O 2 (1, M®
eDFR(t,r,e,u)+ ?'f'T eDFr(t,r,e,u) = p —(1—u )K" — uKy +FD,V deFRr(t,r,e,w)
2| P[ L M_k 0y_° dFe
te(l-u) gl Ta T DB+ u(Kiy ™ =Ky )—BDrV duFRtTen)=5| - (169
coll

In normal coordinates wheid" =0, and for massless par- ~ 1 5 1 B B
ticles, Eq.(167) reduces to the relativistic Boltzmann equa-  J;Fr+ —za,(rZVLFRH —ae(psHeFR)+aM(HMFR)
tion derived by Lindquis{57] with the choiceB=R(r)!r. r e
Following Harleston and Vishniaf44], Eq. (169 can be 5
written in “conservative” form which is specially suited for _ NAB (dFR)

coll

—_ 170
numerical solution$45]: e d\ (179
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space in addition to the invariant volume element of momen-

tum space given by Ed65). | have then

where
Fr=AB?Fg(t,r,e,u), (171
Vi = p_N Pr N 172
ol Ale TN (172
N . 2 (6)
He=—L(e)=~N| ~(1- 2K
p
e
— 1K 0+ %D,V , 173
= N|Z =N(1—pu? ! D
Hy= b)) =N(1—p%) ol T4 +D:B
) ,_ &
T (K =Ky )_EDrV : (174

andL stands for the Liouville operator as it appears in the lhs
of Eq. (169). Alternatively, the above equation can be written
as

~ 1 ~ 1 ~ ~
o”tFR-i- r—zé’r(FZVLFR) + E&p( ngpFR) + a/.L(H,LLFR)

B NABZ(dFR) 178
coll,

e \dn
where nowF g=Fx(t,r,p, ) is to be regarded as a function
of p instead ofe and

N 2 (6) 2 (r)
HpZEL(p)=—N — (1=K " — K

+ 2800, (176

A particular gauge choice will only affect the form of the
guantities given by Eqg171)—(174) and(176), and the rhs
of Egs.(170) and(175).

Finally, 1 emphasize that all the momentum variables
which appear in the various forms of the RBE in spherical
symmetry are components with respect to the orthonormal
tetrad carried by the Eulerian observer. Therefore the corre-
sponding quantities in the collision integral are to be referred
to the same observer.

D. Mean radiative variables

In Sec. IV the energy-momentum tensor of particles was
defined in terms of their microscopic four-momenta. How-
ever, one can introduce mean radiative variables which are to
be interpreted as their counterparts of the continuum case.
Such variables are called thmoments of the distribution
function In order to write them explicitly, |1 shall use the
physical components of the energy-momentum tensor of par-
ticles Eq. (67) and the spherical variables in momentum

044013-16

© (1 (2w p?
T [ 7 | ToepRatrp 2 dpdady

o (1 2
=f~ f f p W pMIEL(t,r,eun)
mJ—-1J0

x \Je?—m2dedudy. (177)

The only non-null moments are

Er:=TRW

o - 1
=2wf pZVp2+m2dpf Fr(t,r,p,u)du
0 -1

o _ 1
=27rf~ e? ez—mzdef Fr(t,r,e,u)du,
m -1
(178

] 1
HR:=TS)">=2wf p3dpf pFR(LT e m)du
0 -1

o ~ 1
=2wﬁ e(ez—mz)def wFR(t,reu)du,
m -1
(179
=TI
f:x: p4 1 2
=27 —df Fr(t,r,e,u)d
. ’—p2+ﬁ2 Pl » r( m)du

oo ~ l
=27rf~ (e2—m2)3’2deJ w?FRr(t,r,e,u)du.
m -1

(180)

The tangential pressures are given by

p4
,/p2+|7n2

1
Xf (1_,(L2)FR(t,r,e,,LL)d/-L
-1

oL = T T Wfo

= wﬁc(ez—ﬁwz)”de

1
X jil(l—#Z)FR(t,r,e,M)dM. (181

| note that in the massless case,

;1
pRZE(ER_ PR)- (182
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The corresponding 81 variables are andj{’=0=j{.
" In terms of the above macroscopic variables, the energy-
Jr’=Hg, (183 momentum conservation equation in spherical symmetry Eq.
O (100 reads according to Eq§36) and(37) as follows[61]:
SR = PR, (184

&(t)ER—’_ 3(9(I')HR_ ERK
3%0)(0): Sg/))(@: pﬁ, (185
+2Hg

. 3(9(,)V+i+ 3(9(,),8}
Sr= RS(i)(I):pR+ 2pg. rA

(159 ~(prK{)+2pEK (N =—F, (92
The effective pressure of radiation which can be defined as
p§ﬁ= Sgr/3, turns out to be in the case of massless particles
pgﬁz Er/3, which corresponds precisely to the equation of
state of an ultrarelativistic gas. In EGL.79), Hy is the mean
radiative flux of energy in the radial direction.

1
IyHr* 29()Pr+2 A+f9(r),3 [Pr— PRI

+[PrtEr] 29(yr—Hr(K+K{})=-FF.

It is usual to introduce the so-called variable Eddington (193
factor
Depending on the gauge choice some of the terms within
_ Pr these equations can vanish. Actually such evolution equa-
== E_R (187 tions can be obtained directly from the RBE when multiply-

ing this by the momenta and then integrating in momentum
used to measure the degree of “anisotropy” in the particlespace.
flow. In the case of massless particles5f=1/3 thenpg We emphasize that it is more convenient to calculaie
=pr=ERr/3 which corresponds to a fully isotropic flow. Hr, andpg directly from their definition once the distribu-
Moreover, in the free streaming approximation we have  tion function has been computed, rather than using the above
equations. In any case, such conservation equations can be
Er=J0)=8s00) (188  used to verify the self-consistence of the system. The disad-
vantage of using the system of Eq%92) and (193 for the
and so= =1, which is the case of a highly anisotropic flow moments of the distribution instead of solving the RBE is
(pR 0) with a purely radial flux of radiation. that such a system is undetermin@é., there are more vari-
In the same way, the macroscopic particle number densitgbles than equationsThen a closure relation is needed to
current measured in the Eulerian frame is given by )  remove the ambiguitye.g., the diffusion approximation re-
and it in terms of the spherical variables of momentum spactating Eg and pg).

gives Finally, in spherical symmetry the evolution equations
L 5 (113, (114, (122, (123, (125, and (126) write, respec-
. * g p '
J(Rmzf f f PUFR(tI,p,) o dpdudy tively,
oJ-1Jo €

1
d,(AB?ng) + —Z&r(rZV’nEABZ) =0, (194
r

© (1 2m —
=ﬁ J J pWEg(t,re,u)\Ve’—m?dedudy.
mJ-1J0

(189 1 N
d(ABng)+ — dr| AB*r’ng| N'+ -2U ]| =0,
In particular, the mean number density and flux of particles r A
measured by the Eulerian observer are given, respectively, by (195
© 1 N
nE==—nMi’r§=J’S)=2wL J_lFR(t,r.p,umzdpdﬂ Qo+ VG0 =— o (U Ret D),
(196
[ 1 —
=27-rf~ f eFg(t,r,e,u)Ve?—m?dedu, N3uU®
mJ-1 o+ N9 o0+ —— dyo0=— —=(ufRg+D),
(190 A nl'®

(197

(r)_

N
f f r(t,r,e,u)du OXp+ V' I, Xg= T RRs (198

N3uU® N

P _ 1
=277f~ (e2—m2)def 1,uFR(t,r,e,,u)d,u, (197 IXp+ Nra,xRJrT I Xg= ﬁRR' (199
m _
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Equation(194) has a conservative form for the quantity the different collision terms. Such information will depend
AB?ng. One can alternatively write an equation in conser-on the specific physical problem to be analyzed.
vative form forng as

VIl. GAUGE CONDITIONS

1
2
Ul r_2‘7r(r Ving) +neldia+24,8 Einstein’s equations are by construction diffeomorphic in-

variant. This means that one has the freedom of choosing
coordinates omgaugeswithout affecting the physics of the
spacetime. In the framework of the+3 formalism, the
gauge choice includes thane slicing(lapse conditiopand

the choice of spatial coordinatéshift condition). In spheri-

+V'(d,a+2d,8)]=0. (200

In a similar way,

1 N cal symmetry two of the most popular gauge choices are the
INg+ = o, rPng| N+ KsU(r)” radial andisotropic spatial coordinates with th@aximaland
r polar time slicings(see Refs[48,63,64 for a more general
N discussion on the slicing choigesMoreover, it is in the
+ng| dya+20,8+| N+ K3U(r))(a,a+2a,ﬁ)}=0. framework of asymptotically flat spacetiméa condition

usually demanded in astrophysical applicatjahst they be-
come specially useful; it is in this context that such gauges
will be discussed in the following.

Theisotropic coordinates A B with the maximal slicing
conditions K=0, ¢;K=0 (hereafter isotropic-maximal-
slicing gauge or IMSGhave been employed by several au-
thors(e.g., se€6,10,20,38,40,4R. In the vacuum and static

(207

The total contribution of sourceEqgs. (72)—(75)] that
appear in the 31 Einstein equations write in spherical sym-
metry as follows:

E=EprtEr, (202 case, that choice leads to the well known Schwarzschild so-
) A 7 " lution in isotropic coordinates. The maximal slicing has the
JV=AJ =(Epetp)UT+ Hg, (203 advantage of freezing the evolution in regions near the for-
" (N2 mation of space-like singularities while allowing a faster
Sty =(Epet p)(U)“+p+pg, (204 evolution in the outer regioné& feature usually quoted as
“singularity avoidance” property. The time slicing leads to
S0 " =S4 ?=p+pk, (205  an elliptic equation for the lapse, and therefore, for rather
general matter condition®.g.,strong energy conditionone
S= S(i)(i):(EPF+ P)(UM)243p+ pr+ 2p;_ can use the maximum-minimum principle to determine the
(206) qualitative behavior for the lapsef. [48,63). The lapse

function has a minimum at=0 and a maximum at—oo.

In summary, for the specific case of spherical symmetryDuring the evolution and for the case of black-hole forma-
the spacetime is completely characterizexs it will be tion, the minimum tends to zero &s- (the collapse of the
shown in Sec. VII by the determination of the metric poten- lapse halting the proper time separation between neighbor-
tials N, N", andA in time and space. The metric potential ing slices as the singularity forms. However, far from the
can be fixed from the shift conditions. Furthermore, theseorigin, N— 1, which allows one to advance the evolution in
metric potentials can be determined completely from the difthe asymptotic regions. The IMSG also has the advantage
ferential equations that result when combining the gaugehat the three-metric remains regular at the formation of ap-
conditions and the constraint equations as shown in Secparent horizons, which allows one to continue the evolution.
VIIA-VIIC. This means that the metric potentials will The drawback is that eventually the metric potendiarows
evolve through the matter terms and therefore it will not beexponentially at the origin and then the coordinates are
necessary to use the evolution Einstein equations. On thsucked down” to the black hole, which avoids a good de-

other hand, the perfect-fluid variables likgg and U (or
Ji) are evolved from Eqs(151) and (158) [or Eq. (156)],
respectively. The thermodynamic quantities like, o, and

scription of the evolution outside the event horiz@his is
the well known phenomenon of grid or sliseretching(e.g.,
see Ref[40]).

Xg are to be evolved from the different alternatives given by ~The radial coordinates B=1 with the polar slicing con-
Egs. (194-(201). Finally the distribution function dition (hereafter radial-polar-slicing gauge or RPS&
Fr(t,r,e,u) for the species considered is used to determine=K', have been employed systematically by Gourgoulhon
the radiation observablde.g., energy-density, fluxes, radia- [8,9,36. These coordinates are a generalization of the
tion pressurg and it is evolved using the RBEL70) [or  Schwarzschild coordinates to the nonstatic and nonvacuum
alternatively Eq.(175]. Another possibility is to use Eqs. spacetimes. The field equations turn out to be much more
(192 and (193 within a closure relation to evolve the radia- simpler than those of the IMSG since the equationsAfand

tive quantitiesEr, Hg, andpg, instead of using the RBE. N reduce to first order im. Furthermore, the shifl" is zero

As mentioned at the end of Sec. V, the whole system okverywhere on the slices. The RPSG has a central “singular-
differential equations is to be closed by the particle physicsty avoidance” property which is even stronger than that of
input like the EOS of matter, the nuclear-reaction rates, anthe IMSG. In fact, the slowing of the evolution is such that it
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avoids the formation of apparent horizons, the metric poten- dra=—NK,"=,N' —N"g,a. (208
tial A, however, develops a “spike” at the star’s surface as
the matter enters the Schwarzschild radi@sl], leading, On the other hand, the maximal slicing conditikir=0 im-
unlike the IMSG, to a coordinate crash. Thus these coordiplies that
nates do not serve to describe the black hole’s interior. Nev-
ertheless, the pathological behavior of the RPSG occurs at K, =-2K,’, (209
larget’s, and from the astrophysical point of vige.g., from )
the point of view of an observer at spatial infinitthese O equivalently
coordinates are good enough to describe the entire evolution ON'
of matter outside the black hole; the ingoing matter takes by 30,a+3N'd,a+ 9N + —=0. (210
the way, for an observer at infinity, an infinite time to cross r
the event horizorithe evolution is thus “frozeny.
The hybrid choice of isotropic coordinates with polar slic-
ings (IPSG has been less used in the past. However, it seems N’ 3
that they overcome the drawbacks of the above coordinate N — —=—-NK," . (212
choices(cf. [11,40; see also Ref[64] for an analysis of
the;e coordinates in the context Of ax!symm)e iy This can be written as to give the following differential equa-
nother popular coordinate choice is the comoving COOr. " for N [cf. Eq. (21) of Shapiro and Teukolskj6]]
dinates (Lagrangian coordinatgs Those coordinates have - =0 P '
been particularly used in the study of supernova collapse N’
()

Using Eq.(208) in the previous equation one obtains

with synchronoud13,24,65—67 and polar slicingd7,62.

The comoving coordinates have the advantage that the hy-
drodynamic equations are simpler since there is no advec- On the other hand, using E11) in Eq. (208 one ob-
tion. The synchronous slicings are orthogonal in the SeNsg.. < an evolution eql;ation far:

that there is no shiftN"=0). The disadvantage of the latter '
is that they fail badly when black holes start formifgf.
[7,68]). The asynchronous slicings can remedy this problem. dra=—N'
In particular, Schinder and coauthdi®62] have used polar

slicings to avoid the pathologies of the Lagrangian- jth the above choice and with E209), the Hamil-
synchronous gauge. Another modification to the comovinggnian constraint Eq135) reads

and synchronous coordinates that allows one to handle the

— =5 NK (212

1
+5NK," (213

1
ora+t —
r

formation of black holes is the introduction of an outgoing ) , 4da , 3
null coordinate instead of the usual time coordin@e,69. 20 at (dra) ™+ ——=—8mGEA— ZA%(K )%
Finally, | mention the isotropic coordinates with constant- (214

mean-curvature slicing&€=K(t), employed by Harleston

and coauthor$44,45. Such a slicing contains the maximal Adopting the variable

slicing as a particular case. It also possesses the feature of _

strong crushing coordinate avoidance. These coordinates a=al? (215
generalize(to the nonhomogeneous casgke comoving co-

ordinates of homogeneous and isotropic spacetimes whichne obtains a second order differential equationdfor
are relevant in the standard cosmology. Such a choice is thus

useful when the spacetime is required to be asymptotically b~ 20, a 5 3 - -~
Friedmann-Robertson-Walké#5,44. The main difference Jpat ——=—"AN2m7GeE+ 75(K )% = (dr @)%,
between this choice and the maximal slicing condition is thus (216

the behavior of the hypersurfaces asymptotically: the maxi-

mal hypersurfaces reach spatial infinity while #i€t) hy-  where one recognizes in the lhs the Laplacian operator of a

persurfaces reach future or past null infinity whetlieis  spherically symmetric Euclidean spaad. Eq. (19) of Sha-

positive or negativ¢68]. piro and Teukolsky[6] for a source ternk including a per-
fect fluid alone, Eq(142)].

The momentum constraint E¢L37) reads
A. Isotropic coordinates and maximal slicing(IMSG)

The isotropic choiceA=B (a=p), implies from Eq. 3K.T
r

+ 0K =87Gyd,, 21
(130) that rr T Om30cy (217

1
-+,
r

were | used),=AJ,,. This can be written as a differential
equation forK," as[cf. Eq. (20) of Shapiro and Teukolsky

(611

Therefore 9, (A%r3K,") =87Gyr3A3), . (218

1
K =K"=- N(da+ dN+NGa). (207
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Equation (140 with the maximal slicing conditiorK
=0, 9;K=0, provides an elliptic equation fox [cf. Eq.(18)
of Shapiro and Teukolsky6] for source term& and S of a
perfect fluid, Eqs(142) and(143)],

orv

Fv+ (3w + (dra) (dpv) + —

2 3 2 2
=4mGAX(S+E) + 5 A%(K,)2. (219

We have then four differential Eq$212), (216), (217),
and(219 for N, A K,", andN, respectively. It is to note in

those equations that the field variables evolve in time
through the matter fields. Although the evolution equation
for K," is redundant, for completeness | write it in the

IMSG. Equationg138), (214), and (219, lead to

N9, K )

3
IK )"+ + ZN(K )2

2
—+o
r

(drv+d ) +(drv)(dra)

A2
=—87GoNS,)". (220

Concerning the energy conservation equatid49), this
reads

2
atEpF+ NrarEpF: - N&rJLF— N\]rp':( 2(9r V+F + 307r01

+NK " (peS) = pS(p) ")~ N2F .
(220)

Or in terms ofJ,=A2J" one obtains

r N e N oo 2
dEpet N ’9rEPF:_E0rJr —A?J, 20 v+ +dra

+N K(r)(r)( PFS(r)(r)_ PFS(H)(H)) ~N2FF.
(222)

The conservative form Eq151) writes in this gauge as

- 2\r
HEppt r_zé’r(r V'Epp)

2N' 1 N
— r|_ — 2__ 311
EPF( ; +(9,N) rzar(r A U p)

NJPS
- %[arw 39, a— SUOAK O+ NAFL].

(223

The momentum conservation equation writes

PHYSICAL REVIEW D66, 044013 (2002

7N 9,37 = =37 9N = N| 3, peSy "

1
—+ o«
r

+2( PFS(r)(r)_ PFS(f))(G))

. (229

+( PFS(r)(r)+ Epp) dv+ 37

In terms of triad components E¢L57) reads

1
IS+ r—zar(rzerfg

=J PF{NK(”—’S»V’(? a+N'| 30 a—z)—ﬁ N’}
(r) (r) r r r r

N
— AL (Epetp)av+ap+ PFRALL (229

In the IMSG, the Euler equatiofi58) reads

a(t)3u(l‘)+ 3u(r) 3&(r)3u(r)

1
T T Bt p[sﬁ(r)p+ UD4p]
1 31 (r) r_3
TR CUTKe TRy

+

(FUMFO— F0). (226

Eprtp

Under the IMSG the evolution equations for the entropy
per baryon and the particle number per baryon keep the same
form as Eqs(196) and(199) or the alternative form given by
EQs.(197) and (199, where Egs(194) and (195 read

1
d(A%ng) + — 3, [r?V'ngA®]=0, (227
r

1 N
at(A3nE)+—2&r[A3r2nE NV+K3U(’)”=0. (228
r

Equation(227) has a conservative form for the quantity
ngAS,

When using the evolution equatig@13), Egs.(227) and
(228 become, respectively,

1 2\yr
&tl’lE-i— r—zo"r[r V nE]

r

1
+3ng (Vf—N’)ara—TJr =NK,"|=0,

5 (229
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r’ng

1 r N3 (r) o[ M Q)

Therefore Eqs(234) and(238) are the field equations for
the two variablesA and N, respectively. These quantities
evolve in time through the matter variables. Therefore, as in

Equation(229 has a conservative form for the quantity the |MSG, the evolution equation f«(r)(r) is also redun-
Ne. dant in the RPSG. For completeness | write it using Eqg.
(138 [cf. Eq. (21) of Ref.[8] for a perfect fluid along

+3ng

N3u<f> N 1NKf—o 230
K (9,«0.’—74—5 r | =0. ( )

B. Radial coordinates and polar slicing(RPSG)

(r)_ ()2
The radial-coordinate condition is achieved by settihg IRy N(Kr)™)

=1 (B=0) and the polar slicing=K," is equivalent to

N |29
K,'+K,?=0. SinceK ,=K ,%, the RPSG leads thi'=0. -—= e — % v+ (9, v)(dra—d,v)
The Hamiltonian constraint E¢135) reads A r
1 2 =47GoN(—=S;;,)+2S, " —E). (239
—(A?=1)+ — g a=8mGoEA®. (231 _ . .
r r Concerning the evolution equations for the matter, @49
reads
Moreover, by defining
_ N
2Gom(t,r)| ~1? N 291
A(t,l’)==( 1-——— , (232 HEppt Ar? 3 (Ar<Jpp)
Eq. (231) reads = NK(r)(r)( PFS(r)(r)+ Epp) —2Jped, N—N2F L, (240)
m which can be written as
d,a=A%Gy| 47rE — - (233
r

1
Eppt — 3:(Nr2350) =NK (S, +E
or even[cf. Eq.(18) of Ref.[8] or Eq.(3.29 of Ref.[36] for PR 2 : P o (PeS0 P

a perfect fluid alone or for a perfect fluid accompanied by a ) ot
neutrino flow, respectively —NIpe(dy v+ dra) =N“Fp. (241

d,m=4mxr2E. (234  The gradients of the metric potentials can be replaced by
) using Eqgs(231) and (237 which imply
The momentum constraintl36) for the present gauge

choice reads drv+ dra=4mrGoA*(Sy " +E). (242
1
Kin= = AR AA=471God = 471G AL’ Then

1
=471'I’G0AJ(r) (235) atEpF+ r_ZO"r(er\]rPF)

This with Eq. (232 results in an evolution equation for

m(t,r) [cf. Eq.(20) of Ref.[8] or Eq.(3.3]) of Ref.[36] for =NK " (peSy "+ Epp)
a perfect fluid alone or for a perfect fluid accompanied by a 2 o 2.t

neutrino flow, respectively —4mrGoNA ‘]E’F(S(r) "+E)-N*Fg. (243

am=—4mr?NJ". (236) Using the momentum constraif?35), one obtains

The evolution equatio139 gives 1
dEppt — Jr(Nr?Jpp)
r

o i(A2—1)+ Lo AZ(SN—E)
ro |2 rA o A=) = =A4mrGoNAY I (peS;;) "+ Epp)
23
(237 —Jpe( S +E) 1= N2F. (244
With Egs.(232) and(231) this writes[cf. Eq.(22) of Ref.[8] _
and Eq.(3.32 of Ref. [36] for a source ternS,,") of a  Now, since
perfect fluid alone, Eq(143), or that of a perfect fluid ac- C .
companied by a neutrino flow E¢R04), respectively, J'=Jpet Jr, (245
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E=EprtErg, (249 1
0tJ(r)+ g (raviaes

Sty = peSn ™+ =S, (247
N

1 +3FRAL. (253
atEpFJr e (Nr2Jpp) = 411G oNAZ IR( peS;) ") + Epp)
Furthermore, the use of EqR32), (233, (235, and (238
lead to
—Jpe RS+ ER) ]~ N2FR.
(248 1
&tJ(r)+ g (raviIeh)

Using thatd®= A%, IO =AJ%, and Eqs(143 and(145),

the energy conservation E(48) finally reads[cf. Eq. (25 m

of Ref.[8] or Eq.(3.55 of Ref.[36] for a perfect fluid alone =GoJgh| 87TANI — AV'| 47rE— —

or for a perfect fluid accompanied by a neutrino flow, respec- r

tively],
—GoNA(Epet p) +477rS( O

1
hEprt r_zﬂr[rz(EPF"‘ pIV'] N

— 2 (0P 2FRA). (254

=47rGNA(Epet p)[ IV ((UM)2+1)

— U RS,(r)(r)Jr En)]— sz_-tR_ (249 Finally, using Eq.s(245) and(247) and the expression43
and (145), | obtain

The alternative expression of E(R49 in conservative

1
form reads atJ(P,ﬁ — (V' I75)

1
Eppt = ,(r2V'E
(Eert IV Eer =Godf{ 4mrAN(IFS+238)
=—ia (r2V'p) +4mrGoNA(Epet p) m
r2 —A2V'| A7 (Epet ER)— —
r
X[IRUD)?+1)-UO(rS) "+ Er) |- N°F.
(250) -G NA(EP,:+p) +47Tr(p+ =St ))]
The momentum conservation E{.53 reads N
— R (0P + P FRA). (255

2N
97T+ N, PFS(r)(r)+ TPF(S(r)(r)_ PFS(e)(a)) ,
The Euler equatiofil58 and Eqs(235 and(238) lead to

— (r) P (r)_ 3R
== (peS() " +Epp N+ NIK ) = SFTN. 5,200+ 30039 3y

(251 1
— 3 4(r) 3y ()
. . = Mp+Ulg
This can be written as Epet p[ P wP]
G A
1 2 - +47Tr SR VION
at‘]:’DF: N| — m&r(er pFS(r)(r))+ FPFS(B)(H) 1"2 ( (r ))
+ UOFR-3FR). 256)
Eped, v+ IPK ()0 — 3FR|. (252 Eprtp' R i (

Again, using Egs(245 and (247 and the expressions
Using Eq.(157) the conservative form of the latter reads (143 and (145, | obtain
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PRVIQERVIFEITIY)

1 ) ’ m
1 N &tnE"' —zﬁr[l’ nEVr]_GoA nE Vr _2+47Trp
r r
=————| +ap+3U9 )
(Epetp) LA P P
+ L=
ANG| m o s o 4mrNJg| =0, (262
— 1"2 _2+47Tr(p+ RS(I’) - U(r)\]R )
' which provides an equation in conservative form ihgr.
1 8y (1) (1) _ 34(1) 259 In the same way, using Eq&35 and(238) in the alter-
+—< (U FR = Fr'N), 5 i i
(Eort p)( R R'N) native Eq.(261) | obtain
where | also used that in this gauggy=1/Nd,, d N a0 3 "
:1/A(9r, andU(r):(A/N)Vr 6’tnE+Ar28r(r U nE)+nEGoAN 4’7Tr\]
This is the Euler equation of the fluid in spherical sym-
metry which includes the forces of the radiation fields acting sy M )
on the fluid[cf. Eq.(34) of Ref.[8] or Eq.(3.56) of Ref.[36] +°U ) +4mrS,t | [=0. (263

for a perfect fluid alone or for a perfect fluid accompanied by
a neutrino flow, respectively

A relation that turns out to be useful in this gauge is
obtained by combining Eq$235 and (242

The evolution Eqs(196) and(198) do not change in form
under the RPSG. However, the alternative form given by
EQs.(197 and (199 in the RPSG write, respectively,

1 310
- 2 - 2 (r) _ N°U N
AN OUAD) + vt dra=A4mrGAZ S +E-2)0], g+~ — o=~ (R + D), (264
(258
. . . . 3y
For gxamplg, in the st'atlc case and for pe_rfect fluids, this Ixe+ N UY 9 Xp= ﬁRR. (265
provides a simple relation between the gradients of the met- A nl’
ric potentials and the pressure and the energy density of mat-
ter. Moreover, outside .the star surface the only contribufcions C. Isotropic coordinates and polar slicing(IPSG)
to the total matter variables are those of radiated particles. ) i o _
Under the free streaming approximatifof. Eq. (188)], this The isotropic choiceA=B (i.e,, @=p), and the polar

. . o e 0 _ . . .
implies that the rhs of Eq258) vanishes. This situation was SIi¢ing Cond't'°”§0 +K,?=0, implies due to the spherical
investigated analytically in the past using a different gaugesymmetry tha(,”=0. The latter leads to an evolution equa-

[70,71] and corresponds to the external solution. tion for a:
Finally, the integrability conditio?m= 42 m imposed in N'

Eqgs.(234) and(236) results in the relationship da=—N'd,a— - (266)

1
HE+ —za,(erJ’)zo. (259  This and the expression fdt', [cf. Eq. (130)] provide an

r equation for the shift:

This equation is in fact compatible with the evolution equa- N' N

tion for the total energy density of matter. !9r(7 =- TK(r)(r) : (267)

Indeed, subtracting Eq244) or more specifically Eq.

(249 from Eq. (259 one obtains an evolution equation for The Hamiltonian constraintL35 leads to
the energy density of radiatidBg [cf. Eq. (192)].

The evolution equatio{113 and the alternative form - 20w _
(195 in the RPSG read, respectively, 92 a+ = —27GoA’E— (d,@)?, (268
1 _ where
di(Ang) + —Zar[r V'Ang]=0, (260
r ~
a=al2. (269
at(AnE)Jrizﬁr(ranN 3yy=o. (261) The momentum constraii36) writes
r
1
(ol — _
Note that Eq(260 has a conservative form for the quantity Koy | 7 Tdre| =4mGoAJ)=4mCod; . (270
Ang.
Using EQgs.(235), (233, (245, (145, and (147 in Eq. Equation(139 together with Eq(268) provide an equa-
(260) it becomes tion for the lapse,
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1 ~ 2¢ (N ~(1 -~ 1 N
v F+219ra) =471GoAS) —Z&ra(r-i-(?ra). ding+ — dy r’ngl N+ K3u(f)”
271) '
. . N N’
In the case of a perfect fluid alone, this corresponds to Eq. +3ng —3U(r)ﬁra——}20. (276)
(9) of Shapiro and Teukolskj40], and to Eq(6) of Schinder A r

et al. [7] where the authors use a Lagrangian-polar-slicing
gauge. Such a gauge can be easily transformed to the IPSG. D. Boundary conditions and initial data
Finally, the evolution equation foK " given by Eq.

X i A typical feature of spherically symmetric spacetimes is
(138 together with Eq(268) yield

that the gravitational field variables can evolve in time
through the matter fields. So the initial conditions for the
—N(K(,)(’))Z matter va_rigbles and the boundary c_onditiqns fix automati—
cally the initial values for the gravitational field by solving
the constraint equations and the gauge condition equations.
For spacetimes with less symmetries one is always forced to
solve the dynamic Einstein equations to evolve the gravita-
tional field. Let me thus discuss first the boundary condi-
=47GN(—S;) " +2S, " +E). (272 tions.
| call exterior solutionthe solution of field equations out-
The equation of conservation of energ#s1) reads in this  sjde the perfect-fluid domaifusually a compact supportn
gauge as follows: the present case, it does not correspond to the Schwarzschild
vacuum solution since in general, the radiated matter will
extend to spatial infinity. Thus the exterior solution has to be
found also numerically. The exterior sources of the field
equations will be provided by the energy-momentum tensor
r 1 ,N of particles[cf. Eq. (177)]. The matter variables of particles
N == a1 4 u®p will evolve in time through the distribution function. More-
r over, outside the star, the radiated particles can interact only
PF with themselves, however, this interaction is rather weak in
— g v+3d,a— SUAK] comparison with the interaction inside the star. In a first ap-
A proximation one can thus neglect such interactions and con-
+ NK(,)(r)p— sz_—tR_ (273 sider.that t.he particles yvill follow geodesics; the distribution
function will thus remain constant along them.
The equation of conservation of momentum Egj57) Regarding the boundary conditions, these are rather regu-
reads larity and asymptotic conditions. For instance, the regularity
and the asymptotic flathess condition for the shift are, re-
1 spectively(see Ref[64] for a more detailed analysis about
I+ ﬁar(rzva(Prﬁ regularity and boundary conditions

NG K, 0
K (D —— 0

N ) 2
- E —dnvt(dv)(da—dv)+(d,a) F+23r01

1 2\r
hEppt r_2(7r(r V'Epp)

2N
= EPF( NK "+ .

N'(t,0=0, (277
=J(P,§[ 2NK ) =3V g a+ N’

2
30,a— —)
r N'(t,r);_.—0. (278

_ a,Nr} _ E[(EPFJF P)a, v+ d,p+ 37:($)A]- (274 Similar conditions apply foK,". These boundary conditions
A are enforced from Eq$212) and (267):

The Euler equatior(158) in this gauge takes the same
form of Eq.(226), and Eqs(197), (199 and(195)_ [see Egs. Nf(t,r)z)\TSrf
(227) and (2298)] also keep the same form as in the IMSG. r
Alternatively, one can also use the simpler form of Egs. )
(196) and (199. Furthermore, when using the evolution Wheré\ss=1,3/2 for the IGPS and IGMS coordinates, re-

equation(266) in Egs. (2000 and (201) one obtains in the SPectively. .
IPSG, The condition for the lapse at the star’s center is such that

the asymptotic flatness conditidh— 1 is verified. Therefore

>N(t,r")

r !

K Otrdr', (279

1
ding+ — d[r?Vng] N(t,0)=Nc(t), (280
r

with N(t) such that
+3ng

Nr
(V'=N )ara_T}:O’ (279 N(t,r), 1. (281
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Sincea priori this is difficult to enforce, a better strategy
consists of rescaling the lapse Bis=N/N, so thatN(t)

=1, then the values of the true lapse can be recovered by
using Ng(t)=1/N(t,r), ... where the asymptotic value
N..(t):=N(t,r), ... is found numerically at every time step.
This rescaling allows one to integrate the equations spatially
in only one cycle. The rescaling will not affect the relevant
equations of motion foN or A since only the derivatives of

PHYSICAL REVIEW D 66, 044013(2002
=In A(tvr)_l|r>R(t)
—4wf A%t (&S +Eg)dr’
r=R(t)
2Gom(t,r)]*?
r

=In1

r=R(t)

v appear therdi.e., Eqs.(216), (219), (231, (237), (268), _47TJ°° A2 (S, +Edr’, (287)
and(271) for N andA in the different gauges are invariant to r=R(1)

such a rescalinig However, this is not true for the shift Egs. , '
(212) and (267 and for the Boltzmann equation whehe ~ Where 1 used Eq(233) in order to replace the termn/r
appears explicitly. However, this does not pose a problen@nd also the asymptotic flatness conditionAofref. Eq.(290)

. . e below]. It is to be stressed that in the absence of matter
since a simultaneous rescalifg=N'/N, leaves all equa-

] ) ] DA outside the star surface, the first term of EB87) corre-
tions invariant as well as the boundary conditions Nor

; . sponds to the expression ferof the Schwarzschild metric
In the case of the RPSG and IPSG one can find an mtegrﬂNith M(t,r)];=re =My , M, being the total mass of the

expression for the lapse satisfying the boundary conditionssiag. However, in the present case there are contributions

For instance, from Eq238) (due to the energy-densifyg and pressur@S((r,)) of particles
which fills some part of the space outside the)starich are
responsible for the actual metric to deviate from the
Schwarzschild one. These contributions arise from the sec-

(282 ond term of Eq(287). In some case&.g., the free streaming
approximation numerical analysis shows that these devia-
tions are so small they can be neglectefl [36]).

Deviations of this kind can be appreciated more easily in
v(t,r),_»—0. (283 the presence of nontrivial scalar fields, for instance in the
phenomenon of spontaneous scalarizafi@d]. Moreover,

Therefore from Eq(282 and the asymptotic condition one for r>R(t), the mass functionm(t,r) is larger than

r m
V(t,r)=Gof A2 —2+477r’8(,)(’)) dr’+(t,0).
0 r'

The asymptotic flatness condition E&81) leads to

obtains m[t,R(t)] due to the contribution oE to the total energy
density[cf. Eq. (234)]. Indeed the mass difference is given
_ Z a2l M ra ()| 4 by
W(t0)=—Go| A2 ——+amr's, O |dr. (284
0 r r>R(t)
§m:47-rf Egr’2dr’. (289
R(t)

This corresponds precisely to the renormalized vatie, .

So finally, Another way to appreciate such deviations is by noting

that Eq.(258) together with the asymptotic conditions imply,
dr'. (285 in the_ case of vacuum, the re_lationsw_ipl=_1 which is char-

acteristic of the Schwarzschild solution in the RPSG. How-

ever, when matter is present outside the star, tAdh~1

The value for the lapse at the star surface is provided by (€.9., sed72]), except of course at spatial infinity.
The boundary conditions fok are similar to those foN.

oA ™ PG
V(t,r)— Gof A ,2+47Tr S(r)
r r

- m Therefore
v[t,R(t)]:—Gof A2 —2+4wr’S<r)(r))dr’,
R \r’ A(t,00=A.(1), (289
(286
with A.(t) such that
whereR(t) corresponds to the RPSGeoordinate at the star
surface at timet. | emphasize that, outside the sy, A(t,r),.—1. (290

=S\, that is, the only contribution t8 ,,") is from the

radiated particles. In fact, outside the star | can write, In the case of the RPSG the reparametrization €42

imposes the regularity condition

o

V(tyr)out:_GOJ’ A?

r=R(t)

m(t,0)=0. (291

m
72+477r§5(r)(r)) dr’
r Since near the origim~r2, the reparametrization enforces
that A(t,0)=1. Thend;A(t,0)=0. The three-metric is thus

locally flat at the origin. Moreover, provided that the energy

density of sources falls off at least as fast a<' butside the

©

=[In A]:;R(t)—4wjr>RA2r'( kS +Eg)dr’
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star, the same mass parametrization will drivéo the re- energy domain the energy density, pressure, and density
quired asymptotic value. Note that this behavior of the metnumber of particles in the Eulerian frame are finite at the
ric potential A is compatible with the regularity and star’s center. Usually the assumption of an ideal quantum gas
asymptotic conditions foK', that | mentioned above. More- is adopted as the initial condition for the particles so that the
over, these conditions also imply th3it vanish at the origin  distribution function is isotropic and given by a Fermi-Dirac
as well as asymptoticallfcf. Eq. (235)]. or Bose-Einstein distributiofwhether the particles are fer-

In the case of the IMSG and IPSG, one has an elliptionions or bosons[20,44,49. Then the particles’ energy den-
equation for which is not invariant to a rescaling g So ~ Sity and pressure will be parametrized initially only by the
unlike the RPSG wheré.=1, the central valué\, should thermodynamic var_la_b_les like the temperature. In that case
be determined from a shooting method or otherwise in ordeffr=0 all over the initial spacelike hypersurface.
to satisfy the asymptotic flatness condition. In fact, near the 1€ regularity condition foF atr =0 is like other scalar
origin N"~r, therefore from Eq(213), it turns out that at the duantities,
origin

arFR|r:0:O' (295)
dia(1,0)=const, (292
Another boundary condition is that the inward flux of par-

and thus from the definition E¢133 and the regularity ticles at the star surface is zero. This is imposed 5,
condition (293 (see below one concludes thaidepending

on the sign of the constgnA(t,0) can grow exponentially Frl,_r=0 for —1=<u<0. (296)
(grid stretching phenomenpr{6,10,38,40,42 The three-

metric is thus conformally flat at the origin in the isotropic Returning to the initial conditions, the form of these will

gauge. ) ) N characterize first the type of configuratiée.g., supernova,
In addition to the previous regularity conditions we have q tron star, supermassive star, star clysied second the
also

dynamics and ultimate fate of the precurderg., proto-
3,Ql,—o=0=0Q| (293 neutron star, neutron star, black hol&he goal of future
reir=0 =0 numerical investigation will be to explore a large set of ini-

whereQ represents collectively the metric potentials and theial conditions and their consequendes [73]).
scalar matter field variable®.g., N,A,m,p,p,E, etc) and
Q" tensor field component@.g.,J",K, etc). VIIl. CONCLUSIONS

A convenient way to impose the asymptotic conditions , ) ,
accurately is by compactifying the outer domain with the  Several astrophysical phenomena involve the dynamics of
help of a transformatioru= "1/ from the star's surface _relat|V|st|c objgcts. Some of the most interesting ones end up
=R to spatial infinity. In this way the infinite domain the formation of black holes or neutron stars, like the
c[R,>) is mapped to the compact domaire [1/R,0), S0 collapse of cores an_d supernova _explosmns. While most _of
the integration can be performed fronRlio “zero” with a the as_trophysmal objects are rotating, the role of rotation in
high degree of accuracicf. [72]). Obviously, the radiation relfatlvny can be neglegted with regards to the s_tructure of the
variables as well as the metric are to be matched continuc—)bJeCt when the rotation freql_Jency IS low. Aside from fa}st
ously atR. It is to be emphasized, however, that compacti-pmsars’ f"OSt of the astrophysical objects are endowed W'th a
fying the spatial slices in the outer domain for evolutionIOW rotation _frequency. Therefore the sph_encal _symmetry IS
equations can be troublesome since a lack of resolution at tfi? assumption that can be very useful in a \.N'de range of
exterior could produce spurious reflections of outgoingappl'cat'ons' On the oth(_ar hand, the mere existence of fast
pulses which in turn makes the boundaries behave badly. pulsars reye_als _that rotation has to be taken into account na

Regarding the distribution function, the regularity condi- M°r€ realistic situation. Moreover, it seems that the'dewq—
tion at the center on the particle’s radial energy flutig tions f“_)m spherical symmetry in supernova explos_|ons IS
~0 [see Eq.(179] which means that the average of the central in the phenomendid 7], and that rotation can influ-
particles’ radial velocity as measured by the Eulerian obEnce the caoling mechanism in the early phases of neutron

server at the origin is zergocal isotropy at =0). The same stars[74]. In general relativity this is a difficult task and only
considerations apply for the radial particle-flux-numpét a few attempts have been succeeded within an evolutionary

- " sy code(see[75] and references thergin
[:Cfo IiESq. (191)]. A sufficient condition forHR_o_J(R) atr One can separate the problem of the dynamics of relativ-
istic bodies in two sets. The first one involves the formula-
Fr(t,08, 1) =Gg(t,e, ) tion, the geometry, and the numerics. A convenient coordi-
nate choice and a powerful numerical analysis can allow
with Gg(t,e,u)=Gg(t,e,—u), (294 long term evolutions leading to a better understanding of
several physical phenomena. Thus this is a crucial point
that is, the distribution function being a pair functionfat ~ which has been recognized by almost all the numerical rela-
r=0 enforces that the integrals given by Eq&79 and tivists. Investigations of the effect of several gauges are al-
(191) vanish identically at the origin. This condition ensuresways an important issue. One of the aims of this paper was
in addition that with a suitable form oBg(t,e,x) in the therefore to derive the fundamental equations under different
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gauges and write them in several forms suitable for differenpursue the analysis with the incorporation of the most recent
numerical schemes. advances in particle and nuclear physics.

The second set involves the physical approximations used While the formalism presented here included only hydro-
in the model. In the case of gravitational collapse, | havedynamics and transport theory, the equations are quite gen-
discussed that neutrinos cannot only play an important rol@ral as to include other types of matter like scalar fields,
in the dynamics but also that the signal carried by them camhich are very useful in the analysis of critical phenomena.
be fundamental for a better understanding of the underlying My aim for future investigations is to perform an exten-
physics and as an invaluable imprint of the ultimate fate ofS1V€ numerical analysis of several issues dlscuss_ed here and
the collapsed object. In particular, if neutrinos turn out to beMore generally to analyze the dynamics of spherically sym-
massive particlef34], mechanisms like the early black hole metric spacetimes with several kinds of matter sources.
formation could be testel®2].

Furthermore, the equation of state at high densities can
also lead to different time scale processes during the collapse This work has been supported by DGAPA-UNAM, Grant
and the accretion phase. Therefore it becomes necessary M. 112401 and CONACYT, Meéco, Grant No. 32551-E.
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