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Dynamics of spherically symmetric spacetimes: Hydrodynamics and radiation
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Using the 311 formalism of general relativity the equations governing the dynamics of spherically sym-
metric spacetimes with arbitrary sources are obtained. The case of a perfect fluid accompanied by a flow of
interacting massless or massive particles~e.g., neutrinos! which are described in terms of relativistic transport
theory is then specialized. I focus on three types of gauges:~1! the isotropic-maximal gauge,~2! radial-polar
gauge, and~3! isotropic-polar gauge.
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I. INTRODUCTION

One of the most fascinating phenomena in gravitatio
physics is that of gravitational collapse. Notably, the gra
tational collapse of astrophysical bodies culminating in
formation of black holes.

The historical controversy on the final fate of gravitation
collapse of compact objects such as white dwarfs and n
tron stars raised by the discovery of maximum mass lim
and the subsequent stability analysis led to finding, at le
for the most ideal configurations, definite answers and c
crete predictions depending on the initial conditions and
equation of state of matter~see Refs.@1,2# for a review!. The
simplest situation describing the gravitational collapse e
ing in black hole formation is that of a spherical ball
pressureless and homogeneous fluid~the well known
Oppenheimer-Snyder dust collapse@3#!. The solution shows
the appearance of anevent horizonrevealing thus the forma
tion of a black hole after a finite proper time.

Since that pioneering investigation, much has been d
for more complicated and realistic initial configurations. O
one hand, the accelerated development in the area of com
tation and the recent advances on the numerical analys
Einstein’s equations have made possible computing the
namics of rather complex spacetimes faster and for lon
term evolutions. On the other hand, the advances in par
and nuclear physics have led to better knowledge of the c
ditions of matter at high densities, providing then more re
istic models for matter in cores and neutron stars.

Most of the recent analyses of gravitational collapse le
ing to black hole formation have been done in spherical sy
metry and following a more ‘‘modern’’ point of view in ligh
of the 311 formulation of general relativity and other fo
mulations better adapted to numerical stability~see Refs.
@4,5# and references therein!. Among these investigations
there is the one of Shapiro and Teukolsky@6# who studied the
collapse of polytropes by imposing isotropic~spatial! coor-
dinates and maximal slicing, with initial conditions provide
by the Tolman-Oppenheimer-Volkoff equation of hydrosta
equilibrium. Later, a similar study was performed b
Schinder, Bludman, and Piran@7# in comoving coordinates
with a polar slicing, and by Gourgoulhon@8,9# in radial co-
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ordinates and polar slicing, this latter improving previo
analysis by the incorporation of realistic equations of st
for the nuclear matter.

The effects of different gauges on the time evolution ha
been exhibited for two of the most popular choices~isotropic
or radial coordinates with maximal or polar slicings! by com-
paring with the analytical solution of Oppenheimer-Snyd
@9–11#. For the time being, the discussion of gauges is po
poned to Sec. VII.

The analysis of gravitational collapse of compact st
and iron cores would not be complete if the influence
neutrinos were not taken into account. This has been rec
nized by a long list of authors since the precursor investi
tions of Colgate and White@12#, and May and White@13#,
who analyzed the effect of neutrinos in supernova exp
sions. Later Wilson@14# performed full general relativity
computations with a neutrino flow described in terms of t
relativistic Boltzmann equation. Wilson’s analysis includ
electron and muon massless neutrinos assuming that the
responding antineutrinos contributed in the same basis.
interaction of neutrinos with the star’s fluid was described
an opacity function. Unlike previous studies, Wilson’s fou
that the heat conduction by neutrinos is not sufficient to e
any material from a collapsing star. In all those studies bla
hole formation was not analyzed but only evolution config
rations terminating in stable states corresponding to w
dwarfs or neutron stars.

An updated analysis was carried out by Mayle, Wilso
and Schramm@15# using a Boltzmann code and for a larg
set of mass configurations. Neutrino signals from vario
species were analyzed within time scales of;1 s after the
supernova explosion. Previously Saenz and Shapiro@16# had
computed a nonspherical quasi-Newtonian collapse acc
panied by neutrino and gravitational radiation.

Burrows and coworkers have also analyzed during the
20 years the mechanism of type II supernova~SNII! and the
role of neutrinos~see@17,18# and references therein!. Among
these investigations, one finds an interesting model of lo
term neutrino emission from the hot protoneutron star ph
to the final outcome of a stable cold neutron star@19#.

Many other recent investigations have confirmed and
proved in several aspects previous findings on SNII~see
@20–25# and references therein!. For the case of a core col
lapse leading to a black hole, two scenarios are recogn
@22#. One calledearly black hole formation which is generi
©2002 The American Physical Society13-1
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cally associated with accreting protoneutron stars wh
form from the collapse of degenerate cores of massive s
@25,26#. The accretion of some tenths to one solar mass
last a second, and the exceeding of the maximum m
drives the protoneutron star into a black hole collapse i
typical time scale of;0.5 ms. In this scenario the neutrin
signal is abruptly cut off after the black hole forms, and t
typical neutrino luminosities prior to the cutoff ar
;1052 erg/s per flavor.

The second scenario calledlate black hole formation typi-
cally arises by a softening of the high-density equation
state~EOS! of the protoneutron star@27–30#. The phase tran-
sition from the neutron star matter to a more exotic st
which includes kaon condensates@31,32# or hyperon conden-
sates @33# can lower the maximum allowable mass
;1.5M ( @28,30#, driving thus a stable protoneutron star
an unstable regime and finally to a collapse into a black h
This kind of core collapse can last;10 s before the cutoff
and the luminosity of neutrinos is ten times lower than
luminosity of the early case.

It is encouraging to note that for a SNII at a distance
;10 kpc which explodes within the early scenario, S
perKamiokande can proben̄e masses down to 1.8 eV b
comparing the arrival times of high and low energy neutrin
within the reactionn̄e1p→e11n in a Cherenkov detecto
~see Ref.@22# for details!.

In fact the very recent announcement on the meas
ments of solar neutrinos from the decay of8B by the Sud-
bury Neutrino Observatory~SNO! @34# via charged curren
interactions and by the elastic scattering of electrons rev
that neutrinos could be changing flavor as they travel fr
the sources to the Earth. This discovery if confirmed co
corroborate the oscillating behavior of neutrinos and the
fore their massive nature. The fluxes measured of the dif
ent flavors are in close agreement with the predictions of
solar models. The SNO experiment then implies that the
per limit of the mass squared difference between thene and
the nt or nm is less than 1023 eV2 @34#. This result when
combined with the current bounds onmne

of 2.8 eV and

Dmnmnt

2 ~assuming neutrino oscillations! provides a limit for

the sum of the masses of the three neutrino species in
range@0.05,8.4# eV @34#.

One proposal to measure thent andnm masses indirectly
and that can corroborate the SNO findings is the one wh
uses a time-of-flight technique@22# for neutrinos emitted in
the early black hole formation scenario discussed above.
point is that if neutrinos are massive then there is a de
~relative to a massless neutrino! in the cutoff of the neutrino
signal as measured on Earth after the black hole forms, a
is given byDt;(mn /En)2 for distances of;10 kpc. This
delay can affect the event rate measured in a detector.
conclusion is that assuming luminositiesL;1052 erg/s per
flavor at the cutoff time, SuperKamiokande can pro
e-neutrino masses as small as 1.8 eV forTne

;3.5 MeV,

whereas the OMNIS@35# or SNO detector can detectmnm ,nt

masses as small as 6 eV forTnm ,nt
;8 MeV.

A collapse scenario which is rather different from t
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above consists in the accretion of matter by an old neut
star near the maximum mass limit. Gourgoulhon and Haen
@36# have analyzed the neutrino emission during the colla
to a black hole within this scenario via nonequilibriumb
processes, assuming that the nuclear matter is transpare
neutrinos~i.e., opacities were neglected!. Instead of using
neutrino transport, aregularized geometrical-optics mode
adapted to massless neutrinos was adopted. This model
thus intended to provide upper bounds in the neutrino bu
The collapse lasts typically a millisecond~the time that the
black hole formation takes place!, and in the most favorable
conditions the total energy ofn̄e and n̄m antineutrinos is
;1051 erg, while the energy of the corresponding neutrin
is several orders of magnitude lower. This is even lower

the nt and n̄t neutrinos. The main conclusion is that a co
lapse of this kind at a distance of;10 kpc would be unde-
tectable by the current neutrino detectors.

Finally, another scenario which has been analyzed in
past is the dynamics of collisionless gas of particles wh
mimic spherical star clusters, and the possibility of a clus
collapse into a supermassive black hole@37–42#. The moti-
vation was to provide a theoretical description for the form
tion of supermassive black holes that could exist in the c
ters of galaxies. Recently, a similar study which includ
gamma-ray bursts, is the one analyzed by Linkeet al. @43#,
where the collapse of supermassive stars (M;105M (

2109M () with emission of thermal neutrinos is considere
In that work, the spacetime is foliated by outgoing null h
persurfaces rather than using a 311 foliation of spacetime.

In view of the different scenarios of gravitational collap
available today and the miscellaneous predictions wit
each of them it is worth pursuing the investigations alo
these lines. Only in this way there will be at hand a large
of models which the forthcoming~e.g.,@35#! and recent ob-
servations@34# will validate or rule out.

Although the paper is written in the same spirit of vario
papers which deal with the system of equations Einste
hydrodynamics-Boltzmann, several aspects distinguish
from them. For instance, most formalisms treat neutrinos
massless particles, except perhaps the one of Harleston
collaborators@44,45#. Here massive particles are consider
from the onset and previous equations are recovered in
massless limit. The relativistic Boltzmann equation is writt
in terms of 311 variables for generic spacetimes. This h
been done in the past only in spherical symmetry. Theref
the relativistic Boltzmann equation presented here is coup
from the onset to the 311 Einstein’s equations. That is, th
curvature effects appear in terms of the lapse, the shift,
extrinsic curvature, and the three-metric. The hydrodyna
equations are derived also in the context of the 311 formal-
ism and they couple to the neutrinos via collision integra
In particular the equation for the velocity field of the fluid
written in several forms each of which is useful whether o
uses different numerical methods. In this regard, a gen
relativistic Euler equation is presented using the tetrad
malism. Its quasi-Newtonian form allows an easy interpre
tion of several terms, and reduces to well known equation
various limits. Such a Euler equation turns to be bet
3-2
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adapted for spectral methods than the equation for the
mentum current density@8,9#. The system of equations ar
then specialized for spherical symmetry using three differ
gauges:~1! isotropic-maximal gauge,~2! radial-polar gauge,
and ~3! isotropic-polar gauge, where isotropic and rad
stand for the spatial coordinate choice, and maximal and
lar refer to the slicing condition.

This is the first of a series of papers where the grav
tional collapse of various kinds of matter will be analyzed

The paper is organized as follows. Section II presents s
cinctly the 311 formalism of general relativity rather mor
to fix the notation than to give a detailed description. In S
III the case of two interacting sources of matter is spec
ized: a perfect fluid and a flow of relativistic particles d
scribed in terms of relativistic transport theory. Section
treats the relativistic transport theory. Section V deals w
thermodynamics. In Sec. VI spherical symmetry is cons
ered and in Sec. VII three gauge conditions are analyzed
discussed in light of the previous studies. Finally some
marks and the plans for the forthcoming investigations alo
this line are found at the end.

II. THE 3 ¿1 FORMALISM OF GENERAL RELATIVITY

One of the most popular reformulations of general re
tivity when tackling numerical problems is the 311 formu-
lation, a particular form of which is the Arnowitt-Dese
Misner ~ADM ! formalism @46#. We shall not enter into the
details of the derivation of the equations~see Refs.@47–50#!
but rather discuss the general idea in order to fix the n
tions.

The main idea is as follows: under general assumpti
~see @47,49# and references therein for details! a globally
hyperbolic spacetime (M4,gmn) can be foliated by a family
of space-like hypersurfacesS t ~Cauchy surfaces!. Each hy-
persurface represents a Riemannian sub-manifold (M3,hi j )
endowed by aninduced metric hi j ~the three-metric!. It is
then assumed a local coordinate system (t,xi) for the space-
time, the spatial part (xi) represents a local coordinate sy
tem for S t , while t is a global time function that param
etrizesS t . The embedding ofS t in spacetime is complete
by theextrinsic curvatureof S t . This is defined by

Kmnª2
1

2
Lnhmn , ~1!

whereLn stands for the Lie derivative along the normalnm

to S t andhmnªgmn1nmnn . The vector fieldnm is time-like
(nmnm521) and the convention used for its compone
with respect to the coordinate base adapted to the space
foliation is as follows:

nm5~N,Ni !. ~2!

This convention means thatnm points towards thefuture.
Sincenm is a unit time-like vector, it is customary to inte
pret nm as the four-velocity of the so-called Eulerian o
serverOE. Thescalar quantityN ~the lapse function! repre-
sents thus the rate at whichOE sees the flow of its proper
time as compared with the intervals between t
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neighboring hypersurfacesS t and S t1dt . The three-vector
Ni ~the shift-vector!, represents the coordinate three-veloc
at which the Eulerian observer moves with respect to
coordinates (t,xi). In this way, the four-metric reads

ds252~N22NiNi !dt222Nidtdxi1hi j dxidxj , ~3!

noting that in other studies the shift vector is taken with t
opposite sign.

A useful formula forKi j obtained from Eq.~1! is

Ki j 52¹inj52NG i j
t

52
1

2N S ]hi j

]t
1 3¹jNi1

3¹iNj D , ~4!

where 3¹j stands for the covariant derivative compatib
with hi j . This is to be regarded as an evolution equation
the three-metrichi j .

The trace of the extrinsic curvature is simply given by

Kª2¹ana. ~5!

Another useful quantity is the acceleration ofOE given by

am
ªnn¹nnm5 3¹m@ ln N#, ~6!

which allows for the lapse interpretation of the accelerat
potential forOE @48#.

The orthogonal decomposition of the energy-moment
tensor in components tangent and orthogonal toS t leads to
@48#

Tmn5Smn1Jmnn1nmJn1Enmnn. ~7!

The tensorSmn is symmetric and corresponds to thethree-
energy-momentum tensor; Jm is the three-momentum densit
vector, and E is the total energy densitymeasured by the
Eulerian observerOE. Both Smn and Jm are orthogonal to
nm. For the specific applications considered here,Tmn will be
the total energy-momentum tensor of matter which can
composed by the contribution of different types of source

Tmn5(
i

Ti
mn . ~8!

This means that

E5(
i

Ei , Jm5(
i

Ji
m , Smn5(

i
Si

mn . ~9!

The projection of Einstein equationsRmn54pG0(2Tmn

2Ta
agmn) in the directions tangent and orthogonal toS t fol-

lowed by the use of the Gauss-Codazzi-Mainardi equati
leads to the 311 form of Einstein equations:

3R1K22Ki j K
i j 516pG0E, ~10!

known as the Hamiltonian constraint,

3¹lKi
l2 3¹iK58pG0Ji , ~11!
3-3
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known as themomentum constraintequations.
Finally, thedynamicEinstein equations read

] tK j
i1Nl] lK j

i1Kl
i] jN

l2K j
l] lN

i1 3¹ i 3¹jN

2 3Rj
iN2NKKj

i

54pG0N@~S2E!d j
i22Sj

i #, ~12!

whereS5Sl
l is the trace ofSmn, and all the quantities written

with a ‘‘3’’ index refer to those computed with the three
metrichi j . Moreover, under the 311 formalism tensor quan
tities tangent toS t use the three-metric to raise and low
their spatial indices. Equations~4! and~12! are the set of the
Cauchy-initial-data evolution equations for the gravitation
field subject to the constraints Eqs.~10! and ~11!.

An evolution equation for the traceK is obtained by tak-
ing the trace in Eq.~12!:

] tK1Nl] lK1 3DN2N~3R1K2!

54pG0N@S23E# ~13!

where 3D stands for the Laplacian operator compatible w
hi j .

This can be simplified by using Eq.~10! to give

] tK1Nl] lK1 3DN2NKi j K
i j 54pG0N@S1E#. ~14!

In addition to the gravitational field equations, there a
the matter equations

¹mTmn50, ~15!

which according to Eq.~8!, yields

¹mTc
mn52F n, ~16!

whereTc
mn is the energy-momentum tensor of certain fie

that are collectively labeled byc and Fnª¹mText
mn are the

‘‘forces’’ exerted by the external fields~fields other thanc).
For instance, when considering a total energy-momen
tensor given by the combination of a perfect-fluid and a
diated flow of particles:

Tmn5TPF
mn1TR

mn ~17!

then Tc
mn5TPF

mn and Text
mn5TR

mn ; thus the energy-momentum
tensor of the perfect-fluid alone will not conserve by se
rate;Fn will represent the ‘‘forces’’ of the radiated flow ac
ing on the perfect fluid in form ofcollisions.

The energy-momentum conservation equations~16! can
be written in 311 form as well. The projection of Eq.~16!
alongnm leads to the energy conservation equation,

] tEc1Nl] lEc1
1

N
3¹l~N2Jc

l !

5N~Sc
i j Ki j 1EcK !1NnnF n. ~18!

Explicitly nnF n52NF t.
04401
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On the other hand, the projection of Eq.~16! on S t leads
to the momentum conservation equation,

] tJi
c1Nl] lJi

c1Jl
c] iN

l1N~3¹l cSi
l !

5NKJi
c2~ cSi

l1Ecd i
l ! 3¹lN2 3FiN, ~19!

where

3Fi5himF m52NiF t1hi j F j . ~20!

Tetrads

In many applications the use of tetrad components of t
sors~hereafter physical components! are better adapted to
problem than the coordinate components. This will be
case when writing the equations of relativistic transport
the radiated flow and the equations of motion for the mat

In the context of the 311 formalism the tetrad used her
is the local tetrad of the Eulerian observer which is given
$nm,e( i )

j %, that is, by the time-like vector normal toS t and by
a triad onS t . The best choice for a triadei

( l ) on S t will
depend on the particular coordinates used on the hyper
faceS t ~see Sec. VI for the case of spherical symmetry!.

In covariant notation a tetrad is given by

e(m)5q(m)
n

]

]xn
, ~21!

where]/]xn denotes the coordinate basis of the spacetim
andq(m)

n are thetetrad coefficientsthat allow the normaliza-
tion. For instance, it turns thate(t)

m [nm.
The inverse relationship of Eq.~21! is given by

]

]xm
5em

(n)e(n) , ~22!

where the coefficientsem
(n) are related toq(m)

n by the com-
pleteness relationsen

(a)q(b)
n 5d (b)

(a) , anden
(a)q(a)

m 5dn
m .

A tetrad is not uniquely defined. The Lorentz invarian
SO~3,1! leaves the freedom on the choice of the six para
eters that rotate and boost frames. As mentioned, a co
nient choice is as follows:

et
( i )
ª2ej

( i )Nj , ~23!

ei
(t)
ª0, ~24!

et
(t)5N, ~25!

hi j 5ei
( l )ej

( l ) . ~26!

The inverse relations are

q(t)
i 5

Ni

N
, ~27!

q( i )
t 50, ~28!
3-4
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q( i )
t 5N21, ~29!

hi j 5q( l )
i q( l )

j , ~30!

hereei
( l )q( l )

j 5d j
i el

( i )q( j )
l 5d ( j )

( i ) .
This choice of a tetrad is compatible with the 311 decom-

position of the four-metric~3!, so that

ds25em
(a)en

(b)h (a)(b)dxmdxn, ~31!

with en
(a) given by Eqs.~23!–~26! andh (a)(b) stands for the

Minkowski metric.
Trivial Lorentz transformations of the chosen tetrad

lates the Eulerian observer with other possible frames.
Finally, the transformation law for the components of te

sors tangent toS t from the coordinate base to the triad is
follows:

N( i )5el
( i )Nl , ~32!

J( i )5q( i )
l Jl , ~33!

K ( j )
( i )5el

( i )q( i )
m Km

l , ~34!

S( j )
( i )5el

( i )q( i )
m Sm

l . ~35!

The inverse relationships are obtained from above in the
vious way. The triad indices@i.e., spatial indices within ‘‘~!’’ #
are raised and lowered withd ( j )

( i ) ~i.e., the triad-covariant
and triad-contravariant components of three-tensors are i
tical to each other!. Four-tensor components transform in
similar way using the four-dimensional tetrad coefficien
andh (m)(n) (h (m)(n)) to lower ~raise! indices.

The use of the tetrad formalism will be useful to recast
311 matter equations as well as the relativistic Boltzma
equation~see Sec. IV! in a useful manner. For instance, E
~18! reads

] (t)Ec1 3¹( i )Jc
( i )2EcK12Jc

( i ) 3¹( i )n

2cS( i )( j )K ( i )( j )52F (t), ~36!

where] (t)5nm]m .
On the other hand, the momentum conservation equa

~19! can be written as

] (t)Jc
( i )1 3¹( j )Sc

( i )( j )1@Sc
( i )( j )1Ecd ( i )( j )#3¹( j )n2Jc

( i )K

1Jc
( l )~O (t)( l )

( i ) 2K ( l )
( i )!52 3F ( i ). ~37!

I remind that the covariant-derivative components w
respect to a tetrad employs the four-Ricci rotation coe
cients~RRC! as a connection. RRC are defined as follow

O (b)(g)
(a)

ªem
(a)q(b)

n ¹nq(g)
m 5q(b)

s em
(a)~]sq(g)

m 1q(g)
l Gls

m !.
~38!

The three-RRC have an identical expression by restric
the above definition to pure spatial indices and using
three-covariant derivative. While the above definition
04401
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quires the Christoffel symbols, these can be avoided by us
the representation of the RRC in terms of thestructure con-
stants@50–52#.

Although the 311 Einstein equations can be written fo
lowing a tetrad approach@50#, for my purposes this will not
be necessary and thus I shall not pursue the issue here.

III. PERFECT FLUIDS WITH SOURCES

For the specific applications I have in mind, a combin
tion of a perfect-fluid and a radiated flow will be considere
Then in Eq.~17! I assume

TPF
mn5~r1p!umun1pgmn. ~39!

For the moment the form of the radiating partTR
mn is not

specified. This will be treated in detail in Sec. IV.
The corresponding 311 matter variables of the fluid are

EPF5~r1p!G2p, ~40!

JPF
( i )5~EPF1p!3U ( i ), ~41!

SPF
( i )( j )5~EPF1p! 3U ( i ) 3U ( i )1d ( i )( j )p, ~42!

SPF5~EPF1p!~3U ( i )!213p, ~43!

G:52nmum5u(t)5@12~3U ( i )!2#21/2, ~44!

where

3U ( i ):5
u( i )

G
5

el
( i )

N
~Vl2Nl !5

1

N
~V( l )2N( l )!, ~45!

Vl :5ul /ut. ~46!

The equation for conservation of energy~36! applied to a
perfect fluid with sources then reads@50,52–54#

] (t)E1 3¹( l )@~E1p! 3U ( l )#1~E1p!@2 3U ( j )a( j )

2 3U ( l ) 3U ( j )K ( l )( j )2K#

52F R
(t) . ~47!

On the other hand, the momentum conservation equa
~37! applied to a perfect-fluid with sources can be written
a Euler equation for the velocity field. This reads@50,52–
54#,

] (t)
3U ( i )1 3U ( j ) 3¹( j )

3U ( i )

52
1

EPF1p
@ 3] ( i )p1 3U ( i )] (t)p#

2a( j )1
3U ( i ) 3U ( l )~a( l )2

3U ( j )K ( l )( j )!

2 3U ( l )~O (t)( l )
( i ) 2K ( l )

( i )!1
1

EPF1p
~ 3U ( i )F R

(t)2F R
( i )!,

~48!

where
3-5
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a( i )5
3¹( i )@ ln N# ~49!

are the physical components of Eq.~6!. This Euler equation
is the version in physical components~with the extra dissi-
pative termsF R

(m)) of Eq. ~2.29! of Ref. @54# ~see also Ref.
@55#!.

Other formulations of general relativistic hydrodynami
that exploit the hyperbolic character of the equations h
been analyzed recently~see Ref.@56# for a review!. Some of
them allow one to handle discontinuous solutions by the
of schemes based on high resolution shock capturing ins
of introducing an artificial viscosity. These formulations a
specially useful in the study of phenomena that lead to la
density gradients like in type II supernova.

IV. RELATIVISTIC TRANSPORT THEORY

The aim is to study the phenomenon of relativistic tra
port of massive and massless particles~hereafter radiation!
within a dense medium. The formalism developed
Lindquist @57# is followed closely, but the details will not b
repeated here. The radiated particles of the specie ‘‘R’’ w
be treated classically as point particles except when inter
ing with the dense medium. The interactions and its quan
mechanical effects will be ultimately translated as emiss
rates and opacity functions. The particles will be charac
ized thus by a four-momentum

pm5
dxm

dl
, ~50!

wheredl corresponds to an affine parameter~for massless
particles! or to the proper-time per mass unit~for massive
particles!.

According to this formalism, one postulates the existen
of a scalar functionFR(xm,pm) ~the invariant distribution
function for the specie R! which is a function from the phas
space coordinates (xm,pm) to the reals. Actually, since we
will be interested in particles satisfying the mass shell c
dition

gmnpmpn52m̃, ~51!

wherem̃50,1 for massless or massive particles, respectiv
FR will be a function defined on thereducedphase-space

For instance, the setPª$(xm,pm):xmPM4,pmPTx
M4

,
gmnpmpn<0,pm future directed% is the one-particle phase
space~or future-directedtangent bundleB) for particles of
arbitrary ~real-valued! massesm, and the reduced phase
space~or sphere bundle! Pm ~the mass shell! corresponds to
the subspace ofP with tangent vectorspm of fixed length~it
has dimension seven!.

The invariant distribution function so introduced will b
such that the number density four-vector and the ene
momentum tensor of the particles are, respectively@57#,

j R
m5E pmFR~xm,pm!dP, ~52!
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mn5E pmpnFR~xm,pm!dP, ~53!

wheredP is the invariant volume of the momenta space
shell @57#:

dP52NAh
d3p

pt
, ~54!

where d 3pªdp1dp2dp3 represents a coordinate thre
volume element andh is the determinant of the three-metri

The distribution functionFR is related to the dimension
less distribution functionF̄R by

FR5
gR

8p3\Pl
3

F̄R, ~55!

where gR is the statistical weight of the particles of th
specie R~e.g., gR51,2 for neutrinos and photons, respe
tively!.

As in the case of the perfect fluid, it is useful to refer t
components of four-momenta to a tetrad. In the context
the 311 formalism we have

e:5p(t)5Npt, ~56!

p( i )5el
( i )~pl2ptNl !, ~57!

with the inverse relationships given by

pt5e/N, ~58!

pi5e
Ni

N
1q( l )

i p( l ), ~59!

wherep( i ) are the physical spatial components of the fo
momentum~i.e., the spatial physical components of the pr
jection of pm onto S t : 3pm

ªhn
mpn). The ratiop( i )/e corre-

sponds to the local velocity of particles measured byOE.
Introducing the magnitude of the three-momentum as

p2
ªp( i )p

( i ), ~60!

it is easy to see that Eq.~51! simply becomes

e25p21m̃2. ~61!

Here e is the energy~per mass-unit in the case of massi
particles! as measured by the Eulerian observer. Therefo
from Eq. ~54!, one obtains,

dP5Ah
d3p

eS 11
p( l )ei

( l )Ni

EN D , ~62!

where we used pt5et
(m)p(m)5Np(t)2p( l )ei

( l )Ni52Ne
2p( l )ei

( l )Ni .
When changing variables in momentum space by us

Eqs.~59! and ~61! a straightforward manipulation leads to
3-6
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d3p5
dp(1)dp(2)dp(3)

Ah
S 11

p( l )ei
( l )Ni

eN D , ~63!

where the relationship det@q( l )
i #51/Ah was used. Finally

dP5
dp(1)dp(2)dp(3)

e
, ~64!

which has exactly the same form as in Minkowski spacetim
The use of physical spherical variables in moment

space leads to

dP5p2dpdVp /e5pdedVp . ~65!

Indeed, this is a useful expression when dealing with sph
cal symmetry.

The use of tetrad components allows us to write Eqs.~52!
and ~53! as follows:

j R
(m)5E p(m)FR~xl,p(l)!dP, ~66!

TR
(m)(n)5E p(m)p(n)FR~xl,p(l)!dP. ~67!

Therefore, the corresponding 311 matter variables are

ER5E e2FR~xl,p(l)!dP, ~68!

JR
( i )5E ep( i )FR~xl,p(l)!dP, ~69!

SR
( i )( j )5E p( i )p( j )FR~xl,p(l)!dP, ~70!

SR5E p2FR~xl,p(l)!dP. ~71!

According to Eq.~9! the total 311 matter variables are

E5EPF1ER, ~72!

J( i )5JPF
( i )1JR

( i ) , ~73!

S( i )( j )5SPF
( i )( j )1SR

( i )( j ) , ~74!

S5SPF1SR, ~75!

where I remind that the quantities labeled with ‘‘PF’’ a
given by Eqs.~40!–~43!. It is understood in these expre
sions that the sum of the different quantities extends to
the species R considered.

A. The Boltzmann equation in curved spacetimes

The ‘‘macroscopic’’ four-current density number of pa
ticles of the specie R was defined by Eq.~52!. The number
density of particles as measured in the local frame of
observerOp ~with four-velocity vm) is
04401
.

ri-

ll

n

np
R
ª2vm j R

m52E vmpmFR~xl,p(l)!dP. ~76!

Therefore, the number of particlesdNR with momenta be-
tweenpm andpm1dpm crossing the volume elementdV of
the space-like hypersurfaces orthogonal tovm and which is
centered at some pointxm of spacetime is

dNR5FR~xl,p(l)!~2vmpm!dVdP. ~77!

The quantity dW5(2vmpm)dVdl represents the four
volume spanned by the flow of particles~world lines! cross-
ing dV, which is given by the element of hypersurfacedV
with normalvm and the particle’s infinitesimal displaceme
orthogonal todV given by dl5vmpmdl @57#. The quantity
(2vmpm)dV is in fact the correct Lorentz invariant four
volume element. From the relativistic form of Liouville’
theorem~see Ref.@57# for the details! dWdPremains invari-
ant along a given set of trajectories. Therefore, the chang
the number of world lines withindWdP is proportional to
the change inFR,

d~dNR!5F ]FR

]xa
dxa1

]FR

]pa
dpaG ~2vmpm!dVdP

5F ]FR

]xa
pa1

dpa

dl

]FR

]pa GdWdP. ~78!

The evolution forpm will be thus governed by the equation
of motion of individual particles:

dpm

dl
52pspnGsn

m 1Ffields
m 1Fcoll

m . ~79!

This equation shows that the trajectory of the partic
depends on~1! the spacetime curvature,~2! the forces arising
from the interaction of the particles with fundamental fiel
other than the gravitational one, and~3! the interaction with
other particles that can be represented by ‘‘collisions.’’ F
my purposes, I will consider thatFfields

m 50. That is to say, the
only fundamental field I consider is the gravitational one. A
other interactions like the weak ones~in the case of neutri-
nos! will be treated phenomenologically as collision term
and therefore the set of equations will not include gau
fields, but rather involve macroscopic quantities that char
terize the medium and which are obtained from field the
in a similar fashion as one obtains the equation of state
matter.

The relativistic Boltzmann equation~RBE! then reads,

L̂FR5S dFR

dl D
coll

, ~80!

where

L̂ªpm
]

]xm
2pnpsGns

m ]

]pm
, ~81!
3-7
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is the relativistic Liouville operator often written by th
fuzzy notationpaD/dxa ~the directional derivative ofFR
along the phase flow!, and (dFR/dl)coll5
2FR coll

a (]FR/]pa) represents collectively the scattering, a
sorption, and emission processes between the particles o
specie R and the medium. In the absence of collisions,
distribution function remain constant along the particl
path ~i.e., along the particle’s geodesics!. In the language of
differential geometry, the operator D/dxa5]/]xa

2plGal
m (]/]pm) corresponds to a coordinate basis vector

the horizontal part of the tangent bundle over the spacet
M4 @57#. As mentioned before, the distribution function w
be defined only on the reduced phase spacePm ~the mass-
shell!, that is, it will be defined only on thesphere bundle
~the subbundle of tangent vectors of fixed length!. One can
incorporate this restriction in the Liouville operator by trea
ing the spatial partpi of the four-momenta as independe
components. Then

~D/dxa!ms5
]FR

]xa
2plGal

i ]FR

]pi
. ~82!

B. Tetrad representation and the 3¿1 RBE

It will be convenient to use tetrad components to rewr
the RBE. By employing the tetrad formalism it is easy
show that the RBE reads

S p(a)q(a)
m ]

]xm
2p(b)p(a)O (b)(a)

(d) ]

]p(d)D FR~xa,p(s)!

5S dFR

dl D
coll

. ~83!

Let us consider Eq.~83!, and split it in terms of temporal an
spatial contributions. First we define,

Lpªp(b)p(a)O (b)(a)
(d) ]

]p(d)
5p(b)p(a)O (b)(a)

(t) ]

]e

1p(b)p(a)O (b)(a)
( i ) ]

]p( i )
, ~84!

where the notatione5p(t) was used. The properties of th
RRC and some straightforward calculations show a us
relationship between the four-RRC and the physical com
nents of 311 variables. For instance:

O (t)( i )
(t) 5O (t)(t)

( i ) 5a( i ) ,

O ( i )( j )
(t) 5O ( j )(t)

( i ) 52K ( i )( j ) ,

O (t)(m)
(m) 5O ( i )(m)

(m) 50 ~no summation onm!,
~85!
04401
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O (t)( j )
( i ) 52

1

2 S 2
] ( i )N

( j )

N
1q(m)

l N(m)

N
] ( i )el

( j )

1q( i )
l ] (t)el

( j )2~ i !↔~ j ! D ,

O ( i )( j )
( l ) 5 3O ( i )( j )

( l ) .

Here 3O ( i )( j )
( l ) are the 3-Ricci rotation coefficients, i.e., th

RRC associated to the local basis frame onS t , and ] (t)
5(1/N)(]/]t)1(N( i )/N)] ( i ) .

In this way we obtain

Lp5~ep( i )a( i )2p( i )p( j )K ( i )( j )!
]

]e

1~e2a( i )1ep( i )O (t)( j )
( i ) 2ep( j )K ( j )

( i )

1p( l )p( j ) 3O ( i )( j )
( l ) !

]

]p( i )
. ~86!

Finally, the 311 decomposition of Eq.~83! is

Fe] (t)1p( i )] ( i )2~ep( i )a( i )2p( i )p( j )K ( i )( j )!
]

]e

2~e2a( l )1ep( i )O (t)( j )
( i ) 2ep( j )K ( j )

( i )

1p( i )p( j ) 3O ( i )( j )
( l ) !

]

]p( l )GFR~xa,p(c)!5S dFR

dl D
coll

.

~87!

Moreover, the properties of RRC imply3O ( i )( l )
( l ) [0 ~no sum

convention!. Therefore the above equation can be furth
simplified.

Equation~87! is the 311 version of the RBE, here written
in terms of physical components. The mass shell condit
e25p( i )p( i )1m̃2 can be imposed on the RBE by conside
ing, for instance,p( i ) as independent variables. In that ca
FR is to be considered as though it does not depend explic
on e, i.e.,]FR/]e50. Alternatively, the use of spherical-lik
variables in momentum space~see Sec. VI C! will allow us
to considere as the independent variable andp25p( i )p( i ) as
the dependent one.

C. Collisions

As I stressed before, particles may be submitted to co
sional forces arising from the interacting medium~i.e., in the
case of neutrinos these forces come from the weak inte
tion with baryons!. Let me remind that the collision integra
as conceived originally by Boltzmann assumes that the in
acting medium has a known distribution function. That
the distribution function of the medium is a data of the pro
lem.

In the present case, the interacting medium is to be c
sidered not as particles but rather as a fluid field, name
perfect fluid. Thus, for my purpose, it will be more conv
3-8
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nient to characterize the collision integral in terms of sca
functions as it is usual in transport theory. In this way co
sions will be represented macroscopically by the so-ca
invariant opacity o(xm,pm) and the invariant emissivity
Y(xm,pm).

I then assume that the collision integral takes the follo
ing form:

S dFR

dl D
coll

5Y2oFR. ~88!

In terms of quantities measured in the same frame one
write

Y5
h~xm,pm!

e2
5

h8~x8m,p8m!

e82
, ~89!

hereh and e are the matter emissivity and the particle e
ergy, respectively, both measured in the same frame. In
same way, one can introduce the matter opacity as

o5ex~xm,pm!5e8x8~x8m,p8m!, ~90!

wherex;1/l , l being the mean free path of the particle
the corresponding frame.

The collision term takes then the useful form

S dFR

dl D
coll

5eS h

e3
2xFRD . ~91!

The opacityx and the absorption coefficientk are related by

x5kn, ~92!

wheren is the proper number density of particles that co
poses the medium~e.g., the baryon density!, such thatnª
2 j mum where j m is the four-current of baryons.

In this way, an alternative form of the collision integral

S dFR

dl D
coll

5ken~S2FR!, ~93!

whereke5ek, andS5Y/o is usually referred to as theef-
fectivesource function.

It is to be emphasized that quantities measured in diffe
frames are related to each other via the invariant quant
and Lorentz transformations, for instance, the relations
between the opacities measured in the Eulerian frame
those of the proper frame of the fluid are given, according
Eq. ~90!, by

ex5epxp , ~94!

where quantities in the left-hand side~lhs! refer to the Eule-
rian frame, while the quantities in the right-hand side~rhs!
refer to the proper frame of the fluid. Since physical comp
nents of four vectors in both frames are related by a Lore
transformation, for instance,

pp
(m)5L (n)

(m)p
p(n), ~95!
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where

~L (n)
(m)p

!5S G 2 3U ( i )G

2 3U ( i )G d ( j )
( i )1 3U ( i ) 3U ( j )

G2

G11
D , ~96!

with 3U ( i ) given by Eq.~45! andG by Eq. ~44!, then for the
time components,

ep5G~e2 3U ( i )p( i )!5eG~12 3U ( i )v ( i )!

5eG„12uu 3U ( i )uu uuv ( i )uucos~uR!…, ~97!

where v ( i )
ªp( i )/e represents the velocity of the particle

with respect to the Eulerian frame. In the last formula o
recognizes the well known formula for the energy shift d
to the relative motion of observers. The type of shift~red or
blue! will depend on the angleuR between the propagatio
vector of the particlesv ( i ) and the velocity of the fluid3U ( i )

~i.e., blueshift or redshift if the fluid is approaching or rece
ing, respectively, from the Eulerian observer!. Therefore the
transformation formula between opacities yields

x5xpG„12uu 3U ( i )uu uuv ( i )uucos~uR!…. ~98!

In the case of massless particlesuuv ( i )uu51. In a similar way
one can obtain the transformation formulas for the abso
tion coefficients and the emissivities.

D. Conservation equations for the radiated flow

The particle number current and the energy-moment
tensor of the radiated particles were introduced by Eqs.~52!
and ~53!, respectively. For instance, in the case of perf
quantum gases in thermal equilibrium~i.e., Fermi and Bose
gases! the above definitions allow one to recover the us
macroscopic expressions for the energy density, den
number, and pressure parametrized by the temperature,
ticle mass, and chemical potential of the species as meas
in the local frame.

When collisions are present, both the particle number
the energy-momentum tensor of the particles will not co
serve alone since there will be an exchange of energy
momentum with the interacting dense fluid. Thus we c
expect that the conservation equations derived from E
~52! and ~53! will have sources arising from the collisio
integral:

¹n j R
n 5E S dFR

dl D
coll

dP ~99!

and

¹nTR
mn5E pmS dFR

dl D
coll

dP. ~100!

Then we write

¹n j R
n 5RR, ~101!
3-9
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¹nTR
mn52F R

m5nwR
m , ~102!

where

RR:5E k~xm,pm!@S~xm,pm!2FR~xm,pm!#dP,

~103!

wR
m :5E pmk~xm,pm!@S~xm,pm!2FR~xm,pm!#dP.

~104!

One can define themean emissivity @energy/(volume
3time)# in the fluid frame as

Dª2um¹nTR
mn52numwm. ~105!

Since I have been using quantities measured in the Eule
frame, in the above expressions one has to use the c
sponding quantities with respect to the same obser
Namely, the particle number densitynE as measured by th
Eulerian observer is related to the proper number densit
the perfect fluidn by nE5nG. The same considerations a
ply for the remaining collision variables. For instance, t
emissivity measured in the Eulerian frameDE52nmnwm

5nw(t) is related to the proper emissivityD52umnwm by
D5GDE(12 3U ( i ) 3W( i )) where 3W( i )

ªw( i )/w(t).

V. THERMODYNAMICS

In this section the thermodynamic description of the de
matter with which the radiative particles interact will be pr
sented taking into account the mean quantities introduce
the previous section. Such a description is performed in
proper frame of the fluid. I then assume that the EOS of
dense matter~i.e., the perfect fluid! is given in parametrized
form as follows:

r5r~s,n1 , . . . ,nm!, ~106!

p5p~s,n1 , . . . ,nm!, ~107!

where s is the entropy density andnM (1<M<m) is the
number density of particles of the specieM ~e.g., baryons
and the different lepton flavors!, all of them measured in the
fluid frame. For instance, in the case of a dense matte
hydrostatic equilibrium composed by a mixture of neutro
protons, and electrons, the electron density is obtained
rectly from the proper baryon densityn by demanding charge
neutrality and chemical equilibriummn5mp1me . This last
condition arising from the equilibrium of the nuclear rea
tions: n
p1e2 @9#. In that case the equation of state d
pends onn solely.

Now, Eqs.~106! and ~107! are not independent of eac
other but linked through the first principle of thermodyna
ics
04401
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dU5udS2pdV1mRdNR, ~108!

whereQ and mR are the temperature and the chemical p
tential of the specie R of the particles composing the flu
respectively, defined by

Q5S ]r

]sD
nR

, ~109!

mR5S ]r

]nR
D

s,nBÞnR

. ~110!

Using these definitions, Eq.~108! takes the following form in
terms of densitized quantities@9#:

p5Qs1mRnR2r. ~111!

This equation is often referred to as the compatibility th
modynamic condition between Eqs.~106! and ~107! @9#.

The conservation equation for the baryon number rea

¹m j m50, ~112!

where I remind thatj m5num is the density current of bary
ons andn the proper baryon number density.

This equation can be written explicitly as an evolutio
equation for the number densitynEª2nm j m5nG measured
by the Eulerian observer as follows:

] t~AhnE!1] i@AhnEVi #50, ~113!

whereG andVi are given by Eqs.~44! and~46!, respectively.
Introducing the physical components of the fluid veloc
field given by Eq.~45!, I have the alternative expression,

] t~AhnE!1] i@AhnE~Ni1Nq( j )
i 3U ( j )!#50. ~114!

The equation of conservation of the baryon number le
to the conserved total baryon number given by

N5E
S t

2 j mnmAhdx1dx2dx3 ~115!

5E
S t

nGAhdx1dx2dx3. ~116!

The integral has compact support corresponding to the
ume enveloped by the star surface.

In a similar way, the equation for entropy conservation
obtained from

un¹mTmn5un¹m~TPF
mn1TR

mn!50. ~117!
3-10
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The use of Eq.~39! followed by the definitions Eqs.~109!,
~110!, and~111!, yields

¹m~sum!52
1

Q
~mRRR1D!, ~118!

where

RRª¹m~nRum! ~119!

is the rate of particle production and I remind that

Dª2un¹mTR
mn5un¹mTPF

mn ~120!

is the particle’s mean emissivity in the fluid frame. Therefo
the source for entropy generation in a perfect fluid is fro
the particle production~e.g., neutrinos!. Equation ~119! is
completely equivalent to Eq.~101! which is given in terms of
the distribution function.

One can define the entropy per baryons5s/n and use
Eqs.~112! and ~118! to obtain

um¹ms52
1

nQ
~mRRR1D!. ~121!

Explicitly this provides an evolution equation fors:

] ts1Vi] is52
N

nQG
~mRRR1D!. ~122!

In the case of a neutron-star collapse with matter out
b-equilibrium an evolution equation for the temperatureQ
can be obtained from Eq.~122! @36#.

Moreover, using Eqs.~44!, ~45!, and the tetrad approac
of Sec. II, Eq.~121! takes the alternative form:

nm]ms1 3U ( i )] ( i )s52
1

nGQ
~mRRR1D!. ~123!

In the same way, one can introduce the particle number
baryonxR5nR/n and write Eq.~119! as

um¹mxR5
1

n
RR, ~124!

which provides an evolution equation forxR:

] txR1Vi] ixR5
N

nG
RR, ~125!

or alternatively,

nm]mxR1 3U ( i )] ( i )xR5
1

nG
RR. ~126!
04401
f
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In order to close the whole system of equations presen
so far one needs the input of particle physics. That is,
EOS for nuclear matter, the rate of particle production, a
the opacities~see Ref.@2# for a review!. In the case of neu-
trinos emitted by nuclear matter out of beta equilibrium v
direct and inverseb processes during neutron-star collaps
the rate of particle production, the emissivities, and
opacities can be given in terms of rather simple formu
@36,58# ~see also Ref.@59# for neutrino emissivities from
quark matter inb-equilibrium within neutron stars and Re
@60# for neutrino emission from hot and dense atmospher!.
For the case of reaction rates and opacities in Type II su
novae see, for instance, Ref.@15#.

In summary, we can briefly list the variables to be evolv
in time: ~a! Gravitational variables:hi j ,K j

i are to be evolved
from Eqs. ~4! and ~12!, respectively, subject to the initial
value constraints Eqs.~10! and ~11!; ~b! Perfect-fluid vari-
ables:EPF and 3U ( i ) ~or JPF

( i )) are evolved from Eqs.~47! and
~48! @or from Eq.~37! for the perfect-fluid case#; ~c! Radia-
tion variables:FR(t,xi ,E,p( i )) is evolved from Eq.~87! with
the collisional term given, for instance, by Eq.~93!. The
remaining observables are computed by integration fr
Eqs. ~68!–~70!. Another alternative is to evolve the mea
radiative variables~together with a closure relationship be
tween them: e.g., the diffusion approximation! instead of the
distribution function itself@see Eqs.~192! and ~193! for the
spherically symmetric case#; ~d! Thermodynamic variables
nE, s, andxR are to be evolved from Eqs.~114!, ~123!, and
~126!, respectively.

The particle-physics input for the above system of evo
tion equations is the EOS given by Eqs.~106! and~107! the
rate of particle productionRR @see Eq.~119!#, and the opac-
ity and source function@see Eq.~93!#. The particular form
for these depends on the physical problem to be treated

VI. SPHERICAL SYMMETRY

In this and the following sections I will focus on spher
cally symmetric spacetimes. The most general line-elem
for such spacetimes according to the 311 decomposition of
the metric Eq.~3! is

ds252~N22NrNr !dt222Nrdtdr1A2dr2

1B2~r 2du21r 2sin2udf2!, ~127!

where all the metric potentials are functions of the coor
natesr and t solely. The three-metrichi j is easily read-off
from Eq. ~127!.

On the other hand, the triad coefficients are

ej
( i )5diag@A~ t,r !,rB~ t,r !,r sinuB~ t,r !#. ~128!

The inverse coefficientsq( j )
i can be obtained trivially from

Eq. ~128!.
The extrinsic curvature can be computed from Eq.~4!. I

find @61#
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~Ki j !5S 2
A

N
~] tA1] rN

(r )! 0 0

0 2
rB2

N S N(r )

A
1

r

B
] tB1

rN (r )] rB

AB D 0

0 0 2
rB2sin2~u!

N S N(r )

A
1

r

B
] tB1

rN (r )] rB

AB D D ,

~129!

~K j
i !5~K ( j )

( i )!5S 2
1

N S ] tA

A
1

Nr] rA

A
1] rN

r D 0 0

0 2
1

N S ] tB

B
1

Nr] rB

B
1

Nr

r D 0

0 0 2
1

N S ] tB

B
1

Nr] rB

B
1

Nr

r D D ,

5S 2
1

N S ] tA

A
1

] rN
(r )

A D 0 0

0 2
1

N S ] tB

B
1

N(r )] rB

AB
1

N(r )

rA D 0

0 0 2
1

N S ] tB

B
1

N(r )] rB

AB
1

N(r )

rA D D , ~130!
ents

Eq.

l

nts

m
ce-
n-
where the index of Eq.~130! was raised withhi j from Eq.
~129!.

The three-scalar of curvature is given by

3R5
2

r 2A2 S A2

B2
21D 1

2

A2 S 2] rA

rA
1

2~] rB!~] rA!

BA

2
~] rB!2

B2
2

6] rB

rB
2

2] rr
2 B

B D . ~131!

A. The 3¿1 Einstein equations

It is useful to introduce the new variables,

n:5 ln@N#, ~132!

a:5 ln@A#, ~133!

b:5 ln@B#. ~134!

The Hamiltonian constraint Eq.~10! reads

1

r 2 S A2

B2
21D 1A2@2K (r )

(r )K (u)
(u)1~K (u)

(u)!2#1
2] ra

r

2
6] rb

r
12~] ra!~] rb!23~] rb!222] rr

2 b

58pG0EA2, ~135!
04401
where I have used the fact that the nondiagonal compon
of K j

i are null and thatK (u)
(u)5K (f)

(f) @cf. Eq. ~130!#.
The radial component of the momentum constraints

~11!, reads

~K (r )
(r )2K (u)

(u)!S 1

r
1] rb D2] rK (u)

(u)54pG0AJ(r ) .

~136!

Or in terms of the traceK,

2~K (r )
(r )2K (u)

(u)!S 1

r
1] rb D2] rK1] rK (r )

(r )

58pG0AJ(r ) . ~137!

The angular components of Eq.~11! and the spherica
symmetry lead to the conditionsJu505Jf which implies
the absence of ‘‘angular currents.’’

The dynamical equations for the nondiagonal compone
of Eq. ~12!, i.e., for ] tK (u)

(r ) , ] tK (f)
(r ) , ] tK (f)

(u) with the
fact thatK (u)

(r )5K (f)
(r )5K (f)

(u)50 @cf. Eq. ~130!#, leads,
respectively, to the conditions thatS(u)

(r )5S(f)
(r )5S(f)

(u)

50. Moreover, taking into account the fact thatK (u)
(u)

5K (f)
(f) , the dynamical equations for] tK (u)

(u) and
] tK (f)

(f) @see Eq. ~12!#, lead to the conditionS(u)
(u)

5S(f)
(f) corresponding to an ‘‘isotropic’’ energy-momentu

tensor which is compatible with the hypothesis of a spa
time with spherical symmetry. In this way, the only two no
trivial dynamical equations are
3-12
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] tK (r )
(r )1

N(r )] rK (r )
(r )

A
2NKK(r )

(r )2
N

A2 S 2] ra

r
2

4] rb

r

12~] ra!~] rb!22~] rb!222] rr
2 b D

1
N

A2
@] rr

2 n1~] rn!22~] ra!~] rn!#

54pG0N~2S(r )
(r )12S(u)

(u)2E!, ~138!

] tK (u)
(u)1

N(r )] rK (u)
(u)

A
2NKK(u)

(u)

2
N

A2 F 1

r 2 S A2

B2
21D 1

] ra

r
2

4] rb

r
1~] ra!~] rb!

22~] rb!22] rr
2 bG1

N

A2 F ~] rb!~] rn!1
] rn

r G
54pG0N~S(r )

(r )2E!. ~139!

From Eq.~14! the evolution equation for the trace ofKi j is

] tK1
N(r )] rK

A
2N@~K (r )

(r )!212~K (u)
(u)!2#1

N

A2 F] rr
2 n

1~] rn!22~] ra!~] rn!12~] rb!~] rn!1
2] rn

r G
54pG0N~S1E!, ~140!

where we recognize the three-covariant Laplace operato
spherical coordinates of the slicesS t @see Eq.~127!#:

3Dn5
1

A2 F] rr
2 n1

2] rn

r
2~] ra!~] rn!12~] rb!~] rn!G .

~141!

B. Matter equations

In the present case of a perfect fluid in spherical symm
try we have

EPF5~r1p!G2p, ~142!

PFS(r )
(r )5~EPF1p!~ 3U (r )!21p, ~143!

PFS(u)
(u)5S(f)

(f)5p, ~144!

J(r )
PF5~EPF1p! 3U (r ), ~145!

G5@12~ 3U (r )!2#21/2, ~146!

where

3U (r )5
A

N
~Vr2Nr !5

1

N
~V(r )2N(r )!, ~147!
04401
in

-

with Vr
ªur /ut. The spherical symmetry impliesuu50

5uf and thereforeU (u)505U (f).
Note that

PFS(r )
(r )5 3U (r )J(r )

PF1p. ~148!

Equation~47! reads

] tEPF1Nr] rEPF1
N

AB2r 2
] r~AB2r 2JPF

r !

5N~ PFS(r )
(r )K (r )

(r )12 PFS(u)
(u)K (u)

(u)1EPFK !

22JPF
r ] rN2N2F R

t . ~149!

Or in terms ofJ(r )5AJr ,

] tEPF1Nr] rEPF1
N

AB2r 2
] r~B2r 2J(r )

PF!

5N~ PFS(r )
(r )K (r )

(r )12 PFS(u)
(u)K (u)

(u)1EPFK !

2
2

A
J(r )

PF] rN2N2F R
t . ~150!

Using Eqs.~144!, ~147!, and~148! the latter equation can b
written in conservative form as

] tEPF1
1

r 2
] r~r 2VrEPF!

5EPFS NK1
2Nr

r
1] rN

r D2
1

r 2
] r S r 2

N

A
3U (r )pD

2
NJ(r )

PF

A
@] rn1] ra12] rb2 3U (r )AK(r )

(r )#

1NKp2N2F R
t . ~151!

The momentum conservation Eq.~19! reads

] tJr
PF1Nr] rJr

PF1Jr
PF] rN

r1N~ 3¹l PFSr
l !

5NKJr
PF2~ PFSr

r1EPF!] rN2 3F r
RN. ~152!

Explicitly

] tJr
PF1Nr] rJr

PF1Jr
PF] rN

r1N] r PFS(r )
(r )

12N~ PFS(r )
(r )2 PFS(u)

(u)!S 1

r
1

] rB

B D
52~ PFS(r )

(r )1EPF!] rN1N Jr
PF~K (r )

(r )12K (u)
(u)!

2 3F r
RN. ~153!

Or in terms ofJ(r ) , one has
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] tJ(r )
PF1J(r )

PF] tA

A
1

N(r )

A
] rJ(r )

PF1
J(r )

PF

A
] rN

(r )

1
N

A
] r PFS(r )

(r )1
2N

A
~ PFS(r )

(r )2 PFS(u)
(u)!S 1

r
1

] rB

B D
52~ PFS(r )

(r )1EPF!
] rN

A
1NJ(r )

PF~K (r )
(r )12K (u)

(u)!

2 3F(r )
R N. ~154!

When using Eq.~130! to replace the time derivative ofA I
find

] tJ(r )
PF1

N(r )

A
] rJ(r )

PF1
N

A
] r PFS(r )

(r )

1
2N

A
~ PFS(r )

(r )2 PFS(u)
(u)!S 1

r
1

] rB

B D
52~ PFS(r )

(r )1EPF!
] rN

A
12N J(r )

PF~K (r )
(r )1K (u)

(u)!

2 3F(r )
R N. ~155!

Using Eqs.~147! and ~148!, one obtains an equation fo
J(r )

PF in conservative form

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5
N

A H J(r )
PFF2A~K (r )

(r )1K (u)
(u)!2 3U (r )~] ra12] rb!

2
A

N S 2

r
Nr1] rN

r D G2~EPF1p!] rn2] rp2 3F(r )
R AJ ,

~156!

with the alternative form for the rhs,

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5J(r )
PFF2N~K (r )

(r )1K (u)
(u)!2Vr~] ra12] rb!

1Nr S ] ra12] rb2
2

r D2] rN
r G

2
N

A
@~EPF1p!] rn1] rp1 3F(r )

R A#. ~157!

Another possibility which has turned out to be very useful
some numerical studies@8,9,36# is the use of the Euler equa
tion for the fluid instead of the equation forJ(r )

PF . The only
nontrivial component of the Euler equation~48! in spherical
symmetry reads
04401
] (t)
3U (r )1 3U (r ) 3] (r )

3U (r )

52
1

EPF1p
@ 3] (r )p1 3U (r )] (t)p#

1
1

G2
~ 3U (r )K (r )

(r )2a(r )!

1
1

EPF1p
~ 3U (r )F R

(t)2F R
(r )!, ~158!

where I used the fact that the RRC are antisymmetric so
the termsO (t)(r )

(r ) 505O (r )(r )
(r ) , and I remind the explicit ex-

pressions

] (t)5
1

N
] t1

Nr

N
] r , ~159!

3] (r )5
1

A
] r , ~160!

a(r )5
3] (r )n. ~161!

C. The RBE in spherical symmetry

The most general four-metric for a spherically symmet
spacetime is given by Eq.~127!. Then, it is easy to see tha
the simplest tetrad choicee(m) associated with Eq.~127! and
which corresponds to the local tetrad of the Eulerian o
server, reads

e(t)5
1

N

]

]t
1

Nr

N

]

]r
, ~162!

e(r )5
1

A

]

]r
, ~163!

e(u)5
1

rB

]

]u
, ~164!

e(f)5
1

rBsinu

]

]f
, ~165!

where]/]xm @with xm5(t,r ,u,f)# denote the coordinate ba
sis.

In the Eulerian frame, the spherical symmetry of config
ration space~i.e., spacetime! induces a symmetry on momen
tum space that can be exploited to simplify the computatio
It is convenient to define spherical variables on moment
space as follows: take a unit vectore(r ) as the polar axis, i.e.
as the symmetry axis on momentum space. Then it is us
to introduce new variablese,c,g in the Eulerian frame as

p(t)5e, p(r )5p cosc, p(u)5p sinc cosg,

p(f)5p sinc sing. ~166!

As mentioned earlier in Sec. IV,e is the energy of the radi-
ated particles~e.g., neutrinos! in the Eulerian frame andp2
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5p(i)p(i) ; c is the angle between the polar axis and the n
trino propagation three-vectorp( i ), and g is the angle of
rotation arounde(r ) . The above variables are consistent w
the mass shell condition~61!. For massless particles, the
p[e. Under these new variables the RBE~83! reads

S p(a)~e,c,g!q(a)
m ]

]xm
2p(b)~e,c,g!p(a)~e,c,g!

3O (b)(a)
(d) ] p̃(c)

]p(d)

]

] p̃(c)D FR~ p̃!5S dFR

dt D
coll

, ~167!

where I explicitly stress the dependence of momenta w
respect to the new momenta spherical-like variab
(e,p,c,g) represented collectively byp̃.

Indeed, the spherical symmetry and the mass shell co
tion will be reflected in the RBE by the fact that the dist
bution functionFR depends only on four phase-space co
dinates (t,r ,e,m) or (t,r ,p,m) instead of the original eigh
(xm,pm) @57,62#, wheremªcosc .

We can now proceed to calculate explicitly the RBE. T
only non-null Ricci coefficients are@61#
r-
a-

r

04401
-

h
s

i-

-

O (t)(r )
(t) 5O (t)(t)

(r ) 5Drn,

O (r )(r )
(t) 5O (r )(t)

(r ) 5Dta1
1

N
DrN

(r ),

O (u)(u)
(t) 5O (f)(f)

(t) 5O (u)(t)
(u) 5O (f)(t)

(f)

5
N(r )

rAN
1Dtb1

N(r )

N
Drb,

O (u)(u)
(r ) 5O (f)(f)

(r ) 52O (u)(r )
(u) 52O (f)(r )

(f)

52r 21A212Drb,

O (f)(f)
(u) 52O (f)(u)

(f) 52
1

rB
cotu,

where Dtª(1/N) (]/]t) ,Drª(1/A) (]/]r ) [ 3] (r ) . After
imposing the mass shell condition, the RBE~167! in terms of
the spherical variables reads explicitly@61#,
eDtFR~ t,r ,e,m!1S pm

e
1

N(r )

N DeDrFR~ t,r ,e,m!

2p2F ~12m2!
N(r )

N S 1

rA
1Drb D1m2Dta1~12m2!Dtb1

me

p
Drn1

m2

N
DrN

(r )G]eFR~ t,r ,e,m!

1e~12m2!F S p

e
1

mN(r )

N D S 1

rA
1Drb D1m~Dtb2Dta!2

e

p
Drn2

m

N
DrN

(r )G]mFR~ t,r ,e,m!5S dFR

dl D
coll

. ~168!

The alternative 311 form of the RBE can be computed from Eq.~87! when changing to the spherical variablesp̃(m) in the
momentum space:

eDtFR~ t,r ,e,m!1S pm

e
1

N(r )

N DeDrFR~ t,r ,e,m!2p2F2~12m2!K (u)
(u)2m2K (r )

(r )1
me

p
DrnG]eFR~ t,r ,e,m!

1e~12m2!Fp

eS 1

rA
1Drb D1m~K (r )

(r )2K (u)
(u)!2

e

p
DrnG]mFR~ t,r ,e,m!5S dFR

dl D
coll

. ~169!
In normal coordinates whereNr50, and for massless pa
ticles, Eq.~167! reduces to the relativistic Boltzmann equ
tion derived by Lindquist@57# with the choiceB5R(r )/r .
Following Harleston and Vishniac@44#, Eq. ~169! can be
written in ‘‘conservative’’ form which is specially suited fo
numerical solutions@45#:
] tF̃R1
1

r 2
] r~r 2Vp

r F̃R!1
1

pe
]e~p3HeF̃R!1]m~HmF̃R!

5
NAB2

e S dFR

dl D
coll

, ~170!
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where

F̃R5AB2FR~ t,r ,e,m!, ~171!

Vp
r 5

pr

pt
5

N

A S pm

e
1

N(r )

N D , ~172!

He5
N

p2
L̂~e!52NF2~12m2!K (u)

(u)

2m2K (r )
(r )1

me

p
DrnG , ~173!

Hm5
N

e
L̂~m!5N~12m2!Fp

eS 1

rA
1Drb D

1m~K (r )
(r )2K (u)

(u)!2
e

p
DrnG , ~174!

andL̂ stands for the Liouville operator as it appears in the
of Eq. ~169!. Alternatively, the above equation can be writt
as

] tF̃R1
1

r 2
] r~r 2Vp

r F̃R!1
1

p2
]p~p3HpF̃R!1]m~HmF̃R!

5
NAB2

e S dFR

dl D
coll

, ~175!

where nowF̃R5F̃R(t,r ,p,m) is to be regarded as a functio
of p instead ofe and

Hp5
N

pe
L̂~p!52NF2~12m2!K (u)

(u)2m2K (r )
(r )

1
me

p
DrnG . ~176!

A particular gauge choice will only affect the form of th
quantities given by Eqs.~171!–~174! and ~176!, and the rhs
of Eqs.~170! and ~175!.

Finally, I emphasize that all the momentum variab
which appear in the various forms of the RBE in spheri
symmetry are components with respect to the orthonor
tetrad carried by the Eulerian observer. Therefore the co
sponding quantities in the collision integral are to be refer
to the same observer.

D. Mean radiative variables

In Sec. IV the energy-momentum tensor of particles w
defined in terms of their microscopic four-momenta. Ho
ever, one can introduce mean radiative variables which ar
be interpreted as their counterparts of the continuum c
Such variables are called themoments of the distribution
function. In order to write them explicitly, I shall use th
physical components of the energy-momentum tensor of
ticles Eq. ~67! and the spherical variables in momentu
04401
s

s
l
al
e-
d

s
-
to
e.

r-

space in addition to the invariant volume element of mom
tum space given by Eq.~65!. I have then

TR
(m)(n)5E

0

`E
21

1 E
0

2p

p(m)p(n)FR~ t,r ,p,m!
p2

e
dpdmdg

5E
m̃

`E
21

1 E
0

2p

p(m)p(n)FR~ t,r ,e,m!

3Ae22m̃2dedmdg. ~177!

The only non-null moments are

ER:5TR
(t)(t)

52pE
0

`

p2Ap21m̃2dpE
21

1

FR~ t,r ,p,m!dm

52pE
m̃

`

e2Ae22m̃2deE
21

1

FR~ t,r ,e,m!dm,

~178!

HR:5TR
(t)(r )52pE

0

`

p 3dpE
21

1

mFR~ t,r ,e,m!dm

52pE
m̃

`

e~e22m̃2!deE
21

1

mFR~ t,r ,e,m!dm,

~179!

pR:5TR
(r )(r )

52pE
0

` p4

Ap21m̃2
dpE

21

1

m2FR~ t,r ,e,m!dm

52pE
m̃

`

~e22m̃2!3/2deE
21

1

m2FR~ t,r ,e,m!dm.

~180!

The tangential pressures are given by

pR
T :5TR

(u)(u)5TR
(f)(f)5pE

0

` p4

Ap21m̃2
dp

3E
21

1

~12m2!FR~ t,r ,e,m!dm

5pE
m̃

`

~e22m̃2!3/2de

3E
21

1

~12m2!FR~ t,r ,e,m!dm. ~181!

I note that in the massless case,

pR
T5

1

2
~ER2pR!. ~182!
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The corresponding 311 variables are

JR
(r )5HR, ~183!

SR
(r )(r )5pR, ~184!

SR
(u)(u)5SR

(f)(f)5pR
T , ~185!

SR5 RS( i )
( i )5pR12pR

T .
~186!

The effective pressure of radiation which can be defined
peff

R 5SR/3, turns out to be in the case of massless partic
peff

R 5ER/3, which corresponds precisely to the equation
state of an ultrarelativistic gas. In Eq.~179!, HR is the mean
radiative flux of energy in the radial direction.

It is usual to introduce the so-called variable Eddingt
factor

J5
pR

ER
~187!

used to measure the degree of ‘‘anisotropy’’ in the parti
flow. In the case of massless particles ifJ51/3 then pR

T

5pR5ER/3 which corresponds to a fully isotropic flow
Moreover, in the free streaming approximation we have

ER5JR
(r )5SR

(r )(r ) , ~188!

and soJ51, which is the case of a highly anisotropic flo
(pR

T50) with a purely radial flux of radiation.
In the same way, the macroscopic particle number den

current measured in the Eulerian frame is given by Eq.~66!
and it in terms of the spherical variables of momentum sp
gives

j R
(m)5E

0

`E
21

1 E
0

2p

p(m)FR~ t,r ,p,m!
p2

e
dpdmdg

5E
m̃

`E
21

1 E
0

2p

p(m)FR~ t,r ,e,m!Ae22m̃2dedmdg.

~189!

In particular, the mean number density and flux of partic
measured by the Eulerian observer are given, respectivel

nE
R
ª2nm j R

m5 j R
(t)52pE

0

`E
21

1

FR~ t,r ,p,m!p2dpdm

52pE
m̃

`E
21

1

eFR~ t,r ,e,m!Ae22m̃2dedm,

~190!

j R
(r )52pE

0

` p3

Ap21m̃2
dpE

21

1

mFR~ t,r ,e,m!dm

52pE
m̃

`

~e22m̃2!deE
21

1

mFR~ t,r ,e,m!dm, ~191!
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and j R
(u)505 j R

(f) .
In terms of the above macroscopic variables, the ene

momentum conservation equation in spherical symmetry
~100! reads according to Eqs.~36! and ~37! as follows@61#:

] (t)ER1 3] (r )HR2ERK

12HRF 3] (r )n1
1

rA
1 3] (r )bG

2~pRK (r )
(r )12pR

TK ~u!
~u!)52F R

(t) , ~192!

] (t)HR1 3] (r )pR12F 1

rA
1] (r )bG@pR2pR

T#

1@pR1ER# 3] (r )n2HR~K1K (r )
(r )!52F R

(r ) .

~193!

Depending on the gauge choice some of the terms wi
these equations can vanish. Actually such evolution eq
tions can be obtained directly from the RBE when multip
ing this by the momenta and then integrating in moment
space.

We emphasize that it is more convenient to calculateER,
HR, andpR directly from their definition once the distribu
tion function has been computed, rather than using the ab
equations. In any case, such conservation equations ca
used to verify the self-consistence of the system. The dis
vantage of using the system of Eqs.~192! and ~193! for the
moments of the distribution instead of solving the RBE
that such a system is undetermined~i.e., there are more vari
ables than equations!. Then a closure relation is needed
remove the ambiguity~e.g., the diffusion approximation re
lating ER andpR).

Finally, in spherical symmetry the evolution equatio
~113!, ~114!, ~122!, ~123!, ~125!, and ~126! write, respec-
tively,

] t~AB2nE!1
1

r 2
] r~r 2VrnEAB2!50, ~194!

] t~AB2nE!1
1

r 2
] rFAB2r 2nES Nr1

N

A
3U (r )D G50,

~195!

] ts1Vr] rs52
N

nQG
~mRRR1D!,

~196!

] ts1Nr] rs1
N 3U (r )

A
] rs52

N

nGQ
~mRRR1D!,

~197!

] txR1Vr] rxR5
N

nG
RR, ~198!

] txR1Nr] rxR1
N 3U (r )

A
] rxR5

N

nG
RR. ~199!
3-17
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Equation~194! has a conservative form for the quanti
AB2nE . One can alternatively write an equation in cons
vative form fornE as

] tnE1
1

r 2
] r~r 2VrnE!1nE@] ta12] tb

1Vr~] ra12] rb!#50. ~200!

In a similar way,

] tnE1
1

r 2
] rF r 2nES Nr1

N

A
3U (r )D G

1nEF] ta12] tb1S Nr1
N

A
3U (r )D ~] ra12] rb!G50.

~201!

The total contribution of sources@Eqs. ~72!–~75!# that
appear in the 311 Einstein equations write in spherical sym
metry as follows:

E5EPF1ER, ~202!

J(r )5AJr5~EPF1p!U (r )1HR, ~203!

S(r )
(r )5~EPF1p!~U (r )!21p1pR, ~204!

S(u)
(u)5S(f)

(f)5p1pR
T , ~205!

S5S( i )
( i )5~EPF1p!~U (r )!213p1pR12pR

T .
~206!

In summary, for the specific case of spherical symme
the spacetime is completely characterized~as it will be
shown in Sec. VII! by the determination of the metric poten
tials N, Nr , andA in time and space. The metric potentialB
can be fixed from the shift conditions. Furthermore, the
metric potentials can be determined completely from the
ferential equations that result when combining the ga
conditions and the constraint equations as shown in S
VII A–VII C. This means that the metric potentials wi
evolve through the matter terms and therefore it will not
necessary to use the evolution Einstein equations. On
other hand, the perfect-fluid variables likeEPF and 3U (r ) ~or
J(r )

PF) are evolved from Eqs.~151! and ~158! @or Eq. ~156!#,
respectively. The thermodynamic quantities likenE , s, and
xR are to be evolved from the different alternatives given
Eqs. ~194!–~201!. Finally the distribution function
FR(t,r ,e,m) for the species considered is used to determ
the radiation observables~e.g., energy-density, fluxes, radia
tion pressure! and it is evolved using the RBE~170! @or
alternatively Eq.~175!#. Another possibility is to use Eqs
~192! and~193! within a closure relation to evolve the radia
tive quantitiesER, HR, andpR, instead of using the RBE
As mentioned at the end of Sec. V, the whole system
differential equations is to be closed by the particle phys
input like the EOS of matter, the nuclear-reaction rates,
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the different collision terms. Such information will depen
on the specific physical problem to be analyzed.

VII. GAUGE CONDITIONS

Einstein’s equations are by construction diffeomorphic
variant. This means that one has the freedom of choos
coordinates orgaugeswithout affecting the physics of the
spacetime. In the framework of the 311 formalism, the
gauge choice includes thetime slicing~lapse condition! and
the choice of spatial coordinates~shift condition!. In spheri-
cal symmetry two of the most popular gauge choices are
radial andisotropicspatial coordinates with themaximaland
polar time slicings~see Refs.@48,63,64# for a more general
discussion on the slicing choices!. Moreover, it is in the
framework of asymptotically flat spacetimes~a condition
usually demanded in astrophysical applications! that they be-
come specially useful; it is in this context that such gaug
will be discussed in the following.

The isotropic coordinates A5B with the maximal slicing
conditions K50, ] tK50 ~hereafter isotropic-maximal
slicing gauge or IMSG! have been employed by several a
thors~e.g., see@6,10,20,38,40,42#!. In the vacuum and static
case, that choice leads to the well known Schwarzschild
lution in isotropic coordinates. The maximal slicing has t
advantage of freezing the evolution in regions near the
mation of space-like singularities while allowing a fast
evolution in the outer regions~a feature usually quoted a
‘‘singularity avoidance’’ property!. The time slicing leads to
an elliptic equation for the lapse, and therefore, for rat
general matter conditions~e.g.,strong energy condition!, one
can use the maximum-minimum principle to determine
qualitative behavior for the lapse~cf. @48,63#!. The lapse
function has a minimum atr 50 and a maximum atr→`.
During the evolution and for the case of black-hole form
tion, the minimum tends to zero ast→` ~the collapse of the
lapse! halting the proper time separation between neighb
ing slices as the singularity forms. However, far from t
origin, N→1, which allows one to advance the evolution
the asymptotic regions. The IMSG also has the advant
that the three-metric remains regular at the formation of
parent horizons, which allows one to continue the evoluti
The drawback is that eventually the metric potentialA grows
exponentially at the origin and then the coordinates
‘‘sucked down’’ to the black hole, which avoids a good d
scription of the evolution outside the event horizon~this is
the well known phenomenon of grid or slicestretching@e.g.,
see Ref.@40#!.

The radial coordinates B51 with the polar slicing con-
dition ~hereafter radial-polar-slicing gauge or RPSG! K
5K r

r have been employed systematically by Gourgoulh
@8,9,36#. These coordinates are a generalization of
Schwarzschild coordinates to the nonstatic and nonvacu
spacetimes. The field equations turn out to be much m
simpler than those of the IMSG since the equations forA and
N reduce to first order inr. Furthermore, the shiftNr is zero
everywhere on the slices. The RPSG has a central ‘‘singu
ity avoidance’’ property which is even stronger than that
the IMSG. In fact, the slowing of the evolution is such that
3-18
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avoids the formation of apparent horizons, the metric pot
tial A, however, develops a ‘‘spike’’ at the star’s surface
the matter enters the Schwarzschild radius@8,11#, leading,
unlike the IMSG, to a coordinate crash. Thus these coo
nates do not serve to describe the black hole’s interior. N
ertheless, the pathological behavior of the RPSG occur
larget ’s, and from the astrophysical point of view~e.g., from
the point of view of an observer at spatial infinity!, these
coordinates are good enough to describe the entire evolu
of matter outside the black hole; the ingoing matter takes
the way, for an observer at infinity, an infinite time to cro
the event horizon~the evolution is thus ‘‘frozen’’!.

The hybrid choice of isotropic coordinates with polar sl
ings~IPSG! has been less used in the past. However, it se
that they overcome the drawbacks of the above coordin
choices~cf. @11,40#; see also Ref.@64# for an analysis of
these coordinates in the context of axisymmetry!.

Another popular coordinate choice is the comoving co
dinates ~Lagrangian coordinates!. Those coordinates hav
been particularly used in the study of supernova colla
with synchronous@13,24,65–67# and polar slicings@7,62#.
The comoving coordinates have the advantage that the
drodynamic equations are simpler since there is no ad
tion. The synchronous slicings are orthogonal in the se
that there is no shift (Nr50). The disadvantage of the latte
is that they fail badly when black holes start forming~cf.
@7,68#!. The asynchronous slicings can remedy this proble
In particular, Schinder and coauthors@7,62# have used polar
slicings to avoid the pathologies of the Lagrangia
synchronous gauge. Another modification to the comov
and synchronous coordinates that allows one to handle
formation of black holes is the introduction of an outgoi
null coordinate instead of the usual time coordinate@27,69#.

Finally, I mention the isotropic coordinates with consta
mean-curvature slicingsK5K(t), employed by Harleston
and coauthors@44,45#. Such a slicing contains the maxim
slicing as a particular case. It also possesses the featu
strong crushing coordinate avoidance. These coordin
generalize~to the nonhomogeneous case! the comoving co-
ordinates of homogeneous and isotropic spacetimes w
are relevant in the standard cosmology. Such a choice is
useful when the spacetime is required to be asymptotic
Friedmann-Robertson-Walker@45,44#. The main difference
between this choice and the maximal slicing condition is th
the behavior of the hypersurfaces asymptotically: the ma
mal hypersurfaces reach spatial infinity while theK(t) hy-
persurfaces reach future or past null infinity whetherK is
positive or negative@68#.

A. Isotropic coordinates and maximal slicing„IMSG …

The isotropic choiceA5B (a5b), implies from Eq.
~130! that

Kr
r5K (r )

(r )52
1

N
~] ta1] rN

r1Nr] ra!. ~207!

Therefore
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] ta52NKr
r2] rN

r2Nr] ra. ~208!

On the other hand, the maximal slicing conditionK50 im-
plies that

Kr
r522Ku

u , ~209!

or equivalently

3] ta13Nr] ra1] rN
r1

2Nr

r
50. ~210!

Using Eq.~208! in the previous equation one obtains

] rN
r2

Nr

r
52

3

2
NKr

r . ~211!

This can be written as to give the following differential equ
tion for Nr @cf. Eq. ~21! of Shapiro and Teukolsky@6##,

] r S Nr

r D52
3

2r
NKr

r . ~212!

On the other hand, using Eq.~211! in Eq. ~208! one ob-
tains an evolution equation fora:

] ta52Nr S ] ra1
1

r D1
1

2
NKr

r . ~213!

With the above choice and with Eq.~209!, the Hamil-
tonian constraint Eq.~135! reads

2] rr
2 a1~] ra!21

4] ra

r
528pG0EA22

3

4
A2~Kr

r !2.

~214!

Adopting the variable

ã5a/2 ~215!

one obtains a second order differential equation forã

] rr
2 ã1

2] r ã

r
52A2F2pG0E1

3

16
~Kr

r !2G2~] r ã !2,

~216!

where one recognizes in the lhs the Laplacian operator
spherically symmetric Euclidean space@cf. Eq. ~19! of Sha-
piro and Teukolsky@6# for a source termE including a per-
fect fluid alone, Eq.~142!#.

The momentum constraint Eq.~137! reads

3Kr
r S 1

r
1] ra D1] rKr

r58pG0Jr , ~217!

were I usedJr5AJ(r ) . This can be written as a differentia
equation forKr

r as @cf. Eq. ~20! of Shapiro and Teukolsky
@6##

] r~A3r 3Kr
r !58pG0r 3A3Jr . ~218!
3-19
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Equation ~140! with the maximal slicing conditionK
50, ] tK50, provides an elliptic equation forN @cf. Eq.~18!
of Shapiro and Teukolsky@6# for source termsE andS of a
perfect fluid, Eqs.~142! and ~143!#,

] rr
2 n1~] rn!21~] ra!~] rn!1

2] rn

r

54pG0A2~S1E!1
3

2
A2~Kr

r !2. ~219!

We have then four differential Eqs.~212!, ~216!, ~217!,
and~219! for Nr , A, Kr

r , andN, respectively. It is to note in
those equations that the field variables evolve in ti
through the matter fields. Although the evolution equat
for K r

r is redundant, for completeness I write it in th
IMSG. Equations~138!, ~214!, and~219!, lead to

] tK (r )
(r )1

N(r )] rK (r )
(r )

A
1

3

4
N~K (r )

(r )!2

2
N

A2 F ~] rn1] ra!S 2

r
1] ra D1~] rn!~] ra!G

528pG0NS(r )
(r ) . ~220!

Concerning the energy conservation equation~149!, this
reads

] tEPF1Nr] rEPF52N] rJPF
r 2NJPF

r S 2] rn1
2

r
13] ra D

1NK(r )
(r )~ PFS(r )

(r )2 PFS(u)
(u)!2N2F R

t .

~221!

Or in terms ofJr5A2Jr one obtains

] tEPF1Nr] rEPF52
N

A2
] rJr

PF2
N

A2
Jr

PFS 2] rn1
2

r
1] ra D

1NK(r )
(r )~ PFS(r )

(r )2 PFS(u)
(u)!2N2F t

R.

~222!

The conservative form Eq.~151! writes in this gauge as

] tEPF1
1

r 2
] r~r 2VrEPF!

5EPFS 2Nr

r
1] rN

r D2
1

r 2
] r S r 2

N

A
3U (r )pD

2
NJ(r )

PF

A
@] rn13] ra2 3U (r )AK(r )

(r )1NAF R
t #.

~223!

The momentum conservation equation writes
04401
e
n

] tJr
PF1Nr] rJr

PF52Jr
PF] rN

r2NF] r PFS(r )
(r )

12~ PFS(r )
(r )2 PFS(u)

(u)!S 1

r
1] ra D

1~ PFS(r )
(r )1EPF!] rn1 3F r

RG . ~224!

In terms of triad components Eq.~157! reads

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5J(r )
PFFNK(r )

(r )23Vr] ra1Nr S 3] ra2
2

r D2] rN
r G

2
N

A
@~EPF1p!] rn1] rp1 3F(r )

R A#. ~225!

In the IMSG, the Euler equation~158! reads

] (t)
3U (r )1 3U (r ) 3] (r )

3U (r )

52
1

EPF1p
@ 3] (r )p1 3U (r )] (t)p#

1
1

G2
~ 3U (r )K (r )

(r )2 3] (r )n!

1
1

EPF1p
~ 3U (r )F R

(t)2F R
(r )!. ~226!

Under the IMSG the evolution equations for the entro
per baryon and the particle number per baryon keep the s
form as Eqs.~196! and~198! or the alternative form given by
Eqs.~197! and ~199!, where Eqs.~194! and ~195! read

] t~A3nE!1
1

r 2
] r@r 2VrnEA3#50, ~227!

] t~A3nE!1
1

r 2
] rFA3r 2nES Nr1

N

A
3U (r )D G50. ~228!

Equation~227! has a conservative form for the quanti
nE A3.

When using the evolution equation~213!, Eqs.~227! and
~228! become, respectively,

] tnE1
1

r 2
] r@r 2VrnE#

13nEF ~Vr2Nr !] ra2
Nr

r
1

1

2
NKr

r G50, ~229!
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] tnE1
1

r 2
] rF r 2nES Nr1

N

A
3U (r )D G

13nEFN

A
3U (r )] ra2

Nr

r
1

1

2
NKr

r G50. ~230!

Equation~229! has a conservative form for the quanti
nE .

B. Radial coordinates and polar slicing„RPSG…

The radial-coordinate condition is achieved by settingB
51 (b50) and the polar slicingK5Kr

r is equivalent to
Ku

u1Kf
f50. SinceKu

u5Kf
f , the RPSG leads toNr50.

The Hamiltonian constraint Eq.~135! reads

1

r 2
~A221!1

2

r
] ra58pG0EA2. ~231!

Moreover, by defining

A~ t,r !ªS 12
2G0m~ t,r !

r D 21/2

, ~232!

Eq. ~231! reads

] ra5A2G0S 4prE2
m

r 2D ~233!

or even@cf. Eq. ~18! of Ref. @8# or Eq.~3.29! of Ref. @36# for
a perfect fluid alone or for a perfect fluid accompanied b
neutrino flow, respectively#,

] rm54pr 2E. ~234!

The momentum constraint~136! for the present gauge
choice reads

K (r )
(r )52

1

AN
] tA54prG0Jr54prG0A2Jr

54prG0AJ(r ). ~235!

This with Eq. ~232! results in an evolution equation fo
m(t,r ) @cf. Eq. ~20! of Ref. @8# or Eq.~3.31! of Ref. @36# for
a perfect fluid alone or for a perfect fluid accompanied b
neutrino flow, respectively#:

] tm524pr 2NJr . ~236!

The evolution equation~139! gives

] rn

r
2F 1

r 2
~A221!1

] rA

rA G54pG0A2~S(r )
(r )2E!.

~237!

With Eqs.~232! and~231! this writes@cf. Eq.~22! of Ref. @8#
and Eq.~3.32! of Ref. @36# for a source termS(r )

(r ) of a
perfect fluid alone, Eq.~143!, or that of a perfect fluid ac-
companied by a neutrino flow Eq.~204!, respectively#,
04401
a

a

] rn5G0A2S m

r 2
14prS(r )

(r )D . ~238!

Therefore Eqs.~234! and~238! are the field equations fo
the two variablesA and N, respectively. These quantitie
evolve in time through the matter variables. Therefore, as
the IMSG, the evolution equation forK (r )

(r ) is also redun-
dant in the RPSG. For completeness I write it using E
~138! @cf. Eq. ~21! of Ref. @8# for a perfect fluid alone#,

] tK (r )
(r )2N~K (r )

(r )!2

2
N

A2 F2] ra

r
2] rr

2 n1~] rn!~] ra2] rn!G
54pG0N~2S(r )

(r )12S(u)
(u)2E!. ~239!

Concerning the evolution equations for the matter, Eq.~149!
reads

] tEPF1
N

Ar2
] r~Ar2JPF

r !

5NK(r )
(r )~ PFS(r )

(r )1EPF!22JPF
r ] rN2N2F R

t , ~240!

which can be written as

] tEPF1
1

r 2
] r~Nr2JPF

r !5NK(r )
(r )~ PFS(r )

(r )1EPF!

2NJPF
r ~] rn1] ra!2N2F R

t . ~241!

The gradients of the metric potentials can be replaced
using Eqs.~231! and ~237! which imply

] rn1] ra54prG0A2~S(r )
(r )1E!. ~242!

Then

] tEPF1
1

r 2
] r~Nr2JPF

r !

5NK(r )
(r )~ PFS(r )

(r )1EPF!

24prG0NA2JPF
r ~S(r )

(r )1E!2N2F R
t . ~243!

Using the momentum constraint~235!, one obtains

] tEPF1
1

r 2
] r~Nr2JPF

r !

54prG0NA2@Jr~ PFS(r )
(r )1EPF!

2JPF
r ~S(r )

(r )1E!#2N2F R
t . ~244!

Now, since

Jr5JPF
r 1JR

r , ~245!
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E5EPF1ER, ~246!

S(r )
(r )5 PFS(r )

(r )1 RS(r )
(r ) , ~247!

I find

] tEPF1
1

r 2
] r~Nr2JPF

r !54prG0NA2@JR
r ~ PFS(r )

(r )1EPF!

2JPF
r ~ RS(r )

(r )1ER!#2N2F R
t .

~248!

Using thatJPF
(r )5AJPF

r , JR
(r )5AJR

r , and Eqs.~143! and~145!,
the energy conservation Eq.~248! finally reads@cf. Eq. ~25!
of Ref. @8# or Eq.~3.55! of Ref. @36# for a perfect fluid alone
or for a perfect fluid accompanied by a neutrino flow, resp
tively#,

] tEPF1
1

r 2
] r@r 2~EPF1p!Vr #

54prG0NA~EPF1p!@JR
(r )
„~U (r )

…

211!

2U (r )~ RS(r )
(r )1ER!#2N2F R

t . ~249!

The alternative expression of Eq.~249! in conservative
form reads

] tEPF1
1

r 2
] r~r 2VrEPF!

52
1

r 2
] r~r 2Vrp!14prG0NA~EPF1p!

3@JR
(r )
„~U (r )!211…2U (r )~ RS(r )

(r )1ER!#2N2F R
t .

~250!

The momentum conservation Eq.~153! reads

] tJr
PF1N] r PFS(r )

(r )1
2N

r PF~S(r )
(r )2 PFS(u)

(u)!

52~ PFS(r )
(r )1EPF!] rN1NJr

PFK (r )
(r )2 3F r

RN.

~251!

This can be written as

] tJr
PF5NF2

1

r 2N
] r~r 2N PFS(r )

(r )!1
2

r PFS(u)
(u)

2EPF] rn1Jr
PFK (r )

(r )2 3F r
RG . ~252!

Using Eq.~157! the conservative form of the latter read
04401
-

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5J(r )
PF@2NK(r )

(r )2Vr] ra#2
N

A
@~EPF1p!] rn1] rp

1 3F(r )
R A#. ~253!

Furthermore, the use of Eqs.~232!, ~233!, ~235!, and ~238!
lead to

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5G0J(r )
PFF8prANJ(r )2A2VrS 4prE2

m

r 2D G
2G0NA~EPF1p!S m

r 2
14prS(r )

(r )D
2

N

A
~] rp1 3F(r )

R A!. ~254!

Finally, using Eqs.~245! and~247! and the expressions~143!
and ~145!, I obtain

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5G0J(r )
PFH 4prAN~J(r )

PF12JR
(r )!

2A2VrF4pr ~EPF1ER!2
m

r 2G J
2G0NA~EPF1p!F m

r 2
14pr ~p1 RS(r )

(r )!G
2

N

A
~] rp1 3F(r )

R A!. ~255!

The Euler equation~158! and Eqs.~235! and~238! lead to

] (t)
3U (r )1 3U (r ) 3] (r )

3U (r )

52
1

EPF1p
@ 3] (r )p1 3U (r )] (t)p#

2
G0A

G2 F m

r 2
14pr ~S(r )

(r )2 3U (r )J(r )!G
1

1

EPF1p
~ 3U (r )F R

(t)2 3F R
(r )!. ~256!

Again, using Eqs.~245! and ~247! and the expression
~143! and ~145!, I obtain
3-22
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] t
3U (r )1Vr] r

3U (r )

52
1

~EPF1p! S N

A
] rp1 3U (r )] tpD

2
ANG0

G2 F m

r 2
14pr ~p1 RS(r )

(r )2 3U (r )JR
(r )!G

1
1

~EPF1p!
~ 3U (r )F R

(t)2 3F R
(r )N!, ~257!

where I also used that in this gauge] (t)51/N] t , ] (r )
51/A] r , andU (r )5(A/N)Vr .

This is the Euler equation of the fluid in spherical sym
metry which includes the forces of the radiation fields act
on the fluid@cf. Eq.~34! of Ref. @8# or Eq.~3.56! of Ref. @36#
for a perfect fluid alone or for a perfect fluid accompanied
a neutrino flow, respectively#.

A relation that turns out to be useful in this gauge
obtained by combining Eqs.~235! and ~242!

1

AN
] t~A2!1] rn1] ra54prG0A2@S(r )

(r )1E22J(r )#.

~258!

For example, in the static case and for perfect fluids,
provides a simple relation between the gradients of the m
ric potentials and the pressure and the energy density of
ter. Moreover, outside the star surface the only contributi
to the total matter variables are those of radiated partic
Under the free streaming approximation@cf. Eq. ~188!#, this
implies that the rhs of Eq.~258! vanishes. This situation wa
investigated analytically in the past using a different gau
@70,71# and corresponds to the external solution.

Finally, the integrability condition] rt
2 m5] tr

2 m imposed in
Eqs.~234! and ~236! results in the relationship

] tE1
1

r 2
] r~r 2NJr !50. ~259!

This equation is in fact compatible with the evolution equ
tion for the total energy density of matter.

Indeed, subtracting Eq.~244! or more specifically Eq.
~249! from Eq. ~259! one obtains an evolution equation fo
the energy density of radiationER @cf. Eq. ~192!#.

The evolution equation~113! and the alternative form
~195! in the RPSG read, respectively,

] t~AnE!1
1

r 2
] r@r 2VrAnE#50, ~260!

] t~AnE!1
1

r 2
] r~r 2nEN 3U (r )!50. ~261!

Note that Eq.~260! has a conservative form for the quanti
AnE.

Using Eqs.~235!, ~233!, ~245!, ~145!, and ~147! in Eq.
~260! it becomes
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] tnE1
1

r 2
] r@r 2nEVr #2G0A2nEFVrS m

r 2
14prp D

14prNJR
r G50, ~262!

which provides an equation in conservative form fornE.
In the same way, using Eqs.~235! and ~238! in the alter-

native Eq.~261! I obtain

] tnE1
N

Ar2
] r~r 2 3U (r )nE!1nEG0ANF24prJ (r )

1 3U (r )S m

r 2
14prS(r )

(r )D G50. ~263!

The evolution Eqs.~196! and~198! do not change in form
under the RPSG. However, the alternative form given
Eqs.~197! and ~199! in the RPSG write, respectively,

] ts1
N 3U (r )

A
] rs52

N

nGQ
~mRRR1D!, ~264!

] txR1
N 3U (r )

A
] rxR5

N

nG
RR. ~265!

C. Isotropic coordinates and polar slicing„IPSG…

The isotropic choiceA5B ~i.e., a5b), and the polar
slicing conditionKu

u1Kf
f50, implies due to the spherica

symmetry thatKu
u50. The latter leads to an evolution equ

tion for a:

] ta52Nr] ra2
Nr

r
. ~266!

This and the expression forK r
r @cf. Eq. ~130!# provide an

equation for the shift:

] r S Nr

r D52
N

r
K (r )

(r ) . ~267!

The Hamiltonian constraint~135! leads to

] rr
2 ã1

2] r ã

r
522pG0A2E2~] r ã !2, ~268!

where

ã5a/2. ~269!

The momentum constraint~136! writes

K (r )
(r )S 1

r
1] ra D54pG0AJ(r )54pG0Jr . ~270!

Equation~139! together with Eq.~268! provide an equa-
tion for the lapse,
3-23
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] rnS 1

r
12] r ã D54pG0A2S(r )

(r )22] r ãS 1

r
1] r ã D .

~271!

In the case of a perfect fluid alone, this corresponds to
~9! of Shapiro and Teukolsky@40#, and to Eq.~6! of Schinder
et al. @7# where the authors use a Lagrangian-polar-slic
gauge. Such a gauge can be easily transformed to the IP

Finally, the evolution equation forK (r )
(r ) given by Eq.

~138! together with Eq.~268! yield

] tK (r )
(r )1

N(r )] rK (r )
(r )

A
2N~K (r )

(r )!2

2
N

A2 F2] rr
2 n1~] rn!~] ra2] rn!1~] ra!S 2

r
12] ra D G

54pG0N~2S(r )
(r )12S(u)

(u)1E!. ~272!

The equation of conservation of energy~151! reads in this
gauge as follows:

] tEPF1
1

r 2
] r~r 2VrEPF!

5EPFS NK(r )
(r )1

2Nr

r
1] rN

r D2
1

r 2
] r S r 2

N

A
3U (r )pD

2
NJ(r )

PF

A
@] rn13] ra2 3U (r )AK(r )

(r )#

1NK(r )
(r )p2N2F R

t . ~273!

The equation of conservation of momentum Eq.~157!
reads

] tJ(r )
PF1

1

r 2
] r~r 2VrJ(r )

PF!

5J(r )
PFF2NK(r )

(r )23Vr] ra1Nr S 3] ra2
2

r D
2] rN

r G2
N

A
@~EPF1p!] rn1] rp1 3F(r )

R A#. ~274!

The Euler equation~158! in this gauge takes the sam
form of Eq. ~226!, and Eqs.~197!, ~199! and~195! @see Eqs.
~227! and ~228!# also keep the same form as in the IMS
Alternatively, one can also use the simpler form of E
~196! and ~198!. Furthermore, when using the evolutio
equation~266! in Eqs. ~200! and ~201! one obtains in the
IPSG,

] tnE1
1

r 2
] r@r 2VrnE#

13nEF ~Vr2Nr !] ra2
Nr

r G50, ~275!
04401
q.

g
G.

.
.

] tnE1
1

r 2
] rF r 2nES Nr1

N

A
3U (r )D G

13nEFN

A
3U (r )] ra2

Nr

r G50. ~276!

D. Boundary conditions and initial data

A typical feature of spherically symmetric spacetimes
that the gravitational field variables can evolve in tim
through the matter fields. So the initial conditions for t
matter variables and the boundary conditions fix autom
cally the initial values for the gravitational field by solvin
the constraint equations and the gauge condition equati
For spacetimes with less symmetries one is always force
solve the dynamic Einstein equations to evolve the grav
tional field. Let me thus discuss first the boundary con
tions.

I call exterior solutionthe solution of field equations out
side the perfect-fluid domain~usually a compact support!. In
the present case, it does not correspond to the Schwarzs
vacuum solution since in general, the radiated matter w
extend to spatial infinity. Thus the exterior solution has to
found also numerically. The exterior sources of the fie
equations will be provided by the energy-momentum ten
of particles@cf. Eq. ~177!#. The matter variables of particle
will evolve in time through the distribution function. More
over, outside the star, the radiated particles can interact
with themselves, however, this interaction is rather weak
comparison with the interaction inside the star. In a first a
proximation one can thus neglect such interactions and c
sider that the particles will follow geodesics; the distributi
function will thus remain constant along them.

Regarding the boundary conditions, these are rather re
larity and asymptotic conditions. For instance, the regula
and the asymptotic flatness condition for the shift are,
spectively~see Ref.@64# for a more detailed analysis abou
regularity and boundary conditions!,

Nr~ t,0!50, ~277!

Nr~ t,r !r→`→0. ~278!

Similar conditions apply forKr
r . These boundary condition

are enforced from Eqs.~212! and ~267!:

Nr~ t,r !5lTSr E
r

`N~ t,r 8!

r 8
K (r )

(r )~ t,r 8!dr8, ~279!

wherelTS51,3/2 for the IGPS and IGMS coordinates, r
spectively.

The condition for the lapse at the star’s center is such
the asymptotic flatness conditionN→1 is verified. Therefore

N~ t,0!5Nc~ t !, ~280!

with Nc(t) such that

N~ t,r !r→`→1. ~281!
3-24
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Since a priori this is difficult to enforce, a better strateg
consists of rescaling the lapse asÑ5N/Nc so that Ñc(t)
[1, then the values of the true lapse can be recovered
using Nc(t)51/Ñ(t,r ) r→` where the asymptotic valu
Ñ`(t)ªÑ(t,r ) r→` is found numerically at every time step
This rescaling allows one to integrate the equations spat
in only one cycle. The rescaling will not affect the releva
equations of motion forN or A since only the derivatives o
n appear there@i.e., Eqs.~216!, ~219!, ~231!, ~237!, ~268!,
and~271! for N andA in the different gauges are invariant
such a rescaling#. However, this is not true for the shift Eqs
~212! and ~267! and for the Boltzmann equation whereN
appears explicitly. However, this does not pose a prob
since a simultaneous rescalingÑr5Nr /Nc leaves all equa-
tions invariant as well as the boundary conditions forÑr .

In the case of the RPSG and IPSG one can find an inte
expression for the lapse satisfying the boundary conditio
For instance, from Eq.~238!

n~ t,r !5G0E
0

r

A2S m

r 82
14pr 8S(r )

(r )D dr81n~ t,0!.

~282!

The asymptotic flatness condition Eq.~281! leads to

n~ t,r !r→`→0. ~283!

Therefore from Eq.~282! and the asymptotic condition on
obtains

n~ t,0!52G0E
0

`

A2S m

r 82
14pr 8S(r )

(r )D dr8. ~284!

This corresponds precisely to the renormalized value2 ñ` .
So finally,

n~ t,r !52G0E
r

`

A2S m

r 82
14pr 8S(r )

(r )D dr8. ~285!

The value for the lapse at the star surface is provided by

n@ t,R~ t !#52G0E
R(t)

`

A2S m

r 82
14pr 8S(r )

(r )D dr8,

~286!

whereR(t) corresponds to the RPSG-r coordinate at the sta
surface at timet. I emphasize that, outside the starS(r )

(r )

5 RS(r )
(r ) , that is, the only contribution toS (r )

(r ) is from the
radiated particles. In fact, outside the star I can write,

n~ t,r !out52G0E
r>R(t)

`

A2S m

r 82
14pr R8S(r )

(r )D dr8

5@ ln A# r>R(t)
` 24pE

r>R

`

A2r 8~ RS(r )
(r )1ER!dr8
04401
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5 ln A~ t,r !21ur>R(t)

24pE
r>R(t)

`

A2r 8~ RS(r )
(r )1ER!dr8

5 lnF12
2G0m~ t,r !

r G
r>R(t)

1/2

24pE
r>R(t)

`

A2r 8~ RS(r )
(r )1ER!dr8, ~287!

where I used Eq.~233! in order to replace the termm/r 82

and also the asymptotic flatness condition onA @cf. Eq.~290!
below#. It is to be stressed that in the absence of ma
outside the star surface, the first term of Eq.~287! corre-
sponds to the expression forn of the Schwarzschild metric
@with m(t,r )ur>R(t)5M* , M* being the total mass of the
star#. However, in the present case there are contributi
~due to the energy-densityER and pressureRS (r )

(r ) of particles
which fills some part of the space outside the star! which are
responsible for the actual metric to deviate from t
Schwarzschild one. These contributions arise from the s
ond term of Eq.~287!. In some cases~e.g., the free streaming
approximation! numerical analysis shows that these dev
tions are so small they can be neglected~cf. @36#!.

Deviations of this kind can be appreciated more easily
the presence of nontrivial scalar fields, for instance in
phenomenon of spontaneous scalarization@72#. Moreover,
for r .R(t), the mass functionm(t,r ) is larger than
m@ t,R(t)# due to the contribution ofER to the total energy
density@cf. Eq. ~234!#. Indeed the mass difference is give
by

dm54pE
R(t)

r .R(t)

ERr 82dr8. ~288!

Another way to appreciate such deviations is by not
that Eq.~258! together with the asymptotic conditions impl
in the case of vacuum, the relationshipAN51 which is char-
acteristic of the Schwarzschild solution in the RPSG. Ho
ever, when matter is present outside the star, thenANÞ1
~e.g., see@72#!, except of course at spatial infinity.

The boundary conditions forA are similar to those forN.
Therefore

A~ t,0!5Ac~ t !, ~289!

with Ac(t) such that

A~ t,r !r→`→1. ~290!

In the case of the RPSG the reparametrization Eq.~232!
imposes the regularity condition

m~ t,0!50. ~291!

Since near the originm;r 3, the reparametrization enforce
that A(t,0)51. Then] tA(t,0)50. The three-metric is thus
locally flat at the origin. Moreover, provided that the ener
density of sources falls off at least as fast as 1/r 4 outside the
3-25
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star, the same mass parametrization will driveA to the re-
quired asymptotic value. Note that this behavior of the m
ric potential A is compatible with the regularity an
asymptotic conditions forK r

r that I mentioned above. More
over, these conditions also imply thatJr vanish at the origin
as well as asymptotically@cf. Eq. ~235!#.

In the case of the IMSG and IPSG, one has an ellip
equation forã which is not invariant to a rescaling onA. So
unlike the RPSG whereAc51, the central valueAc should
be determined from a shooting method or otherwise in or
to satisfy the asymptotic flatness condition. In fact, near
origin Nr;r , therefore from Eq.~213!, it turns out that at the
origin

] ta~ t,0!5const, ~292!

and thus from the definition Eq.~133! and the regularity
condition ~293! ~see below! one concludes that~depending
on the sign of the constant! A(t,0) can grow exponentially
~grid stretching phenomenon! @6,10,38,40,42#. The three-
metric is thus conformally flat at the origin in the isotrop
gauge.

In addition to the previous regularity conditions we ha
also

] rQur 50505Qr ur 50 , ~293!

whereQ represents collectively the metric potentials and
scalar matter field variables~e.g., N,A,m,p,r,E, etc.! and
Qr tensor field components~e.g.,Jr ,Kr

r , etc.!.
A convenient way to impose the asymptotic conditio

accurately is by compactifying the outer domain with t
help of a transformationu51/r from the star’s surfacer
5R to spatial infinity. In this way the infinite domainr
P@R,`) is mapped to the compact domainuP@1/R,0), so
the integration can be performed from 1/R to ‘‘zero’’ with a
high degree of accuracy~cf. @72#!. Obviously, the radiation
variables as well as the metric are to be matched cont
ously atR. It is to be emphasized, however, that compac
fying the spatial slices in the outer domain for evoluti
equations can be troublesome since a lack of resolution a
exterior could produce spurious reflections of outgo
pulses which in turn makes the boundaries behave badly

Regarding the distribution function, the regularity cond
tion at the center on the particle’s radial energy flux isHR
50 @see Eq.~179!# which means that the average of th
particles’ radial velocity as measured by the Eulerian
server at the origin is zero~local isotropy atr 50). The same
considerations apply for the radial particle-flux-numberj (r )

@cf. Eq. ~191!#. A sufficient condition forHR505 j R
(r ) at r

50 is

FR~ t,0,e,m!5GR~ t,e,m!

with GR~ t,e,m!5GR~ t,e,2m!, ~294!

that is, the distribution function being a pair function ofm at
r 50 enforces that the integrals given by Eqs.~179! and
~191! vanish identically at the origin. This condition ensur
in addition that with a suitable form ofGR(t,e,m) in the
04401
t-

c

r
e

e
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energy domain the energy density, pressure, and den
number of particles in the Eulerian frame are finite at t
star’s center. Usually the assumption of an ideal quantum
is adopted as the initial condition for the particles so that
distribution function is isotropic and given by a Fermi-Dira
or Bose-Einstein distribution~whether the particles are fer
mions or bosons! @20,44,45#. Then the particles’ energy den
sity and pressure will be parametrized initially only by th
thermodynamic variables like the temperature. In that c
HR50 all over the initial spacelike hypersurface.

The regularity condition forFR at r 50 is like other scalar
quantities,

] rFRur 5050. ~295!

Another boundary condition is that the inward flux of pa
ticles at the star surface is zero. This is imposed by@57#,

FRur 5R50 for 21<m,0. ~296!

Returning to the initial conditions, the form of these w
characterize first the type of configuration~e.g., supernova
neutron star, supermassive star, star cluster! and second the
dynamics and ultimate fate of the precursor~e.g., proto-
neutron star, neutron star, black hole!. The goal of future
numerical investigation will be to explore a large set of in
tial conditions and their consequences~cf. @73#!.

VIII. CONCLUSIONS

Several astrophysical phenomena involve the dynamic
relativistic objects. Some of the most interesting ones end
in the formation of black holes or neutron stars, like t
collapse of cores and supernova explosions. While mos
the astrophysical objects are rotating, the role of rotation
relativity can be neglected with regards to the structure of
object when the rotation frequency is low. Aside from fa
pulsars, most of the astrophysical objects are endowed w
low rotation frequency. Therefore the spherical symmetry
an assumption that can be very useful in a wide range
applications. On the other hand, the mere existence of
pulsars reveals that rotation has to be taken into account
more realistic situation. Moreover, it seems that the dev
tions from spherical symmetry in supernova explosions
central in the phenomenon@17#, and that rotation can influ-
ence the cooling mechanism in the early phases of neu
stars@74#. In general relativity this is a difficult task and onl
a few attempts have been succeeded within an evolution
code~see@75# and references therein!.

One can separate the problem of the dynamics of rela
istic bodies in two sets. The first one involves the formu
tion, the geometry, and the numerics. A convenient coo
nate choice and a powerful numerical analysis can al
long term evolutions leading to a better understanding
several physical phenomena. Thus this is a crucial po
which has been recognized by almost all the numerical r
tivists. Investigations of the effect of several gauges are
ways an important issue. One of the aims of this paper w
therefore to derive the fundamental equations under diffe
3-26
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gauges and write them in several forms suitable for differ
numerical schemes.

The second set involves the physical approximations u
in the model. In the case of gravitational collapse, I ha
discussed that neutrinos cannot only play an important
in the dynamics but also that the signal carried by them
be fundamental for a better understanding of the underly
physics and as an invaluable imprint of the ultimate fate
the collapsed object. In particular, if neutrinos turn out to
massive particles@34#, mechanisms like the early black ho
formation could be tested@22#.

Furthermore, the equation of state at high densities
also lead to different time scale processes during the colla
and the accretion phase. Therefore it becomes necessa
er

.

D

D

e

s
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pursue the analysis with the incorporation of the most rec
advances in particle and nuclear physics.

While the formalism presented here included only hyd
dynamics and transport theory, the equations are quite g
eral as to include other types of matter like scalar fiel
which are very useful in the analysis of critical phenome

My aim for future investigations is to perform an exte
sive numerical analysis of several issues discussed here
more generally to analyze the dynamics of spherically sy
metric spacetimes with several kinds of matter sources.
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