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Classical black hole production in high-energy collisions
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We investigate the classical formation ofDadimensional black hole in a high-energy collision of two
particles. The existence of an apparent horizon is related to the solution of an unusual boundary-value problem
for Poisson’s equation in flat space. For a sufficiently small impact parameter, we construct solutions giving
such apparent horizons d=4. These supply improved estimates of the classical cross section for black hole
production, and of the mass of the resulting black holes. We also argue that a horizon can be found in a region
of weak curvature, suggesting that these solutions are valid starting points for a semiclassical analysis of
quantum black hole formation.
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[. INTRODUCTION shown that a closed trapped surface forfiid] argues that
such collisions will not form black holes at nonzero impact
The proposal that the fundamental Planck mass could bparameter. Finally, collisions of cosmic rays with our atmo-
as low as a TeV has excited new interest in the problem o$phere have energy reach beyond that of the LHC, and rea-
black hole formation in ultrarelativistic collisions. TeV-scale sonable conjectures about neutrino fluxes suggest the possi-
gravity scenarios offer a completely new perspective on thdility that their black hole products might be seen with
hierarchy problem, and arise via either large extra dimenpresent or future cosmic ray observatori#g—20,9 or ab-
sions[1,2] or compact dimensions with a large warp factor; asence of their observation could place improved bounds on
model for the latter appears [B8] and string solutions if4].  the fundamental Planck scdl21]. However, unlike the col-
It has long been believed that high-energy collisions wherdider setting, where production above threshhold is copious,
the center of mass energy substantially exceeds the Plancknclusive statements here depend sensitively on the exact
mass would produce black holes; this statement can bfactors in Eqg.(1). This calls for improved estimates.
thought of as a simple extrapolation of Thorne’s hoop con- This paper will reconsider the classical problem of black
jecture[5] and has been more recently discusseldinLow-  hole production in high-energy collisions. In particular, un-
ering the Planck scale t®(TeV) thus raises the exciting derstanding the case of a nonzero impact parameter is crucial
prospect that black holes can be produced at future accelerto improving the estimaté¢l). We will use the methods of
tors, perhaps even at the CERN Large Hadron CollidePenrosd12] and of D'Eath and Payngl3—15, where each
(LHC) [7,8].1 incoming particle is modeled as a point particle accompanied
Clearly we would like to better understand this processby a plane-fronted gravitational shock wave, this wave being
One important problem is to estimate the cross section fothe Lorentz-contracted longitudinal gravitational field of the
black hole production. It has been argued that at high eneparticle. At the instant of collision the two shock waves pass
gies black hole production has a good semiclassical descrighrough one another, and nonlinearly interact by shearing and
tion [6,7], since in such cases a horizon should form in afocusing. Penrosgl2] and D’Eath and Payngl3—15 stud-
region where the curvature is weak and quantum gravity efied the case of zero impact parameberand by finding a
fects are small. This leads to the naive estimate that the crosdosed trapped surface, derived a rigorous lower bound of

section for black hole production is roughly given by M > \/s/2 and improved estimafel ~0.84y/s for the mass of
the resulting black hole. This paper extends this analysis to
o~ wrﬁ( \/5) (1) b+ 0. In the next section we review the basic approximations

involved, and generalize the construction of the incoming
wherer, denotes the horizon radius corresponding to c.mwaves to arbitrary dimensions. We then reduce the problem
energy+/s. One would like to make this estimate more pre-of finding a closed-trapped surface to a rather unusual
cise to improve experimental predictions, and in particular tdoundary-value problem for solutions of Poisson’s equation;
derive a differential cross section depending on the mass arttlis problem has a close analogue in the physics of soap
spin of the black hole produced. Furthermore, the validity ofoubbles. Using conformal methods which apply only in four
the estimatg1) has been challengdd0,11]. In particular, dimensions, Sec. Il gives an explicit solution to this problem
while Penrosg12] and D’Eath and Payngl3-19 (for a  in that case and gives a lower bound
comprehensive treatment sgb]) have studied the problem
of a classical collision with a zero impact parameter and OBH production>32.5(623/4) 2

on the classical black hole cross section, whéres New-

*Electronic address: doug@itp.ucsh.edu ton’s constant. Section IV discusses issues in extending this
"Electronic address: giddings@physics.ucsb.edu analysis to higher dimensions, and in better justifying the
For a review, se9]. semiclassical approximation; we follow with conclusions.
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Il. TRAPPED SURFACES IN SHOCK-WAVE GEOMETRIES small mass, with fixed total energy. The result for a par-

In the TeV gravity scenarios in question, we will assumetlcIe moving in the+2 direction is the metric

that the particles of the standard model propagate on a brane,
but that gravity propagates in a higher-dimensional space
with either large volume or large warpifdrhis lowers the — .
fundamental Planck scal®,, perhaps toO(TeV), while Hered depends only on the transverse rad"’s\/xlzﬁy and
maintaining the observed value of the four-dimensionaifakes the form

Planck massM ,~10*° GeV. We expect to be able to create

ds?= —dudv +dx2+®(x)) s(u)du?. (5)

black holes in scattering processes with center of mass en- —8GulIn(p), D=4, (6)
ergy E>M,. In general such black hole solutions will have b= 167G u

complicated dependence on both the gravitational field of the ——, D>4. (7)
brane and the geometry of the extra dimensions. However, Qp_3(D—4)p°~*

there are two useful approximatiofig| that may be used for o ] )

a wide class of solutions. First, the brane is expected to hayote that® satisfies Poisson’s equation

tension given by roughly the Planck or string scale, and so —

for black holes substantially heavier than the Planck scale the V2P =—16mGud® *(x') 8
brane’s field should be a negligible effect. Secondly, if the ) ) )
geometrical scales of the extra dimensidredii, curvature N the transverse dimensionsfhere V _is the
radii, variational scale of the warp facjoare all large as (D —2)-dimensional flat-space derivative in the')(]. This
compared to M, then there is a large regime where the spacetime solution is manifestly flat except in the null plane
geometry of the extra dimensions plays no essential rolas=0 of the shock wave. If we consider an identical shock
Therefore it is often a good approximation to consider highy,a.e travelling alongT=0 in the — z direction, by causality

energy collisions irD-dimensional flat space. these will not be able to influence each other until the shocks
_ In the center of mass frame, each of the high-energy paizgjjige. This means that we can superpose the two solutions
ticles has energy of the form(5) to give the exact geometry outside the future

light cone of the collision of the shocks.
The coordinates,v,x' suffer the drawback that geodesics

Wi di 305 wh ded and and their tangent vectors appear discontinuous across the
e use a coordinate systern,¢,x’) where retarded and gpock This can be remedied by going to a new coordinate
advanced times u,v) are (t—zt+z) in terms of system defined by

Minkowski coordinates?being the direction of motion, and

x',i=1,... D—2, denotes transverse coordinates. The im- u=u, 9
pact parameter i® and the particles are initially incoming
along X')=(*+b/2,0 ... ,0).

The gravitational solution for each of the incoming par-
ticles can be found by boosting the rest-frame solution. The
gravitational field outside a particle is well approximated by — . u
the Schwarzschild solution. Since we will be concerned with X'=x'+ 5 Vi®(x)0(u) (11
long-distance phenomena such as formation of large hori-
zons, short—range.modifjcations of the soIL_Jtion shquld not b?wheree is the Heaviside step functigrin which both geo-
relevant. TheD-dimensional Schwarzschild solution with yegjcs and their tangents are continuous across the shock at
massM is u=0. In these coordinates, the metric of the combined shock
waves becomes

m= s/2. (3)

2
v_=v+¢>0(u)+w, (10)

167GM 1
dt?

ds’=- ( 1= (D—-2)Qp_, (D3 ds*=—dudy +[HPHEP+HPHP - 5,;]dx'dx (12

16mGM 1 | * where
+|1- dr?
(D-=2)Qp_, (D-3 1
M=5. +ZVV _
+r2dQZD_2, (4) HI] 5IJ+2VIVJCD(X Xl)Ue(U), (13)
wheredQ3_, andQp,_, are the line element and volume of 2)_ 1
the unit © —2)-sphere. The Aichelburg-Sex! solutif2?] is Hij = dij+ 5 WV P (x=X2)v 6(v) (14)

found by boosting this, taking the limit of large boost and
with ® given by Eqs.(6) and(7), and with

2For a brief unified review of these scenarios, f&e X1=(+b/2,0,...,0, x,=(—b/2,0,...,0. (15

044011-2



CLASSICAL BLACK HOLE PRODUCTION IN HIGH- . . . PHYSICAL REVIEW D 66, 044011 (2002

Herex=(x') in the transverse flat{— 2)-space. satisfying
A marginally trapped surfacé is a closed spacelikel( ) -
—2)-surface, the outer null normals of which have zero con- Vi9(XXe;0)==Qp 38" A(X—=X,), 23
vergencg23]. For the case oD =4 andb=0, Penros¢12]
found such a surface in the union of the two shock waves. 9(X,X,;€)=0 for x on C. (24

This consisted of two flat disks V_V'th rad|PC al 1= These are thus the Dirichlet Green’s functions for sources at
—4GulInp;, z=*4Gulnp.. Matching their normals x, x, and with boundary. The problem of finding the mar-
across the boundary, which lies in the collision surface gma”y trapped surface is equiva|ent to the f0||owing_

=v=0, then determine¢p.=4Gu=ry. This construction Problem C Given two pointsx; andx, in Euclidean D
immediately generalizes to the cade>4, b=0 where —2)-space, and a constaBt>0. Letg(x,x, ;C) be the Di-
87 Gy VO3 richlet Green’s functions satisfying Eq&3),(24). Find a
Pc:< TR (16)  Closed D —3)-surfaceC enclosing the points with the fol-
Qp-3 lowing property:
Generalizing tob#0 and arbitrary dimensions, we at- V,9(%,X1;C) - V., g(X,X5:C) = B2 (25)

tempt to constructS in the union of the incoming null hy-

persurfacey <0=u andu<0=v. These hypersurfaces in- for all pointsx on C.

tersect each other in theD(-2)-dimensional surface=0 As a trivial example, if x;=X,, then the unit
=p, and S will intersect this O —2)-surface in a closed (D —3)-sphere about; is a solutionC to problem C forB
(D —3)-dimensional surfacé, to be determined. In the first =1. This reproduces Penrose’s trapped surfad2+v with

incoming null surfaces<0=u, S will be defined by suitable scaling, and gives its generalization, Ep), for
D>4. Given generak,; and x,, does a solutiorC always
v="—Ty(x) exist? Clearly not if the points are too distant from each
with other, because a collision at large enough impact parameter

cannot produce a black hole. Given generahndx,, is the
¥,>0 interiorto C,¥;=0 on C, (17)  solutionC unique? We shall see that it is not. We also remark
that solutions for differenB are related by simple scale
and one may straightforwardly check that the outer null nortransformations.

mals will have zero convergence forK0 as long as One way to understand problem C is via another physical
) o problem that serves as a simple analogue. Consider a ring of
VAW, —@,)=0 interiorto C. (18 wire with shapeC in the x,y plane in three dimensions, and

suppose that this ring is spanned by a soap film. If we apply
pressure to the soap film, then in the limit of small displace-
ment its vertical displacememfx,y) satisfies the equation

Similarly, in the second incoming null surface<O=v, S
will be defined by

u=—v,(x
2 V2axy)= POV 26
with 2Xy)==—r—
W,>0 interiorto C,¥,=0 on C, (19 whereo is the film’s tension. Generalize to the case of two

. films, held apart by pressures in thez and — z directions. If
and the outer null normals will have zero convergence forthe pressure is exerted at points, then the solutions to Eq.
u<0 as long as (26) are the above Dirichlet Green’s functions. If the hori-
V2(W,—d,)=0 interior to C. (20) zontal positions of the pressure points are the same, and the
ring C is circular, then the angle8,,#, of the soap films
Finally, the outer null normal t& must be continuous at the with the x,y plane are constant aroudd Now separate the
intersectionu=0=uv: if not there would be & function in  pressure points slightly in the direction—this will change
the convergence. A necessary condition for continuity is  these angles, and they will be functions of position alGng
Problem C is that of finding the curv&for which
V\I’1V‘l’2=4 on C, (21)
B2=tané, tand, (27
sinceV,, «a=1,2, vanish onC, V;¥, is normal toC
and this condition is also sufficient. is constant ove€, and equal to the value for zerosepara-
Finding a marginally trapped surface therefore reduces ttion of the pressure points. This problem can also be gener-
a simple mathematical problem. Specifically, note that Eqsalized to a higher-dimensional analogue. One can argue for
(8), (18 imply that W, satisfies Poisson’s equation with the plausibility of a solution, at least for small enough

sources ak, . Define the rescaled functions displacement, by noting that deforming a point©toward
the center increases the angles and thus the local valBge of

g(x,x,:C)= Qp-s v 22) and deforming away decread8sThis suggests thdt can be
e 16nGu  “ adjusted point by point to mak&equal to the given constant
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value over the ring. The next section will solve this problem 2

dz ~
explicitly in the special casB =4. B2 =i f(x;7)
z
Ill. EXPLICIT CONSTRUCTION FOR D=4 _ (1-a%)? (34)
_ S 2 '"' 2
In D=4, problem C may be readily solved, at least for (1-2ax+a’)(1+2ax+a%)
sufficiently close points, by a trial-and-correction construc- (1-a?)?
tion, in two steps. First, choose trial points andX,, and a = 5 — 5 —. (35)
trial curve T: then construcy(x,x';7), and evaluate [1-a"exp2i¢)][1-a"exn(—2i¢)]
By inspection, the required tranformation satisfies
fOGT)=V39(%x1;T) - V39(X, X2, T ), 5
B dz_ 1-a (36
x on 7. (28) dz B(1-a%z?
Second, correct the trial solution by finding a conformalWhich integrates to
transformationx=x(x) that sendsf(x;7") to B?; this will 1—a2 (143
sendx, andx, to some pointx; andx,, and will send7 to 2(2)=—gIn — 1. (37)
a curve(C obeying EQq.(25). Thus we obtain a solution of 1-az
problem C. This works because Poisson’s equation in dimen: . .
sion 2 is conformally invariant, whilé transforms as "The true points Xy ,xz) are then found to lie at
, +1—a2I 1+a2) 0 38
~ X== nf——|, y=0.
Xl ~ _ A2
(60)=| 5 (%), (29 282 "i1-a
Restoring physical dimensions,
Let us now construct some solutionf to~problem C. Given W, =8Gug(x,x;;0), (39
two trial pointsx; andx, such that (1/2x, —x,|=a<1, we
may take V,=8Gug(Xx,Xy;C), (40
~ ~ 1
x;=(a,0), X,=(—a,0). (30) B= acu (41)
For the trial curveZ choose the unit circléx|=1. Then the 2Gu(1-a% [1+a?
Green’s function evaluated for the points andX, is X1= a In 1_a2 0==%, (42
~ ~ 2 2
- 1 (x—a)?+y? 4Gu(l1-a% (1l+a
Ty _ b(a)= In . 43
9 T)=~ 3 In( DT e (31) (a) a —a (
Thus we have constructed a marginally trapped sursafoe
L 1 (x+a)2+y? any value of impact parametdr(a) that can be obtained
9(X X, T)=—5Inl —————= |, from the above formula for some with 0<a<1. The area
27| (ax+1)%+a%y? -
y of Sis found to be
(32)
Area S)=16m(G )2(1_a2)2| Lra’ (44)
reaS)= n .
and M a2 1- g2
_ (1—a?)? Now S may or may not be an apparent horizon, which is
f(x;7)= (33 defined as theutermostmarginally trapped surface. How-

(1-2ax+a?)(1l+2ax+a?)

To conformally send (x;7°) to B2, we use complex analytic
variablesz=x+iy andz=x-+iy. We evidently require a
transformatiorz(z), analytic on and within the unit circl@
parametrized by=exp(d), with

ever, the existence of means either tha$ is in fact the
apparent horizon, or that an apparent horizon exists in the
exterior of S. BecauseS can be shown to be convex, and
because the two-metric is Euclidean, Ar8pn(is a lower
bound on the area of the apparent horizon. Modulo technical
issues about cosmic censorship, the existence of an apparent
horizon means that the collision will produce a black hale
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more than one black hole, although this seems unlikely in the 2 F
present setup Moreover, by the area theorem, the mass of
the final black holdassumed sing)eis bounded below, 15}
1-a? 1+a’ il
M final br> 21— In 1—a2) (45)
05|

and the fraction of total energy.2= \/s emitted as gravita-
tional radiation is bounded above, x ot @* X + X W

E 1—a? 1+a 05t
grav rad . E
o 1-—_ \/In ) (46)

In fact, Egay ragMay be significantly smaller because the final

black hole is expected to be rotatifgnlessb=0), tying up 15t
substantial energy.
The functionb(a) (for given u) reaches a maximum 2F, ) ) ) : i ) ) )
value of 2 -5 -1 05 0 05 1 15 2
X
Pmar=3.21Gu (47

FIG. 1. The intersection curvé of the marginally trapped sur-
face S with the collision plane (=0=v). Several curveg€, for
various impact parametels are superposed; spacetime dimension
e~ 0.6153, (49 is D=4. Dl_stance§ are in units o$\/_§:26,u; in these_ unitsr,

=2. Incoming particle pairs appear in the horizontal life=0 at

so this is the greatest impact parameter for which this conPair separationb; wider pairs therefore correspond tsmaller

struction can demonstrate production of a black hole. Thél””";s)c' hVa:uesbof_b are 0+, IO'GX' 1.2*, 141, 1.5, and
corresponding lower limit on the cross section is 6090, the last being maximal.

at

O8H production® T ay~ 32.552G 1)?. (49 IV. FURTHER RESULTS AND DIRECTIONS

Previous estimates for the black hole production cross sec- Clearly it would be desirable to find an explicit solution to
tion used Eq.(1), which giveso~50.27Gu)?, wherer,,  problem C in the higher-dimensional case, in order to give
=2G/s=4Gy is the Schwarzschild radius belonging to the more careful estimates of the cross section in the physically
total energy available. Our lower limit is about 65% of this interesting situation where the extra dimensions are relevant.
estimate. Another interesting quantity is the mass of the finaNonetheless, we have given a heuristic argument for the ex-
black hole. Equatior{45) together with(43) gives a lower istence of such a solution, which is buttressed by the explicit
bound on the mass as a function of impact parameter. Weonstruction of the trapped surface in the four-dimensional
find a range from 0.7{s for b=0 to 0.45/s for b=bp. case. This appears to demonstrate classical black hole forma-
The perturbative analysis dfl3—15 raises the former to tion at nonzero impact parameter—answering the criticism
M ~0.84/s; we expect a corresponding increase in the latteof [11].

upon further analysis. For head-on collisiondy=0, in D>4, the apparent hori-

At valuesa>an,y (but still a<1) our construction pro- zon is the union of two balls of radiyg.=r,, Eq.(16). The
duces a second, smaller marginally trapped surface for theorresponding lower limit on black hole mass is displayed in
sameb. This shows that solutions to problem C are usuallyTgple 1.
not unique. _ . Solving problem C irD >4 for b>0 may require numeri-

It is also interesting to better understand the shape of thgg| \work. Note that by symmetry it still remains a two-

curve( for theD =4 solution. This is readily found from Eq. . . o A

dimensional problem of finding a curv@ which produces
(37), and takes the form ) .

the surfaceC as a surface of revolution about the axis con-
necting the two source points. However, in the-4 case,

(1—a2)sinth the relevant Green'’s function is of the for(m) and no longer
4Gu(1-a?) transforms nicely under conformal transformations. Of
course, even solving this problem is only a starting point—it
+(1+ad)sir? ay —a2. (50) provides a I_ower boqnd on the mass of the black hole, but, as
4Gu(1—a?) was found in the axially symmetric case[ib3—15, the re-
sulting black hole will absorb more of the energy contained
Obviously this approaches a circle of radius4 asa—0.  in its external fields, and it should be possible to raise this
Figure 1 displays the cunv&in the transverse collision plane bound by studying this subsequent evolution. Recall that in
for various values ob. the axially symmetric case iD =4 this resulted in an addi-
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TABLE I. Lower limit on Mgy in head-on collisiond=0, for
various dimension®. Here Agg, is the (D —2)-dimensional hori- g~ wrﬁ=
zon area of a Schwarzschild black hole of mass while Agrap IS
the area of the Penrose marginally trapped surface.

1+ Wrﬁ, spherical (53)

16

(D_Z)Z}—Z/(D—3)

In D=4, this gives a relative correction factor of 64%,

D Auap/ Asch Men/\s 1-Meu/\'s closely matching the factor in E¢49). The correspondence

4 0.50000 0.70711 0.29289 of these results suggests that this estimation technique may
5 0.54270 0.66533 0.33467 indeed be approximately correct in higher dimensions.

6 0.55032 0.63894 0.36106 A final point concerns the Validity of the semiclassical

7 0.55080 0.62057 0.37943 approximation. We expect that the semiclassical approxima-
8 0.54928 0.60696 0.39304 tion for black hole formation should be justified if a horizon

9 0.54720 0.59642 0.40358 forms at small curvaturd.Of course the surfacé that we
10 0.54502 058798 0.41202 _have constructed lies in .the plane of the shocks, and thu; is
1 054293 0.58105 041895 in a sense close to a region of large curvature; understanding

the importance of this would require regulating the solution
taking into account finite size/mass effects. However, we be-
tional enhancement of approximately 119%. Going beyondieve that this is not necessary, as it is possible to find a
this, the ultimate goal of such an analysis—and its quantunirapped surface outside the planes of the incoming shocks.
extension—is to compute the differential cross section defijrst, in the caséo=0, consider Penrose’s flat disk of
pending on the mass and spin of the resulting black hole.

radius;= pc in the incoming null wave front surface=0.

_ One might also wonder if a black hole is produced in thes ot the null pland/ emanating frons in the opposite
high-energy collision of a particle with a purely gravitational 7.~ " - . .
directionv = —const; N has zero convergence because it

shock wave, in any dimensioD=4. The present analysis . . .
suggests that the gnswer is “no.” If we gttempt to re)é)lace's a_nuI_I plane_. DeformS Into the futurg alongV, Wh".e
®,(x) by a source-free solution of Laplace’s equation, toleaving it fixed in some nelghbqrhoqd of its bound@ryrhis
model a purely gravitational shock wave, then Ed$),(20) deformed D—2)—s_urfa_ce8 will still have zero conver-
have no solution at all, by the maximum principle for elliptic 9ence along the-direction everywhere, and thus will be an
equations. Therefore no apparent horizon exists in the inapparent horizon, now with weak spacetime curvature on it.
coming wave front surface. Similarly, the collision of two (In fact, S' has exactly the same area dsand so gives
purely gravitational shock wav§g4] seems not to produce a exactly the same bound on the black hole mass.
black hole. Moreover, in the collision of two particles tat Second, in the case>0, we can proceed similarly. We
>0, as studied here, one might wonder if additional, smalle€an still construct a null surfac&” emanating to the future
marginally trapped surfaces might appear, enclosing one paftom our original marginally trapped surfack generated by
ticle but not the other; a similar argument shows not. Wehull geodesics normal t&. However, N will not be a flat
have not considered trapped surfaces that might exist to theull plane, because the null normalsddave nonzero shear.
future of the incoming wave surface, however, so these aWe can still deformS some distance to the future alongto
guments cannot conclusively rule out black holes. create a newl) —2)-surfaceS’ but the convergence of the

It is also interesting to compare the estim&®) to a  null normals ofS” will go positive, due to the shedwe
heuristic argument presented [i21]. Anchordoquiet al. ar-  cannot go too far or we will run into a caustic, i.e., the
gue that one may improve estimates of the cross section bgonvergence will go tot+=). Thus &' will actually be a
taking into account the angular momentum dependence dfapped surface, not a marginally trapped surface. This would
the Schwarzschild radius. Specifically, for c.m. enekgy  mean that a marginally trapped surface must lie somewhere
and impact parameteb, the angular momentum igJ  outside it. In any casé’ has weak spacetime curvature ev-
=b\/s/2. One expects that the maximum impact parameteerywhere on it, and implies the existence of a black hole.
occurs near a value d&f that equals the corresponding angu-

lar momentum dependent raditgs. This is given by[25]
V. CONCLUSIONS

D—2)2J)? 167GM . . .

VE_S( rﬁ ( ) = D_;T a The existence of a closed trapped surface in the collision
4M?2 ( Mo geometry of two ultrarelativistic particles clearly demon-

0 167GM strates classical black hole formation. The argument that

D-3___~—~_ —_ these surfaces are present in the weak curvature region fur-

ther suggests that this process can be consistently treated in a
(52 semiclassical analysis, and should help lay the foundation for
a more rigorous justification of such an analysis. Further-

If we setb=ry, in Eq. (51), that gives more, we have found improved estimates on the production

b3 16mGM (D-2)%|*
ry °= . (52
(D-2)Qp 16 3 . . .
In the context of string theory, the Schwarzschild radius must
This leads to a cross-section estimate also be larger than the string lengtl’ [26,27.
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cross section for black holes. While these estimates are ntte existence of a maximal impact parametebis 4, many

enormously different from the more naive estimate§708], years ago.

it is important to know their size in improving discussion of
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