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Classical black hole production in high-energy collisions

Douglas M. Eardley* and Steven B. Giddings†
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We investigate the classical formation of aD-dimensional black hole in a high-energy collision of two
particles. The existence of an apparent horizon is related to the solution of an unusual boundary-value problem
for Poisson’s equation in flat space. For a sufficiently small impact parameter, we construct solutions giving
such apparent horizons inD54. These supply improved estimates of the classical cross section for black hole
production, and of the mass of the resulting black holes. We also argue that a horizon can be found in a region
of weak curvature, suggesting that these solutions are valid starting points for a semiclassical analysis of
quantum black hole formation.
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I. INTRODUCTION

The proposal that the fundamental Planck mass could
as low as a TeV has excited new interest in the problem
black hole formation in ultrarelativistic collisions. TeV-sca
gravity scenarios offer a completely new perspective on
hierarchy problem, and arise via either large extra dim
sions@1,2# or compact dimensions with a large warp factor
model for the latter appears in@3# and string solutions in@4#.
It has long been believed that high-energy collisions wh
the center of mass energy substantially exceeds the Pl
mass would produce black holes; this statement can
thought of as a simple extrapolation of Thorne’s hoop c
jecture@5# and has been more recently discussed in@6#. Low-
ering the Planck scale toO(TeV) thus raises the exciting
prospect that black holes can be produced at future acce
tors, perhaps even at the CERN Large Hadron Colli
~LHC! @7,8#.1

Clearly we would like to better understand this proce
One important problem is to estimate the cross section
black hole production. It has been argued that at high e
gies black hole production has a good semiclassical des
tion @6,7#, since in such cases a horizon should form in
region where the curvature is weak and quantum gravity
fects are small. This leads to the naive estimate that the c
section for black hole production is roughly given by

s;pr h
2~As! ~1!

where r h denotes the horizon radius corresponding to c
energyAs. One would like to make this estimate more pr
cise to improve experimental predictions, and in particula
derive a differential cross section depending on the mass
spin of the black hole produced. Furthermore, the validity
the estimate~1! has been challenged@10,11#. In particular,
while Penrose@12# and D’Eath and Payne@13–15# ~for a
comprehensive treatment see@16#! have studied the problem
of a classical collision with a zero impact parameter a

*Electronic address: doug@itp.ucsb.edu
†Electronic address: giddings@physics.ucsb.edu
1For a review, see@9#.
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shown that a closed trapped surface forms,@11# argues that
such collisions will not form black holes at nonzero impa
parameter. Finally, collisions of cosmic rays with our atm
sphere have energy reach beyond that of the LHC, and
sonable conjectures about neutrino fluxes suggest the p
bility that their black hole products might be seen wi
present or future cosmic ray observatories@17–20,9# or ab-
sence of their observation could place improved bounds
the fundamental Planck scale@21#. However, unlike the col-
lider setting, where production above threshhold is copio
conclusive statements here depend sensitively on the e
factors in Eq.~1!. This calls for improved estimates.

This paper will reconsider the classical problem of bla
hole production in high-energy collisions. In particular, u
derstanding the case of a nonzero impact parameter is cr
to improving the estimate~1!. We will use the methods o
Penrose@12# and of D’Eath and Payne@13–15#, where each
incoming particle is modeled as a point particle accompan
by a plane-fronted gravitational shock wave, this wave be
the Lorentz-contracted longitudinal gravitational field of t
particle. At the instant of collision the two shock waves pa
through one another, and nonlinearly interact by shearing
focusing. Penrose@12# and D’Eath and Payne@13–15# stud-
ied the case of zero impact parameterb, and by finding a
closed trapped surface, derived a rigorous lower bound
M.As/2 and improved estimateM'0.84As for the mass of
the resulting black hole. This paper extends this analysi
b5” 0. In the next section we review the basic approximatio
involved, and generalize the construction of the incom
waves to arbitrary dimensions. We then reduce the prob
of finding a closed-trapped surface to a rather unus
boundary-value problem for solutions of Poisson’s equati
this problem has a close analogue in the physics of s
bubbles. Using conformal methods which apply only in fo
dimensions, Sec. III gives an explicit solution to this proble
in that case and gives a lower bound

sBH production.32.5~G2s/4! ~2!

on the classical black hole cross section, whereG is New-
ton’s constant. Section IV discusses issues in extending
analysis to higher dimensions, and in better justifying t
semiclassical approximation; we follow with conclusions.
©2002 The American Physical Society11-1
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II. TRAPPED SURFACES IN SHOCK-WAVE GEOMETRIES

In the TeV gravity scenarios in question, we will assum
that the particles of the standard model propagate on a br
but that gravity propagates in a higher-dimensional sp
with either large volume or large warping.2 This lowers the
fundamental Planck scaleM p , perhaps toO(TeV), while
maintaining the observed value of the four-dimensio
Planck mass,M4;1019 GeV. We expect to be able to crea
black holes in scattering processes with center of mass
ergy E.M p . In general such black hole solutions will hav
complicated dependence on both the gravitational field of
brane and the geometry of the extra dimensions. Howe
there are two useful approximations@7# that may be used fo
a wide class of solutions. First, the brane is expected to h
tension given by roughly the Planck or string scale, and
for black holes substantially heavier than the Planck scale
brane’s field should be a negligible effect. Secondly, if t
geometrical scales of the extra dimensions~radii, curvature
radii, variational scale of the warp factor! are all large as
compared to 1/M p , then there is a large regime where t
geometry of the extra dimensions plays no essential r
Therefore it is often a good approximation to consider hig
energy collisions inD-dimensional flat space.

In the center of mass frame, each of the high-energy
ticles has energy

m5As/2. ~3!

We use a coordinate system (ū,v̄,x̄i) where retarded and
advanced times (ū,v̄) are (t̄ 2 z̄, t̄ 1 z̄) in terms of
Minkowski coordinates,z̄ being the direction of motion, and
x̄i , i 51, . . . ,D22, denotes transverse coordinates. The
pact parameter isb and the particles are initially incomin
along (x̄i)5(6b/2,0, . . . ,0).

The gravitational solution for each of the incoming pa
ticles can be found by boosting the rest-frame solution. T
gravitational field outside a particle is well approximated
the Schwarzschild solution. Since we will be concerned w
long-distance phenomena such as formation of large h
zons, short-range modifications of the solution should no
relevant. TheD-dimensional Schwarzschild solution wit
massM is

ds252S 12
16pGM

~D22!VD22

1

r D23D dt2

1S 12
16pGM

~D22!VD22

1

r D23D 21

dr2

1r 2dVD22
2 , ~4!

wheredVD22
2 andVD22 are the line element and volume o

the unit (D22)-sphere. The Aichelburg-Sexl solution@22# is
found by boosting this, taking the limit of large boost a

2For a brief unified review of these scenarios, see@9#.
04401
ne,
e

l

n-

e
r,

ve
o
e

e.
-

r-

-

e

h
ri-
e

small mass, with fixed total energym. The result for a par-
ticle moving in the1z direction is the metric

ds252dūdv̄1dx̄i21F~ x̄i !d~ ū!dū2. ~5!

HereF depends only on the transverse radiusr̄5Ax̄i x̄i , and
takes the form

F5H 28Gm ln~ r̄ !, D54, ~6!

16pGm

VD23~D24!r̄D24
, D.4. ~7!

Note thatF satisfies Poisson’s equation

¹2F5216pGmdD22~ x̄i ! ~8!

in the transverse dimensions@here ¹ is the
(D22)-dimensional flat-space derivative in the (x̄i)#. This
spacetime solution is manifestly flat except in the null pla
ū50 of the shock wave. If we consider an identical sho
wave travelling alongv̄50 in the2z direction, by causality
these will not be able to influence each other until the sho
collide. This means that we can superpose the two solut
of the form~5! to give the exact geometry outside the futu
light cone of the collision of the shocks.

The coordinatesū,v̄,x̄i suffer the drawback that geodesic
and their tangent vectors appear discontinuous across
shock. This can be remedied by going to a new coordin
system defined by

ū5u, ~9!

v̄5v1Fu~u!1
uu~u!~¹F!2

4
, ~10!

x̄i5xi1
u

2
¹iF~x!u~u! ~11!

~whereu is the Heaviside step function!, in which both geo-
desics and their tangents are continuous across the sho
u50. In these coordinates, the metric of the combined sh
waves becomes

ds252dudv1@Hik
(1)H jk

(1)1Hik
(2)H jk

(2)2d i j #dxidxj ~12!

where

Hi j
(1)5d i j 1

1

2
¹i¹jF~x2x1!uu~u!, ~13!

Hi j
(2)5d i j 1

1

2
¹i¹jF~x2x2!vu~v ! ~14!

with F given by Eqs.~6! and ~7!, and with

x15~1b/2,0, . . . ,0!, x25~2b/2,0, . . . ,0!. ~15!
1-2
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Herex[(xi) in the transverse flat (D22)-space.
A marginally trapped surfaceS is a closed spacelike (D

22)-surface, the outer null normals of which have zero c
vergence@23#. For the case ofD54 andb50, Penrose@12#
found such a surface in the union of the two shock wav
This consisted of two flat disks with radiirc at t̄ 5

24Gm ln rc , z̄564Gm ln rc . Matching their normals
across the boundary, which lies in the collision surfaceu
5v50, then determinedrc54Gm5r h . This construction
immediately generalizes to the caseD.4, b50 where

rc5S 8pGm

VD23
D 1/(D23)

. ~16!

Generalizing tob5” 0 and arbitrary dimensions, we a
tempt to constructS in the union of the incoming null hy-
persurfacesv<05u andu<05v. These hypersurfaces in
tersect each other in the (D22)-dimensional surfaceu50
5v, and S will intersect this (D22)-surface in a closed
(D23)-dimensional surfaceC, to be determined. In the firs
incoming null surfacev<05u, S will be defined by

v52C1~x!

with

C1.0 interior to C,C150 on C, ~17!

and one may straightforwardly check that the outer null n
mals will have zero convergence forv,0 as long as

¹2~C12F1!50 interior to C. ~18!

Similarly, in the second incoming null surfaceu<05v, S
will be defined by

u52C2~x!

with

C2.0 interior to C,C250 on C, ~19!

and the outer null normals will have zero convergence
u,0 as long as

¹2~C22F2!50 interior to C. ~20!

Finally, the outer null normal toS must be continuous at th
intersectionu505v; if not there would be ad function in
the convergence. A necessary condition for continuity is

“C1•“C254 on C, ~21!

since Ca , a51,2, vanish onC, “ iCa is normal toC
and this condition is also sufficient.

Finding a marginally trapped surface therefore reduce
a simple mathematical problem. Specifically, note that E
~8!, ~18! imply that Ca satisfies Poisson’s equation wit
sources atxa . Define the rescaled functions

g~x,xa ;C!5
VD23

16pGm
Ca ~22!
04401
-
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satisfying

¹x
2g~x,xa ;C!52VD23dD22~x2xa!, ~23!

g~x,xa ;C!50 for x on C. ~24!

These are thus the Dirichlet Green’s functions for source
x1 ,x2 and with boundaryC. The problem of finding the mar
ginally trapped surface is equivalent to the following.

Problem C. Given two pointsx1 andx2 in Euclidean (D
22)-space, and a constantB.0. Let g(x,xa ;C) be the Di-
richlet Green’s functions satisfying Eqs.~23!,~24!. Find a
closed (D23)-surfaceC enclosing the points with the fol
lowing property:

“xg~x,x1 ;C!•“xg~x,x2 ;C!5B2 ~25!

for all pointsx on C.
As a trivial example, if x15x2, then the unit

(D23)-sphere aboutx1 is a solutionC to problem C forB
51. This reproduces Penrose’s trapped surface inD54 with
suitable scaling, and gives its generalization, Eq.~16!, for
D.4. Given generalx1 and x2, does a solutionC always
exist? Clearly not if the points are too distant from ea
other, because a collision at large enough impact param
cannot produce a black hole. Given generalx1 andx2, is the
solutionC unique? We shall see that it is not. We also rema
that solutions for differentB are related by simple scal
transformations.

One way to understand problem C is via another phys
problem that serves as a simple analogue. Consider a rin
wire with shapeC in the x,y plane in three dimensions, an
suppose that this ring is spanned by a soap film. If we ap
pressure to the soap film, then in the limit of small displac
ment its vertical displacementz(x,y) satisfies the equation

¹2z~x,y!52
p~x,y!

s
, ~26!

wheres is the film’s tension. Generalize to the case of tw
films, held apart by pressures in the1z and2z directions. If
the pressure is exerted at pointsxa , then the solutions to Eq
~26! are the above Dirichlet Green’s functions. If the ho
zontal positions of the pressure points are the same, and
ring C is circular, then the anglesu1 ,u2 of the soap films
with the x,y plane are constant aroundC. Now separate the
pressure points slightly in thex direction—this will change
these angles, and they will be functions of position alongC.
Problem C is that of finding the curveC for which

B25tanu1 tanu2 ~27!

is constant overC, and equal to the value for zerox separa-
tion of the pressure points. This problem can also be ge
alized to a higher-dimensional analogue. One can argue
the plausibility of a solution, at least for small enoughx
displacement, by noting that deforming a point onC toward
the center increases the angles and thus the local valueB,
and deforming away decreasesB. This suggests thatC can be
adjusted point by point to makeB equal to the given constan
1-3
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value over the ring. The next section will solve this proble
explicitly in the special caseD54.

III. EXPLICIT CONSTRUCTION FOR DÄ4

In D54, problem C may be readily solved, at least f
sufficiently close points, by a trial-and-correction constru
tion, in two steps. First, choose trial pointsx̃1 and x̃2, and a
trial curveT; then constructg( x̃,x̃8;T ), and evaluate

f ~ x̃;T ![“ x̃g~ x̃,x̃1 ;T !•“ x̃g~ x̃,x̃2 ;T !,

x̃ on T. ~28!

Second, correct the trial solution by finding a conform
transformationx5x( x̃) that sendsf ( x̃;T ) to B2; this will
sendx̃1 and x̃2 to some pointsx1 andx2, and will sendT to
a curveC obeying Eq.~25!. Thus we obtain a solution o
problem C. This works because Poisson’s equation in dim
sion 2 is conformally invariant, whilef transforms as

f ~x;C!5U] x̃

]x
U2

f ~ x̃;T !. ~29!

Let us now construct some solutions to problem C. Giv
two trial pointsx̃1 and x̃2 such that (1/2)ux̃12 x̃2u[a,1, we
may take

x̃15~a,0!, x̃25~2a,0!. ~30!

For the trial curveT choose the unit circleux̃u51. Then the
Green’s function evaluated for the pointsx̃1 and x̃2 is

g~ x̃,x̃1 ;T !52
1

2
lnS ~ x̃2a!21 ỹ2

~ax̃21!21a2ỹ2D , ~31!

g~ x̃,x̃2 ;T !52
1

2
lnS ~ x̃1a!21 ỹ2

~ax̃11!21a2ỹ2D ,

~32!

and

f ~ x̃;T !5
~12a2!2

~122ax̃1a2!~112ax̃1a2!
. ~33!

To conformally sendf ( x̃;T ) to B2, we use complex analytic
variablesz[x1 iy and z̃[ x̃1 i ỹ . We evidently require a
transformationz( z̃), analytic on and within the unit circleT
parametrized byz̃5exp(if̃), with
04401
-

l

n-

n

B2Udz

dz̃
U2

5 f ~ x̃;T !

5
~12a2!2

~122ax̃1a2!~112ax̃1a2!
~34!

5
~12a2!2

@12a2 exp~2i f̃ !#@12a2 exp~22i f̃ !#
. ~35!

By inspection, the required tranformation satisfies

dz

dz̃
5

12a2

B~12a2z̃ 2!
~36!

which integrates to

z~ z̃!5
12a2

2Ba
lnS 11az̃

12az̃
D . ~37!

The true points (x1 ,x2) are then found to lie at

x56
12a2

2Ba
lnS 11a2

12a2D , y50. ~38!

Restoring physical dimensions,

C158Gmg~x,x1 ;C!, ~39!

C258Gmg~x,x2 ;C!, ~40!

B5
1

4Gm
, ~41!

x15S 2Gm~12a2!

a
lnS 11a2

12a2D ,0D 52x2 , ~42!

b~a!5
4Gm~12a2!

a
lnS 11a2

12a2D . ~43!

Thus we have constructed a marginally trapped surfaceS for
any value of impact parameterb(a) that can be obtained
from the above formula for somea, with 0<a,1. The area
of S is found to be

Area~S!516p~Gm!2
~12a2!2

a2
lnS 11a2

12a2D . ~44!

Now S may or may not be an apparent horizon, which
defined as theoutermostmarginally trapped surface. How
ever, the existence ofS means either thatS is in fact the
apparent horizon, or that an apparent horizon exists in
exterior of S. BecauseS can be shown to be convex, an
because the two-metric is Euclidean, Area(S) is a lower
bound on the area of the apparent horizon. Modulo techn
issues about cosmic censorship, the existence of an app
horizon means that the collision will produce a black hole~or
1-4
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CLASSICAL BLACK HOLE PRODUCTION IN HIGH- . . . PHYSICAL REVIEW D 66, 044011 ~2002!
more than one black hole, although this seems unlikely in
present setup!. Moreover, by the area theorem, the mass
the final black hole~assumed single! is bounded below,

M final bh.2m
12a2

2a
AlnS 11a2

12a2D , ~45!

and the fraction of total energy 2m5As emitted as gravita-
tional radiation is bounded above,

Egrav rad

2m
,12

12a2

2a
AlnS 11a2

12a2D . ~46!

In fact,Egrav radmay be significantly smaller because the fin
black hole is expected to be rotating~unlessb50), tying up
substantial energy.

The function b(a) ~for given m) reaches a maximum
value of

bmax'3.219Gm ~47!

at

amax'0.6153, ~48!

so this is the greatest impact parameter for which this c
struction can demonstrate production of a black hole. T
corresponding lower limit on the cross section is

sBH production>pbmax
2 '32.552~Gm!2. ~49!

Previous estimates for the black hole production cross
tion used Eq.~1!, which givess'50.27(Gm)2, where r h

52GAs54Gm is the Schwarzschild radius belonging to t
total energy available. Our lower limit is about 65% of th
estimate. Another interesting quantity is the mass of the fi
black hole. Equation~45! together with~43! gives a lower
bound on the mass as a function of impact parameter.
find a range from 0.71As for b50 to 0.45As for b5bmax.
The perturbative analysis of@13–15# raises the former to
M'0.84As; we expect a corresponding increase in the la
upon further analysis.

At valuesa.amax ~but still a,1) our construction pro-
duces a second, smaller marginally trapped surface for
sameb. This shows that solutions to problem C are usua
not unique.

It is also interesting to better understand the shape of
curveC for theD54 solution. This is readily found from Eq
~37!, and takes the form

~12a2!sinh2
ax

4Gm~12a2!

1~11a2!sin2
ay

4Gm~12a2!
5a2. ~50!

Obviously this approaches a circle of radius 4Gm asa→0.
Figure 1 displays the curveC in the transverse collision plan
for various values ofb.
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IV. FURTHER RESULTS AND DIRECTIONS

Clearly it would be desirable to find an explicit solution
problem C in the higher-dimensional case, in order to g
more careful estimates of the cross section in the physic
interesting situation where the extra dimensions are relev
Nonetheless, we have given a heuristic argument for the
istence of such a solution, which is buttressed by the exp
construction of the trapped surface in the four-dimensio
case. This appears to demonstrate classical black hole fo
tion at nonzero impact parameter—answering the critici
of @11#.

For head-on collisions,b50, in D.4, the apparent hori-
zon is the union of two balls of radiusrc5r h , Eq. ~16!. The
corresponding lower limit on black hole mass is displayed
Table I.

Solving problem C inD.4 for b.0 may require numeri-
cal work. Note that by symmetry it still remains a two

dimensional problem of finding a curveĈ which produces
the surfaceC as a surface of revolution about the axis co
necting the two source points. However, in theD.4 case,
the relevant Green’s function is of the form~7! and no longer
transforms nicely under conformal transformations.
course, even solving this problem is only a starting point—
provides a lower bound on the mass of the black hole, but
was found in the axially symmetric case in@13–15#, the re-
sulting black hole will absorb more of the energy contain
in its external fields, and it should be possible to raise t
bound by studying this subsequent evolution. Recall tha
the axially symmetric case inD54 this resulted in an addi

FIG. 1. The intersection curveC of the marginally trapped sur
face S with the collision plane (u505v). Several curvesC, for
various impact parametersb, are superposed; spacetime dimensi
is D54. Distances are in units ofGAs52Gm; in these unitsr h

52. Incoming particle pairs appear in the horizontal linex250 at
pair separationb; wider pairs therefore correspond tosmaller
curves C. Values of b are 01, 0.63, 1.2*, 1.4h, 1.55d, and
1.609s, the last being maximal.
1-5
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DOUGLAS M. EARDLEY AND STEVEN B. GIDDINGS PHYSICAL REVIEW D66, 044011 ~2002!
tional enhancement of approximately 119%. Going beyo
this, the ultimate goal of such an analysis—and its quan
extension—is to compute the differential cross section
pending on the mass and spin of the resulting black hole

One might also wonder if a black hole is produced in t
high-energy collision of a particle with a purely gravitation
shock wave, in any dimensionD>4. The present analysi
suggests that the answer is ‘‘no.’’ If we attempt to repla
F2(x) by a source-free solution of Laplace’s equation,
model a purely gravitational shock wave, then Eqs.~19!,~20!
have no solution at all, by the maximum principle for ellipt
equations. Therefore no apparent horizon exists in the
coming wave front surface. Similarly, the collision of tw
purely gravitational shock waves@24# seems not to produce
black hole. Moreover, in the collision of two particles atb
.0, as studied here, one might wonder if additional, sma
marginally trapped surfaces might appear, enclosing one
ticle but not the other; a similar argument shows not.
have not considered trapped surfaces that might exist to
future of the incoming wave surface, however, so these
guments cannot conclusively rule out black holes.

It is also interesting to compare the estimate~49! to a
heuristic argument presented in@21#. Anchordoquiet al. ar-
gue that one may improve estimates of the cross sectio
taking into account the angular momentum dependenc
the Schwarzschild radius. Specifically, for c.m. energyAs
and impact parameterb, the angular momentum isJ
5bAs/2. One expects that the maximum impact parame
occurs near a value ofb that equals the corresponding ang
lar momentum dependent radiusr h . This is given by@25#

r h
D25S r h

21
~D22!2J2

4M2 D 5
16pGM

~D22!VD22

——→
J→0

r h
D235

16pGM
~D22!VD22

.

~51!

If we setb5r h in Eq. ~51!, that gives

r h
D235

16pGM

~D22!VD22
F11

~D22!2

16 G21

. ~52!

This leads to a cross-section estimate

TABLE I. Lower limit on MBH in head-on collisionsb50, for
various dimensionsD. HereASch is the (D22)-dimensional hori-
zon area of a Schwarzschild black hole of massAs, while Atrap is
the area of the Penrose marginally trapped surface.

D Atrap/ASch MBH /As 12MBH /As

4 0.50000 0.70711 0.29289
5 0.54270 0.66533 0.33467
6 0.55032 0.63894 0.36106
7 0.55080 0.62057 0.37943
8 0.54928 0.60696 0.39304
9 0.54720 0.59642 0.40358

10 0.54502 0.58798 0.41202
11 0.54293 0.58105 0.41895
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16 G22/(D23)

pr h, spherical
2 . ~53!

In D54, this gives a relative correction factor of 64%
closely matching the factor in Eq.~49!. The correspondence
of these results suggests that this estimation technique
indeed be approximately correct in higher dimensions.

A final point concerns the validity of the semiclassic
approximation. We expect that the semiclassical approxim
tion for black hole formation should be justified if a horizo
forms at small curvature.3 Of course the surfaceS that we
have constructed lies in the plane of the shocks, and thu
in a sense close to a region of large curvature; understan
the importance of this would require regulating the soluti
taking into account finite size/mass effects. However, we
lieve that this is not necessary, as it is possible to find
trapped surface outside the planes of the incoming sho
First, in the caseb50, consider Penrose’s flat diskS of
radiusr̄5rc in the incoming null wave front surfaceū50.
Construct the null planeN emanating fromS in the opposite
direction v52const; N has zero convergence because
is a null plane. DeformS into the future alongN, while
leaving it fixed in some neighborhood of its boundaryC. This
deformed (D22)-surfaceS8 will still have zero conver-
gence along thev-direction everywhere, and thus will be a
apparent horizon, now with weak spacetime curvature on
~In fact, S8 has exactly the same area asS, and so gives
exactly the same bound on the black hole mass.!

Second, in the caseb.0, we can proceed similarly. We
can still construct a null surfaceN emanating to the future
from our original marginally trapped surfaceS, generated by
null geodesics normal toS. However,N will not be a flat
null plane, because the null normals toS have nonzero shear
We can still deformS some distance to the future alongN to
create a new (D22)-surfaceS8 but the convergence of th
null normals ofS8 will go positive, due to the shear~we
cannot go too far or we will run into a caustic, i.e., th
convergence will go to1`). Thus S8 will actually be a
trapped surface, not a marginally trapped surface. This wo
mean that a marginally trapped surface must lie somewh
outside it. In any caseS8 has weak spacetime curvature e
erywhere on it, and implies the existence of a black hole

V. CONCLUSIONS

The existence of a closed trapped surface in the collis
geometry of two ultrarelativistic particles clearly demo
strates classical black hole formation. The argument t
these surfaces are present in the weak curvature region
ther suggests that this process can be consistently treated
semiclassical analysis, and should help lay the foundation
a more rigorous justification of such an analysis. Furth
more, we have found improved estimates on the produc

3In the context of string theory, the Schwarzschild radius m
also be larger than the string lengthAa8 @26,27#.
1-6



n

of
ro

o
ir
r

th

y
s

S.
el,
c-

Na-
49

3-

CLASSICAL BLACK HOLE PRODUCTION IN HIGH- . . . PHYSICAL REVIEW D 66, 044011 ~2002!
cross section for black holes. While these estimates are
enormously different from the more naive estimates of@7,8#,
it is important to know their size in improving discussion
the sensitivity of cosmic ray observations to black hole p
duction. Future directions include more complete analysis
the higher-dimensional classical problem, which may requ
numerical work. The present classical analysis should se
as a starting point for a more complete investigation of
semiclassical approximation to black hole formation.

After completing this work we were kindly informed b
R. Penrose that he had found related unpublished result
tt

R.

r-

e

04401
ot

-
f

e
ve
e

on

the existence of a maximal impact parameter inD54, many
years ago.
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