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Uniqueness of(dilatonic) charged black holes and blackp-branes in higher dimensions
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We prove the uniqueness of higher dimensididéhtonic) charged black holes in static and asymptotically
flat spacetimes for an arbitrary vector-dilaton coupling constant. An application to the uniqueness of a wide
class of blackp-branes is also given.
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[. INTRODUCTION (6,2). The results of this paper will remove this restriction:
rather than generalizing to higher dimensions the argument
The aim of this paper is to extend our recent work ingiven in[5-7] as was done in our earlier pag&j, we shall
which we generalized the four-dimensional Israel’'s theoremgeneralize the method introduced in four dimensionfSin
on the uniqueness of static vacuum and electrically charged As in the case of higher dimensional vacuum black holes,
black holes[1] to higher dimension$2,3]. We also gave a SO in this case, it is essential to assume strict asymptotic
uniqueness theorem for a certain class of charged dilatonitatness because analogues of the Bohm black H@e}
black holes in higher dimensiori8]. There is also earlier also exist in the electrically charged case. In addition, just as
work by Hwang[4] on the vacuum case. The motivation for in 3+ 1 dimensions, we also have to assume that the surface
treating charged dilatonic black holes comes from stringdravity is non-zergnon-extremg otherwise one has multi-
theory where gauge fields often play an essential role. It i®lack holes solutions which generalize the Majumdar-
clearly important to be able deal with the most generalPapapetroMP) solutions[9]. See Ref[10] for the discus-
vector-dilaton coupling constant and that is what we shall dsion the uniqueness of the MP solution under some
in this present paper. additional assumptions. We shall also prove the uniqueness
Another important motivation for our work is to continue of Gibbons-Maeda solutiofll] of the Einstein-Maxwell-
our program of proving the uniqueness of static blackdilaton system with the general dilaton coupling to the Max-
p-brane solutions. Such solutions are+(p)-dimensional ~Well field. This amounts to a non-trivial generalization of the
spacetimes invariant under the action ofpalimensional earlier paper$2,3,7.9.
Abelian translation group. Reduction tospacetime dimen- ~ The rest of this paper is organized as follows. In Sec. II,
sions produces a black hole solution of gravity coupled tove will prove the uniqueness of the higher dimensional
one or more scalars and an electric 2-form or dual magnetiReissner-Nordstrom solutiofi2] among static black holes
(n—2)-form field strength. A uniqueness theorem for a blackin the Einstein-Maxwell system. Then, in Sec. lll, a black
hole solution inn spacetime dimensions which asserts thehole uniqueness for the most general Einstein-Maxwell-
necessity ofSO(n—1) invariance acting orS” orbits is dilaton system is given following the four-dimensional proof
equivalent to asserting the invariance of the static blackn [8]. In Sec. IV, we address the uniqueness of black
p-brane under the action 0O(n—1) on then—1 space p-branes. Finally in Sec. V we provide a summary of the
transverse to th@-brane. As in the case of 4-dimensional results of the paper.
black holes so with higher dimensional charged black holes
and branes although we expect that a uniqueness theorem Il. CHARGED BLACK HOLES
holds in the extreme case we cannot expect such a theorem ) _ ] ] ] o
to assertSO(n— 1)-invariance because of the existence of In this section, we consider thedimensional Einstein-
multi-p-brane solutions in static equilibrium. In this paper Maxwell system given by the Lagrangian
we will only treat the non-extreme case, leaving the extreme
case for a later date. We assume only electrically charged L="R—F? (1)
black holes coupled to a single 2-form and with a single
scalar field. By duality we could also consider magneticallywhereF is the Maxwell field, and prove the uniqueness of
charged black hole coupled to an-2) form. In previous the static and electrically charged black holes in higher di-
work we were limited to the vacuum cap2] or to special mensions.
values of the the vector-dilaton couplings cons{&twhich In general, the metric of an-dimensional static space-
meant that our results only held for the caseg]=(5,3) or  time has the form
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ds?=—V2dt?+g;;dx'dx], 2)

whereV andg;; are independent dfand they are regarded as

quantities on thé= const hypersurfack. The event horizon
H is a Killing horizon located at the level s€t=0, which is

assumed to be non-degenerate. Then the static field equations

become
CZ
Ay 2
VA= (V) 3
Vi-VV
2.
Vi=—y—, 4
and
ViVyvo2 2(V)?
i~y —inl//le/fmegij, (5

whereC=[2(n—2)/(n—3)]*2 V andR;; denote covariant
derivative and the Ricci tensor defined o, (;;), respec-
tively, and ¢ is the electrostatic potential such tHatdy
Adt.
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. [(w*= Q)43
ij = 4
=[(u*— Q)41 (de?+0%dQ] ), +0(e”),

(12

8, +0(LIr®)

wheredQ?2_, denotes the round sphere metric ame-1/r

has been defined. Pastin@f(,éﬁ) across the level se¥
=0 and adding a poinfp} at =0, we can construct a

complete regular surface=3*U3 ~U{p}. The Ricci cur-
vatureR on 3 * becomes

In asymptotically flat space-times, one can find an approy here we have used the identities
priate coordinate system in which the metric and electrostatic

potential have asymptotic expansions of the form

v=1--2_+o(r-2), ©6)
rn 3
M _
gijz(l+mrn_—3 8 +O(1h""?), @)
IC
l/,:?n_3+0(1/r”2), (8)

respectively, wherew, Q=const represent the Arnowitt-
Deser-Misner(ADM) mass and the electric chargep to
constant factops respectively, and :=/=;(x')%. We assume
the non-extremal conditiop>|Q].

Consider the following two conformal transformations:

éﬁzﬂigij , ©)

where

0i= (10)

1+V\2 C?
Y-

1/2
2}

Then we have two manifolds3(*,g;;). On X7, the
asymptotic behavior of the metric becomes
g =8;+0(1h""2). (11)

On 2 ~, we have

. VA&V 2 (Vy)? vVaQ.
oo o -
QIR=—+ = 2 2(n—2) o
(VQ.)?
—(n=2)(n=5)——
= Vi 12V VIV — (V2= 1+ C2y?) V|2,
(13
. C. .
VZ(VtC¢)=th¢-V(ViC¢). (14)

Then the Ricci curvature ob is non-negative. Furthermore,

Eq. (11) implies that the total mass also vanishesSamAs a
consequence of the positive mass theoiféd®,14], such a

surfaceS, must be flat and

2VyVV=(V2—1+C2A)Vy (15)

holds, which implies that the level surfaces\6fand ¢ co-
incide. In other words, the physical Cauchy surfateis
conformally flat. We shall now demonstrate that the confor-

mally transformed event horizaf is a geometric sphere in

2. We chooseV as a local coordinate in a neighborhood
UC3. Let {x"} be coordinates on level sets Wfsuch that
their trajectories are orthogonal to each level set. Then, the

metric on>, can be written in the form
g=p2dV?+ hgdx*dx®, (16)

wherep?:=(VV)2. SinceX is conformally flat, the Riemann
invariant has a simple expression in this coordinate system:

nRIJKLanJKL: Rijkl Rijkl + 4R0i0j ROin
4(n—2)

:m[kABkAB—i— k?+2DpapD " p],
17

whereD, denotes the covariant derivative on each level set
of V, andk g is the second fundamental form of the level set.
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The requirement that the event horizéhis a regular
surface leads to the condition

Kagln=0, (18

Dapl=0. (19

In particular,H is a totally geodesic surface .
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wheren denotes the unit normal to the level setvofUsing
V2v=0, we obtain

Let us consider how the event horizon is embedded into

the base spaceic dij). Define the smooth function

v:=(1+V—Cy) ! (20
which is the harmonic function onE( dij): Vov— In
terms of this, we can adopt the following local expression for,
the flat space

8;dxdxX = p?dv 2+ hapdxAdxE. (22)
The event horizon is located at some=const surfacer.

The extrinsic curvatur&,g of the level set = const can be
expressed as

= + > ——hpg.
kag=Q.Kkap 5 v hag (22
Thus we obtain
K s 22l 23
AB_;) 7 AB (23

H

onH. In other words, the embedding Bfinto the Euclidean
(n—1)-space is totally umbilical. It is known that such a
embedding must be hyperspheri¢db], namely each con-

£:Daln p=kDpln p+ D4k, (25)
1 1.
k=— 2_ T 2 T4yo
a7~ S=5 K"~ =D% (26)
£:Dpk=Dpfrk+ (Daln p)(EK). (27)
From the above equations, it can be seen that
a-AB: 01 ﬁAE):OI IZ’\)ARzoa (28)

"that is, each level surface of is totally umbilic and hence
spherically symmetric, which implies that the metric is iso-
metric to the Reissner-Nordstrom solution.

This is of course local result since we consider only the
region containing no saddle points of the harmonic function
v. To obtain the global result, we need a further assumption
such as analyticity. However, the assumption that there is no
saddle point may be justified as follows. At a saddle point
p=0, the level surface af is multi-sheeted, that is the em-
bedding of the level surfaces is singular there. One can find
at least one level surface such thaiz#0 near the saddle
point. Then, Eq(17) implies that the saddle point is singular.

If the horizon is not connected, this naked singularity must
exist to compensate for the gravitational attraction between
black holes.

Ill. DILATONIC CHARGED BLACK HOLES
We here consider the Einstein-Maxwell-dilaton system
—ad)FZ,

L=MR-2(d¢)?>—e (29

nected component df is a geometric sphere with a certain for general dilaton coupling constaat>0.
radius. The embedding of a hypersphere into the Euclidean Adopting the metric form of Eq(2), we have the follow-
space is known to be rigiflL6], which means that we can ing equations:

always locate one connected componentioit ther=r

_(I’QS
surface of3. without loss of generality. If there is only a V2v:c2e (30)
single horizon, we have a boundary value problem for the
Laplace equation V§u=0 on the base spaceQ)
:=E""1\B"~ ! with the Dirichlet boundary conditions. Such a 2= — Vv Vd’ e — (V)2 (31)
solution must be spherically symmetric, so that the Birkhoff V v
theorem implies that it is given by the Reissner-Nordstrom
solutions. V-V
One may remove the assumption of the single horizon as V2y v TavVe vy, (32
follows. Consider the evolution of the level surface in Eu-
clidean space. From the Gauss equation in Euclidean spaggq
one obtains the evolution equation for the sheag:=kag ,
—kh —92): viv,v e
Khas/(n=2): Ry ==y +2VigV 6= 2 ViV,u
1
£r0 = UACUCB+ hABUCDUCD 2 e (V)2
ij - (33
1/ 1\ n—2 \V2
=| DaDg— TZhABD2 P (24)

Let us define the following quantities:
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Now we

@
>_,%g
ECD(\I')E gnia

e—a¢/2

—a¢/2 2
a¢/2Vi w

_c2 D
C(1+N) V2 ,
(39

have four manifolds 2., %g;),

), ("3,.%g)), and ("3, "g;). Pasting
(")g7) across the surfack’=0, we can con-
struct  a complete regular  surface ®M3
=®MN3 Ty ®M3 - Thus, we have two regular surfaces,
®3 and V3. As in the previous section, we can check that
each total gravitational mass ®B and V3, vanishes.

From now on we use the conformal positive energy theo-
rem|[18] to show that the static slice is conformally flat. See
the Appendix for the conformal positive energy theorem in
higher dimensions. We consider another conformal transfor-
mation

1
(I)il: E e

—a¢/2
C(1+)\)1’2 v w, (35

and
\Ir :_(e—ZC ¢/av+e2C qS/qu l) (36)

where\ = a?/4C? has been defined.

v 2\71/(n—=3)(1+\)
Let us consider the conformal transformation defined by w. )OI )gij ' (47)

9 =[(Pw)

aij :Vz,(nfg)g” , 37) The Ricci curvature on this space can be shown to become
and introduce the following symmetric tensors defined on (MR =[(Pw.)A(Yw.)?] D@
this space: x[(‘l’w+)2/(”*3)(¢Ri)
G=Vio_V,0o_,-V,0,V,0,-V,0,V,0, (39 ANV )ZO3)(YR))
and n—2)\ . .
+(1+)\) (VInYw.—VIn®w.)? (48
’I:|ij=vi\I’,1§j‘P,l—vi‘P1§j‘Pl. (39)

The first term of the right-hand sid&kHS) turns out to be

Then the field equations become non-negative:

V20, =Ky, (40 (P00 PR (V)P I(YRY)
= 2
V2w ,=HW,, (42) 2 |0V -0, TP
—c? d,*+1 |- (49)
and
The conformal positive mass theorem implies that
~ 2 ~ ~
5 —const, (50
whereA=—-1,0,1. @
Furt_herrpore, we perform the following conformal trans- ®o=consk d_; (51)
formations:
Dg — @, 202G, 3 and that each {=, %g;;), (¥=,%g;;) and §,g;) is flat
ij I space. In other words2(,g;;) is conformally flat. We define
and the function
Vgt = V203G, (44) vi=(Pw.V) 12 (52)
where Noting that
d,*r1 éij =p¥=3) g, (53
Po.=— (45)
we have
and 2
pan-ap= og_ 272 Vo (54)
\Plil n—3 1% '
Vo, = 5 (46)

Since we already know thét= *R=0, v turns out to be the

The extreme case should be excluded to keep the above coarmonic function on the flat space:
formal factors non-negative. In fact, there exist multi-black- )
hole solutions in the extreme limjii.7]. Vov=0. (55)
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With the procedure given in the previous section, we cartions constructed from the the Bohm metr[@9] as in our
show that the static solution must hyperspherically symmetprevious work{2,3]. Since the positive energy theorem does

ric, therefore given by the metric given in R¢L1]. not hold in such cases, it is unclear whether proof of the
unigueness presented here can be generalized to cover this
IV. BRANES case. The stability of Bohm black holes solutions is currently

. L under investigation.
As already mentioned, one motivation for the present

work was to establish the uniqueness of statlerane solu- ACKNOWLEDGMENTS
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the higher dimensional metric is coupled to ar2 form APPENDIX: THE CONFORMAL POSITIVE ENERGY
F,_» with no scalars, we obtain the Lagrangidr9] THEOREM IN HIGHER DIMENSIONS

In this appendix we briefly describe the statement and the
proof of the conformal positive energy theorem in higher
dimensions. The proof is given by a straightforward exten-
with sion of that of Simorj18] in four dimensions. Simon in turn
was inspired by Masood-ul-Alam’s proof of the uniqueness

R—2(V¢)*-

—2a 2
(n_z)!e 2 ('bFn—Z’ (57)

2_ 2(n—2) of the Gibbons-Maeda solution in four dimensions.
Y (58) by @ vy W ;
p(n+p—2) Theorem:Let (*X, ®g;;) and (*X, ¥g;;) be asymptoti-
cally flat Riemannian r{—1)-dimensional manifolds with
and Y9i;=0%%g;;. Then ®m+pYm=0 if *R+pO2VYR=0
2p(n—3)2 hold for a positive constar@. The equality holds if and only

a2

- _ (59 if (*3,%g;) and (Y3, g;)) are flat.
(n=2)(n+p—-2) Proof: Let us consider the conformal transformation as

In this way, we obtain a uniqueness theorem for blackdij= QPP A1%g;  Itis easy to see that

p-branes described by the metric ansatz of Exf). Note
that, by contrast with our previous page, the values of
(n,p) are unrestricted.

(1+p)R=Q"#TA(PR+ pO2TR)

B
+(n=2)(n—3) ——
V. SUMMARY (n=2)(n )1+B

We presented the proof of the uniqueness theorem fokike Witten's positive energy theoref13,14, now, we can
static charged dilatonic black holes in higher dimensions. wérove the positivity of the total gravitational mass on
excluded the extreme case from consideration. Our theoreif®,gxs;) which is
also provides a uniqueness theorem for blpdkanes. _

Since the extreme case is a BPS state, the remaining issue m=(1+p)"(*m+B¥Ym)=0. (A2)
about the extreme case is important. In this paper we consid- — —
ered only electrically charged black holes. However, the gen- For the case om=0, we see thatX,g;;) is flat and() is
eralization to the magnetically charged case is straightforconstant. They imply that (¥, ®g;;) and (*X,%g;;) are
ward because of the duality as mentioned in the last sectio@lso flat. -

Finally we comment on the assumption on asymptotic It is trivial that m=0 if (*,®g;) and (YS, g;;) are
flatness. If we drop, there will be infinite sequence of solu-flat. Q.E.D.

59)2
- Ky
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