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Uniqueness of„dilatonic… charged black holes and blackp-branes in higher dimensions
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We prove the uniqueness of higher dimensional~dilatonic! charged black holes in static and asymptotically
flat spacetimes for an arbitrary vector-dilaton coupling constant. An application to the uniqueness of a wide
class of blackp-branes is also given.
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I. INTRODUCTION

The aim of this paper is to extend our recent work
which we generalized the four-dimensional Israel’s theore
on the uniqueness of static vacuum and electrically char
black holes@1# to higher dimensions@2,3#. We also gave a
uniqueness theorem for a certain class of charged dilat
black holes in higher dimensions@3#. There is also earlier
work by Hwang@4# on the vacuum case. The motivation f
treating charged dilatonic black holes comes from str
theory where gauge fields often play an essential role.
clearly important to be able deal with the most gene
vector-dilaton coupling constant and that is what we shall
in this present paper.

Another important motivation for our work is to continu
our program of proving the uniqueness of static bla
p-brane solutions. Such solutions are (n1p)-dimensional
spacetimes invariant under the action of ap-dimensional
Abelian translation group. Reduction ton spacetime dimen-
sions produces a black hole solution of gravity coupled
one or more scalars and an electric 2-form or dual magn
(n22)-form field strength. A uniqueness theorem for a bla
hole solution inn spacetime dimensions which asserts
necessity ofSO(n21) invariance acting onSn orbits is
equivalent to asserting the invariance of the static bl
p-brane under the action ofSO(n21) on then21 space
transverse to thep-brane. As in the case of 4-dimension
black holes so with higher dimensional charged black ho
and branes although we expect that a uniqueness the
holds in the extreme case we cannot expect such a theo
to assertSO(n21)-invariance because of the existence
multi-p-brane solutions in static equilibrium. In this pap
we will only treat the non-extreme case, leaving the extre
case for a later date. We assume only electrically char
black holes coupled to a single 2-form and with a sin
scalar field. By duality we could also consider magnetica
charged black hole coupled to an (n22) form. In previous
work we were limited to the vacuum case@2# or to special
values of the the vector-dilaton couplings constant@3#, which
meant that our results only held for the cases (n,p)5(5,3) or
0556-2821/2002/66~4!/044010~6!/$20.00 66 0440
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(6,2). The results of this paper will remove this restrictio
rather than generalizing to higher dimensions the argum
given in @5–7# as was done in our earlier paper@3#, we shall
generalize the method introduced in four dimensions in@8#.

As in the case of higher dimensional vacuum black hol
so in this case, it is essential to assume strict asympt
flatness because analogues of the Bohm black holes@2,3#
also exist in the electrically charged case. In addition, jus
in 311 dimensions, we also have to assume that the sur
gravity is non-zero~non-extreme!, otherwise one has multi
black holes solutions which generalize the Majumd
Papapetrou~MP! solutions@9#. See Ref.@10# for the discus-
sion the uniqueness of the MP solution under so
additional assumptions. We shall also prove the uniquen
of Gibbons-Maeda solution@11# of the Einstein-Maxwell-
dilaton system with the general dilaton coupling to the Ma
well field. This amounts to a non-trivial generalization of th
earlier papers@2,3,7,8#.

The rest of this paper is organized as follows. In Sec.
we will prove the uniqueness of the higher dimension
Reissner-Nordstrom solution@12# among static black holes
in the Einstein-Maxwell system. Then, in Sec. III, a bla
hole uniqueness for the most general Einstein-Maxw
dilaton system is given following the four-dimensional pro
in @8#. In Sec. IV, we address the uniqueness of bla
p-branes. Finally in Sec. V we provide a summary of t
results of the paper.

II. CHARGED BLACK HOLES

In this section, we consider then-dimensional Einstein-
Maxwell system given by the Lagrangian

L5 nR2F2, ~1!

whereF is the Maxwell field, and prove the uniqueness
the static and electrically charged black holes in higher
mensions.

In general, the metric of ann-dimensional static space
time has the form
©2002 The American Physical Society10-1
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ds252V2dt21gi j dxidxj , ~2!

whereV andgi j are independent oft and they are regarded a
quantities on thet5const hypersurfaceS. The event horizon
H is a Killing horizon located at the level setV50, which is
assumed to be non-degenerate. Then the static field equa
become

“

2V5
C2

V
~“c!2, ~3!

“

2c5
“c•“V

V
, ~4!

and

Ri j 5
“ i“ jV

V
2

2

V2“ ic“ jc1
2~“c!2

~n22!V2
gi j , ~5!

whereC5@2(n22)/(n23)#1/2, “ andRi j denote covariant
derivative and the Ricci tensor defined on (S,gi j ), respec-
tively, and c is the electrostatic potential such thatF5dc
`dt.

In asymptotically flat space-times, one can find an app
priate coordinate system in which the metric and electrost
potential have asymptotic expansions of the form

V512
m

r n23
1O~1/r n22!, ~6!

gi j 5S 11
2

n23

m

r n23D d i j 1O~1/r n22!, ~7!

c5
Q/C

r n23
1O~1/r n22!, ~8!

respectively, wherem, Q5const represent the Arnowitt
Deser-Misner~ADM ! mass and the electric charge~up to
constant factors!, respectively, andrªA( i(x

i)2. We assume
the non-extremal conditionm.uQu.

Consider the following two conformal transformations:

ĝi j
65V6

2 gi j , ~9!

where

V6
2 5F S 16V

2 D 2

2
C2

4
c2G1/2

. ~10!

Then we have two manifolds (S6,ĝi j
6). On S1, the

asymptotic behavior of the metric becomes

ĝi j
15d i j 1O~1/r n22!. ~11!

On S2, we have
04401
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ĝi j
25

@~m22Q2!/4#2/(n23)

r 4
d i j 1O~1/r 5!

5@~m22Q2!/4#2/(n23)~d%21%2dVn22
2 !,1O~%5!,

~12!

wheredVn22
2 denotes the round sphere metric and%ª1/r

has been defined. Pasting (S6,ĝi j
6) across the level setV

50 and adding a point$p% at %50, we can construct a
complete regular surfaceŜ5S1øS2ø$p%. The Ricci cur-
vatureR̂ on S6 becomes

V6
2 R̂5

“̂

2V

V
1

2

n22

~“̂c!2

V2
22~n22!

“̂

2V6

V6

2~n22!~n25!
~“̂V6!2

V6
2

5
1

8V2V6
2(n23)

u2Vc“̂V2~V2211C2c2!“̂cu2,

~13!

where we have used the identities

“̂

2~V6Cc!56
C

V
“̂c•“̂~V6Cc!. ~14!

Then the Ricci curvature onŜ is non-negative. Furthermore
Eq. ~11! implies that the total mass also vanishes onŜ. As a
consequence of the positive mass theorem@13,14#, such a
surfaceŜ must be flat and

2Vc“̂V5~V2211C2c2!“̂c ~15!

holds, which implies that the level surfaces ofV andc co-
incide. In other words, the physical Cauchy surfaceS is
conformally flat. We shall now demonstrate that the conf
mally transformed event horizonĤ is a geometric sphere in
Ŝ. We chooseV as a local coordinate in a neighborhoo
U,S. Let $xA% be coordinates on level sets ofV such that
their trajectories are orthogonal to each level set. Then,
metric onS can be written in the form

g5r2dV21hABdxAdxB, ~16!

wherer2
ª(“V)2. SinceS is conformally flat, the Riemann

invariant has a simple expression in this coordinate syste

nRIJKL
nRIJKL5Ri jkl R

i jkl 14R0i0 jR
0i0 j

5
4~n22!

~n23!V2r2
@kABkAB1k212DArD Ar#,

~17!

whereDA denotes the covariant derivative on each level
of V, andkAB is the second fundamental form of the level s
0-2
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The requirement that the event horizonH is a regular
surface leads to the condition

kABuH50, ~18!

DAruH50. ~19!

In particular,H is a totally geodesic surface inS.
Let us consider how the event horizon is embedded

the base space (Ŝ,d i j ). Define the smooth function

vª~11V2Cc!21, ~20!

which is the harmonic function on (Ŝ,d i j ): “0
2v50. In

terms of this, we can adopt the following local expression
the flat space

d i j dxidxj5 r̂2dv21ĥABdxAdxB. ~21!

The event horizon is located at somev5const surfaceĤ.
The extrinsic curvaturek̂AB of the level setv5const can be
expressed as

k̂AB5V1kAB1
1

r̂

]V1

]v
hAB . ~22!

Thus we obtain

k̂AB5
1

r̂

]V1

]v U
H

ĥAB ~23!

on Ĥ. In other words, the embedding ofĤ into the Euclidean
(n21)-space is totally umbilical. It is known that such
embedding must be hyperspherical@15#, namely each con-
nected component ofĤ is a geometric sphere with a certa
radius. The embedding of a hypersphere into the Euclid
space is known to be rigid@16#, which means that we ca
always locate one connected component ofĤ at the r 5r 0

surface ofS̃ without loss of generality. If there is only
single horizon, we have a boundary value problem for
Laplace equation “0

2v50 on the base spaceV
ªEn21\Bn21 with the Dirichlet boundary conditions. Such
solution must be spherically symmetric, so that the Birkh
theorem implies that it is given by the Reissner-Nordstr
solutions.

One may remove the assumption of the single horizon
follows. Consider the evolution of the level surface in E
clidean space. From the Gauss equation in Euclidean s
one obtains the evolution equation for the shearŝABª k̂AB

2 k̂ĥAB /(n22):

£n̂ŝAB5ŝA
CŝCB1

1

n22
ĥABŝCDŝCD

2
1

r̂
S D̂AD̂B2

1

n22
ĥABD̂2D r̂, ~24!
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wheren̂ denotes the unit normal to the level set ofv. Using
“0

2v50, we obtain

£n̂D̂Aln r̂5 k̂D̂Aln r̂1D̂Ak̂, ~25!

£n̂k̂52iŝi22
1

n22
k22

1

r̂
D̂2r̂, ~26!

£n̂DAk̂5D̂A£n̂k̂1~D̂Aln r̂ !~£n̂k̂!. ~27!

From the above equations, it can be seen that

ŝAB50, D̂Ar̂50, D̂Ak̂50, ~28!

that is, each level surface ofv is totally umbilic and hence
spherically symmetric, which implies that the metric is is
metric to the Reissner-Nordstrom solution.

This is of course local result since we consider only t
region containing no saddle points of the harmonic funct
v. To obtain the global result, we need a further assump
such as analyticity. However, the assumption that there is
saddle point may be justified as follows. At a saddle po
r50, the level surface ofv is multi-sheeted, that is the em
bedding of the level surfaces is singular there. One can
at least one level surface such thatkABÞ0 near the saddle
point. Then, Eq.~17! implies that the saddle point is singula
If the horizon is not connected, this naked singularity m
exist to compensate for the gravitational attraction betw
black holes.

III. DILATONIC CHARGED BLACK HOLES

We here consider the Einstein-Maxwell-dilaton system

L5 (n)R22~]f!22e2afF2, ~29!

for general dilaton coupling constanta.0.
Adopting the metric form of Eq.~2!, we have the follow-

ing equations:

“

2V5C2
e2af

V
~“c!2, ~30!

“

2f52
“V•“f

V
1

a

2

e2af

V2
~“c!2, ~31!

“

2c5
“V•“c

V
1a“f•“c, ~32!

and

Ri j 5
“ i“ jV

V
12“ if“ jf22

e2af

V2
“ ic“ jc

1
2

n22

e2af~“c!2

V2
gi j . ~33!

Let us define the following quantities:
0-3
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F615
1

2 Feaf/2V6
e2af/2

V
2C2~11l!

e2af/2c2

V2 G ,

~34!

F05C~11l!1/2
e2af/2c

V
, ~35!

and

C615
1

2
~e22C2f/aV6e2C2f/aV21!, ~36!

wherel5a2/4C2 has been defined.
Let us consider the conformal transformation defined

g̃i j 5V2/(n23)gi j , ~37!

and introduce the following symmetric tensors defined
this space:

G̃i j 5“̃ iF21“̃ jF212“̃ iF0“̃ jF02“̃ iF1“̃ jF1 ~38!

and

H̃ i j 5“̃ iC21“̃ jC212“̃ iC1“̃ jC1 . ~39!

Then the field equations become

“̃

2FA5K̃FA , ~40!

“̃

2CA5H̃CA , ~41!

and

R̃i j 5
2

C2 ~11l!~G̃i j 1lH̃ i j !, ~42!

whereA521,0,1.
Furthermore, we perform the following conformal tran

formations:

Fgi j
65 Fv6

2/(n23)g̃i j ~43!

and

Cgi j
65 Cv6

2/(n23)g̃i j , ~44!

where

Fv65
F161

2
~45!

and

Cv65
C161

2
. ~46!

The extreme case should be excluded to keep the above
formal factors non-negative. In fact, there exist multi-blac
hole solutions in the extreme limit@17#.
04401
n
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Now we have four manifolds (FS1 , Fgi j
1),

( FS2 , Fgi j
2), ( CS1 , Cgi j

1), and (CS2 , Cgi j
2). Pasting

( F(C)S6 , F(C)gi j
6) across the surfaceV50, we can con-

struct a complete regular surface F(C)S
5 F(C)S1ø F(C)S2. Thus, we have two regular surface
FS and CS. As in the previous section, we can check th
each total gravitational mass onFS and CS vanishes.

From now on we use the conformal positive energy th
rem @18# to show that the static slice is conformally flat. S
the Appendix for the conformal positive energy theorem
higher dimensions. We consider another conformal trans
mation

ĝi j
6
ª@~ Fv6!2~ Cv6!2l#1/(n23)(11l)g̃i j . ~47!

The Ricci curvature on this space can be shown to beco

~11l!R̂65@~ Fv6!2~ Cv6!2l#21/(n23)(11l)

3@~ Fv6!2/(n23)~ FR6!

1l~ Cv6!2/(n23)~ CR6!#

1
~n22!l

11l
~“̂ ln Cv62“̂ ln Fv6!2. ~48!

The first term of the right-hand side~RHS! turns out to be
non-negative:

~ Fv6!2/(n23)~ FR6!1l~ Cv6!2/(n23)~ CR6!

5
2

C2UF0“̃F212F21“̃F0

F161
U2

. ~49!

The conformal positive mass theorem implies that

Fv6

Cv6

5const, ~50!

F05const3F21 ~51!

and that each (FS, Fgi j ), ( CS, Cgi j ) and (Ŝ,ĝi j ) is flat
space. In other words, (S,gi j ) is conformally flat. We define
the function

vª~ Fv6V!21/2. ~52!

Noting that

ĝi j 5v4/(n23) Fgi j , ~53!

we have

v4/(n23)R̂5 FR2
4~n22!

n23

“0
2v

v
. ~54!

Since we already know thatR̂5 FR50, v turns out to be the
harmonic function on the flat space:

“0
2v50. ~55!
0-4
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With the procedure given in the previous section, we c
show that the static solution must hyperspherically symm
ric, therefore given by the metric given in Ref.@11#.

IV. BRANES

As already mentioned, one motivation for the pres
work was to establish the uniqueness of staticp-brane solu-
tions. In general these take the form

ds25e2gF~dyp
2!1e2dFgmndxmdxn. ~56!

Dimensional reduction onEp will take the Einstein-Hilbert
action to the Einstein-Hilbert action if (n22)d1pg50. If
the higher dimensional metric is coupled to ann22 form
Fn22 with no scalars, we obtain the Lagrangian@19#

R22~“f!22
2

~n22!!
e22afFn22

2 , ~57!

with

g25
2~n22!

p~n1p22!
~58!

and

a25
2p~n23!2

~n22!~n1p22!
. ~59!

In this way, we obtain a uniqueness theorem for bla
p-branes described by the metric ansatz of Eq.~56!. Note
that, by contrast with our previous paper@3#, the values of
(n,p) are unrestricted.

V. SUMMARY

We presented the proof of the uniqueness theorem
static charged dilatonic black holes in higher dimensions.
excluded the extreme case from consideration. Our theo
also provides a uniqueness theorem for blackp-branes.

Since the extreme case is a BPS state, the remaining i
about the extreme case is important. In this paper we con
ered only electrically charged black holes. However, the g
eralization to the magnetically charged case is straight
ward because of the duality as mentioned in the last sec

Finally we comment on the assumption on asympto
flatness. If we drop, there will be infinite sequence of so
.
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tions constructed from the the Bohm metrics@20# as in our
previous work@2,3#. Since the positive energy theorem do
not hold in such cases, it is unclear whether proof of
uniqueness presented here can be generalized to cove
case. The stability of Bohm black holes solutions is curren
under investigation.
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APPENDIX: THE CONFORMAL POSITIVE ENERGY
THEOREM IN HIGHER DIMENSIONS

In this appendix we briefly describe the statement and
proof of the conformal positive energy theorem in high
dimensions. The proof is given by a straightforward exte
sion of that of Simon@18# in four dimensions. Simon in turn
was inspired by Masood-ul-Alam’s proof of the uniquene
of the Gibbons-Maeda solution in four dimensions.

Theorem:Let ( FS, Fgi j ) and (CS, Cgi j ) be asymptoti-
cally flat Riemannian (n21)-dimensional manifolds with
Cgi j 5V2 Fgi j . Then Fm1b Cm>0 if FR1bV2 CR>0
hold for a positive constantb. The equality holds if and only
if ( FS, Fgi j ) and (CS, Cgi j ) are flat.

Proof: Let us consider the conformal transformation
ḡi j 5V [2b/(11b)] Fgi j . It is easy to see that

~11b!R̄5V22b/(11b)~ FR1bV2 CR!

1~n22!~n23!
b

11b
S D̄V

V
D 2

. ~A1!

Like Witten’s positive energy theorem@13,14#, now, we can
prove the positivity of the total gravitational mass o
(S̄,ḡxsi j ) which is

m̄5~11b!21~ Fm1b Cm!>0. ~A2!

For the case ofm̄50, we see that (S̄,ḡi j ) is flat andV is
constant. They imply that (FS, Fgi j ) and (CS, Cgi j ) are
also flat.

It is trivial that m̄50 if ( FS, Fgi j ) and (CS, Cgi j ) are
flat. Q.E.D.
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