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Quasinormal modes of a small Schwarzschild–anti-de Sitter black hole
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We compute the quasinormal modes associated with the decay of the massless scalar field around a small
Schwarzschild–anti-de Sitter black hole. The computations show that when the horizon radius is much less
than the anti–de Sitter radius, the imaginary part of the frequency goes to zero asr 1

d22 while the real part of
v decreases to its minimum and then goes tod21. Thus the quasinormal modes approach the usual AdS
modes in the limitr 1→0. This agrees with suggestions of Horowitz and Hubeny@Phys. Rev. D62, 024027
~2000!#.
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The original interest in quasinormal modes~QNMs! of
black holes arose since they are the characteristics of b
holes~BHs! which do not depend on initial perturbations a
are functions of the black hole parameters only. At pres
this interest has been renewed since the QN frequencie
in the suggested region of the gravitational wave detec
which are under construction. In general, QNMs are imp
tant in black hole dynamics and appear in such processe
the collisions of two black holes and decay of different fie
in a BH background.

All this motivated the investigation of the QNM of blac
holes in asymptotically flat space-time~see@1# for a recent
review!. The quasinormal modes of asymptotically de Sit
black holes were studied in@2,3#. Recently an unexpecte
application of quasinormal modes has appeared due to
AdS conformal field theory~CFT! correspondence@4#: it
proved that a large black hole in AdS space correspond
an approximately thermal state in the CFT, and, thereby,
perturbation of the black hole corresponds to the perturba
of the above thermal state, while the decay of the pertur
tion can be associated with the return to thermal equilibriu
Thus the QN frequencies give us the thermalization ti
scale which is very hard to compute directly. Neverthele
recently exact agreement between the QN frequencies fo
three-dimensional Ban˜ados-Teitelboim-Zanelli~BTZ! black
hole and the location of the poles of the retarded correla
function of a perturbation in the dual conformal field theo
has been found@5#. Quasinormal modes for different types
perturbations of black holes in AdS space have been stu
also in a lot of papers@6–15#.

Black holes are considered to be small~large!, when its
horizon radius is much smaller~larger! then the anti–de Sit-
ter radius. When computing the QN frequencies associa
with the decay of massless scalar field in the backgroun
small Schwarzschild–anti-de Sitter~SAdS! BH a striking
conjecture with the black hole critical phenomena w
found:v Im is proportional to BH radiusr 1 to high accuracy,
and the slope of the linev Im to ther 1 axis, 2.66, turned ou
to be very close to the special frequencyl52.67 which cor-
responds to the growing mode explt describing the late time
behavior of the critical solution@16#. Yet, the quasinorma
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frequencies of the SAdS black hole have been compu
only for black holes with horizon radiusr 1>0.4R, whereR
is the anti–de Sitter radius~except for one mode correspond
ing to r 150.2R for which the behavior of the wave functio
was numerically reproduced!. This is not sufficient to study
the small black hole limit, but several suggestions we
made. In@15# it was stated that both real and imaginary pa
of the QN modes for small black holes are very large a
proportional to the surface gravity, however, later, it w
shown by numerical integration of the wave equation, tha
least for r 1>0.4R, in agreement with the first study@6,7#,
both the real and imaginary parts ofv are decreasing, and
stated that the behaviorvRe→const, v Im→0 at r 1→0 is
expected. Note that by considering an approximate sym
try of the SAdS metric in the limitr 1→0 it was supposed
thatv Im→0 asr 1

2 @6#. Here we try to compute the quasino
mal modes of black holes with the horizon radius sma
than 0.4R, to approach the small black holes regime (r 1

!R) as much as possible, and to obtain more definite h
of very small black hole behavior. It proves that compu
tions of quasinormal modes for very small black holes
quite reliable within the method proposed in@7# provided
one avoids accumulating numerical error~see the Appendix!.

Thed-dimensional Schwarzschild–anti-de Sitter metric

ds252 f ~r !dt21 f 21~r !dr21r 2dVd22
2 , ~1!

where

f ~r !512
r 0

d23

r
1

r 2

R2
. ~2!

Here r 0 is related to the black hole mass

M5
~d22!Ad22r 0

d23

16pGd
,

andAd22 is the area of a unit (d22) sphere.
Quasinormal modes of black holes in asymptotica

anti–de Sitter space-time are governed by the wave equa

S d2

dr
*
2

1v2D C~r !5UC~r !, ~3!
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where the potentialU is given by

U~r !5 f ~r !S l ~ l 1d23!

r 2
2

~22d!~d24!

4r 2
f ~r !

1
22d

2r
f 8~r !D , ~4!

and we takev5vRe2ıv Im . The tortoise coordinate isdr*
5 f 21(r )dr, l is the angular harmonic index. By rescalin
of r we can putR51. It is essential that the effective pote
tial is infinite at spatial infinity. Thus the wave function va
ishes at infinity and satisfies the purely in-going wave c
dition at the black hole horizon.

We managed to compute the quasinormal modes for
d54 black hole with the radius up tor 151/30R ~see Figs. 1
and 2!. This reasonably approximates behavior in a sm
black hole regime. It proved that the oscillation frequen
falls down to some minimum and then begins to grow a
proachingd21 whenr 1→0 ~see Fig. 2!. This minimum of
the Rev equals

min~vRe!'2.362 868 at r 150.395R, d54,

min~vRe!'3.705 140 at r 150.341R, d55,

and ~according to our preliminary results! continues to in-
crease for higher dimensions. Here with the more dim
sional AdS space is the less black hole radiusr 1 at which the
real oscillation frequency attains its minimum. Upon tho
ough consideration of Fig. 1 of@10# one can learn tha

FIG. 1. Imaginary part ofv for d54 black hole,l 50, n50.

FIG. 2. Real part ofv for d54 black hole,l 50, n50.
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among the real oscillation frequencies corresponding tor 1

50.2, 0.4, 0.6, 0.8R, vRe at r 150.4R is the least. This
agrees with our computations showing the minimum ofvRe
at r 1'0.395R for a four-dimensional black hole. The imag
nary part ofv falls down to zero, and the closerr 1 is to zero
the better the corresponding plot can be fit by the funct
Ar1

2 . For d54 the best fit for the last five points~from r 1

51/16 to r 151/30) in Table I isv Im58.066 53r 1
2 . The

higher the dimensions, the lessv Im of small black holes is,
i.e., the more the damping time of a perturbation.

Thus even though the boundary conditions atr 5r 1 do
not reduce to regularity at the origin in the limitr 1→0, the
quasinormal modes approach the usual AdS modes@17# in
this limit ~we checked it out ford54,5), i.e.,vRe→d21
andv Im→0, as was discussed in@6# ~see Figs. 3 and 4!.

APPENDIX

When computing the quasinormal mode one has to tr
cate the sum representing the wave function

c~x!5 (
n50

`

an~x2x1!n, x5
1

r
~A1!

with some largeN and find the roots of the equationuc(x)u
50 at r 5`(x50). After simplification the truncated sum
~A1! takes the polynomial inv form, and the necessary roo

TABLE I. The fundamental quasinormal frequencies cor
sponding tod54 SAdS black hole,R51.

r 1 vRe v Im

0.3 2.38447 0.70413
0.25 2.41945 0.54735
0.2 2.47511 0.3899
0.125 2.62274 0.16392
0.1 2.69282 0.10096
1/12 2.74472 0.06616
1/14 2.78341 0.04578
1/16 2.81289 0.03311
1/18 2.83574 0.02491
1/20 2.8539 0.01932
1/25 2.88584 0.01138
1/30 2.9065 0.0074

FIG. 3. Real part ofv for d54 black hole near its minimum
l 50, n50.
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can easily be found byMATHEMATICA . However, this reduc-
tion to a polynomial form takes a lot of computer time a
cannot be performed for a sum of orderN;200 or more.
Thus for small black holes we have to use the trial and e
method. Herewith there is a danger of missing the fundam
tal mode we are seeking, and, of ‘‘catching’’ another ov
tone. Fortunately, for reasonably small black holes there
no other overtones close to the fundamental one, and
minimums ofucu are sufficiently widely separated. Anothe
difficulty is that for small values ofr 1 the initial tiny errors
when determining the quantities involved in the sum in E
~A1! ~namelyui , t i , andsi of the paper@6#! begin to grow
when coming toN of order 1000 or greater. Therefore on

FIG. 4. Real part ofv for d55 black hole near its minimum
l 50, n50.
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has to improve the precision of these quantities~with the
help of a built-in function ofMATHEMATICA ! until further
increasing of precision will not influence the result. It prov
that the 50-digital precision ofui , t i , si is quite enough in
this paper. In addition one must set a higher precision
recurrence relations for coefficientsan . When approaching
the limit r 150 the numberN of the truncated sum~A1! at
which an approximate frequency converges grows as
shown in Fig. 5 ford54. The mored, the more the numbe
N is giving good approximation of the frequency. When fo
lowing all these receptions one can be sure that the con
gence plot will be smooth and that at small changing ofr 1

the corresponding frequency will not change noisily.

FIG. 5. Convergence plot for Rev, d54, l 50, n50.
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