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Quasinormal modes of a small Schwarzschildanti-de Sitter black hole
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We compute the quasinormal modes associated with the decay of the massless scalar field around a small
Schwarzschild—anti-de Sitter black hole. The computations show that when the horizon radius is much less
than the anti—de Sitter radius, the imaginary part of the frequency goes to zeft()zanhile the real part of
w decreases to its minimum and then goegitol. Thus the quasinormal modes approach the usual AdS
modes in the limitr . —0. This agrees with suggestions of Horowitz and HubgPlyys. Rev. D62, 024027
(2000].
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The original interest in quasinormal modé@NMs) of  frequencies of the SAdS black hole have been computed
black holes arose since they are the characteristics of blaaknly for black holes with horizon radius, =0.4R, whereR
holes(BHs) which do not depend on initial perturbations and is the anti—de Sitter radiugxcept for one mode correspond-
are functions of the black hole parameters only. At presentng tor . =0.2R for which the behavior of the wave function
this interest has been renewed since the QN frequencies anas numerically reproducgdThis is not sufficient to study
in the suggested region of the gravitational wave detectorthe small black hole limit, but several suggestions were
which are under construction. In general, QNMs are impormade. IN[15] it was stated that both real and imaginary parts
tant in black hole dynamics and appear in such processes aé the QN modes for small black holes are very large and
the collisions of two black holes and decay of different fieldsproportional to the surface gravity, however, later, it was
in a BH background. shown by numerical integration of the wave equation, that at

All this motivated the investigation of the QNM of black least forr , =0.4R, in agreement with the first studg,7],
holes in asymptotically flat space-tinisee[1] for a recent both the real and imaginary parts of are decreasing, and
review). The quasinormal modes of asymptotically de Sitterstated that the behaviesg.— const, w,,—0 atr, —0 is
black holes were studied if2,3]. Recently an unexpected expected. Note that by considering an approximate symme-
application of quasinormal modes has appeared due to they of the SAdS metric in the limit . —0 it was supposed
AdS conformal field theory(CFT) correspondencé4]: it  thatw,,—0 asr2 [6]. Here we try to compute the quasinor-
proved that a large black hole in AdS space corresponds tmal modes of black holes with the horizon radius smaller
an approximately thermal state in the CFT, and, thereby, théhan 0.&R, to approach the small black holes reginre, (
perturbation of the black hole corresponds to the perturbatiorcR) as much as possible, and to obtain more definite hints
of the above thermal state, while the decay of the perturbaef very small black hole behavior. It proves that computa-
tion can be associated with the return to thermal equilibriumtions of guasinormal modes for very small black holes are
Thus the QN frequencies give us the thermalization timequite reliable within the method proposed [ii] provided
scale which is very hard to compute directly. Neverthelessone avoids accumulating numerical ertsee the Appendix
recently exact agreement between the QN frequencies for the The d-dimensional Schwarzschild—anti-de Sitter metric is
three-dimensional Baos-Teitelboim-Zanell(BTZ) black
hole and the location of the poles of the retarded correlation d?=—f(r)dt?+f " Y(r)dr?+r2dQ3_,, (1)
function of a perturbation in the dual conformal field theory
has been founfb]. Quasinormal modes for different types of where
perturbations of black holes in AdS space have been studied
also in a lot of paperf6—15.

Black holes are considered to be sm@drge, when its
horizon radius is much smallélargen then the anti—de Sit-
ter radius. When computing the QN frequencies associatelgrer,, is related to the black hole mass
with the decay of massless scalar field in the background of
small Schwarzschild—anti-de SittdBAdS BH a striking (d_z)Ad72r8—3
conjecture with the black hole critical phenomena was M= T 167G,
found: w,,, is proportional to BH radius , to high accuracy, d
and the slope of the line,;, to ther , axis, 2.66, turned out andA,_, is the area of a unitd— 2) sphere.

to be very close to the special frequency 2.67 which cor- Quasinormal modes of black holes in asymptotically

responds to the growing mode exidescribing the late time i de Sitter space-time are governed by the wave equation
behavior of the critical solutiof16]. Yet, the quasinormal
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Imw TABLE |. The fundamental quasinormal frequencies corre-
1 sponding tod=4 SAdS black holeR=1.
0.8 I+ WRe @m
0.6 0.3 2.38447 0.70413
0.25 2.41945 0.54735
0.4 0.2 2.47511 0.3899
0.125 2.62274 0.16392
0.2 0.1 2.69282 0.10096
| 1/12 2.74472 0.06616
0.1 0.2 0.3 0.a ® 1/14 2.78341 0.04578
FIG. 1. Imaginary part ofo for d=4 black hole]=0, n=0. 1716 281289 0.03311
1/18 2.83574 0.02491
where the potentiall is given by 120 2.8539 0.01932
1/25 2.88584 0.01138
I(1+d—3) (2—d)(d—4) 1/30 2.9065 0.0074
U(r)=£(r) - f(r)
r2 4r?

2 d among the real oscillation frequencies corresponding,to
+_f'(r)>, (4 =02,04,06,0B, wgeatr,=04Ris the least. This
2r agrees with our computations showing the minimumog,
atr, ~0.39R for a four-dimensional black hole. The imagi-
and we takew= wge—lwy . The tortoise coordinate 8r*  nary part ofw falls down to zero, and the closer is to zero
=f~!(r)dr, |isthe angular harmonic index. By rescaling the better the corresponding plot can be fit by the function
of r we can putR=1. It is essential that the effective poten- Ari . Ford=4 the best fit for the last five pointérom r
tial is infinite at spatial infinity. Thus the wave function van- —1/16 tor, =1/30) in Table | isw,,=8.066532 . The
ishes at infinity and satisfies the purely in-going wave conjigher the dimensions, the less,, of small black holes is,
dition at the black hole horizon. _ i.e., the more the damping time of a perturbation.
We managed to compute the quasinormal modes for the 1h,s even though the boundary conditionsr atr, do
d=4 black hole with the radius up to, =1/30R (see Figs. 1 ot reduce to regularity at the origin in the limit —0, the

and 2. This reasonably approximates behavior in a Sma”quasinormal modes approach the usual AdS mdd@kin
black hole regime. It proved that the oscillation frequencyipis [imit (we checked it out ford=4,5)

falls down to some minimum and then begins to grow aPand w,
proachingd—1 whenr . —0 (see Fig. 2 This minimum of "
the Rew equals

i.e., (J)Re—>d_1
—0, as was discussed [6] (see Figs. 3 and)4

APPENDIX

Min(wre)~2.362868 at r,=0.39R, d=4, When computing the quasinormal mode one has to trun-

, cate the sum representing the wave function
Min(wre~3.705140 at r,=0.341R, d=5,

: - : : - 1
and (according to our preliminary resujt€ontinues to in- Y= an(x—x.)", x=— (A1)
crease for higher dimensions. Here with the more dimen- n=0 r
sional AdS space is the less black hole radiusat which the
real oscillation frequency attains its minimum. Upon thor-with some largeN and find the roots of the equatigm(x)|
ough consideration of Fig. 1 of10] one can learn that =0 atr=c(x=0). After simplification the truncated sum

(A1) takes the polynomial im form, and the necessary roots
Rew

r. Re w

2.362
2.36291

0.392 0.394 0.396 0.398
.36289
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FIG. 3. Real part ofw for d=4 black hole near its minimum,
FIG. 2. Real part ofv for d=4 black holeJ=0, n=0. I=0, n=0.
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FIG. 4. Real part ofw for d=5 black hole near its minimum,
=0, n=0. FIG. 5. Convergence plot for Re, d=4, 1=0, n=0.

can easily be found bylATHEMATICA . However, this reduc- 1as to improve the precision of these quantitfasth the

tion to a polynomial form takes a lot of computer time and€lP of & built-in function ofmATHEMATICA) until further
cannot be performed for a sum of orddr-200 or more. Increasing of precision will not influence the result. It proved
Thus for small black holes we have to use the trial and errofhat the 50-digital precision af, t;, s; is quite enough in
method. Herewith there is a danger of missing the fundamerthis paper. In addition one must set a higher precision of
tal mode we are seeking, and, of “catching” another over-recurrence relations for coefficiengs . When approaching
tone. Fortunately, for reasonably small black holes there arthe limit r . =0 the numbeN of the truncated surfAl) at

no other overtones close to the fundamental one, and thehich an approximate frequency converges grows as is
minimums of|y| are sufficiently widely separated. Another shown in Fig. 5 ford=4. The mored, the more the number
difficulty is that for small values of , the initial tiny errors N is giving good approximation of the frequency. When fol-
when determining the quantities involved in the sum in Eq.lowing all these receptions one can be sure that the conver-
(A1) (namelyuy;, t;, ands; of the papef6]) begin to grow gence plot will be smooth and that at small changing of
when coming toN of order 1000 or greater. Therefore one the corresponding frequency will not change noisily.
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