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Generalization of the Einstein-Straus model to anisotropic settings
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We study the possibility of generalizing the Einstein-Straus model to anisotropic settings by considering the
matching of locally cylindrically symmetric static regions to the seGgfon S; locally rotationally symmetric
(LRS) spacetimes. We show that such matchings preserving the symmetry are only possible for a restricted
subset of the LRS models in which there is no evolution in one spacelike direction. These results are applied
to spatially homogeneou®ianchi exteriors where the static part represents a finite bounded interior region
without holes. We find that it is impossible to embed finite static strings or other locally cylindrically sym-
metric static objectgsuch as bottle or coin-shaped objects reasonable Bianchi cosmological models,
irrespective of the matter content. Furthermore, we find that if the exterior spacetime is assumed to have a
perfect fluid source satisfying the dominant energy condition, then only a very particular family of LRS stiff
fluid solutions are compatible with this model. Finally, given the interior-exterior duality in the matching
procedure, our results have the interesting consequence that the Oppenheimer-Snyder model of collapse cannot
be generalized to such anisotropic cases.
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[. INTRODUCTION tions on the scales on which the model is applicable and that
it is not suitable for studies within our solar system or even
An important long standing question in cosmology con-the galaxy.
cerns the way large scale dynamics of the universe influences Another important observation regarding the result of
the behavior on smaller scales. In particular, given the obEinstein and Straus is that it involves a number of idealiza-
served large scale expansion of the universe the question f®ns, including the fact that the universe is assumed to be
to what extent does this expansion influence the behavior orepresentable by a spatially homogeneous and isotropic dust
astrophysical scales, and more precisely what are its effeciLRW model. The question then arises as to whether this
on, e.g., the planetary orbits, galaxies and clusters of galaxesult is robust with respect to various plausible generaliza-
ies. Among the earliest works on this question are those bﬂons_ These could involve Changes in the symmetry proper-
McVittie [1] and Einstein and Stralg] (see[3] for more  tjes of the model as well as the nature of the interior source
historical references Historically it was McVittie who first  fie|q. which was originally taken to be vacuum.
found a perfect fluid spherically symmetric solution to Ein- A number of interesting attempts have been made in this
stein’s field equations which could be interpreted as describgj action. Among them are models which keep the spherical
ing a point particle embedded in an expanding Friedmanng, ., ety but generalize the interior source fields by consid-
Sering for example Vaidydsee[10] and references theréin
St Lematre-Tolman spacetimesee[3] for references con-
erning the latter in connection with formation of voids

generally accepted ansatz to model the problem is due h h o b it i ina th laxati f
Einstein and Strauf2], who proposed a matching between ' \c'¢ Nave aiso been attempts concerning the refaxation o
the spherical symmetry assumption, including generaliza-

two spacetimes, instead of trying to use a single solution.. L ! ;
They successfully matched the spherically symmetric_t'ons to locally cylindrically symmetric spacetimes. These

vacuum Schwarzschild solution to an expandigt FLRW include the example of the embedding of dust FLRW into a
exterior across a hypersurface preserving the symmetryionstatic vacuum exterior across a hypersurface of a constant
They showed that such a matching was possible across afigdius[11] which, due to the freedom in interpreting the two
comoving 2-sphere, as long as the total mass contained iffarts being matched as interior or exteria0] (which we
side the 2-sphere was equal to the Schwarzschild mass coshall refer to asnterior-exterior duality, is equivalent to an
tained in it. In this way they concluded that there was noembedding of a nonstatic vacuum region into a dust FLRW.
influence from the global expansion of the universe on theSimilarly, the impossibility of the embedding of typical cos-
vacuum region surrounding the Schwarzschild mass. Twanic strings(i.e., Minkowski with deficit anglg as well as
objections have been raised against this model: the first bgome special nonstatic cylindrically symmetric vacuo into
Krasirski [3] who suggested that the Einstein-Straus modeflat FLRW was shown ifi12]. This problem has been further
is unstable against radial perturbations, and the second Istudied by Senovilla and Velfd 3] who have shown in full
Bonnor[8,9] who pointed out that there are severe restric-generality that the embedding of a locally orthogonally tran-

quently(e.g., Sussmapt], Gautreau5] and Nolan6]). The

This is a consequence of the FLRW model having been matched?The aim of these studies was, in fact, to generalize to nondust
to a vacuum spacetimgee, e.g[7]). FLRW models.
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sitive (OT)® cylindrically symmetricstatic cavity in an ex- symmetric static cavities can be embedded into reasonable
panding FLRW is not possible, irrespective of the matterevolving anisotropigdBianchi spacetimes.

content of the cavit§. This result has been further general- We_also note that given the interior-exterior duality in the
ized by Mars[16] to the case of axial symmetry. Mafs7] ~ matching procedure, all our results apply equally to the case
has finally been able to prove that in order to emlaey  Where it is the interior that is taken to have a spatially ho-
static cavity in a FLRW universe then this cavity must beMogeneous geometry, embedded into a locally cylindrically
“almost spherically symmetric;” more precisely, the bound- Symmetric static background. This would allow our results to
ary as seen from the FLRW exterior is required to be &€ applied to other settings, such as the study of the gener-

2-sphere in space. Furthermore, for standard interior sourcdization of the Oppenheimer-Snydgf] model for collaps-

fields such as vacuum, electrovacuum or perfect fluids, thi'd Objects, which could be viewed as the “dual” to the

interior itself must be spherically symmetric, with the bound_hlnstem-Straus model, in the interior-exterior sense defined
ary comoving with the cosmological flojd6,17. This im- ere.

plies therefore that static objects which can be embedded ir}] The pIap of the paper is as fOHOW.S'.I.n Sec. | we_review
FLRW models must be spherical, and as a result thdhe matchlng procedure and the definition of matching pre-
Einstein-Straus model is, in this sense, not robust. Serving _the symmetry. In Sec. Il we present a COrT‘paCt _form
This result once again raises the question of the possibilc-"c the_ line element for the134. on 53 LRS spa_cetlme§ n
ity of embedding general static cavities in more general uni_(:oordlnates acjapted to the axial Killing vector field. This will
verse modelgwhich we refer to as thgeneralized Einstein- prove.useful In Secs. [V and V’. where we calculate the
Straus problem Also, since realistic cosmological models Matching conditions for the matching preserving the symme-

cannot be expected to be exactly homogeneous and isotropf&’ dbetweenha static OT cyllndrlqally symmetric space(tjlmeh
the question arises as to what happens if these symmet ?ITRS omr:)gengous sfpacenme. In_Sec. \él we stu"yt S
assumptions concerning the exterior metric are further refestrictions on the subset of LRS spacetimes that are allowe

laxed. by the matching conditions. We show that the only perfect

There are two different ways to study departures fromﬂ”id solutions in this subset correspond to a particular family

FLRW: either perturbativelysee[18] for a perturbed gener- which has a stiff fluid equation of state. Ir_l Sec. VIl we ex-
alization of Einstein-Straus with a small rotatjoor using tend our re.sults to the case of the spanally_ homogeneous
exact solutions. Given that a precise formalism for a per_exte_nors. Finally, Sec. VIII gives our discussions and con-
turbed matching of two spacetimes is not fully developed c!usions.

we shall proceed in the second way. A step in this direction

was taken by Bonndi9], who considered the embedding of Il. MATCHING PROCEDURE

a Schwarzschild region in an expanding spherically symmet-
ric inhomogeneous Lentae-Tolman exterior. He found that '
such matching is possible in general, and it allows the masg\ure across general hypersurfacgse{ 19] for more details

and radius for the Schwarzschild cavity to be chosen indefviolssevrseltl)f(kr:g\tﬁ?{inthe()rml?:(::rt]ilgp?cggzivi\;ioosgiet}ﬂg]ﬁqsa:sr?iwres
pendently of the exterior LT density. gorj 9

An interesting question is whether similar results WOuldhypersurface. The first set of these junction conditions will

hold for cases with nonspherically symmetric interiors. As acnsure the continuity of the metrics across the matching hy-

step in this direction, we shall first of all study thecal pgrsurface; while Fhe_ se_conq is equivalent to a.nc.)n'singglar
matching between static OT cylindrically symmetric space-R'eman.r! tensor distribution in order to prevent infinite dis-
times and the class of locally rotationally symmetfi®RS) contmtlﬂltles of matter and curvature across the matching hy-
spacetimes admitting @, on S; group of isometries, which persurtace. T o 3
constitute an anisotropic generalization of the FLRW models. 'V'°r.e preC|§er, I_et v.g7) and_e(lsi 9) b_e two C

To make the matching global one expects to have furtheEpacetw|eS W|th+or|ente£j boun_dan an.d g . respec-
restrictions. In the particular case of an interior that describe vely, such thav™ ando ~ are diffeomorphic. The matched

a bounded object without holes, we were able to show tha?pacetimel/,g) is the disjoint union o’ with the points in
y * identified such that the junction conditions are satisfied

this is in fact the case. Thus if the exterior is assumed to b 19-24). Si - diff hi :
a spatially homogeneous expanding Bianchi spacetime, the ,ee[ ~22). >ince o~ are diifeomorphic, one can view
these boundaries as diffeomorphic to a 3-dimensional ori-

in order to preserve the symmetry, it has to be locally rota- . : n =
tionally symmetric, admitting &, on S;. We note that the €nted manifoldr which can be embedded 1" andV™. Let

results obtained here for the LRS spacetimes also hold foi”ff} (a=12,3) and{x} be coordinate systems m?&g
models representing static cavities embedded in Bianchy @ réspectively. The two boundaries are given by

In this section we shall briefly recall the matching proce-

spacetimes. maps

Our main result is then that no locally OT cylindrically . .

(OR R Ve
(€N
a, * _ T ea
3For most matter contents one is interested, this assumption is EI X =017 (£7),

actually a consequence of having an axis of symnidi4y; see also
below. such thatr™ = ®* (o). At every pointp e o the natural basis

“We note that nonexpanding exteriors can be matchediisge  {d/9&%,} of the tangent plan& o is pushed forward by the
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rank-3 differential map$I<D|§ into three linearly indepen-
dent vectors a *(p), denoted b)éilq,x(p) , defined only in
the corresponding hypersurfaces, as follows:

d )_ad)iﬂ J

o0 5] - e

o*

Using the pull-backsd**, the metricsg™ at any point
®*(p) e o™ are mapped to the dual spacepat o providing
two symmetric 2-covariant tensogs andg~, whose com-
ponents in the natural basfsl£®} are gz,=e;"€; "0, o=
=(6, -8,). These are the first fundamental forms @in-
herited from ¢’*,g™). Now, as shown 119,22, the neces-
sary and sufficient condition for the existence ofantinu-
ous extensiong of the metric to the whole manifolt? such
thatg|,~=g* andg|,-=g~ is

g'=9". 3

These relations, which can also be expressedi€s |, +

idszflaf (wherei implies that both sides of the equality
must be evaluated om), are thepreliminary junction condi-
tions[19]. Now, the base$é, } and{&,} can be identified,

- (35
0_.5‘"_dq) Frik

as can the hypersurfaces = o, so henceforth we repre-
sent botha™ by o. Essentially, we are identifying the ab-
stract manifoldo with its imagesec" =¢~ in (V,9).

db+ (4)
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In this way, we can identify the whole 4-dimensional tangent
spaces ob” ato, {I*,6:1={1",6,}={I,&,}. We note that
if the second equation in E¢G) and the preliminary junction
conditions hold then the first relation in E@) is equivalent
to Eq. (5) up to a sign.

The remaining junction conditions amount to the equality
of the generalized second fundamental forrs,

+

Hop=—1 Leat v ey

In the case of non-null hypersurfaces, choosrngﬁ, the
tensorsH,,, coincide with the second fundamental forms
Kap=—n, e;*V ey " inherited byo™ from V* [19,22,24.

Note that the junction conditiond;,=H,, do not depend
on the specific choice of the rigging vec{dm].

When symmetries are present, as in most of the works
dealing with spacetime matchings, one is interested in the
cases where the matching surfaceherits a particular sym-
metry of the two space-timesVf,g™). Such matching is
said topreserve the symmetrin practice one demands that
the matching hypersurface is tangent to the orbits of the sym-
metry group to be preserved. A more rigorous definition of
matching preserving the symmetry was recently presented in
[25]. Thus if (V¥',g%) and (¥ ,g7) both admit a
m-dimensional group of symmetries, the final matched
spacetime ¥,g) is said to preserve the symmetsy, if there
exist m vectors ono that are mapped by the push-forwards
dd* andd® "~ to the restrictions of the generators®f, to
o' ando, respectively. Furthermore, if there is an intrin-
sically distinguishable generator &, in V" and)™, such
as an axial Killing vector, then the matching preserving the

In order to impose the remaining junction conditions weSymmetry must ensure its identificationat

need a one-formn, normal to the hypersurface, defined

through the conditiom*(€,)=0. Since in the final matched

In the cases we shall consider below,"(g*) will cor-
respond to aG, on S; LRS spacetime, thus admitting a

manifold ) the normals are to be identified as a single objectCylindrical symmetry(Abelian G, subgroup, and (V",97)

both must have the same norm. Alsonif is to point V*
outwards, them™ has to pointy~ inwards, and conversely.

to a static OT cylindrically symmetric spacetime. We shall
consider the matching preserving the cylindrical symmetry,

In order to deal with general hypersurfaces, including spacewhich is represented by an Abelian groGp [14,26,27.

like and null hypersurfaces, we will also need the rigging
vectorsl  on o™ [23], which are defined as vector fields on

o~ and transversal to-=.° The riggings are therefore char-
acterized everywhere om by

(o8

n*(IM)=n"(I")#0, (5)

4+

so that the vector§l “,62} constitute a basis for the tangent

spaces toV" at o*. Given that the preliminary conditions
allow us to identify {6} with {&,}, it only remains to

Pe =+

choose the riggings such that the bagks,é;} have the
same orientation with

(6)

o o
Tl tu=|"|#» Tafh—|"a 4
R I R W

SNote that in the case of non-null hypersurfaces the normal vector

is itself a rigging vector.

IIl. GENERAL METRIC FORMS WITHA G, ON S;3
WHICH ARE LRS

In this section we shall write down in explicit cylindrical-
like coordinates a general compact form of the metric corre-
sponding to LRS spatially homogeneous spacetimes, which
admit aG, group of motions on spatial 3-hypersurfac®s
We begin by combining the standard metric forms for all
possibleG, on S; LRS spaces, witlk=*=1,0, given by 28]

(see alsd29))

ds?=—dt?+a?(t)dx®+b3(t)(dy?+ 22(y,k)dw?), (7)
ds’=—dt?+a?(t) ot +b?(t)(dy?+ 3 2(y,k)dw?), (8)

ds2= —dt2+a(t)dx2+b2(t)e?(dy'2+dw'2),  (9)
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where TABLE |. Bianchi types of the possible subgrouf@s on S;
according to the valueke,k,n} of metric (12).
siny, k=+1,
Bianchi types € n k
siyl={ v k=0, ?
sinhy, k=-1, [, 1 0 0 -1
Vil 0 0 0
dx+cosydw, k=+1, VI 1X 0 ! e
) I 0 1 0
o= dx—y2dw, k=0, (10 11} 0 1 1
dx+coshydw, k=-—1. V, Vily, 1 0 0
Performing a change to polar coordinatgs =y sinw,w’ R Y
=y cosw} in the line element9), and following[29] in a first V,(71)VP( 71 16
step, the above metrics can be combined into a compact form 4;,% (16)

given by
tends to 1 ay—0. The axial Killing vectory, together with
ds?=—dt?+a3(t) e §k+ b?(t)e?(dy?+32(y,k)dw?), 7,= dy— €ydy, generates an Abelian subgroGg on S, . For
(11)  the purposes of this paper it is desirable to express the metric
in a form adapted to botfy; and7,. To do this, we perform

where the following coordinate transformations to cylindrical coor-
dinates:
O =dx+nF(y,k)dw, (12 X— 27+ nke,
—cosy, k=+1, yre <,
F(y.k)=1{ y*2, k=0, (13) W
coshy, k=-1 '
t—t, 17

and wheree andn are such that
which brings the compact metrid1) into the form
e=0,1, n=0,1, en=¢€k=0. (14
ds’=—dt?+a?(t) &, +b(t)[ (dr—erdz)®+ 3 (r,k)?d¢?],
We note that (18)
S=F,, (3,)2+ks2=1, (15 \Where
. 0, =dz+n(F(r,k)+k)de. (19
where here and throughout the comma denotes the partial
derivative with respect to the indicated variable. The metricsTo our knowledge, this is a new form of presenting all the
(7), (8) and (9) are recovered wit{e=0n=0}, {€e=0 G, onS; LRS spacetimes in compact form. The axial Killing
=1} and{e=1} respectively. The metric(11) with e=n  vector is then given by
=0 andk=1 is the Kantowski-Sachs metric, which admits
no simply transitiveG; subgroup. All the other cases in- 7M1= 0y, (20
cluded in Eq(11) possess a simply transitive; subgroup of
symmetries that can be classified according to their Bianc
types: metrig8) corresponds to type Il fdk=0 and to types
[, VIII and IX for k#0; metric(9) corresponds to types V

nyvhile the other three Killing vectorg; , i =2 to 4, are taken

. o= 05,
and VII, and metric(7) corresponds to types I, lll and \ylI 27
These classifications are summarized in Table |. The cases - €7f o
=e“[singd,+cose(f(r)d,+g(r)d,)], 21
with n=0 admit a multiply transitiveG; on S, . 73= e singd, #(f(1)dgt9(1)3,)] @)
The axial Killing vector associated with the met(itl) is > — e cosod. —sino(f(r)d +a(r)d
71=dy,+ nkd,, which can be easily shown to define a regu- 7a= €L cosed, #(f(1d,+9()],
lar axis aty=0, that is where we have defineti(r)==% /3 andg(r)=n(—f(F
+k)).
5Note that for convenience we have introduced a change in the IV. THE MATCHING HYPERSURFACE

sign ofw in Eqg. (8) for the cases= 0,1 which results in a change o ) .
of sign in the expressions of the Killing vectors as shown in Kramer Our aim is to match a spacetime corresponding to the
et al.[28]. metric (18) and a static OT cylindrically symmetric space-
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time. The metrig(18) can be cast in the more general form, ding of ¢ can be defined by choosing the appropriate co-

sayg™’, given by ordinates orr denoted by
ds? = —A2d 2+ B2dr?—2erB2drdz+ C2d o2 {&={\a.0. (25)
+2Edzde+D2d2, (22) The coordinatep is chosen such that the vector field¢ is

mapped, by the push-forwacib *, at every point ing, into

o A L L . Y
whereA, B, &, D andE are functions ot andr. The line the restriction of the axial Killing vectof;=d/de on o™,

element(18) is recovered by making the identifications that is,
1% J
A2 _ + = ] —=at
A<(t,r)=1, do <t9¢) 70l . &, ,
B2(t,r)=bA(t), and thus
C2(t,1) =b2()32(r k) AL SN G
= = =0, =1. (26
2 2 dd e I d
+na“(t)(F(r,k)+k)-, (23
Since we want the matching to preserve the cylindrical sym-
D2(t,r)=a3(t) + er2b(t), metry (i.e., aG, on S, containing the axial symmetry gen-
erated byz,), there must exist a vector fieldin o which is
E(t,r)=na2(t)(F(r,k)+k). mapped to the restriction on™ of a Killing vector that,

together with7,, generates &, on'S,. The only possibility

The usefulness of writing E418) as Eq.(22) using Eq.(23) is for this Killing vector to be a Iinearecombaination @f} and
will become clear in the next section. In the following we 72+ In other words, we havel® " (y)=az|,++b,[,+
shall take the functions in Eq22) to be arbitrary functions, Whereaandb are arbitrary constants with# 0. We can now

with use the fact that the group which is preserved is automati-
cally inherited by the hypersurfaee[25,3]] in which it has
cE=0 the same algebraic tyd&1]. Since theG, generated by,
' and 7, is Abelian then the vector&/d¢ and y, which are
which follows from Eq.(14). Killing vectors in o, commute.

The metricg™ is assumed to be static and cylindrically W& can now choose a coordindtsuch thaty=d/J¢ and
symmetric[14], admitting, in principle, a maximal grop US€ & coordinate transformatigh=b{, ¢’'=d¢+a( in o in
G, on T; containing an Abelian subgrou@, on S, which ~ order to obtainafter dropping the primgs
includes an axial symmetr26,27. The orbits of thisG, P P
subgroup are also assumed to generate orthogonal surfaces, d(p+(_> S
i.e., the groups, is assumed to act orthogonally transitively ag) oz
(OT). This is the analogue of the “circularity condition,”
usually used within the context of stationary axisymmetricand thus
interior problems, where it implies nonconvectivity in fluids 0+ - 1+ 34
[30]. This assumption is in fact a consequence of the exis- JP _ JP _ JP -0 JP -1 27)
tence of an axis of symmetry in spacetimes with certain 24 a¢ a¢ 74 '
types of matter content, including vacudti¥,30.

Now one can always find a coordinate systeml€aving Eq.(26) unchanged. Finally, the remaining coordi-
{T.p.%' 2’} adapted to the Kiling vectors nhateX can always be chosen such that the imagey/ék
{919T,919%" 052", wheredl 9’ is the axial Killing vec-  throughd® ™ is orthogonal tcg, andé; . This implies
tor, such that the metrig™ is given by

=e
ot

+
3

’

gd** e E 937
ds*~ = — A%dT'2+B2dp?+ C?dp' 2+ D?dz 2+ 2Ed3' d7, A cz oo
(24)

and

whereA, B, C, D andE are functions of. 203 o 8282 Jpit
Following the matching procedure specified in Sec. Il we —edplt——
proceed by specifying the two embeddings. The embed- 28 A 28

whereA=C2D2—E?, and thus

"The G5 group is then taken to be Abelian. Other algebraic types
require the existence of more symmetrjéd], and therefore need
to be studied separately. N

&CDZ+
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Hence we obtain the following expression &y : ds?>” = —A%dT?—2cA2dTdz+ B2dp?+ C2dp?
ol )g&q)m J +a<1>1+ J +2Ededz+D?dZ, (33
IN] N Ot o INor] where all the “nonhatted” functions depend only pnand
8282 sl 4 we have seA=A, B=B, C=C and
+edplt—— — =é&/. (29 . . . .
AN D2=—2A2+a2C2+ 2D 2+ 2abE,
By denoting the embeddingd®*,®1* &2 &3} in Eq. E=aC?+bE. (34)

(1) as{t,r,¢,z}, the matching surface™ is parametrized as _ _ _ .
Note that this change of coordinates is well defined when-

ot={(Lr, @2 t=t(\), r=r(\), e=d, ever Eq.(32) holds, since this implie€?D?—E2>0. Now,
taking the embedding®“~ in the new coordinates
{T,p,%,Z}, the images ofld¢ and d/d simplify to

z={+f,00)}, (29
7 J o
wheret(\) andr(\) are functions of restricted by the fact do 96 T 2
thatd®* has to be of rank 3, that i€+2+0, and 7
with
. P R2A2
fA(N)=er(Mi(N) ——, (30) gb0  gdlT  gd3- ab2-
’ A = = =0, =1, (39
ad o o b
where the dot denotes differentiation with respech td-or
- . J J
e=0 we can choosé,=0 without loss of generality. dq>—<_) =—| =é;,
We now consider the embeddidy . The preservation of af|  dz o
the cylindrical symmetry implies that the axial Killing vec-
tors from both sides have to coincide at the matching hyperW'th
surface. Sln_ce the_ tangent spaces of beth and o are g0 gblm  gb2- Ib3-
going to be identifiedsee Sec. )| we only have to impose = = =0, =1. (36
d®~(d/ap)=aldp'|,- =8, . The image of the vectad/dl al 9 ¢ ¢

must complete the basis of sorfte on S, subgroup of the
G; on T3 admitted by " ,97). Therefore the image ofd(
takes the form

Since the image af/o\ by d® * is orthogonal t&; andé; ,
then its image byd® ~, i.e., & , must be orthogonal té,
andé; , essentially because of the preliminary junction con-
ditions, thus resulting in

+b—;

&, (3D

4D d _ d
357,

a<b3*chzcza<I>°* (9@2*5 E 9®3~

N - A x> on -z an D

wherea, b and ¢ are arbitrary constants, such that the in- . o2 2
where we have defined=C“D~“—E*, so that we have

equality
. . [a\ 9®° o abl~ g
[—c?A’C?+b?(C?D*~E?)]|,->0 (32 do | =] =—r 0_Tf+ Farri
gives the necessary and sufficient condition for having cA? 9O~ d ,d o
spacelike orbits, implyingp#0. Now condition(32) will be A aN Eﬁ_c 5) =6
automatically satisfied once the preliminary junction condi- v

tions are satisfied sina& is always spacelike, which makes Ag a result the matching surface is parametrized by
é; spacelike.

In order to simplify Eq.(31), we perform a change in o ={(T,p,®2):T=T(N),p=p(N),
(V7,97) to a new coordinate syste{T,p,®,Z} defined by

=@+ 1(N) 2=+ (M)}, (38
T=T'- E~z’, =9 — E~Zf, 5= E~Zf, whereT(\) andp(\) are arbitrary functions of, andf(\)
b b b and f3(\) are related tol(\) by Eq. (37). In this way, we

have obtained the most general parametrizations for the in-
which is still adapted to the axial Killing vector, that is, terior and exterior matching surfaces ando .
aldp=20ld¢'. In these new coordinates the line element for The matching procedure described above involves some
g reads free parameters in the metric which account for the pos-
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sible inequivalent ways the two spacetim@s (g*) can be
joined [25,32. Some of these parameters may encode the
freedom in choice of coordinates, while others may imply
physical difference$32].

Thus, in practical situations where the metfi24) is
given, we must use the new “nonhatted” functions obtained
from the relationg34), which then depend on the parameters
a, bandc, in the equations arising from the junction condi- )
tions. On the other hand, if the spacetime megicis un- n~=vyAB(—pdT+Tdp)|,- (45)
known, then according to the way we have set up the prob-
lem, the matching problem must be treated using(B§).. In  so that they have the same norm erand wherey==*1
that case, to recover the for@4), we need to invert Eqs. defines the two possible relative orientations. The rigging
(34) in order to obtain the hatted functions appearing in Eqyvectors can be obtained from EdS) and(6), and a suitable
(33). Only after this inversion is performed is it possible to choice is
determine whether different values of the parameteorre-

Il s

E=E. (44)

In order to derive the remaining junction conditions we need
the normal forms tar™, which can be written as

n*=AB(—idt+tdr)|,+,

sponding to different ways of joining the spacetimes give R Pog t g
rise to equivalent matchings. [T=——— —— (46)
A2 ot BZor| .
O'+
V. JUNCTION CONDITIONS
We recall that in order to derive the junction conditions =G _aziﬁJr li 1 o2 CA
we have to calculate the first and second fundamental forms A?at B?ap A P42

for botho™ ando . For theg™ metric (22), the parametric )
form of o* (29 gives dt|,+=td\, dr|,+=Fd\, de|,+ +;[€r28 )
=d¢ anddZ,+ =d¢+ f,d\. Using Eq.(30), the first funda- B°G
mental form ono* can be written as
whereG+#0 anda are functions that satisfy
ds?t|, = (—A2t2+ B 2)dA2+ C2d 2+ 2Ed ppd 1 .G
+D2d2?, (39 Ag (B2 AP =g (o®B%?+ APT?),  (48)

where 5 )
2it=G(a?+1)Tph. (49)

The explicit expressions for the junction conditiohk],

BZCZ)
A 1

B’= éz( 1—er?
z H_, can be written, using Eq$42)—(44), in the forms
which can be reduced tB%(1— er?B?%/D?) making use of

€E=0. Similarly for theg™ metric (33), the first fundamen- Hy, i+ ti+i

Av, A, . BB,
is ai 2 ——Tt+ =T
tal form ono ™ (38) is given by A A A

- i 272 2:2 2 2 2 3 BJ-Z Bt AA,r'Z
dSZ |U’7:(_AT +B P )d)\ +C d¢ +1t —B—r +2_B'rt+7t
+2Ed{d¢+D?dZ?, (40)
v . A
where =G{ &?pT+Tp+2a2p? T
A?=A% 1+c? < [.,B, -, AA,
) ’ TP g T g H (50)
The equality of the first fundamental forn{89) and (40) ”
gives H,,: 0-=c(2EC,—EC), (51)
— NP2+ P22 - T2 B, (4D oy B o 1 (A2
Hy, T AB\BZ] ~ABc|azZ) (52
. O P
D=D, (42
o P Ty 53
c=c, (43 0o TRz =Gz (53)

044004-7



FILIPE C. MENA, REZA TAVAKOL, AND RAUL VERA PHYSICAL REVIEW D 66, 044004 (2002

D, .D,e D Finally, following [13,25 we find that, after the substitu-
Het T32— tgz‘: —GT—z‘ (54 tion of G anda, the complete set of matching conditions can
be written as
. ’I\Eyt E,o . E, Ao [ C, C
Hg,: rﬁ—tB—F—GTB—z", (55) Cc,Tg= y(A—B—HB——r) (57)
where in Eqs.(51), (52) we have used the fact that, since c2 B_Zgi_ C,zt (58
eE 0, theneE ,p= “0. Note that although there is a factor "’ B A%
Yin Eq. (52, the right-hand side of this equation vanishes o A -
o[C5 CR\[A,. B
|dent|cally forc=0. The usefulness of using E@2) for Eq. TCz A,B" 3|2 it (_,r-H Dty
(18) becomes clear from the symmetry of the above equa- B> A\ B
tions. A~ A
With the exception of Eq(52), the set of junction condi- _ S_t C, (Bt-t+ B, 'r)
tions (41)—(44) and(48)—(54), is formally the same as those A B\B"" B
given in[13,25, where the conditions for a matching pre- NP N
serving theG, symmetry of two OT cylindrically symmetric + _C,_t C, (f‘,_t'H é_rr>
spacetimes, one assumed to be static, were studied. Follow- A B A A
ing [25], the combination of Eqg42)—(44), their derivatives & (@ &
along o Eq. (49 and Egs(53)—(55) lead to _ | ity 2t
e o - BlATRAT
i C,=C,=0eC = R N
® PG Ci(Cy. C.
(ii) D't:D’r:Oc»D'pU: tx BB (59
(i) E,=E,=0<E,=0

(iv) F=0sp=0, and then necessariy ;=D ,

(T

E —0. plus the analogous forms f@ andE [i.e., changingC by D
) i e and E respectively in the expressior{§7)—(59)], together
(v) t=0&T=0, and then necessarilf ;=D =E;=  with Egs.(42—(44), (51), (52) and the exterior conditions
=0. (56). Note that not all these equations are independent since
the set of equations fo€(p), Egs.(57)—(59), is related to
It must be stressed that due (is) we cannot have a match- their analogues fob andE by
ing acrosso defined byp=0, and equivalently byr=0,

since from Eq(23) this would imply a static LRS region. We D.C ) c.D ,» E.C, C.E iy E.D ) D.E )
summarize this latter result in the following lemma: s s s C ' Y

Lemma 5.1 A nonstaticG, on S; LRS spacetimg18) - .
cannot be matched to a static OT cylindrically symmetric A. The explicit Cond_'t'_ons _ N
spacetimeg(24) across a hypersurface wifh=0 (or equiva- We shall now study the explicit matching _condlt_|ons
lently F =0), preserving the cylindrical symmetry. | across nonspacelike hypersurfades that neithert nor T

Furthermore, the combination of equations that led to thecan vanish orr) for the LRS homogeneous spacetini&8)
previous statements, also imply the following important con-by substituting the metric function®3) in the above junc-
ditions ono: tion conditions. We start by considering the exterior condi-

tions (56). Condition (1) implies that the only possible
(1 D,té,r— ﬁ,ré,t=0, matchings are those satisfying

N (a=0)0(b%> ,+a’n(F+k)=0). (60)
(I E.D,—E,D =0, ’ ’
Similarly, condition(ll) gives
() g.C,—-E,C=o0. (56) (a,20)0(n=0) 61
These are the so-callegkterior conditions, which led to the
impossibility of the cylindrically symmetric analogues to the
Einstein-Straus model if13,25. We emphasize that these
conditions involve only the coefficients of thgg™ metric.  to 2 ;=0 (see lemma 5)] we find that
Three possibilities may arise:(a) they cannot be satisfied,
and thus the matching is impossiblg) they impose con- a,=0 (62)
straints on the matching, and in fact determimné if the ’
functionsC, D, E are given, andc) they are satisfied auto- 1S @ necessary conditiorfor the required matching which,
matically and therefore give no information. sincet#0 on o, impliesa =0 and thus

Combining conditiong60) and (61) and excluding match-
ings that hold only across a single value fatorresponding
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a(t)=const=p). (63

Considering the remaining exterior conditighl) and as-
suming Eq.(62), we find

(b =0)0(n=0). (64)

As a result, forn#0, a nonstatic metriq18) cannot be
matched to the static metri¢22) across a nonspacelike hy-
persurface.

PHYSICAL REVIEW D 66, 044004 (2002

freedom(i.e., ¢) introduced by the matching in EG33) al-
lows the LRS metric$18) with e=1 to be matched to static
OT cylindrically symmetric spacetimes. On the other hand, if
€=0 we either have=0 or A=const. But ifA=const, the
static region(33) with Egs.(66) and(67) admits at least one
more isometry(seg[25]), and the matching procedure would
then require a different treatment from the outset.

We also note that given the LRS region, i.e., gi\Ei),
the static region is not uniquely specified by this matching.
This is due to the fact that the exterior conditions are in this

Since we are interested in a nonstatic LRS region, werase identically satisfied and hence, as mentioned above,
shall concentrate on the=0 case. In this case the matching they do not prescribe the matching hypersurface [i.e.,

across a nonspaceliker is in principle possible fora
=const and the LRS metric coefficients take the form

A=1, B=b(t), C=b(t)3(r,k),

D2= g2+ er?p?(t)(= g+ €C?), E=0.
(65)

t(\) andr(\)].

VI. CONSEQUENCES OF THE MATCHING CONDITIONS

We briefly summarize the results obtained in Sec. VA.
The conditionn=0 rules out the metric form$8) which
include the Bianchi types II, VIII, and IX, where the last is
an anisotropic generalization of FLRW=+1 metrics.

Regarding the static region we find that the preliminary junc-From Eq.(64) one therefore has:

tion conditions(42)—(44) for p+0, together with Eq(65),
imply thatin a neighborhood ofr, the coefficientD(p) is
uniquely determined in terms &(p) by

D%(p)= B+ €C%(p), (66)
and that
E(p)=0. (67)

Furthermore, from statemefit) above we cannot have ,

Proposition 6.1 A nonstaticG, on S; LRS spacetime
admitting a simply transitive subgroup; of Bianchi types
II, VIII or IX cannot be matched to an OT cylindrically sym-
metric static spacetime across a nonspacelike hypersurface
preserving the cylindrical symmetry. |
Therefore we are left with the metric forntg) and (9).
Now Eg. (7) with k=+1 is the Kantowski-Sachs metric.
The cases corresponding k=0 andk=—1 for e=0 in-
clude Bianchi types lll, I and V}J, while the casee=1
includes Bianchi types V and \{Jl These models could be

7 i i i i f logical int t si the f kzeO
=0, since otherwise the only possible LRS regions would®’ cosSmological Interest since the former genera

have to be static. Since we can 8t=1 using the freedom
to choosep, then onlyA andC remain free in Eq(33). Using

Egs.(65—(67), the complete set of junction conditions trans-

lates into
CZb3,
C TA= A [2 1+ 2D +t+bb 2'}
o r“— rl
N '
o b2
c? = 1+er2?)2?r—22b?t, (68)

g

C2TA,=- 52[ [VB%+er®?S b+ er?bbA]t

2
A R T
(,82+er2b2)32 't

plus Eq.(52), which now explicitly reads

2eypr o c
BT a2 A

A2
/3+—c) ©9

This equation shows that wher=1 we also neea@+#0 in

FLRW and the latter the= —1 FLRW metrics. As shown in
the previous section, the LRS metric coefficients were se-
verely restricted to Eq(65) and the possible resulting met-
rics can be summarized as follows:

Theorem 6.1The only possible nonstatié, on S; LRS
spacetimes that can be matched to an OT cylindrically sym-
metric static spacetime across a nonspacelike hypersurface
preserving the cylindrical symmetry are given by

ds?= —dt?+ B2d 2+ b2(t)[(dr— erdz)?
+32(r,k)de¢?], (70)

where S is a constanty and k are given by Eq10), and
€=0,1 is such thaek=0. |
Remark The line element for the static region then be-
comes
ds?=—A?dT?—2cA2dTdz+ dp?+ C2dp?
+( B+ €eC?dZ,

where A and C are functions ofp and c is constant. The
matching hypersurface is given by EQR9 with f,(\)

= erib?/(B%+ er®v?) and by Eq.(38) with f;(A\)=0 and

i‘;()\)(:rcAzl(,B2+ er?b?), but it is not fully determined in
general. The set of equations to be satisfied are those given in

order to have a nonstatic LRS part. Note that the degree dEgs.(68) and(69).
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This demonstrates that the possible LRS mo@@®s are  The allowed Segre types afg, 1(11)}, {2(11)} together with
extremely special. In fact, conditioa(t)=8 on Eq. (18 their degeneracies. We are interested in the perfect-fluid type,
with n=0 poses a strong constraint, whereby the timelikei.e., {1,(111}. The first condition for this type of source is
surfaces() in Eq. (70) parametrized by\;,\,} and defined  (Gog)2=(Ggo+ G22) (Gaz— Gy,) (se€[25,33), which can ex-
by {t=\1,2=X\5,0=@q,r =roe2}, where ¢, andr, are plicitly be cast in the form
constants, have no dependence on time. As mentioned in ) 5 5 5
Sec. llI, in then=0 cases of Eq(18), and thus in Eq(70), (bb = b%—K)[B(bb+b%+Kk)+2eb°]=0, (74
the surface$)s spanned by and ¢ (at constant andz) are o
surfaces of constant curvature, since there igacting SO tatp=Gaoyt Gog—Gas and p=Gy,. The vanlshlgg of
multiply transitively, which is generated by,, 75 and 7, € first term in Eq(74) results inGoo+ Gyp=—2¢/4% In
(20), (21). Whene=0, the family of surface€) are just the ~Order to have a perfect fluid we also ne@gy+ G,,70 to
family of orthogonal surfaces to th@ orbits. have the same sign @stp. As a result! we are left with the

Another way of looking at this is that one of the compo- ¢@S€€=1, which impliesp+p<0. In this case botlp andp

; _ ; h that-3p=0.
nents of the expansion tens@y (= V, Uz of the flow given are constants suc ) L
by (=4, vanishes. To be morﬁe pre(cisg), the only nonvanish- Therefore, in order to have a perfect fluid satisfying the

; ; dominant energy conditiofi.e., p+ p>0) we can only con-
ing components ofl,; in the natural orthonormal tetrad ) 97 ' .
g P p sider the vanishing of the second term in Efd). We shall

Oo=dt, @,=b(dr—erdz), 6,=b>de, 6;=pdz consider the casese=1,0 in turn. For the case=1, the
(71)  equation 8%(bb +b3)+2b?=0 gives b(t)=c;/sin(2/p)
(after rescaling t), and hence p=p—8/p?
are = 1/B?(1/sirf(2t/8)—6). The energy density changes sign at
0 —0.—b /b (72) sin(Z/[.%).zll\/é, and thus the weak_ energy condition cannot
11— V2= Mt be satisfied over the whole spacetime.

This is a strong constraint as far as cosmologically interest- Therefgre, we are left with zthe Ca&e:‘f in WhiCh case
ing models are concerned, since there is no expansion alorige eduation fob(t) becomes’+byb+k=0, giving
the spacelike direction spanned by+ erd, (which is or- N ey

thogonal toQ)s iff €=0). b(t)= Vat—kt?, (79)

This result can be seen in two ways: either as a CoONS§yhere « is an arbitrary constant that can be taken to be

quence of the assumption that the megic is static and  hogitive without loss of generality. This corresponds to a stiff
cylindrically symmetric, or as a consequence of the homogeperfect fluid given by

neity in the evolving spacetime, which prohibits the norm of
the Killing vectord/dz to be space dependent. The condition a?
a(t) = const may not be necessary if either the assumption of p=p= m (76)
the cylindrical symmetry oy~ or the homogeneity of the
metricg ™ are relaxed, although one might still expect strongwhich ensures that the energy conditions are satisfied. We
constraints oy leading to restrictions on the possible mat- recall that this solution can also be interpreted as applying to
ter content there. We shall return to these questions in ¢he case with a minimally coupled scalar field as the source.
future publication. These results are summarized in the following theorem:

So far we have not restricted the source fields in the Theorem 6.2The only possible nonstatid, on S; LRS
matching spacetimes. We shall now consider the particulaperfect-fluid spacetimes satisfying the dominant energy con-

case of a perfect fluid LRS metric. dition that can be matched to an OT cylindrically symmetric
static metric across a nonspacelike hypersurface preserving
A. Perfect-fluid LRS region the symmetry are given by
The Einstein tensor for Eq70) in the natural orthonor- ds2= — dt2+ d 2+ (at— kt2)[dr2+ 3 (r.k)2d o2
mal tetrad(71) has the form (a ) 2(rkde, 77
k+bi e

where a is a constant and, is defined as in Eq(10). The

Goo= 2 _SFZ’ equation of state is that of a stiff fluid and is given by Eq.

(76).
€ This amounts to a no-go result, namely that there are no
GOBZ_Zb,t%' evolving G, on S; LRS perfect-fluid spacetimes witp

#p, satisfying the dominant energy condition, that match a
locally OT cylindrically symmetric static region across a

b
G11=Goo=— F“wt; , nonspacelike matching hypersurface preserving the symme-
try.
2 So far we have studied the matching betweds,eon S,
G _2%_ k+ Db} i € (73) LRS region and an OT cylindrically symmetric static region
33 b b B across a nonspacelike matching hypersurface preserving the
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symmetry. This treatment has been local and has not dealeal line. In other words, it is assumed thatan be foliated
with matching in the specific context of a particular configu-by a set of spacelike two-surfac&s homeomorphic tc?.
ration. Consequently, our results can be used in a number &fe refer to[16,17] for a detailed general construction. The
different settings. For example, they can be employed tsurfacesS, are embedded intv* (respectively) ™) by the
study the generalization of the Einstein-Straus result conmaps®=d *oi _ (respectively® =® oi,) wherei,:S,
cerning the embedding of a static region in a LRS cosmo-- o are the natural inclusion for each surface into
logical model, by taking the static part as describiogally Let us denote bf* the generator of a spacelikeyclic)
an interior region and the LRS part as its exterior. But give”isometry on P*,g%). Since we wish to preserve this sym-
the interior-exterior duality in the matching procedure theymetry across, there exists a vector fiekl defined ino- such
can also be used to study the question of the existence of am At () = £ Thatis. th tict z, 4
astrophysical evolving object describéacally by a LRS a (7):5 |+ Thats, the restriction of +On(’ IS
tangent too™ everywhere. Let us now také&’{,g™) to be a

metric which is surrounded by an OT cylindrically symmet- tially h i W h fruct
ric static background. In this way our results can be used tgPatially homogeneous spacetime. We can then construct a

o . " X
id lizati fthe O hei S I- natural foliation of the manifold’™ by taking the homoge-
l(;)pnssi:qgermgoedne?.ra Izations of the Oppenheimer-Snj/dipco neous spacelike hypersurfaces, §&y const spanned by the

The no-go result above then tells us taaG, on an S orbits of the _simply transi_tiv_esg on S, group of isomet_ries.
LRS evolving perfect-fluid model cannot contain a locally OTBy COI‘lStrElC'[IOh, the restrictions of our Killing vector field to
cylindrically symmetric static cavitgxcept for the very par- the orbitsé |, are tangent to these hypersurfaces. Since
ticular stiff-fluid case mentioned above. Theorem 6.2 ruleds honspacelike everywheteye can now define the follow-
out not only static cosmological strings in LRS cosmologicaling foliation{S;"} of o*:S"=¢"N{t=cons}, whereS, is
backgrounds, but also static cavities which are locally cylin-taken to be the image @& through®,” . The restriction of
drically symmetric, as for instance, bottle or coin-shaped ob¢+ gn S, £*|s+, is clearly tangent to the surfac&$ , and
jects. Furthermore, it implies thato astrophysical object !
described by a nonstiff perfect fluid typg Gn S; LRS met- o 24
ric can be embedded into a locally OT cylindrically symmet-dq)t (v=¢ |St+-
ric static background Importantly, these results hold irre-  We now demand that this foliation is such tt&tis ho-
spective of the matter content in the static part. meomorphic ta?, that is, we takeS, to be theS, above® In

Concerning global configurations, as discussed above, wihe following we shall refer to “spatially compact” as “spa-
can go further and apply our results to the case of spatiallyially compact according to the homogeneous slicing.” There
homogeneous nonstatic exterior spacetimes. This followsust then exist a point wherg vanisheg36]. So, for every
from the fact that the model for a spatially bounded interiort there exists a pointy, e S, where ,=0, and hence
region whose bounding surface is topologicafypreserves
the existence of an axis of symmetry across this border. This o R
implies that the exterior homogeneous part has to be locally 3 |Wt+_0’ (78
rotational symmetric, and thus admit a further isometry be-
coming aG, on anS; LRS region. We shall demonstrate this wherew,” =®," (w;). The existence of a fixed point for the

result in the following section. cyclic symmetry(generated by *) ensures the existence of a
timelike surface of fixed point8V, . Furthermore, there is a

VII. BIANCHI SPACETIMES: AXIALLY SYMMETRIC neighborhood around any pointW, whereé™ is spacelike
GLOBAL MODELS and vanishes only at/; [35]. This can be used to show that
_ _ _ _the pointsw,”, for all t, are inW, . Actually, becausey
~ We recall that a spacetime admits a cyclical symmetry ifyenerates a cyclic symmetry in which is inherited from the
its metric is invariant under an effective realization of the empeddingsee, for instancd31]), the sets) of fixed points

one-dimensional torus on the manifd@#]. Axial symmetry s y must be timelike curves ior, ' defined asiv={w, ; V't
arises when the set of fixed points is nonemftg., the

therefore there is a vector fiel§l, defined inS; such that

_ . : _ ell. Also, sinced® ™ is a rank-three mapg®|,+ can only

generator of the isometry, sa vanishes In fact, it has \4pish wherey=0, i.e., on the curvdV, and thusW, cannot

been show35] that any nonempty s&t/, of fixed points in o contained ir . It follows thatV"\o* contains points on

a four-dimensional spacetime is a timelike '[wo—dlmensmnal[he axis of symmetry\; of the cyclic (in this case axial
2

surface. Furthermore, the axial Killing vector fielfl is symmetry generated ®+. As a consequence/(,g*) can-

spaceli!<e in a. peighborhood of th? axis arld safisties thﬂot be completely anisotropic and spatially homogeneous, as
regularity condition, i.e., the expressioho) for £ tends to 1

on W,. Here we shall concentrate on the preservation of aR———

axial symmetry across a matching surface. The models forerpis assumption can in fact be replaced by a less restrictive one;
the common compact and simply connected astrophysicalee[17),

objects usually consist of an interior region whose spatial 9his might not be necessary, as in most cases one may be able to

boundary is topologically a two-sphe@. The boundarny  find a diffeomorphism between a previously constructed foliation
(and thuse™ ando ") is then taken to be nonspacelike and s_ and the surfaces given 1.

homeomorphic t8?x |, wherel is an open interval of the  1°This comes from the fact tha,y,, is of rank 2. Se¢37).
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otherwise there would not be a Killing vector field with zero  The above corollaries have focused on the existence of
points; (V",g") must at least admit one isotropy, which is static cavities in homogeneous backgrounds. Given the
generated by the Killing vector field" . interior-exterior duality and taking into account the remark
after lemma 7.1, the same results also apply when the spa-
}ially homogeneous region is taken to be the bounded region
- . ) Which is embedded in a locally OT cylindrically symmetric
say ¢, of the cyclic symmetry we are preserving on giatic background. They therefore provide a no-go result con-
(V",97) will vanish. These pointsv; are precisely those cerning the anisotropic generalization of the Oppenheimer-
that are to be identified withv, . The same argument as Snyder model.
above can then be used for the existence of an \akisin
V7 \o~. We have then shown the following:
Lemma 7.1Let (V,g) be a spacetime resulting from the
matching of two cyclically symmetric spacetimes*(,g*) We have studied a generalization of the Einstein-Straus
and (V" ,g7) preserving the symmetry. If one part, say model, by considering a locally cylindrically symmetric
(V*,g"), is spatially homogeneous and either part represtatic cavity embedded in an expanding LRS region. We
sents a spatially compact and simply connected region, thelmave derived the matching conditions for such space-times
both (V",g™) and (V",g~) must be axially symmetric. In and have found that they impose strong constraints on the
particular, ’*,g") is locally rotationally symmetric admit- LRS metrics, by implying thaa ;=0 andn=0. The former
ting aG, on anS; group of isometries. B implies that no dynamical evolution is allowed along a
Note that since this lemma relies on the topology of thespacelike direction as seen by the obsewyerThis direction
matching boundary, the spatially homogeneous redioh is orthogonal to the orbits of the subgro@a on S, of the
does not necessarily correspond to an exterior region, andRS whene= 0. Conditionn=0 implies that it is impossible
therefore(—) and(+) can be interpreted as either interior or to have an exterior metric of Bianchi types II, VIl or IX. Our
exterior. main result in this connection, expressed in theorem 6.1 and
Using this lemma we can apply the results given in thecorollary 7.2, is that the exteriors can only take very particu-
previous sections fo66, on S3 LRS spacetimes to Bianchi lar forms within the Bianchi types I, Ill, V, VY, VI, or
spacetimes, once one of the regions of the matching reprécantowski-Sachs metrics. These results make no reference to
sents a bounded object without holes. Since in this paper wihe matter content and are therefore, in this sense, completely
have mainly focused on the generalization of the Einsteingeneral.
Straus model, we shall, in the following statements, consider To study the effects of including matter contents, we also
the static region to be the spatially bounded cavity surconsidered perfect fluid sources for the metrics allowed in
rounded by a homogeneous background. From propositiotheorem 6.1, and found that such embeddings are only pos-
6.1 we obtain: sible when the matter content is a stiff fluid. This is our
Corollary 7.1 A nonstatic homogeneous Bianchi I, VIl second main result, which is summarized in theoren(#n2l
or IX spacetime cannot be matched to a spatially compaatorollary 7.3.
and simply connected locally cylindrically symmetric static  We have also proved that if the nonstatic spacetime is
region across a nonspacelike hypersurface preserving thassumed to be spatially homogenedust necessarily LRS
symmetry. and if the static spacetime represents a spatially compact and
And similarly, from theorem 6.1 we have: simply-connected region, then in order to perform the match-
Corollary 7.2 The only possible nonstatic spatially homo- ing preserving the cyclic symmetry the nonstatic part must
geneous spacetimes that can be matched to a spatially come LRS. As a consequence, we were able to reformulate our
pact and simply connected locally cylindrically symmetric results with the weaker assumption of homogeneity, instead
static region across a nonspacelike hypersurface preserving local rotational symmetry.
the symmetry are given by metrig0) with k=0,—1. Given that deviations from isotropy and sphericity are ex-
The same remarks made about theorem 6.1 regarding tipected to be present in the universe, these results are of po-
interior apply here. Finally, from theorem 6.2 we obtain:  tential interest, since they make it impossible to embed lo-
Corollary 7.3 The only possible nonstatic spatially homo- cally OT cylindrical static object$which are compact and
geneous perfect-fluid spacetimes, satisfying the dominant esimply connected in homogeneous universes and at the
ergy condition, that can be matched to a spatially compactame time have a reasonable exterior cosmological evolu-
and simply connected locally cylindrically symmetric static tion.
region, across a nonspacelike hypersurface preserving the Because of the interior-exterior duality, our results also
symmetry, is given by metri¢77). The possible Bianchi apply to the cases of bounded objects described by spatially
types of theG; on S; are I, Il or Vlly and the equation of homogeneous metrics embedded in locally cylindrically
state is that of a stiff fluid. symmetric static backgrounds. In particular, this would have
The last corollary amounts to a no-go result, namely thathe interesting consequence that the Oppenheimer-Snyder
there is no possible evolving perfect-fluid Bianchi space-model for collapse cannot be generalized in this way.
times with p#p satisfying the dominant energy condition  Finally it would be of interest to study the inhomogeneous
and containing a locally OT cylindrically symmetric static generalizations of our results. We hope to return to this ques-
cavity preserving the symmetry. tion in a future work.

Furthermore, sinced®, (y,)=0 at w, =® (w), we
will also have a nonempty set of points where one generato

VIIl. CONCLUSION
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