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Generalization of the Einstein-Straus model to anisotropic settings

Filipe C. Mena, Reza Tavakol, and Rau¨l Vera
School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom

~Received 18 April 2002; published 16 August 2002!

We study the possibility of generalizing the Einstein-Straus model to anisotropic settings by considering the
matching of locally cylindrically symmetric static regions to the set ofG4 on S3 locally rotationally symmetric
~LRS! spacetimes. We show that such matchings preserving the symmetry are only possible for a restricted
subset of the LRS models in which there is no evolution in one spacelike direction. These results are applied
to spatially homogeneous~Bianchi! exteriors where the static part represents a finite bounded interior region
without holes. We find that it is impossible to embed finite static strings or other locally cylindrically sym-
metric static objects~such as bottle or coin-shaped objects! in reasonable Bianchi cosmological models,
irrespective of the matter content. Furthermore, we find that if the exterior spacetime is assumed to have a
perfect fluid source satisfying the dominant energy condition, then only a very particular family of LRS stiff
fluid solutions are compatible with this model. Finally, given the interior-exterior duality in the matching
procedure, our results have the interesting consequence that the Oppenheimer-Snyder model of collapse cannot
be generalized to such anisotropic cases.

DOI: 10.1103/PhysRevD.66.044004 PACS number~s!: 04.40.Nr, 98.80.Hw
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I. INTRODUCTION

An important long standing question in cosmology co
cerns the way large scale dynamics of the universe influen
the behavior on smaller scales. In particular, given the
served large scale expansion of the universe the questio
to what extent does this expansion influence the behavio
astrophysical scales, and more precisely what are its eff
on, e.g., the planetary orbits, galaxies and clusters of ga
ies. Among the earliest works on this question are those
McVittie @1# and Einstein and Straus@2# ~see@3# for more
historical references!. Historically it was McVittie who first
found a perfect fluid spherically symmetric solution to Ei
stein’s field equations which could be interpreted as desc
ing a point particle embedded in an expanding Friedma
Lemaı̂tre-Robertson-Walker~FLRW! spacetime @1#. This
interpretation has been questioned by some authors su
quently~e.g., Sussman@4#, Gautreau@5# and Nolan@6#!. The
generally accepted ansatz to model the problem is du
Einstein and Straus@2#, who proposed a matching betwee
two spacetimes, instead of trying to use a single solut
They successfully matched the spherically symme
vacuum Schwarzschild solution to an expandingdust1 FLRW
exterior across a hypersurface preserving the symme
They showed that such a matching was possible across
comoving 2-sphere, as long as the total mass contained
side the 2-sphere was equal to the Schwarzschild mass
tained in it. In this way they concluded that there was
influence from the global expansion of the universe on
vacuum region surrounding the Schwarzschild mass. T
objections have been raised against this model: the firs
Krasiński @3# who suggested that the Einstein-Straus mo
is unstable against radial perturbations, and the second
Bonnor @8,9# who pointed out that there are severe restr

1This is a consequence of the FLRW model having been matc
to a vacuum spacetime~see, e.g.@7#!.
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tions on the scales on which the model is applicable and
it is not suitable for studies within our solar system or ev
the galaxy.

Another important observation regarding the result
Einstein and Straus is that it involves a number of ideali
tions, including the fact that the universe is assumed to
representable by a spatially homogeneous and isotropic
FLRW model. The question then arises as to whether
result is robust with respect to various plausible general
tions. These could involve changes in the symmetry prop
ties of the model as well as the nature of the interior sou
field, which was originally taken to be vacuum.

A number of interesting attempts have been made in
direction. Among them are models which keep the spher
symmetry but generalize the interior source fields by cons
ering for example Vaidya~see@10# and references therein2!
or Lemaıˆtre-Tolman spacetimes~see@3# for references con-
cerning the latter in connection with formation of voids!.
There have also been attempts concerning the relaxatio
the spherical symmetry assumption, including generali
tions to locally cylindrically symmetric spacetimes. The
include the example of the embedding of dust FLRW into
nonstatic vacuum exterior across a hypersurface of a cons
radius@11# which, due to the freedom in interpreting the tw
parts being matched as interior or exterior@10# ~which we
shall refer to asinterior-exterior duality!, is equivalent to an
embedding of a nonstatic vacuum region into a dust FLR
Similarly, the impossibility of the embedding of typical co
mic strings ~i.e., Minkowski with deficit angle! as well as
some special nonstatic cylindrically symmetric vacuo in
flat FLRW was shown in@12#. This problem has been furthe
studied by Senovilla and Vera@13# who have shown in full
generality that the embedding of a locally orthogonally tra

ed2The aim of these studies was, in fact, to generalize to nond
FLRW models.
©2002 The American Physical Society04-1
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sitive ~OT!3 cylindrically symmetricstatic cavity in an ex-
panding FLRW is not possible, irrespective of the mat
content of the cavity.4 This result has been further genera
ized by Mars@16# to the case of axial symmetry. Mars@17#
has finally been able to prove that in order to embedany
static cavity in a FLRW universe then this cavity must
‘‘almost spherically symmetric;’’ more precisely, the boun
ary as seen from the FLRW exterior is required to be
2-sphere in space. Furthermore, for standard interior so
fields such as vacuum, electrovacuum or perfect fluids,
interior itself must be spherically symmetric, with the boun
ary comoving with the cosmological flow@16,17#. This im-
plies therefore that static objects which can be embedde
FLRW models must be spherical, and as a result
Einstein-Straus model is, in this sense, not robust.

This result once again raises the question of the poss
ity of embedding general static cavities in more general u
verse models~which we refer to as thegeneralized Einstein-
Straus problem!. Also, since realistic cosmological mode
cannot be expected to be exactly homogeneous and isotr
the question arises as to what happens if these symm
assumptions concerning the exterior metric are further
laxed.

There are two different ways to study departures fr
FLRW: either perturbatively~see@18# for a perturbed gener
alization of Einstein-Straus with a small rotation! or using
exact solutions. Given that a precise formalism for a p
turbed matching of two spacetimes is not fully develop
we shall proceed in the second way. A step in this direct
was taken by Bonnor@9#, who considered the embedding
a Schwarzschild region in an expanding spherically symm
ric inhomogeneous Lemaıˆtre-Tolman exterior. He found tha
such matching is possible in general, and it allows the m
and radius for the Schwarzschild cavity to be chosen in
pendently of the exterior LT density.

An interesting question is whether similar results wou
hold for cases with nonspherically symmetric interiors. As
step in this direction, we shall first of all study thelocal
matching between static OT cylindrically symmetric spa
times and the class of locally rotationally symmetric~LRS!
spacetimes admitting aG4 on S3 group of isometries, which
constitute an anisotropic generalization of the FLRW mod
To make the matching global one expects to have furt
restrictions. In the particular case of an interior that descri
a bounded object without holes, we were able to show
this is in fact the case. Thus if the exterior is assumed to
a spatially homogeneous expanding Bianchi spacetime, t
in order to preserve the symmetry, it has to be locally ro
tionally symmetric, admitting aG4 on S3 . We note that the
results obtained here for the LRS spacetimes also hold
models representing static cavities embedded in Bian
spacetimes.

Our main result is then that no locally OT cylindrical

3For most matter contents one is interested, this assumptio
actually a consequence of having an axis of symmetry@14#; see also
below.

4We note that nonexpanding exteriors can be matched; see@15#.
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symmetric static cavities can be embedded into reason
evolving anisotropic~Bianchi! spacetimes.

We also note that given the interior-exterior duality in t
matching procedure, all our results apply equally to the c
where it is the interior that is taken to have a spatially h
mogeneous geometry, embedded into a locally cylindrica
symmetric static background. This would allow our results
be applied to other settings, such as the study of the ge
alization of the Oppenheimer-Snyder@7# model for collaps-
ing objects, which could be viewed as the ‘‘dual’’ to th
Einstein-Straus model, in the interior-exterior sense defi
here.

The plan of the paper is as follows. In Sec. II we revie
the matching procedure and the definition of matching p
serving the symmetry. In Sec. III we present a compact fo
of the line element for theG4 on S3 LRS spacetimes in
coordinates adapted to the axial Killing vector field. This w
prove useful in Secs. IV and V, where we calculate t
matching conditions for the matching preserving the symm
try between a static OT cylindrically symmetric spacetim
and a LRS homogeneous spacetime. In Sec. VI we study
restrictions on the subset of LRS spacetimes that are allo
by the matching conditions. We show that the only perf
fluid solutions in this subset correspond to a particular fam
which has a stiff fluid equation of state. In Sec. VII we e
tend our results to the case of the spatially homogene
exteriors. Finally, Sec. VIII gives our discussions and co
clusions.

II. MATCHING PROCEDURE

In this section we shall briefly recall the matching proc
dure across general hypersurfaces~see@19# for more details!.
As is well known, the matching of two spacetimes requir
two sets of~matching or junction! conditions at the matching
hypersurface. The first set of these junction conditions w
ensure the continuity of the metrics across the matching
persurface; while the second is equivalent to a nonsing
Riemann tensor distribution in order to prevent infinite d
continuities of matter and curvature across the matching
persurface.

More precisely, let (V1,g1) and (V2,g2) be two C3

spacetimes with oriented boundariess1 and s2, respec-
tively, such thats1 ands2 are diffeomorphic. The matche
spacetime (V,g) is the disjoint union ofV6 with the points in
s6 identified such that the junction conditions are satisfi
~see @19–22#!. Since s6 are diffeomorphic, one can view
these boundaries as diffeomorphic to a 3-dimensional
ented manifolds which can be embedded inV1 andV2. Let
$ja% (a51,2,3) and$x6a% be coordinate systems ons and
V6, respectively. The two boundaries are given by twoC3

maps

F6:s→V6,
~1!

ja°xa65Fa6~ja!,

such thats65F6(s). At every pointpPs the natural basis
$]/]jaup% of the tangent planeTps is pushed forward by the

is
4-2
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rank-3 differential mapsdFu p
6 into three linearly indepen

dent vectors atF6(p), denoted byeWa
6uF6(p) , defined only in

the corresponding hypersurfacess6, as follows:

dF6S ]

]jaD5
]F6m

]ja

]

]x6mU
s6

[eWa
65ea

6m ]

]x6mU
s6

. ~2!

Using the pull-backsF6* , the metricsg6 at any point
F6(p)Ps6 are mapped to the dual space atpPs providing
two symmetric 2-covariant tensorsḡ1 and ḡ2, whose com-
ponents in the natural basis$dja% are ḡab

6 5ea
6meb

6ngmnus6

5(eWa
6
•eWb

6). These are the first fundamental forms ofs in-
herited from (V6,g6). Now, as shown in@19,22#, the neces-
sary and sufficient condition for the existence of acontinu-
ousextensiong of the metric to the whole manifoldV such
that guV15g1 andguV25g2 is

ḡ15ḡ2. ~3!

These relations, which can also be expressed asds21us1

5
s

ds22us2 ~where5
s

implies that both sides of the equalit
must be evaluated ons!, are thepreliminary junction condi-
tions @19#. Now, the bases$eWa

1% and$eWa
2% can be identified,

dF1S ]

]jaD5dF2S ]

]jaD , ~4!

as can the hypersurfacess15s2, so henceforth we repre
sent boths6 by s. Essentially, we are identifying the ab
stract manifolds with its imagess15s2 in (V,g).

In order to impose the remaining junction conditions w
need a one-form,n, normal to the hypersurface, define
through the conditionn6(eWa

6)50. Since in the final matched
manifoldV the normals are to be identified as a single obje
both must have the same norm. Also ifn1 is to point V1

outwards, thenn2 has to pointV2 inwards, and conversely
In order to deal with general hypersurfaces, including spa
like and null hypersurfaces, we will also need the riggi
vectorslW6 on s6 @23#, which are defined as vector fields o
s6 and transversal tos6.5 The riggings are therefore cha
acterized everywhere ons by

n1~ lW1!5
s

n2~ lW2!Þ0, ~5!

so that the vectors$ lW6,eWa
6% constitute a basis for the tange

spaces toV6 at s6. Given that the preliminary condition
allow us to identify $eWa

1% with $eWa
2%, it only remains to

choose the riggings such that the bases$ lW6,eWa
6% have the

same orientation with

l m
1l 1m5

s

l m
2l 2m, l m

1ea
1m5

s

l m
2ea

2m . ~6!

5Note that in the case of non-null hypersurfaces the normal ve
is itself a rigging vector.
04400
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In this way, we can identify the whole 4-dimensional tange
spaces ofV6 at s, $ lW1,eWa

1%5$ lW2,eWa
2%[$ lW,eWa%. We note that

if the second equation in Eq.~6! and the preliminary junction
conditions hold then the first relation in Eq.~6! is equivalent
to Eq. ~5! up to a sign.

The remaining junction conditions amount to the equa
of the generalized second fundamental formsHab

6

Hab
6 52 l n

6ea
6m¹m

6eb
6n .

In the case of non-null hypersurfaces, choosinglW5nW , the
tensorsHab

6 coincide with the second fundamental form
Kab

6 52nn
6ea

6m¹m
6eb

6n inherited bys6 from V6 @19,22,24#.

Note that the junction conditionsHab
1 5

s
Hab

2 do not depend
on the specific choice of the rigging vector@19#.

When symmetries are present, as in most of the wo
dealing with spacetime matchings, one is interested in
cases where the matching surfaces inherits a particular sym-
metry of the two space-times (V6,g6). Such matching is
said topreserve the symmetry. In practice one demands tha
the matching hypersurface is tangent to the orbits of the s
metry group to be preserved. A more rigorous definition
matching preserving the symmetry was recently presente
@25#. Thus if (V1,g1) and (V2,g2) both admit a
m-dimensional group of symmetries, the final match
spacetime (V,g) is said to preserve the symmetryGm if there
exist m vectors ons that are mapped by the push-forwar
dF1 anddF2 to the restrictions of the generators ofGm to
s1 ands2, respectively. Furthermore, if there is an intrin
sically distinguishable generator ofGm in V1 andV2, such
as an axial Killing vector, then the matching preserving t
symmetry must ensure its identification ats.

In the cases we shall consider below, (V1,g1) will cor-
respond to aG4 on S3 LRS spacetime, thus admitting
cylindrical symmetry~Abelian G2 subgroup!, and (V2,g2)
to a static OT cylindrically symmetric spacetime. We sh
consider the matching preserving the cylindrical symme
which is represented by an Abelian groupG2 @14,26,27#.

III. GENERAL METRIC FORMS WITH A G4 ON S3

WHICH ARE LRS

In this section we shall write down in explicit cylindrica
like coordinates a general compact form of the metric cor
sponding to LRS spatially homogeneous spacetimes, wh
admit aG4 group of motions on spatial 3-hypersurfacesS3 .
We begin by combining the standard metric forms for
possibleG4 on S3 LRS spaces, withk561,0, given by@28#
~see also@29#!

ds252dt21a2~ t !dx21b2~ t !„dy21S2~y,k!dv2
…, ~7!

ds252dt21a2~ t !sk
21b2~ t !„dy21S2~y,k!dw2

…, ~8!

ds252dt21a2~ t !dx21b2~ t !e2x~dy821dw82!, ~9!or
4-3
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where

S~y,k!5H siny, k511,

y, k50,

sinhy, k521,

sk5H dx1cosydw, k511,

dx2y2/2dw, k50,

dx1coshydw, k521.

~10!

Performing a change to polar coordinates$y85y sinw,w8
5ycosw% in the line element~9!, and following@29# in a first
step, the above metrics can be combined into a compact f
given by

ds252dt21a2~ t !û nk
2 1b2~ t !e2ex

„dy21S2~y,k!dw2
…,
~11!

where

ûnk5dx1nF~y,k!dw, ~12!

F~y,k!5H 2cosy, k511,

y2/2, k50,

coshy, k521

~13!

and wheree andn are such that

e50,1, n50,1, en5ek50. ~14!

We note that

S5F ,y , ~S ,y!21kS251, ~15!

where here and throughout the comma denotes the pa
derivative with respect to the indicated variable. The metr
~7!, ~8! and ~9! are recovered with$e50,n50%, $e50,n
51% and $e51% respectively.6 The metric ~11! with e5n
50 andk51 is the Kantowski-Sachs metric, which adm
no simply transitiveG3 subgroup. All the other cases in
cluded in Eq.~11! possess a simply transitiveG3 subgroup of
symmetries that can be classified according to their Bian
types: metric~8! corresponds to type II fork50 and to types
III, VIII and IX for kÞ0; metric~9! corresponds to types V
and VIIh and metric~7! corresponds to types I, III and VII0 .
These classifications are summarized in Table I. The ca
with n50 admit a multiply transitiveG3 on S2 .

The axial Killing vector associated with the metric~11! is
hW 15]w1nk]x , which can be easily shown to define a reg
lar axis aty50, that is

6Note that for convenience we have introduced a change in
sign of w in Eq. ~8! for the casesk50,1 which results in a chang
of sign in the expressions of the Killing vectors as shown in Kram
et al. @28#.
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¹r~hW 1
2!¹r~hW 1

2!

4hW 1
2 ~16!

tends to 1 asy→0. The axial Killing vectorhW 1 together with
hW 25]x2ey]y generates an Abelian subgroupG2 on S2 . For
the purposes of this paper it is desirable to express the m
in a form adapted to bothhW 1 andhW 2 . To do this, we perform
the following coordinate transformations to cylindrical coo
dinates:

x→z1nkw,

y→re2ez,

w→w,

t→t, ~17!

which brings the compact metric~11! into the form

ds252dt21a2~ t !unk
2 1b2~ t !@~dr2erdz!21S~r ,k!2dw2#,

~18!

where

unk5dz1n„F~r ,k!1k…dw. ~19!

To our knowledge, this is a new form of presenting all t
G4 onS3 LRS spacetimes in compact form. The axial Killin
vector is then given by

hW 15]w , ~20!

while the other three Killing vectorshW i , i 52 to 4, are taken
to be

hW 25]z ,

hW 35eez@sinw] r1cosw„f ~r !]w1g~r !]z…#, ~21!

hW 45eez@cosw] r2sinw„f ~r !]w1g~r !]z…#,

where we have definedf (r )5S ,r /S and g(r )5n„S2 f (F
1k)….

IV. THE MATCHING HYPERSURFACE

Our aim is to match a spacetime corresponding to
metric ~18! and a static OT cylindrically symmetric spac

e

r

TABLE I. Bianchi types of the possible subgroupsG3 on S3

according to the values$e,k,n% of metric ~11!.

Bianchi types e n k

I, III 0 0 21
VII 0 0 0 0

VIII, IX 0 1 21
II 0 1 0
III 0 1 1

V, VII h 1 0 0
4-4
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time. The metric~18! can be cast in the more general form
sayg1, given by

ds2152Â2dt21B̂2dr222erB̂2drdz1Ĉ2dw2

12Êdzdw1D̂2dz2, ~22!

whereÂ, B̂, Ĉ, D̂ and Ê are functions oft and r. The line
element~18! is recovered by making the identifications

Â2~ t,r !51,

B̂2~ t,r !5b2~ t !,

Ĉ2~ t,r !5b2~ t !S2~r ,k!

1na2~ t !„F~r ,k!1k…2, ~23!

D̂2~ t,r !5a2~ t !1er 2b2~ t !,

Ê~ t,r !5na2~ t !„F~r ,k!1k….

The usefulness of writing Eq.~18! as Eq.~22! using Eq.~23!
will become clear in the next section. In the following w
shall take the functions in Eq.~22! to be arbitrary functions,
with

eÊ50,

which follows from Eq.~14!.
The metricg2 is assumed to be static and cylindrical

symmetric @14#, admitting, in principle, a maximal group7

G3 on T3 containing an Abelian subgroupG2 on S2 which
includes an axial symmetry@26,27#. The orbits of thisG2
subgroup are also assumed to generate orthogonal surf
i.e., the groupG2 is assumed to act orthogonally transitive
~OT!. This is the analogue of the ‘‘circularity condition,
usually used within the context of stationary axisymmet
interior problems, where it implies nonconvectivity in fluid
@30#. This assumption is in fact a consequence of the e
tence of an axis of symmetry in spacetimes with cert
types of matter content, including vacuum@14,30#.

Now one can always find a coordinate syste
$T,r,w̃8,z̃8% adapted to the Killing vectors
$]/]T,]/]w̃8,]/] z̃8%, where]/]w̃8 is the axial Killing vec-
tor, such that the metricg2 is given by

ds2252Ǎ2dT821B̌2dr21Č2dw̃821Ď2dz̃8212Ědw̃8dz̃8,
~24!

whereǍ, B̌, Č, Ď and Ě are functions ofr.
Following the matching procedure specified in Sec. II

proceed by specifying the two embeddingss6. The embed-

7The G3 group is then taken to be Abelian. Other algebraic typ
require the existence of more symmetries@14#, and therefore need
to be studied separately.
04400
es,

s-
n

ding of s1 can be defined by choosing the appropriate
ordinates ons denoted by

$ja%5$l,f,z%. ~25!

The coordinatef is chosen such that the vector field]/]f is
mapped, by the push-forwarddF1, at every point ins, into
the restriction of the axial Killing vectorhW 15]/]w on s1,
that is,

dF1S ]

]f D5
]

]wU
s1

[eW2
1 ,

and thus

]F01

]f
5

]F11

]f
5

]F31

]f
50,

]F21

]f
51. ~26!

Since we want the matching to preserve the cylindrical sy
metry ~i.e., aG2 on S2 containing the axial symmetry gen
erated byhW 1!, there must exist a vector fieldgW in s which is
mapped to the restriction ons1 of a Killing vector that,
together withhW 1 , generates aG2 on S2 . The only possibility
is for this Killing vector to be a linear combination ofhW 1 and
hW 2 . In other words, we havedF1(gW )5ahW 1us11bhW 2us1

wherea andb are arbitrary constants withbÞ0. We can now
use the fact that the group which is preserved is autom
cally inherited by the hypersurfaces @25,31# in which it has
the same algebraic type@31#. Since theG2 generated byhW 1
and hW 2 is Abelian then the vectors]/]f and gW , which are
Killing vectors in s, commute.

We can now choose a coordinatez such thatgW 5]/]z and
use a coordinate transformationz85bz, f85f1az in s in
order to obtain~after dropping the primes!

dF1S ]

]z D5
]

]zU
s1

[eW3
1 ,

and thus

]F01

]z
5

]F21

]z
5

]F11

]z
50,

]F31

]z
51, ~27!

leaving Eq.~26! unchanged. Finally, the remaining coord
nate l can always be chosen such that the image of]/]l
throughdF1 is orthogonal toeW2

1 andeW3
1 . This implies

]F21

]l 5
s

2
Ê

Ĉ2

]F31

]l

and

]F31

]l 5
s

eF11
B̂2Ĉ2

D̂

]F11

]l ,

whereD̂[Ĉ2D̂22Ê2, and thus

]F21

]l
50.

s

4-5
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Hence we obtain the following expression foreW1
1 :

dF1S ]
]l D5

s ]F01

]l
]
]tU

s1
1

]F11

]l
]
]rU

s1

1eF11
B̂2Ĉ2

D̂

]F11

]l
]
]zU

s1

[eW1
1 . ~28!

By denoting the embedding$F01,F11,F21,F31% in Eq.
~1! as$t,r ,w,z%, the matching surfaces1 is parametrized as

s15$~ t,r ,w,z!:t5t~l!, r 5r ~l!, w5f,

z5z1 f z~l!%, ~29!

wheret(l) andr (l) are functions ofl restricted by the fact
that dF1 has to be of rank 3, that isṫ21 ṙ 2Þ0, and

ḟ z~l!5
s

er ~l! ṙ ~l!
B̂2Ĉ2

D̂
, ~30!

where the dot denotes differentiation with respect tol. For
e50 we can choosef z50 without loss of generality.

We now consider the embeddingF2. The preservation of
the cylindrical symmetry implies that the axial Killing vec
tors from both sides have to coincide at the matching hyp
surface. Since the tangent spaces of boths1 and s2 are
going to be identified~see Sec. II!, we only have to impose
dF2(]/]f)5]/]w̃8us2[eW2

2 . The image of the vector]/]z
must complete the basis of someG2 on S2 subgroup of the
G3 on T3 admitted by (V2,g2). Therefore the image of]/]z
takes the form

dF2S ]

]z D5a
]

]w̃8
U

s2

1b
]

] z̃8
U

s2

1c
]

]T8
U

s2

[eW3
1 , ~31!

where a, b and c are arbitrary constants, such that the
equality

@2c2Ǎ2Č21b2~Č2Ď22Ě2!#us2.0 ~32!

gives the necessary and sufficient condition for hav
spacelike orbits, implyingbÞ0. Now condition~32! will be
automatically satisfied once the preliminary junction con
tions are satisfied sinceeW3

1 is always spacelike, which make
eW3

2 spacelike.
In order to simplify Eq.~31!, we perform a change in

(V2,g2) to a new coordinate system$T,r,w̃,z̃% defined by

T5T82
c

b
z̃8, w̃5w̃82

a

b
z̃8, z̃5

1

b
z̃8,

which is still adapted to the axial Killing vector, that i
]/]w̃5]/]w̃8. In these new coordinates the line element
g2 reads
04400
r-

-

g

-

r

ds2252A2dT222cA2dTdz̃1B2dr21C2dw̃2

12Edw̃dz̃1D2dz̃2, ~33!

where all the ‘‘nonhatted’’ functions depend only onr and
we have setA[Ǎ, B[B̌, C[Č and

D2[2c2Ǎ21a2Č21b2Ď212abĚ,

E[aČ21bĚ. ~34!

Note that this change of coordinates is well defined wh
ever Eq.~32! holds, since this impliesC2D22E2.0. Now,
taking the embeddingFa2 in the new coordinates
$T,r,w̃,z̃%, the images of]/]f and]/]z simplify to

dF2S ]

]f D5
]

]w̃U
s2

[eW2
2 ,

with

]F02

]f
5

]F12

]f
5

]F32

]f
50,

]F22

]f
51, ~35!

dF2S ]

]z D5
]

] z̃U
s2

[eW3
2 ,

with

]F02

]z
5

]F12

]z
5

]F22

]z
50,

]F32

]z
51. ~36!

Since the image of]/]l by dF1 is orthogonal toeW2
1 andeW3

1 ,
then its image bydF2, i.e., eW1

2 , must be orthogonal toeW2
1

andeW3
1 , essentially because of the preliminary junction co

ditions, thus resulting in

]F32

]l 5
s cA2C2

D
]F02

]l ,
]F22

]l 5
s

2
E

C2

]F32

]l , ~37!

where we have definedD[C2D22E2, so that we have

dF2S ]

]l D5
]F02

]l

]

]TU
s2

1
]F12

]l

]

]rU
s2

2
cA2

D

]F02

]l S E
]

]w̃
2C2

]

] z̃D U
s2

[eW1
2 .

As a result the matching surfaces2 is parametrized by

s25$~T,r,w̃,z̃!:T5T~l!,r5r~l!,

w̃5f1 f w̃~l!,z̃5z1 f z̃~l!%, ~38!

whereT(l) andr~l! are arbitrary functions ofl, and f w̃(l)
and f z̃(l) are related toT(l) by Eq. ~37!. In this way, we
have obtained the most general parametrizations for the
terior and exterior matching surfacess1 ands2.

The matching procedure described above involves so
free parameters in the metricg2 which account for the pos
4-6
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sible inequivalent ways the two spacetimes (V6,g6) can be
joined @25,32#. Some of these parameters may encode
freedom in choice of coordinates, while others may imp
physical differences@32#.

Thus, in practical situations where the metric~24! is
given, we must use the new ‘‘nonhatted’’ functions obtain
from the relations~34!, which then depend on the paramete
a, b andc, in the equations arising from the junction cond
tions. On the other hand, if the spacetime metricg2 is un-
known, then according to the way we have set up the pr
lem, the matching problem must be treated using Eq.~33!. In
that case, to recover the form~24!, we need to invert Eqs
~34! in order to obtain the hatted functions appearing in E
~33!. Only after this inversion is performed is it possible
determine whether different values of the parameterc corre-
sponding to different ways of joining the spacetimes g
rise to equivalent matchings.

V. JUNCTION CONDITIONS

We recall that in order to derive the junction conditio
we have to calculate the first and second fundamental fo
for both s1 ands2. For theg1 metric ~22!, the parametric
form of s1 ~29! gives dtus15 ṫ dl, drus15 ṙ dl, dwus1

5df anddzus15dz1 ḟ zdl. Using Eq.~30!, the first funda-
mental form ons1 can be written as

ds21us15
s

~2Â2 ṫ21B2ṙ 2!dl21Ĉ2df212Êdfdz

1D̂2dz2, ~39!

where

B2[B̂2S 12er 2
B̂2Ĉ2

D̂
D ,

which can be reduced toB̂2(12er 2B̂2/D̂2) making use of
eÊ50. Similarly for theg2 metric ~33!, the first fundamen-
tal form ons2 ~38! is given by

ds22us25
s

~2A2Ṫ21B2ṙ2!dl21C2df2

12Edzdf1D2dz2, ~40!

where

A25A2S 11c2
A2C2

D D .

The equality of the first fundamental forms~39! and ~40!
gives

2Â2 ṫ21B2ṙ 25
s

2A2Ṫ21B2ṙ2, ~41!

D̂5
s

D, ~42!

Ĉ5
s

C, ~43!
04400
e

d

b-

.

s

Ê5
s

E. ~44!

In order to derive the remaining junction conditions we ne
the normal forms tos6, which can be written as

n15ÂB~2 ṙ dt1 ṫ dr !us1,

n25gAB~2 ṙdT1Ṫdr!us2 ~45!

so that they have the same norm ons and whereg561
defines the two possible relative orientations. The rigg
vectors can be obtained from Eqs.~5! and~6!, and a suitable
choice is

lW152
ṙ

Â2

]

]tU
s1

1
ṫ

B2

]

]r
U

s1

, ~46!

lW25GF2a2
ṙ

A2

]

]t
1

Ṫ

B2

]

]r
1

1

D
S a2ṙ

cA2

A2

1 ṫ
erB̂2

B2G
D S E

]

]w̃
2C2

]

] z̃D GU
s2

, ~47!

whereGÞ0 anda are functions that satisfy

1

ÂB ~B2ṙ 21Â2 ṫ2!5
s gG

AB ~a2B2ṙ21A2Ṫ2!, ~48!

2ṙ ṫ5
s

G~a211!Ṫṙ. ~49!

The explicit expressions for the junction conditionsHab
1

5
s

Hab
2 can be written, using Eqs.~42!–~44!, in the forms

Hll : ṙ ẗ1 ṫ r̈ 1 ṙ S Â,t

Â
ṫ212

Â,r

Â
ṙ ṫ1

BB,t

Â2 ṙ 2D
1 ṫ S B,r

B ṙ 212
B,t

B ṙ ṫ1
ÂÂ,r

B2 ṫ2D
5
s

GHa2ṙT̈1Ṫr̈12a2ṙ2Ṫ
A,r

A

1ṪF ṙ2
B,r

B 1Ṫ2
AA,r

B2 G J , ~50!

Hlf : 05
s

c~2EC,r2E,rC!, ~51!

Hlz : 2
ge

ÂB S B2

B̂2D
,t

5
s r

ABc S A2

A2 D
,r

, ~52!

Hff : ṙ
Ĉ,t

Â2 2 ṫ
Ĉ,r

B2 5
s

2GṪ
C,r

B2 , ~53!
4-7
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Hzz : ṙ
D̂ ,t

Â2 2 ṫ
D̂ ,r

B2 5
s

2GṪ
D ,r

B2 , ~54!

Hfz : ṙ
Ê,t

Â2 2 ṫ
Ê,r

B2 5
s

2GṪ
E,r

B2 , ~55!

where in Eqs.~51!, ~52! we have used the fact that, sinc

eÊ50, theneE,rṙ5
s

0. Note that although there is a facto
c21 in Eq. ~52!, the right-hand side of this equation vanish
identically forc50. The usefulness of using Eq.~22! for Eq.
~18! becomes clear from the symmetry of the above eq
tions.

With the exception of Eq.~52!, the set of junction condi-
tions ~41!–~44! and~48!–~54!, is formally the same as thos
given in @13,25#, where the conditions for a matching pr
serving theG2 symmetry of two OT cylindrically symmetric
spacetimes, one assumed to be static, were studied. Fo
ing @25#, the combination of Eqs.~42!–~44!, their derivatives
alongs Eq. ~49! and Eqs.~53!–~55! lead to

~i! Ĉ,t5
s

Ĉ,r5
s

0⇔C,r5
s

0.

~ii ! D̂ ,t5
s

D̂ ,r5
s

0⇔D ,r5
s

0.

~iii ! Ê,t5
s

Ê,r5
s

0⇔E,r5
s

0.
~iv! ṙ 50⇔ ṙ50, and then necessarilyĈ,t5D̂ ,t5Ê,t50.

~v! ṫ50⇔Ṫ50, and then necessarilyĈ,t5
s

D̂ ,t5
s

Ê,t5
s

50.

It must be stressed that due to~iv! we cannot have a match
ing acrosss defined by ṙ50, and equivalently byṙ 50,
since from Eq.~23! this would imply a static LRS region. We
summarize this latter result in the following lemma:

Lemma 5.1. A nonstaticG4 on S3 LRS spacetime~18!
cannot be matched to a static OT cylindrically symmet
spacetime~24! across a hypersurface withṙ50 ~or equiva-
lently ṙ 50!, preserving the cylindrical symmetry. j

Furthermore, the combination of equations that led to
previous statements, also imply the following important co
ditions ons:

~ I! D̂ ,tĈ,r2D̂ ,r Ĉ,t5
s

0,

~ II ! Ê,tD̂ ,r2Ê,r D̂ ,t5
s

0,

~ III ! Ê,tĈ,r2Ê,r Ĉ,t5
s

0. ~56!

These are the so-calledexterior conditions, which led to the
impossibility of the cylindrically symmetric analogues to th
Einstein-Straus model in@13,25#. We emphasize that thes
conditions involve only the coefficients of theg1 metric.
Three possibilities may arise:~a! they cannot be satisfied
and thus the matching is impossible,~b! they impose con-
straints on the matching, and in fact determines1 if the
functionsĈ, D̂, Ê are given, and~c! they are satisfied auto
matically and therefore give no information.
04400
-

w-

e
-

Finally, following @13,25# we find that, after the substitu
tion of G anda, the complete set of matching conditions c
be written as

C,rṪ
A
B 5

s

gS Â
Ĉ,r

B ṫ1B Ĉ,t

Â
ṙ D , ~57!

C,r
2 B225

s Ĉ,r
2

B2 2
Ĉ,t

2

Â2 , ~58!

ṪC,r
2 A,rB235

s S Ĉ,r
2

B2 2
Ĉ,t

2

Â2 D S Â,r

B ṫ1
B,t

Â
ṙ D

2
Ĉ,t

Â

Ĉ,r

B SB,t

B ṫ1
B,r

B ṙ D
1

Ĉ,t

Â

Ĉ,r

B S Â,t

Â
ṫ1

Â,r

Â
ṙ D

2
Ĉ,r

B S Ĉ,tt

Â
ṫ1

Ĉ,tr

Â
ṙ D

1
Ĉ,t

Â
S Ĉ,tr

B ṫ1
Ĉ,rr

B ṙ D , ~59!

plus the analogous forms forD andE @i.e., changingC by D
and E respectively in the expressions~57!–~59!#, together
with Eqs. ~42!–~44!, ~51!, ~52! and the exterior conditions
~56!. Note that not all these equations are independent s
the set of equations forC(r), Eqs. ~57!–~59!, is related to
their analogues forD andE by

D̂ ,tC,r5
s

Ĉ,tD ,r , Ê,tC,r5
s

Ĉ,tE,r , Ê,tD ,r5
s

D̂ ,tE,r .

A. The explicit conditions

We shall now study the explicit matching condition
across nonspacelike hypersurfaces~so that neitherṫ nor Ṫ
can vanish ons! for the LRS homogeneous spacetimes~18!
by substituting the metric functions~23! in the above junc-
tion conditions. We start by considering the exterior con
tions ~56!. Condition ~I! implies that the only possible
matchings are those satisfying

~a,t5
s

0!∨„b2S ,r1a2n~F1k!5
s

0…. ~60!

Similarly, condition~II ! gives

~a,t5
s

0!∨~n50!. ~61!

Combining conditions~60! and ~61! and excluding match-
ings that hold only across a single value forr corresponding

to S ,r5
s

0 ~see lemma 5.1!, we find that

a,t5
s

0 ~62!

is a necessary conditionfor the required matching which
since ṫÞ0 on s, impliesa,t50 and thus
4-8
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a~ t !5const~[b!. ~63!

Considering the remaining exterior condition~III ! and as-
suming Eq.~62!, we find

~b,t5
s

0!∨~n50!. ~64!

As a result, fornÞ0, a nonstatic metric~18! cannot be
matched to the static metrics~22! across a nonspacelike hy
persurface.

Since we are interested in a nonstatic LRS region,
shall concentrate on then50 case. In this case the matchin
across a nonspacelikes is in principle possible fora
5const and the LRS metric coefficients take the form

Â51, B̂5b~ t !, Ĉ5b~ t !S~r ,k!,

D̂25b21er 2b2~ t !~5b21eĈ2!, Ê50.
~65!

Regarding the static region we find that the preliminary ju
tion conditions~42!–~44! for ṙÞ0, together with Eq.~65!,
imply that in a neighborhood ofs, the coefficientD(r) is
uniquely determined in terms ofC(r) by

D2~r!5b21eC2~r!, ~66!

and that

E~r!50. ~67!

Furthermore, from statement~i! above we cannot haveC,r

5
s

0, since otherwise the only possible LRS regions wo
have to be static. Since we can setB251 using the freedom
to chooser, then onlyA andC remain free in Eq.~33!. Using
Eqs.~65!–~67!, the complete set of junction conditions tran
lates into

C5
s

bS,

C,rṪA5
s

g
b

Ab21er 2b2 FS ,r S 11er 2
b2

b2D1 ṫ1bb,tS ṙ G ,
C,r

2 5
s S 11er 2

b2

b2DS ,r
2 2S2b,t

2, ~68!

C,r
2 ṪA,r5

s

2bSH @Ab21er 2b2S ,rb,tt1er 2bb,t
2 # ṫ

1
b2b,tS

~b21er 2b2!3/2~b,t
21k!2ṙ J ,

plus Eq.~52!, which now explicitly reads

2egbr

~b21er 2b2!3/2b,t5
s c

A S A2

b21eC2D
,r

. ~69!

This equation shows that whene51 we also needcÞ0 in
order to have a nonstatic LRS part. Note that the degre
04400
e

-

d

of

freedom~i.e., c! introduced by the matching in Eq.~33! al-
lows the LRS metrics~18! with e51 to be matched to static
OT cylindrically symmetric spacetimes. On the other hand
e50 we either havec50 or A5const. But ifA5const, the
static region~33! with Eqs.~66! and~67! admits at least one
more isometry~see@25#!, and the matching procedure wou
then require a different treatment from the outset.

We also note that given the LRS region, i.e., givenb(t),
the static region is not uniquely specified by this matchin
This is due to the fact that the exterior conditions are in t
case identically satisfied and hence, as mentioned ab
they do not prescribe the matching hypersurfaces1 @i.e.,
t(l) and r (l)#.

VI. CONSEQUENCES OF THE MATCHING CONDITIONS

We briefly summarize the results obtained in Sec. V
The conditionn50 rules out the metric forms~8! which
include the Bianchi types II, VIII, and IX, where the last
an anisotropic generalization of FLRWk511 metrics.
From Eq.~64! one therefore has:

Proposition 6.1. A nonstaticG4 on S3 LRS spacetime
admitting a simply transitive subgroupG3 of Bianchi types
II, VIII or IX cannot be matched to an OT cylindrically sym
metric static spacetime across a nonspacelike hypersur
preserving the cylindrical symmetry. j

Therefore we are left with the metric forms~7! and ~9!.
Now Eq. ~7! with k511 is the Kantowski-Sachs metric
The cases corresponding tok50 andk521 for e50 in-
clude Bianchi types III, I and VII0 , while the casee51
includes Bianchi types V and VIIh . These models could be
of cosmological interest since the former generalizek50
FLRW and the latter thek521 FLRW metrics. As shown in
the previous section, the LRS metric coefficients were
verely restricted to Eq.~65! and the possible resulting me
rics can be summarized as follows:

Theorem 6.1. The only possible nonstaticG4 on S3 LRS
spacetimes that can be matched to an OT cylindrically sy
metric static spacetime across a nonspacelike hypersur
preserving the cylindrical symmetry are given by

ds252dt21b2dz21b2~ t !@~dr2erdz!2

1S2~r ,k!dw2#, ~70!

whereb is a constant,S and k are given by Eq.~10!, and
e50,1 is such thatek50. j

Remark. The line element for the static region then b
comes

ds252A2dT222cA2dTdz̃1dr21C2dw̃2

1~b21eC2!dz̃2,

where A and C are functions ofr and c is constant. The
matching hypersurface is given by Eq.~29! with ḟ z(l)

5
s

er ṙ b2/(b21er 2b2) and by Eq.~38! with ḟ w̃(l)50 and

ḟ z̃(l)5
s

cA2/(b21er 2b2), but it is not fully determined in
general. The set of equations to be satisfied are those give
Eqs.~68! and ~69!.
4-9
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This demonstrates that the possible LRS models~70! are
extremely special. In fact, conditiona(t)5b on Eq. ~18!
with n50 poses a strong constraint, whereby the timel
surfacesV in Eq. ~70! parametrized by$l1 ,l2% and defined
by $t5l1 ,z5l2 ,w5w0 ,r 5r 0eel2%, where w0 and r 0 are
constants, have no dependence on time. As mentione
Sec. III, in then50 cases of Eq.~18!, and thus in Eq.~70!,
the surfacesVS spanned byr andw ~at constantt andz! are
surfaces of constant curvature, since there is aG3 acting
multiply transitively, which is generated byhW 1 , hW 3 and hW 4
~20!, ~21!. Whene50, the family of surfacesV are just the
family of orthogonal surfaces to theVS orbits.

Another way of looking at this is that one of the comp
nents of the expansion tensoruab(5¹(aub) of the flow given
by uW 5] t vanishes. To be more precise, the only nonvani
ing components ofuab in the natural orthonormal tetrad

u05dt, u15b~dr2erdz!, u25bSdw, u35bdz,
~71!

are

u115u225b,t /b. ~72!

This is a strong constraint as far as cosmologically inter
ing models are concerned, since there is no expansion a
the spacelike direction spanned by]z1er ] r ~which is or-
thogonal toVS iff e50!.

This result can be seen in two ways: either as a con
quence of the assumption that the metricg2 is static and
cylindrically symmetric, or as a consequence of the homo
neity in the evolving spacetime, which prohibits the norm
the Killing vector]/]z to be space dependent. The conditi
a(t)5const may not be necessary if either the assumptio
the cylindrical symmetry ong2 or the homogeneity of the
metricg1 are relaxed, although one might still expect stro
constraints ong1 leading to restrictions on the possible ma
ter content there. We shall return to these questions i
future publication.

So far we have not restricted the source fields in
matching spacetimes. We shall now consider the partic
case of a perfect fluid LRS metric.

A. Perfect-fluid LRS region

The Einstein tensor for Eq.~70! in the natural orthonor-
mal tetrad~71! has the form

G005
k1b,t

2

b2 23
e

b2 ,

G03522b,t

e

bb
,

G115G2252
b,tt

b
1

e

b2 ,

G33522
b,tt

b
2

k1b,t
2

b
1

e

b2 . ~73!
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The allowed Segre types are$1, 1~11!%, $2~11!% together with
their degeneracies. We are interested in the perfect-fluid t
i.e., $1,~111!%. The first condition for this type of source i
(G03)

25(G001G22)(G332G22) ~see@25,33#!, which can ex-
plicitly be cast in the form

~bb,tt2b,t
22k!@b2~bb,tt1b,t

21k!12eb2#50, ~74!

so thatr5G221G002G33 and p5G22. The vanishing of
the first term in Eq.~74! results inG001G22522e/b2. In
order to have a perfect fluid we also needG001G22Þ0 to
have the same sign asr1p. As a result, we are left with the
casee51, which impliesr1p,0. In this case bothr andp
are constants such thatr13p50.

Therefore, in order to have a perfect fluid satisfying t
dominant energy condition~i.e., r1p.0! we can only con-
sider the vanishing of the second term in Eq.~74!. We shall
consider the casese51,0 in turn. For the casee51, the
equationb2(bb,tt1b,t

2)12b250 gives b(t)5c1Asin(2t/b)
~after rescaling t!, and hence r5p28/b2

51/b2
„1/sin2(2t/b)26…. The energy density changes sign

sin(2t/b)51/A6, and thus the weak energy condition cann
be satisfied over the whole spacetime.

Therefore, we are left with the casee50, in which case
the equation forb(t) becomesb,t

21bttb1k50, giving

b~ t !5Aat2kt2, ~75!

where a is an arbitrary constant that can be taken to
positive without loss of generality. This corresponds to a s
perfect fluid given by

r5p5
a2

4t2~a2kt!2 , ~76!

which ensures that the energy conditions are satisfied.
recall that this solution can also be interpreted as applyin
the case with a minimally coupled scalar field as the sou
These results are summarized in the following theorem:

Theorem 6.2. The only possible nonstaticG4 on S3 LRS
perfect-fluid spacetimes satisfying the dominant energy c
dition that can be matched to an OT cylindrically symmet
static metric across a nonspacelike hypersurface preser
the symmetry are given by

ds252dt21dz21~at2kt2!@dr21S~r ,k!2dw2#,
~77!

wherea is a constant andS is defined as in Eq.~10!. The
equation of state is that of a stiff fluid and is given by E
~76!.

This amounts to a no-go result, namely that there are
evolving G4 on S3 LRS perfect-fluid spacetimes withr
Þp, satisfying the dominant energy condition, that match
locally OT cylindrically symmetric static region across
nonspacelike matching hypersurface preserving the sym
try.

So far we have studied the matching between aG4 on S3
LRS region and an OT cylindrically symmetric static regio
across a nonspacelike matching hypersurface preserving
4-10
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symmetry. This treatment has been local and has not d
with matching in the specific context of a particular config
ration. Consequently, our results can be used in a numbe
different settings. For example, they can be employed
study the generalization of the Einstein-Straus result c
cerning the embedding of a static region in a LRS cosm
logical model, by taking the static part as describinglocally
an interior region and the LRS part as its exterior. But giv
the interior-exterior duality in the matching procedure th
can also be used to study the question of the existence o
astrophysical evolving object describedlocally by a LRS
metric which is surrounded by an OT cylindrically symme
ric static background. In this way our results can be used
consider generalizations of the Oppenheimer-Snyder@7# col-
lapsing model.

The no-go result above then tells us thata G4 on an S3
LRS evolving perfect-fluid model cannot contain a locally
cylindrically symmetric static cavityexcept for the very par-
ticular stiff-fluid case mentioned above. Theorem 6.2 ru
out not only static cosmological strings in LRS cosmologi
backgrounds, but also static cavities which are locally cy
drically symmetric, as for instance, bottle or coin-shaped
jects. Furthermore, it implies thatno astrophysical objec
described by a nonstiff perfect fluid type G4 on S3 LRS met-
ric can be embedded into a locally OT cylindrically symm
ric static background. Importantly, these results hold irre
spective of the matter content in the static part.

Concerning global configurations, as discussed above
can go further and apply our results to the case of spati
homogeneous nonstatic exterior spacetimes. This follo
from the fact that the model for a spatially bounded inter
region whose bounding surface is topologicallyS2 preserves
the existence of an axis of symmetry across this border. T
implies that the exterior homogeneous part has to be loc
rotational symmetric, and thus admit a further isometry
coming aG4 on anS3 LRS region. We shall demonstrate th
result in the following section.

VII. BIANCHI SPACETIMES: AXIALLY SYMMETRIC
GLOBAL MODELS

We recall that a spacetime admits a cyclical symmetr
its metric is invariant under an effective realization of t
one-dimensional torus on the manifold@34#. Axial symmetry
arises when the set of fixed points is nonempty~i.e., the
generator of the isometry, sayjW , vanishes!. In fact, it has
been shown@35# that any nonempty setW2 of fixed points in
a four-dimensional spacetime is a timelike two-dimensio
surface. Furthermore, the axial Killing vector fieldjW is
spacelike in a neighborhood of the axis and satisfies
regularity condition, i.e., the expression~16! for jW tends to 1
on W2 . Here we shall concentrate on the preservation of
axial symmetry across a matching surface. The models
the common compact and simply connected astrophys
objects usually consist of an interior region whose spa
boundary is topologically a two-sphereS2. The boundarys
~and thuss1 ands2! is then taken to be nonspacelike a
homeomorphic toS23I , whereI is an open interval of the
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real line. In other words, it is assumed thats can be foliated
by a set of spacelike two-surfacesSt homeomorphic toS2.
We refer to@16,17# for a detailed general construction. Th
surfacesSt are embedded intoV1 ~respectivelyV2! by the
mapsFt

1[F1+ i t ~respectivelyFt
2[F2+ i t! where i t :St

→s are the natural inclusion for each surface intos.
Let us denote byjW 1 the generator of a spacelike~cyclic!

isometry on (V1,g1). Since we wish to preserve this sym
metry acrosss, there exists a vector fieldgW defined ins such
thatdF1(gW )5jW 1us1. That is, the restriction ofjW 1 on s1 is
tangent tos1 everywhere. Let us now take (V1,g1) to be a
spatially homogeneous spacetime. We can then constru
natural foliation of the manifoldV1 by taking the homoge-
neous spacelike hypersurfaces, say$t5const% spanned by the
orbits of the simply transitiveG3 on S3 group of isometries.
By construction, the restrictions of our Killing vector field t
the orbitsjW 1u$t% are tangent to these hypersurfaces. Sinces1

is nonspacelike everywhere,8 we can now define the follow-
ing foliation $St

1% of s1:St
1[s1ù$t5const%, whereSt

1 is
taken to be the image ofSt throughF t

1 . The restriction of

jW 1 on St
1 , jW 1uS

t
1, is clearly tangent to the surfacesSt

1 , and

therefore there is a vector fieldgW t defined inSt such that
dF t

1(gW t)5jW 1uS
t
1.

We now demand that this foliation is such thatSt is ho-
meomorphic toS2, that is, we takeSt to be theSt above.9 In
the following we shall refer to ‘‘spatially compact’’ as ‘‘spa
tially compact according to the homogeneous slicing.’’ The
must then exist a point wheregW t vanishes@36#. So, for every
t there exists a pointwtPSt wheregW t50W , and hence

jW 1uw
t
150W , ~78!

wherewt
15F t

1(wt). The existence of a fixed point for th

cyclic symmetry~generated byjW 1! ensures the existence of
timelike surface of fixed pointsW2

1 . Furthermore, there is a

neighborhood around any point inW2
1 wherejW 1 is spacelike

and vanishes only atW2
1 @35#. This can be used to show tha

the pointswt
1 , for all t, are in W2

1 . Actually, becausegW
generates a cyclic symmetry ins, which is inherited from the
embedding~see, for instance,@31#!, the set~s! of fixed points
of gW must be timelike curves ins,10 defined asW[$wt ;;t

PI%. Also, sincedF1 is a rank-three map,jW 1us1 can only
vanish wheregW 50, i.e., on the curveW, and thusW2

1 cannot
be contained ins1. It follows thatV1\s1 contains points on
the axis of symmetryW2

1 of the cyclic ~in this case axial!

symmetry generated byjW 1. As a consequence (V1,g1) can-
not be completely anisotropic and spatially homogeneous

8This assumption can in fact be replaced by a less restrictive
see@17#.

9This might not be necessary, as in most cases one may be ab
find a diffeomorphism between a previously constructed foliat
St and the surfaces given bySt .

10This comes from the fact that¹agb is of rank 2. See@37#.
4-11
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otherwise there would not be a Killing vector field with ze
points; (V1,g1) must at least admit one isotropy, which

generated by the Killing vector fieldjW 1.
Furthermore, sincedF t

2(gW t)50 at wt
25F t

2(wt), we
will also have a nonempty set of points where one genera

say jW 2, of the cyclic symmetry we are preserving o
(V2,g2) will vanish. These pointswt

2 are precisely those
that are to be identified withwt

1 . The same argument a
above can then be used for the existence of an axisW2

2 in
V2\s2. We have then shown the following:

Lemma 7.1. Let ~V,g! be a spacetime resulting from th
matching of two cyclically symmetric spacetimes (V1,g1)
and (V2,g2) preserving the symmetry. If one part, sa
(V1,g1), is spatially homogeneous and either part rep
sents a spatially compact and simply connected region,
both (V1,g1) and (V2,g2) must be axially symmetric. In
particular, (V1,g1) is locally rotationally symmetric admit
ting a G4 on anS3 group of isometries. j

Note that since this lemma relies on the topology of
matching boundary, the spatially homogeneous region~1!
does not necessarily correspond to an exterior region,
therefore~2! and~1! can be interpreted as either interior
exterior.

Using this lemma we can apply the results given in
previous sections forG4 on S3 LRS spacetimes to Bianch
spacetimes, once one of the regions of the matching re
sents a bounded object without holes. Since in this pape
have mainly focused on the generalization of the Einste
Straus model, we shall, in the following statements, cons
the static region to be the spatially bounded cavity s
rounded by a homogeneous background. From propos
6.1 we obtain:

Corollary 7.1. A nonstatic homogeneous Bianchi II, VII
or IX spacetime cannot be matched to a spatially comp
and simply connected locally cylindrically symmetric sta
region across a nonspacelike hypersurface preserving
symmetry.

And similarly, from theorem 6.1 we have:
Corollary 7.2. The only possible nonstatic spatially hom

geneous spacetimes that can be matched to a spatially
pact and simply connected locally cylindrically symmet
static region across a nonspacelike hypersurface prese
the symmetry are given by metric~70! with k50,21.

The same remarks made about theorem 6.1 regarding
interior apply here. Finally, from theorem 6.2 we obtain:

Corollary 7.3. The only possible nonstatic spatially hom
geneous perfect-fluid spacetimes, satisfying the dominan
ergy condition, that can be matched to a spatially comp
and simply connected locally cylindrically symmetric sta
region, across a nonspacelike hypersurface preserving
symmetry, is given by metric~77!. The possible Bianch
types of theG3 on S3 are I, III or VII0 and the equation o
state is that of a stiff fluid.

The last corollary amounts to a no-go result, namely t
there is no possible evolving perfect-fluid Bianchi spa
times with rÞp satisfying the dominant energy conditio
and containing a locally OT cylindrically symmetric stat
cavity preserving the symmetry.
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The above corollaries have focused on the existence
static cavities in homogeneous backgrounds. Given
interior-exterior duality and taking into account the rema
after lemma 7.1, the same results also apply when the
tially homogeneous region is taken to be the bounded reg
which is embedded in a locally OT cylindrically symmetr
static background. They therefore provide a no-go result c
cerning the anisotropic generalization of the Oppenheim
Snyder model.

VIII. CONCLUSION

We have studied a generalization of the Einstein-Str
model, by considering a locally cylindrically symmetr
static cavity embedded in an expanding LRS region.
have derived the matching conditions for such space-tim
and have found that they impose strong constraints on
LRS metrics, by implying thata,t50 andn50. The former
implies that no dynamical evolution is allowed along
spacelike direction as seen by the observer] t . This direction
is orthogonal to the orbits of the subgroupG3 on S2 of the
LRS whene50. Conditionn50 implies that it is impossible
to have an exterior metric of Bianchi types II, VII or IX. Ou
main result in this connection, expressed in theorem 6.1
corollary 7.2, is that the exteriors can only take very partic
lar forms within the Bianchi types I, III, V, VII0 , VII h or
Kantowski-Sachs metrics. These results make no referenc
the matter content and are therefore, in this sense, comple
general.

To study the effects of including matter contents, we a
considered perfect fluid sources for the metrics allowed
theorem 6.1, and found that such embeddings are only
sible when the matter content is a stiff fluid. This is o
second main result, which is summarized in theorem 6.2~and
corollary 7.3!.

We have also proved that if the nonstatic spacetime
assumed to be spatially homogeneous~not necessarily LRS!
and if the static spacetime represents a spatially compact
simply-connected region, then in order to perform the mat
ing preserving the cyclic symmetry the nonstatic part m
be LRS. As a consequence, we were able to reformulate
results with the weaker assumption of homogeneity, inst
of local rotational symmetry.

Given that deviations from isotropy and sphericity are e
pected to be present in the universe, these results are o
tential interest, since they make it impossible to embed
cally OT cylindrical static objects~which are compact and
simply connected! in homogeneous universes and at t
same time have a reasonable exterior cosmological ev
tion.

Because of the interior-exterior duality, our results a
apply to the cases of bounded objects described by spat
homogeneous metrics embedded in locally cylindrica
symmetric static backgrounds. In particular, this would ha
the interesting consequence that the Oppenheimer-Sn
model for collapse cannot be generalized in this way.

Finally it would be of interest to study the inhomogeneo
generalizations of our results. We hope to return to this qu
tion in a future work.
4-12
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