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Baryon bias and structure formation in an accelerating universe
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In most models of dark energy the structure formation stops after the accelerated expansion begins. In
contrast, we show that the coupling of dark energy to dark matter may induce the growth of perturbations even
in the accelerated regime. In particular, we show that this occurs in the models proposed to solve the cosmic
coincidence problem, in which the ratio of dark energy to dark matter is constant. Depending on the param-
eters, the growth may be much faster than in a standard matter-dominated era. Moreover, if the dark energy
couples only to dark matter and not to baryons, as requested by the constraints imposed by local gravity
measurements, the baryon fluctuations develop a constant, scale-independent, large-scale bias which is in
principle directly observable. We find that a lower limit to the baryon biz9.5 requires the total effective
parameter of state/,=1+ p/p to be larger than 0.6 while a limk>0.73 would rule out the model.
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I. INTRODUCTION of state. The main motivation to consider a stationary dy-
namics is that it would solve the cosmic coincidence problem
The epoch of acceleration which the universe seems to bg] of the near equivalence at the present of the dark energy
experiencing 1] is commonly regarded as a barren groundand dark matter densiti¢8,4,7]. The stationarity in fact en-
for what concerns structure formation. In fact, during an ac-sures that the two components have an identical scaling with
celerated expansion gravity is unable to win over the globatime, at least from some time onward, regardless of the ini-
expansion and, asymptotically, the perturbations stop growtial conditions. Further theoretical motivations for coupled
ing. Mathematically, this is seen immediately from the equa-dark energy have been put forward in Rff].
tion governing the evolution of the perturbations in the sub- As it will be shown below, the coupling has three distinct,
horizon approximation in a flat matter-dominated universe: but correlated, effects on E¢{): first, as mentioned, it gives
a constant non-zerf . in the accelerated regime; second, it
adds to the “friction” (1+H’/H) &, an extra term which, in
general, may be either positive or negative; third, it adds to
the dynamical term—3Q .5, a negative contribution that
whereH =d log a/dr is the Hubble constant in a conformally enhances the gravity pull.

H} , 3
1+ H Op— EQC‘SCZO (1)

S+

flat FRW metricds®=a*(—d >+ §;dx'dx), the subscript The dark energy coupling is a new interaction that always
stands for cold dark matt¢here we neglect the barygrend  adds to gravitysee e.g[2,10]). The coupling to the baryons
the prime represents derivation with respectde-loga. s strongly constrained by the local gravity measurements

When the dark energy field responsible for the acceleratiof11], so that we assume for simplicity that the baryons are in
becomes dominari? . tends to zero and the dominant solu- fact not explicitly coupled to the dark energy as suggested in
tion of Eq. (1) becomess.~ const. Only if gravity can over- [12] and, in the context of dark energy, ih3,7] (of course
come the expansion the fluctuations are able to grow. It apthere remains the gravitational couplingThis species-
pears then that to escape the sterility of the acceleratedependent couplingreaks the equivalence principle, but in a
regime it is necessary to prevent the vanishingef way that is locally unobservable. However, we show that
As it has been shown in Rdi2], an epoch of acceleration there is an effect which is observable on astrophysical scales
with a non-vanishingf}, can be realized by coupling dark and that may be employed to put a severe constraint on the
matter to dark energy. In fact, a dark energy scalar figld model. In fact, the baryon perturbations grow in the linear
governed by arexponentialpotential linearly coupled to regime with a constant, scale-independent, large-scale bias
dark matter yields, in a certain region of the parameter spacayith respect to the dark matter perturbations, that is in prin-
an accelerated expansion with a constant retié() , and a  ciple observable. Interestingly, we find that all the acceler-
constant parameter of state,, referred to as a stationary ated models requird<1 i.e. baryons less clustered than
accelerated era. Similar models have been discusg&d4h  dark matter(sometimes denotes antibjassuch abaryon
In [5] we showed that in fact the conditions of constédyy  biaswould be a direct signature of an explicit dark matter—
andw,, uniquely determine the potential and the coupling ofdark energy interaction, well distinguishable from most other
the dark energy field. In this sense, the model we discuskydrodynamical mechanisms of biesee e.g[15]).
below is the simplest stationary model: any other one must
include at least another parameter to modulate the parameter Il. BACKGROUND EQUATIONS
Consider three components, a scalar figldbaryons and
*Email address: amendola@coma.mporzio.astro.it CDM described by the energy-momentum tensofs ),
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TABLE I. Critical points.

Point X y v Q, p We Stability Acceleration
2
a W © 0 1 3 2u 3 <3
-2 1-— = 5 < ps <= H
3 9 w 9 + \/E
be 3 9-9 0 9 E(1 E) K B>0u>p, n<2p
2tB)  Zu+pl aprp? 3 nEp
by _3 3 1- 9 9 £ 1 B<0 >i never
2/.L 2| /.L| 2/‘/2 21“'2 Ll \/E
2
Ce 2B 0 0 a2 6 + a5 unstableV u 8 never
45°+9 9
d -1 0 0 1 1/3 2 unstabl¥ w8 never
e +1 0 0 1 1/3 2 unstabl¥ u B never
fo 0 0 1 0 2/3 1 unstabl¥ w8 never

the conservation of their sum, so that it is possible to con8=ux=0 we reduce to the standard cosmological constant

sider a coupling such that, for instance, case, while for3=0 we recover the Ferreira and Joyce
model[16]. As shown in Ref[2], the coupling we assume
Tl;((ﬁ);,,,,:\/%’(ﬁ-r(c)(b;y; here can be derived by a conformal transformation of a
Brans-Dicke model, which automatically leaves the radiation
T4 n= —N2/3kBT ¢ .., uncoupled.

The systeni?) is best studied in the new variables3,17]

whereT is the trace of the CDM energy-momentum tensorx= x¢'//6, y=(xa/H)U/3, andv = (xa/H)/p,/3. Then
and k>=8xG, while the baryons are assumed uncoupledwe obtain

Th):,=0 because local gravity constraints indicate a
baryon couplnjgeb<_0 01[2,10,11. Let us derive the pack— X' =— 2 (3=3x%+3y?)x— uy’+ B(1-x>—y’—v?),
ground equations in the flat conformal FRW metric. The
equations for this model have been already describg¢8]in , .
inqwhich a similar modelbut with a variable couplingwas y'=pxy+ 3y(3+3x°-3y?), )
studied. Here we summarize their properties, restricting our-
selves to the case in which radiation has already redshifted v'=30(3x*-3y?).
away. The conservation equations for the figidcold dark _ ) ]
matter(subscriptc), and baryongsubscriptb), plus the Ein- The CDM energy density parameter Is ObVIOUSﬂ% 1
stein equation, are _XZ_yZ_U2 while we also haVe\(), _X +y and Qb
. The system is subject to the cond|t|(xﬁ+y +v?
<1 The critical points of systeit8) are Ilsted in Table I. We
¢'+a’U 4=—\2/3cpa’p., denoted withwe=1+ po(/pror= 1+ Xx>—y? the total param-
eter of state. On ?II critical points the scale factor expansion
, _ ' is given bya~ 7"1"P=tP, where p=2/(3w,), while each
pet3pe=\2MBpcd, ,  component scales @ Ve, In the table we also denotegl
/ _ 2 =48%+4Bu+ 18, and we used the subscrifts to denote
Pot3pp=0 the existence of bar i i
yons or matter, respectively, beside dark
energy. In the same table we report the conditions of stability
-0 and acceleration of the critical points, denotipg =(— 8
+ 18+ B?) /2.

As it can be seen, the attractarcan be accelerated but
whereU(¢)=Uqe '?**% The couplings can be seen as Q.—0, so that structure cannot grow, as in all models stud-
the relative strength of the dark matter—dark energy interacied so far. Therefore, from now on we focus our attention on
tion with respect to the gravitational force. Depending on thethe global attractob., the only critical point that may be
theoretical interpretation, the slope can be seen as a pure stationary(i.e. {1 and, finite and constantand acceler-
phenomenological parameter or to be linked to the number ddited. We assume then that the universe is evolving along the
extra dimensions or to the dilatonic loop correcti¢ds The  stationary attractor since some epoch in the past and focus
only parameters of our model are th@rand x. (the constant only on the properties that do not depend on the previous,
U, can always be rescaled away by a redefinitio@df For  unknown, cosmic history. 115] we have shown that the
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!

1+

stationary epoch cannot extend arbitrarily far into the past:

the question to exactly how far is an important one and will O+
be discussed in another wdik4]. On the stationary attractor

the two parameterg and . are uniquely fixed by the ob- Equation(11) corrects the equation given in RgL3], which
served amount of). and by the present acceleration param-had a wrong sigrithe error gives only a minor effect for the
eter [or equivalently bywe=u/(n+B)]. For instancef).  small B considered in those paper$n Eq. (11) the differ-

3
Sh= 5 (8:c+ 5p0p)=0. (12

=0.20 andw,=0.23 givesu=3 andpB=10. ences with respect to E¢l) that we mentioned in the Intro-
duction appear clearly: the friction term is modified and the
Ill. PERTURBATION EQUATIONS dynamical termy()., which can be much larger than unity

o i ) due to the extra pull of the new interaction, drives the growth
Definining the perturbation variables=dp/p, (V6/x)¢  of perturbation even in presence of an accelerated expansion.

=0¢, OH=ik'su;/a, whereu; is the matter peculiar veloc- o the stationary attractét, —0 and Eqs(11) and(12) can
ity, the following conservation equations for CDM, baryons jyq \written as

and scalar field in the synchronous gauge for the wave num-

berk are derived: S+ L (4—3we—4BX) 8.~ 2 y0:5,=0
r_ _1lpnr !
0= =0 2N =2p¢", “) S+ 1 (4—3wg) 5, 2 08,=0
) ! k2 wherex,w, and (). are given in Table | as functions of the
Oc=—\ 1+ |0c+2B| - mﬁﬁ' OcX |, (®)  fundamental parameteys, 3 for any critical point. The so-
lutions ares,=a"+and 5,=ba™* where
r__ _ 1
b= 0p=2h", © M. = 1 [—4+3we+4Bx=A] (13)
H!
o =1+ W) 6. @) - =30/(3yQc+4Bxm. ) (14
where A2=[24yQ .+ (— 4+ 3w,+48x)%]. The constanb
H’ k2 1 ) =6,/6.=b, is the bias factor of the growing solutiam
o2t <P'+m¢+ ' X+2u%y%e=pB0cS. =m,. The scalar field soluton is ¢

® ~(HoaP~VP/k)25,(B0+mbX). For subhorizon wave-
lengthse (which is proportional t@pq?/pd,) is always much

Moreover, we obtain, for the synchronous metric perturbaSmaller thand., 5, at the present timealthough it could

tion variableh, outgrow the matter perturbations in the futurepif1).

The solutionan.. ,b.. apply to all the critical solutions of

H’ 5 Table I (for Q#0 the solution can be further generalizeld
h'=—|1+ 5 /h" —2(12¢'x=6uy"¢) is interesting to observe that for,3>1 the growth expo-
nentm, diverges asuB/(u+ B): the gravitational instabil-
+3(8Qc+ Q). (99 ity becomes infinitely strong. Let us now focus on the sta-
tionary attractorb.. For 3=0 we recover the lawn, =
Now, deriving thed; equation we obtain [—1%(240Q.+1)¥3] that holds in the uncoupled exponen-
) 42 3 3 tial cas€]16]. Four crucial properties of the solutions will be
" ) relevant for what follows: first, the perturbations grdie.
| 1+ —2px | oct (?_ 1>§5°Q°_ 2% m>0) for all the parameters that make the stationary attrac-

tor stable; second, the baryons are antibiasedb<1) for
the parameters that give acceleration; third, inkkeH limit
(and in the linear regime the bias factor is scale indepen-

) (10  dentand constant in time; and fourth, the bias is independent
of the initial conditions. Numerical integrations of the full set
of equationg4)—(9) that confirm and illustrate the dynamics

For subhorizon scales we can take the liklit>1. In Eq.  are shown in Fig. 1. Notice that, in the future, the perturba-

(8) this amounts to neglecting the derivatives¢fand the  tions will cross out the horizon because of the acceleration,

potential term u?y?p, which gives X%p+H?h'x  so that the subhorizon regime in which our solutions are

~2BH2Q8.. Substituting in Eq(10) and neglecting again valid will not hold indefinitely.

¢',¢" and the potential term, we obtain The species-dependent coupling generates a biasing be-

tween the baryon and the dark matter distributions. In con-

=—6oyu+(12+48%)¢'x+483
k2

X|5¢'+—ot Eh’x+,u,2y2(p
2 H?2 2

, H' , 3 3 trast, the bias often discussed in literature concerns the dis-
dc+ 1+W_23X)50_575°Q°_§5b9b_0’ 1D yibution only of the very small fraction of baryor48]
clustered in luminous bodies. A measure of the biasing of the
wherey=1+4p?/3, and similarly fors, total baryon distributions is possible in principle but is still
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FIG. 1. Numerical evolution of the density contrast for a FIG. 2. Constraints on the stationary model: below the horizon-

100 Mpch perturbation of dark mattgcontinuous lines baryons _tal line the expansion is accelerated; in th_e Iight gray re_gipn the bias

(dashed lines and scalar field(dotted lines. Thick lines: B, IS between 0.5 and 1; between the vertical lifk is within the

=1.5,3 (or Q,=0.55w,=0.67), resulting in a bia~0.3. Thin observed range. The dark gray region is the surviving parameter

lines: B,u=0.25,3 (or Q,=0.5w,=0.92): here the dark matter SPace-

and baryon curves are almost indistinguishable sibeel. We

adopted an arbitrary overall normalization for each model. dence problem would be ruled out. If one considers the
tighter limit w,<<0.6 for the supernovae la given at two

largely undetermined, not the least because the galaxy biasigma in Ref[4] for stationary attractors the allowed region

ing depends on luminosity and typ&9]. A first guess could would be further reduced, possibly requiring a lovweto

be that the bulk of baryons follow the distribution of low- Survive.

luminosity objects, since they contain most of the mase

e.g. Ref.[20]). Very recently it was found21] that in the IV. CONCLUSIONS
2dFGRS catalog the average galaxy bias is close to unity,
while galaxies withL=L, are compatible with antibiash( We have shown that if the universe is experiencing a sta-

=0.92+0.11) and galaxies with<L, even more so. More- tionary epoch capable of solving the cosmic coincidence
over, quite remarkably, Verde et gR1] detected a scale- problem then two novel features arise in the standard picture
independent bias from 13 to 66 Mpc, scales at which of structure formation. First, a non-zefh, during the accel-
our linear calculations should hold quite well. Similarly, in erated regime allows structure to grow; second, since the
Ref.[22] it is shown that galaxies from the IRAS-PSCz sur- baryons have to be uncoupléar very weakly coupley the
vey are also compatible with an antibids=0.8+0.2, are- growth is species-dependent, resulting in a constant baryon
sult that agrees with other estimatiof@3]. Inclusion of  bias independent of initial conditions. Although there are no
baryons belonging to weakly clustered objects like Lynaan- direct observations of the baryon bias, the trend is that more
clouds can only lower the total baryon bigsf]. If anything, = massive objects are more biased with respect to the dark
therefore, current estimates indichte 1 for the total baryon matter distribution, so probably the total baryon bias is lower
distribution. To be conservative, here we consider only verythan the average galaxy bias. If this is correct, theran be
broad limits tob: since the acceleration requires antibias, wesmaller than unity, as we find to occur for all accelerated
assume 0.5b<1. models. We find that the bias strongly constrains the exis-
In Fig. 2 we show all the various constraints. To summa-lence of a stationary epoch. Puttitig~0.5, and requiring
rize, they areia) the present dark energy density €8,  0.6<(,<0.8, we get that the two free parametgrsand 8
<0.8; (b) the present acceleration3t /2, implying w,  are fixed to a precision of 20% roughly, while the effective
<2/3); (c) the baryon bias $b>0.5. On the stationary at- parameter of states is larger than 0.59. A higher bias or a
tractor there is a mapping between the fundamental paraniower w, can easily result in ruling out this class of station-
etersu, 8 and the observables,, (4, so one can plot the ary models. On the other hand, the observation of a constant,
constraints on either pair of variables. It turns out that thesécale-independent, large-scale antibias would constitute a
conditions confine the parameters in the small dark shadesfrong indication in favor of a dark matter—dark energy cou-

area, corresponding to pling.
The growth ratam is another observable quantity that can
wee (0.59,0.67, or Be(1.1,1.4,1<(2.0,2.6. be employed to test the stationarity, for instance estimating

(15)  the evolution of clustering with redshift. So far the uncertain-
ties of this method are overwhelmirigee e.g[25]) but fu-
Therefore, the parameters of the stationary attractor are dédre data should dramatically improve its validity. The com-
termined to within 20% roughly. It is actually remarkable bined test ob andmwill be a very powerful test for the dark
that an allowed region exists at all. The growth rates  matter—dark energy interaction.
approximately 0.5 in this region. F@r>0.73 the possibility Although we investigated only the simplest stationary
of a stationary accelerated attractor able to solve the coincimodel, in whichw, is constant(a reasonable assumption
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over a small redshift rangeit is reasonable to expect that a species-dependent coupling is requested to provide stationar-
similar baryon bias develops whenever there is a speciesty without conflicting with local gravity experiments. There-
dependent coupling; its observation would therefore constifore, we conjecture that the baryon bias is a strong test for all
tute a test of the equivalence principle. At the same time, thetationary dynamics.
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