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Brane world effective action at low energies and AdSÕCFT correspondence
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A low energy iteration scheme to study nonlinear gravity in the brane world is developed. As a result, we
obtain the brane world effective action at low energies. The relation between the geometrical approach and the
approach using the AdS/CFT correspondence is also clarified. In particular, we findgeneralized dark radiation
as homogeneous solutions in our iteration scheme. Moreover, the precise correspondence between the bulk
geometry and the brane effective action is established, which gives a holographic view of the brane world.
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I. INTRODUCTION

The brane world scenario has been the subject of in
sive investigation for the past few years. In particular, R
dall and Sundrum proposed a simple model where the fo
dimensional brane with tensions is embedded in the five
dimensional asymptotically anti–de Sitter~AdS! bulk with a
curvature scalel. The model is described by the action

S5
1

2k2E d5xA2gS R1
12

l 2 D2sE d4xA2h

1E d4xA2hLmatter, ~1!

whereR and k2 are the scalar curvature and gravitation
constant in five dimensions, respectively. We imposeZ2
symmetry on this spacetime, with the brane at the fixed p
(y50 in the coordinate system used later!. Throughout this
paper,hmn represents the induced metric on the brane. T
showed that, in spite of the noncompact extra dimension,
gravity is localized on the brane at the linearized level@1–3#.
Consequently, the conventional linearized Einstein equa
approximately holds at scales large compared with the
vature scalel. The cosmology in the context of this mod
has also been investigated enthusiastically@4–19#. It turns
out that there is a nonconventional quadratic term of
energy density at high energies and, even in the low ene
regime, there exists dark radiation caused by the black h
in the bulk. This dark radiation component is also found
the cosmological perturbations@20,21#.

It is desirable to extend this understanding of gravity
the brane world to general nonlinear cases. In order to
derstand nonlinear gravity in the brane world scenario, S
romizuet al.proposed an elegant geometrical approach@22#.
They obtained the ‘‘effective’’ four-dimensional equations

Gmn
(4)58pGNTmn1k4pmn2Emn , ~2!
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whereTmn is the energy-momentum tensor of matter,Emn is
the projection of the Weyl tensorCymynuy50 , GN denotes
Newton’s constant, and

pmn52
1

4
Tm

l Tln1
1

12
TTmn

1
1

8
gmnS TabTab2

1

3
T2D . ~3!

Here the relations

k2s5
6

l
,

k2

l
58pGN ~4!

have been assumed. From their effective equation of mot
one can see the ‘‘electric’’ part of the Weyl tensorE n

m which
characterizes the bulk geometry effects on the brane dyn
ics. Conversely, the matter on the brane changes the
geometry, as can be seen from the equation¹mE n

m

5k4¹mp n
m derived through the Bianchi identity. However,

should be noted that it is by no means a closed system
equations. We need to solve the bulk geometry to determ
Emn completely.

Unfortunately, it is a formidable task to solve the fiv
dimensional Einstein equation exactly. However, notice t
typically the length scale of the internal space isl
!0.1 mm. On the other hand, the usual astrophysical
cosmological phenomena take place at a scale larger
this scale. Then we need only a low energy effective the
to analyze a variety of problems, for example, the format
of the black hole, the propagation of the gravitational wa
the evolution of the cosmological perturbation, and so on
should be stressed that low energy does not necessarily
ply weak gravity.

It has been suggested that gravity on the brane at
energies can be understood through the AdS conformal fi
©2002 The American Physical Society26-1
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theory ~CFT! correspondence@23#. From the correspon
dence, one can guess the effective equations of motion on
brane as

Gmn
(4)58pGN~Tmn1Tmn

CFT!1$R2 terms%, ~5!

where theR2 terms represent the higher order curvatu
terms andTCFT denotes the energy-momentum tensor of
cutoff version of conformal field theory. However, no on
knows what is the cutoff CFT. Moreover, it should be not
that the AdS/CFT correspondence is a specific conject
Indeed, originally, Maldacena conjectured that the superg
ity on AdS53S5 is dual to the four-dimensionalN54 super
Yang-Mills theory@24#. We should be careful not to use suc
a conjecture thoughtlessly. Nevertheless, the AdS/CFT co
spondence seems to be related to the brane world mod
has been demonstrated by several people@25–29#.

Since both the geometrical and AdS/CFT approac
seem to have their own merit, it would be beneficial to u
derstand the mutual relationship. Recently, Shiromizu
Ida tried to understand the AdS/CFT correspondence f
the geometrical point of view@30#. They argued thatp m

m

corresponds to the trace anomaly of the cutoff CFT on
brane. However, this result is rather paradoxical beca
there exists no trace anomaly in an odd dimensional br
althoughp m

m exists even in that case. Thus, the more prec
relation between the geometrical and the AdS/CFT
proaches remains to be understood.

In this paper, we derive the effective four-dimension
theory without using any concept of the AdS/CFT corresp
dencea priori. Thus, we avoid using the vague concept
cutoff CFT. To solve the five-dimensional equations of m
tion, we use a low energy iteration scheme. In particular,
impose the Dirichlet boundary condition at the brane po
tion, in contrast to the AdS/CFT approach where the Diric
let boundary condition is imposed at infinity. We also co
sider the ‘‘constant’’ of the integration, i.e., homogeneo
solutions, carefully. As a consequence, we show that the d
radiation can be understood from the holographic point
view. Moreover, the relation between the geometrical a
AdS/CFT approaches is uncovered. The correspondence
tween the bulk geometry and the brane effective action
also explicitly found.

This paper is organized as follows. In Sec. II, we deve
the iteration scheme to solve the Einstein equations at
energies. In Sec. III, we derive the brane effective act
from the junction condition. We see the effective equat
does not reduce to the conventional Einstein equation eve
the low energy regime. This is due to the generalized d
radiation found in this paper. It is also found that the non
cal part of the effective equation is represented by
energy-momentum tensor with a trace part coinciding w
the trace anomaly of CFT. Section IV is devoted to the c
clusion. In the Appendix, we analyze th
(d11)-dimensional case because the result is qualitativ
different from the five-dimensional case.
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II. LOW ENERGY ITERATION SCHEME

In the Gaussian normal coordinate system, the geom
of the brane world is described by

ds25dy21gmn~y,xm!dxmdxn. ~6!

Note that the brane is located aty50 in this coordinate
system. Then, the five-dimensional Einstein equation in
bulk becomes

K n,y
m 2KK n

m 1 R
~4!

n
m

52
4

l 2 dn
m1k2S 1

3
sdn

m1T n
m 2

1

3
dn

mTD d~y!,

~7!

K ,y2KabKab52
4

l 22
k2

3
~24s1T!d~y!, ~8!

¹nKm
n2¹mK50, ~9!

whereR n
m (4) is the curvature on the brane and¹m denotes

the covariant derivative with respect to the metricgmn . One
can read off the junction condition from the above equatio
as

@Kn
m2dn

mK#uy505
k2

2
~2sdn

m1Tn
m!. ~10!

Recall that we are considering theZ2 symmetric spacetime
Decomposing the extrinsic curvature into the traceless
and the trace part

Kmn5Smn1
1

4
hmnK, K52

]

]y
logA2g, ~11!

we obtain the basic equations which hold in the bulk:

S n,y
m 2KS n

m 52F R
~4!

n
m 2

1

4
d n

m R
~4!G , ~12!

3

4
K22S b

a S a
b 5F R

~4!G1 12

l 2 , ~13!

K ,y2
1

4
K22SabSab52

4

l 2 , ~14!

¹lS m
l 2

3

4
¹mK50. ~15!

The problem now is separated into two parts. First,
will solve the bulk equations of motion with the Dirichle
boundary condition at the brane,gmn(y50,xm)5hmn(xm).
After that, the junction condition will be imposed at th
brane. As it is the condition for the induced metrichmn , it is
naturally interpreted as the effective equations of motion
gravity on the brane.

Along the normal coordinatey, the metric varies with a
characteristic length scalel; gmn,y;gmn / l . Denote the char-
6-2
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acteristic length scale of the curvature fluctuation on
brane asL; then we haveR;gmn /L2. For the reader’s refer
ence, let us takel 51 mm, for example. Then, the relation
~4! give the scale,k25(108 GeV)23 and s51 TeV4. In
this paper, we will consider the low energy regime in t
sense that the energy density of matter,r, on the brane is
smaller than the brane tension, i.e.,r/s!1. In this regime, a
simple dimensional analysis

r

s
;

l ~k2/ l !r

k2s
;S l

L D 2

!1 ~16!

implies that the curvature on the brane can be negle
compared with the extrinsic curvature at low energies. He
we have used the relations~4! and Einstein’s equation on th
brane,R;gmn /L2;GNr. Thus, the anti–Newtonian or gra
dient expansion method used in the cosmological contex
applicable to our problem@31–34#. The iteration scheme
consists in writing the metricgmn as a sum of local tensor
built out of the induced metric on the brane, the number
gradients increasing with the order. Hence, we will seek
metric as a perturbative series

gmn~y,xm!5a2~y!@hmn~xm!1gmn
(1)~y,xm!

1gmn
(2)~y,xm!1•••#, ~17!

gmn
( i ) ~y50,xm!50, ~18!

wherea2(y)5exp(22y/l) is extracted for reasons explaine
later and we put the Dirichlet boundary conditiongmn(y
50,x)5hmn(x) at the brane. Other quantities are also e
panded as

K n
m 5K n

(0)m 1K n
(1)m 1K n

(2)m 1•••. ~19!

Our scheme is different from the calculation usually p
formed in the AdS/CFT correspondence in that the Dirich
boundary condition is imposed not at infinity but at the fin
point y50, the location of the brane. Furthermore, we ca
fully keep the constants of integration, i.e., homogene
solutions. These homogeneous solutions are ignored in
calculation of AdS/CFT correspondence. However, they p
an important role in the brane world.

A. Zeroth order

At zeroth order, we can neglect the curvature term. Th
we have

S n,y
(0)m 2K (0)S n

(0)m 50, ~20!

3

4
K (0)22S b

(0)a S a
(0)b 5

12

l 2 , ~21!

K ,y
(0)2

1

4
K (0)22S (0)abSab

(0)52
4

l 2 , ~22!

¹lS m
(0)l 2

3

4
¹mK (0)50. ~23!
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Equation~20! can be readily integrated into

S n
(0)m 5

C n
m ~xm!

A2g
, C m

m 50, ~24!

whereC n
m is the integration ‘‘constant.’’ Equation~23! also

requiresC num
m 50. It represents a radiationlike fluid on th

brane. Although this deserves further investigation, the c
culation is complicated. Furthermore, this term is not r
evant to our realistic universe because it represents a stro
anisotropic universe. Indeed, as we see later, this term m
vanish in order to satisfy the junction condition. Therefo
we simply putC n

m 50, hereafter. Now, it is easy to solve th
remaining equations. The result is

K (0)5
4

l
. ~25!

Using the definition of the extrinsic curvature

Kmn
(0)52

1

2

]

]y
gmn

(0) , ~26!

we get the zeroth order metric as

ds25dy21a2~y!hmn~xm!dxmdxn, a~y!5e22y/ l ,
~27!

where the tensorhmn is the induced metric on the brane.

B. First order

The next order solutions are obtained by taking into
count the terms neglected at zeroth order. At first order, E
~12!–~15! become

S n,y
(1)m 2

4

l
S n

(1)m 52F R
~4!

n
m 2

1

4
dn

m R
~4!G (1)

, ~28!

6

l
K (1)5F R

~4!G ~1!

, ~29!

K ,y
(1)2

2

l
K (1)50, ~30!

Sm
(1)

ul
l 2

3

4
K um

(1)50, ~31!

where the superscript (1) represents the order of the der
tive expansion andu denotes the covariant derivative wit
respect to the metrichmn . Here,@Rn

m# (1) means that the cur
vature is approximated by taking the Ricci tensor ofa2hmn in
place ofR n

(4)m . It is also convenient to write it in terms o
the Ricci tensor ofhmn , denotedRn

m(h).
Substituting the zeroth order metric intoR(4), we obtain

K (1)5
l

6a2 R~h!. ~32!
6-3
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Hereafter, we omit the argument of the curvature for simp
ity. Simple integration of Eq.~28! also gives the traceles
part of the extrinsic curvature as

Sn
(1)m5

l

2a2S R n
m 2

1

4
dn

mRD1
x n

m ~x!

a4
, ~33!

where the homogeneous solution satisfies the constra
x m

m 50 andx num
m 50. As we see later, this term correspon

to dark radiation at this order. The metric can be obtained

gmn
(1)52

l 2

2 S 1

a2 21D S Rmn2
1

6
hmnRD2

l

2 S 1

a4 21Dxmn ,

~34!

where we have imposed the boundary conditiongmn
(1)(y

50,xm)50. This x field is essential to understanding th
origin of the dark radiation from the holographic point
view.

C. Second order

In this subsection, we do not include thex field because it
complicates the equations. This is a consistent trunca
procedure. Of course, we have calculated the second o
solutions with the contribution of thex field. They include
terms such asx n

m x m
n , etc.

At second order, the basic equations become

S n,y
(2)m 2

4

l
S n

(2)m 52F R
~4!

n
m 2

1

4
dn

m R
~4!G (2)

1K (1)S n
(1)m ,

~35!

K (2)5
l

6
F2

3

4
K (1)21S b

(1)a S a
(1)b

1F R
(4)G (2)G , ~36!

K ,y
(2)2

2

l
K (2)5

1

4
K (1)21S (1)abSab

(1) , ~37!

Sm
(2)

ul
l 2

3

4
K um

(2)1Gla
(1)aSm

(1)l2Gam
(1)lS l

a 50. ~38!

Substituting the solution up to first order into the Ric
tensor and picking up the second order quantities, we ob

F R
~4!

n
m 2

1

4
dn

m R
(4)G (2)

5
l 2

2 S 1

a4 2
1

a2D FR a
m R n

a 2
1

6
RR n

m

2
1

4
dn

mS R b
a R a

b 2
1

6
R2D

2
1

2
~R una

am 1R n
a um

ua!1
1

3
R un

um

1
1

2
hR n

m 2
1

12
dn

mhRG , ~39!
04352
-

ts

s

n
er

in

F R
(4)G (2)

5
l 2

2 S 1

a4 2
1

a2D FR b
a R a

b 2
1

6
R2G , ~40!

where we have used the formuladRmn51/2@dg muna
a

1dg muna
a 2dgumn2dgmnua

ua#. Using the above formula, the
trace part is deduced algebraically as

K (2)5
l 3

8a4 S R b
a R a

b 2
2

9
R2D2

l 3

12a2S R b
a R a

b 2
1

6
R2D .

~41!

By integrating the equation for the traceless part, we hav

S n
(2)m 52

l 2

2 S y

a41
l

2a2DS n
m 2

l 3

24a2 S RR n
m 2

1

4
dn

mR2D
1

l 3

a4 t n
m , ~42!

where we have defined the quantity

S n
m 5R a

m R n
a 2

1

3
RR n

m 2
1

4
dn

mS R b
a R a

b 2
1

3
R2D

2
1

2 S R una
am 1R n

a um
ua2

2

3
R un

um 2hR n
m 1

1

6
dn

mhRD ,

~43!

which is transverse and traceless,

S num
m 50, S m

m 50. ~44!

It is also useful to notice that this tensor can be derived fr

dE d4xA2h
1

2 FRabRab2
1

3
R2G5E d4xA2hSmndgmn.

~45!

The homogeneous solutiont n
m must be determined so tha

Eq. ~38! holds. To be more precise, we must solve the c
straint equation

t num
m 2

1

16
R b

a R aun
b 1

1

48
RRun2

1

24
RulR n

l 50. ~46!

As one can see immediately, there are ambiguities in in
grating this equation. Indeed, there are two types of covar
local tensor whose divergences vanish:

H n
m 5R a

m R n
a 2

1

4
dn

m R b
a R a

b

2
1

2 S R una
am 1Ra

n
um

ua2hR n
m 2

1

2
dn

mhRD ,

~47!

K n
m 5RR n

m 2
1

4
dn

mR22R un
um 1dn

mhR. ~48!

These terms come from the variation of the action
6-4
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dE d4xA2h
1

2
RabRab5E d4xA2hH mndgmn, ~49!

dE d4xA2h
1

2
R25E d4xA2hK mndgmn, ~50!

respectively. Notice thatS n
m 5H n

m 2K n
m /3. Thanks to the

Gauss-Bonnet topological invariant, we do not need to c
sider the Riemann squared term. In addition to these lo
tensors, we have to take into account the nonlocal tensort n

m

with the propertyt num
m 50. Thus, we get

t n
m 5

1

32
dn

mS R b
a R a

b 2
1

3
R2D

1
1

24S RR n
m 2

1

4
dn

mR2D1t n
m 1aS n

m 1
b

3
K n

m , ~51!

where the constantsa and b represents the freedom of th
gravitational wave in the bulk. The conditiont m

m 50 leads to

t m
m 52

1

8 S R b
a R a

b 2
1

3
R2D2bhR. ~52!

The quantityt n
m cannot be written in the local covarian

form. Hence, this part is interpreted as the CFT in the con
of the AdS/CFT correspondence.

D. nth order

In principle, we can continue our analysis up to a desi
order using the following recursive formulas:

S n
(n)m 52

1

a4E dya4H F R
~4!

n
m 2

1

4
d n

m R
(4)G (n)

2 (
p51

n21

K (p)S~n2p!
n
mJ , ~53!

K (n)5
l

6 (
p51

n21 F2
3

4
K (p)K (n2p)1S b

(p)a S (n2p)
a
b

1F R
(4)G (n)G , ~54!

K ,y
(n)2

2

l
K (n)5 (

p51

n21 H 1

4
K (p)K (n2p)1S (p)abSab

(n2p)J ,

~55!

Sm
(n) l

ul2
3

4
K um

(n)1 (
p51

n21

$Gla
(p)aS (n2p)

m
l

2Gam
(p)lS (n2p)

l
a%50. ~56!

As one can see from Eq.~53!, homogeneous solutions wi
appear at each order. However, we note that the sub
discussed in the second order calculations never occurs in
higher order calculations. The existence of the infinite se
04352
-
al

xt

d

ty
he
s

is a manifestation of the nonlocality of the brane mod
Therefore, we have two kinds of nonlocality on the bran
One is the nonlocality associated with homogeneous s
tions and the other is the infinite series which is the reflect
of the extent in they direction.

III. EFFECTIVE EQUATIONS AND EFFECTIVE ACTION

Now consider the consequences of the junction condit
~10!. The findings in this section are the following. We fin
the generalized dark radiationx n

m . The quadratic correction
p n

m is identified withP n
m which is the local tensor define

later. The relation between the geometrical approach and
AdS/CFT approach is revealed. The brane effective actio
obtained and the corresponding bulk geometry is given
plicitly.

A. Zeroth order

From the zeroth order solution, we obtain

@K n
(0)m 2dn

mK (0)#uy5052
3

l
dn

m52
k2

2
sdn

m . ~57!

Then we get the well known relationk2s56/l . Here, we
will assume that this relation holds exactly. It is apparent t
C n

m is not allowed to exist.

B. First order

Let us focus on the role ofx n
m in this part. At this order,

the junction condition can be written as

@K n
(1)m 2dn

mK (1)#uy505
l

2 S R n
m 2

1

2
dn

mRD1x n
m 5

k2

2
T n

m .

~58!

Using the solutions obtained in the previous section and
formula

E n
m 5K n,y

m 2dn
mK ,y2K l

m K n
l 1dn

mK b
a K a

b 2
3

l 2 dn
m , ~59!

we calculate the projective Weyl tensor asE n
(1)m 52/lx n

m .
Then we obtain the effective Einstein equation

R n
m 2

1

2
dn

mR5
k2

l
T n

m 2E n
(1)m . ~60!

At this order, we do not have the conventional Einstein eq
tions. Recall that the dark radiation exists even in the l
energy regime. Indeed, the low energy effective Friedma
equation becomes

H25
8pGN

3
r1

C

a0~ t !4 , ~61!

wherea0(t), H, andC denote the scale factor on the bran
6-5
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the Hubble constant, and a constant, respectively. This e
tion can be obtained from Eq.~60! by imposing the maxima
symmetry on the spatial part of the brane world. Hence,
observe thatx n

m is the generalization of the dark radiatio
found in the cosmological context.

The conventional Einstein gravity can be recovered on
brane at this order when we adopt the boundary condition
which x n

m vanish.

C. Second order

In this subsection, we assumex n
m 50. Up to second or-

der, the junction condition gives

R n
m 2

1

2
dn

mR12l 2Ft n
m 1S a2

1

4DS n
m 1

b

3
K n

m G5
k2

l
T n

m .

~62!

Let us try to arrange the terms so as to reveal the geomet
meaning of the above equation. We can calculate the pro
tive Weyl tensor as

E n
(2)m 5 l 2FP n

m 12t n
m 12S a2

1

4DS n
m 1

2

3
bK n

m G .
~63!

Substituting this expression into Eq.~62! yields our main
result:

Gmn
(4)5

k2

l
Tmn1 l 2Pmn2Emn

(2) , ~64!

where

P n
m 52

1

4
R l

m R n
l 1

1

6
RR n

m 1
1

8
dn

mR b
a R a

b 2
1

16
d n

m R2.

~65!

Notice thatE n
m contains the nonlocal part and the free p

rametersa and b. On the other hand,P n
m is determined

locally. If we defineTmn
CFT522l 3/k2tmn , we can write
he
n
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Gmn
(4)58pGN~Tmn1Tmn

CFT!22l 2S a2
1

4DSmn2
2l 2

3
bKmn .

~66!

It is possible to use the result of CFT at this point. F
example, we can choose theN54 super Yang-Mills theory
as the conformal matter. In that case, we simply putb50.
This is the way the AdS/CFT correspondence comes into
brane world scenario. Thus we get an explicit relation b
tween the geometrical approach and the AdS/CFT appro
One can see the relationship in a different way. Within t
accuracy we are considering, we can getP n

m 5p n
m using the

lowest order equationR n
m 5k2/ l (T n

m 21/2dn
mT). Hence, we

can rewrite Eq.~64! as

Gmn
(4)58pGNTmn1k4pmn2Emn

(2) . ~67!

Now, the similarity between Eq.~2! and Eq.~67! is apparent.
However, we note that our Eq.~67! is a closed system o
equations provided that the specific conformal field theory
chosen.

Now we can read off the effective action as

Seff5
1

16pGN
E d4xA2hR1Smatter1SCFT

1

S a2
1

4D l 2

16pGN
E d4xA2hFRmnRmn2

1

3
R2G

1
b l 2

48pGN
E d4xA2hR2, ~68!

where we have used the relations~45!, ~49!, and~50! and we
denoted the nonlocal effective action constructed fromt n

m as
SCFT. This effective action corresponds to the bulk geome
given by the metric
gmn~y,xm!5a2Fhmn2
l 2

2 S 1

a2 21D S Rmn2
1

6
hmnR2D1

l 3

4 S y

a4 2
l

4a41
l

a2 2
3l

4 DSmn2
l 4

2 S 1

a4 21D
3S tmn1aSmn1

b

3
KmnD1

l 4

8 S 1

a4 21D S RmlR n
l 2

1

2
RRmn2

1

4
hmnR b

a R a
b 1

5

36
hmnR2D2

l 4

4 S 1

a2 21D
3S RmlR n

l 2
1

2
RRmn2

1

12
hmnR b

a R a
b 1

1

12
hmnR2D G . ~69!
lk
pro-
This gives the holographic view of the bulk geometry. T
bulk geometry can be reconstructed provided the additio
knowledge of the nonlocal componentt n

m and the constants

al
a andb is available. Both represent the effects of the bu
geometry, which is apparent because they appear in the
jective Weyl tensorE n

m .
6-6
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IV. CONCLUSION

We developed a low energy iteration scheme for solv
the equations of the brane world model. Using this form
ism, we explicitly identified the low energy equations of m
tion describing gravity on the brane. The result should
useful in the investigation of various phenomena occurr
in the brane world because it can treat nonlinear gravity
far asl 2R(h)!1.

Our work was motivated by two important approach
the geometric approach and the AdS/CFT approach. In f
one of the purposes of this work was to clarify the relati
between these approaches. In previous work, the t
anomaly of the CFT is identified withp m

m . This interpreta-
tion is rather paradoxical because, in the odd dimensio
brane, no trace anomaly exists althoughp m

m exists~see the
Appendix!. We clarified this point by calculating the Wey
tensor. It turned out that, irrespective of dimensions,p n

m

corresponds toP n
m at low energies. In the case of the fou

dimensional brane, the trace part ofP n
m accidentally coin-

cides with the trace anomaly of the CFT.
We found two kinds of nonlocality observed on the bran

One of them is encoded in the homogeneous solutions,
the other is found as an infinite series of the gradient exp
sion of our scheme. Thus even when we truncate the seri
the second order, the knowledge of the homogeneous s
tions is needed to solve the problem. Indeed, there are
homogeneous solutions because the system is described
second order differential equation. One is used to satisfy
Dirichlet boundary condition at the brane. The other appe
as the ‘‘dark’’ effects on the brane at each order of expans
in our scheme. At zeroth order,C n

m appears. However, thi
term must vanish, from consistency. It is at first order that
generalized dark radiation termx n

m appeared. This term re
duces to the dark radiation in the effective Friedmann eq
tion under the assumption of homogeneity. Note that it
possible to putx n

m 50 if one prefers. This can be achieve
by putting the black hole mass to zero in the cosmolog
case. As for the general cases, further consideration
needed. At second order, we deduced the nonlocal com
nent t n

m from the homogeneous solution. At this time, it
far from possible to putt n

m 50 without losing consistency
We must treat it as an integro-differential equation@35# or
coupled equations.

Needless to say, the ambiguity of the effective act
comes from the variety of the bulk geometry. We have giv
the explicit correspondence between the effective action
the bulk metric, which could give a holographic view of th
brane world. Of course, this ambiguity should be fixed
proper consideration of the boundary condition in the b
@36#. Once the boundary condition is determined, we c
attack various astrophysical and cosmological problems.

As an application of our results, it would be interesting
consider the nature of the gravitational wave in the bra
world. It is also important to investigate the quantum bra
world from this point of view. In particular, we will apply
our formalism to the inflation model driven by a bulk sca
field @37,38#. The analysis of the present paper can be
04352
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tended to the two brane system. In particular, the low ene
dynamics of the radion could be treated by means of
method@39#. We will also study more general models lik
the Horava-Witten model in the future.
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APPENDIX: „d¿1…-DIMENSIONAL RESULTS „dÅ4…

The qualitative consequences of the low energy expan
scheme depend on the dimensions. Hence, for completen
we investigated the (d11)-dimensional problem.

We obtain basic equations which hold in the bulk as f
lows:

S n,y
m 2KS n

m 52F R
~d!

n
m 2

1

d
dn

m R
(d)G , ~A1!

d21

d
K22S b

a S a
b 5R(d)1

d~d21!

l 2 , ~A2!

K ,y2
1

d
K22SabSab52

d

l 2 , ~A3!

¹lSm
l2

d21

d
¹mK50. ~A4!

Since the calculations are similar to those in thed54
case, we simply write down the results in the following su
sections.

1. Zeroth order

At the zeroth order, we have

K (0)5
d

l
. ~A5!

The zeroth order metric is given by

ds25dy21a2~y!hmn~xm!dxmdxn, a~y!5e22y/ l .
~A6!

2. First order

At first order, the solutions are

K (1)5
l

2~d21!a2 R~h!, ~A7!
6-7
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S n
(1)m 5

l

~d22!a2S R n
m 2

1

d
dn

mRD1
xn

m

ad ,

~A8!

where xn
m is a homogeneous solution which satisfiesx m

m

50 andx num
m 50. This corresponds to the dark radiation

this order. The metric can be deduced as
04352
t

gmn
(1)52

l 2

d22 S 1

a2 21D S Rmn2
1

2~d21!
hmnRD

2
2l

d S 1

ad 21Dxmn , ~A9!

where we have imposed the boundary conditiongmn
(1)(y

50,xm)50.
he case of
3. Second order

If we ignore thex field then we get the following results:

K (2)5
l 3

2~d22!2a4S R b
a R a

b 2
3d24

4~d21!2 R2D2
l 3

2~d21!~d22!a2S R b
a R a

b 2
1

2~d21!
R2D . ~A10!

S~2!
n
m5

l 3

~d22!~d24!a4FR a
m R n

a 2
1

d21
RR n

m 2
1

2
~R una

am 1Rn
a

ua
um !1

1

2
hR n

m 1
d

4~d21!
R u n

u m 2
1

4~d21!
dn

mhR

2
1

d
dn

mR b
a Ra

b1
1

d~d21!
dn

mR2G1
l 3

ad tn
m2

l 3

~d22!2a2FR a
m R n

a 2
1

2~d21!
RR n

m 2
1

2
~R una

am 1Rn ua
a um!

1
1

2
hR n

m 1
d

4~d21!
R un

um 2
1

4~d21!
dn

mhR2
1

d
dn

mR b
a R a

b 1
1

2d~d21!
dn

mR2G , ~A11!

where the homogeneous solutiont n
m satisfies the transverse and traceless conditions

t num
m 50, t m

m 50. ~A12!

This is the point where the dependence on the dimensions appears. We do not have a trace anomaly, in contrast to t
d54.

4. Effective equations and effective action

The consequences of the junction condition~10!, order by order, are the following. At zeroth order, we have

@Kn
(0)m2dn

mK (0)#uy5052
d21

l
52

k2

2
sdn

m . ~A13!

Thus, we get the relation,k2s52(d21)/l and assume that this relation holds exactly.
At first order, we obtain

@K n
(1)m 2dn

mK (1)#uy505
l

d22 S Rn
m2

1

2
dn

mRD1xn
m5

k2

2
Tn

m . ~A14!

The homogeneous solutionxmn is the generalized dark radiation. Supposing the relation 8pGN5(d22)k2/2l holds, then the
conventional Einstein equation can be recovered on the brane at this order when we putxmn50. This can be performed
without losing consistency.

Finally, up to second order, the junction condition gives
6-8
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l

d22 S R n
m 2

1

2
dn

mRD1
l 3

~d22!2~d24!F2R a
m R n

a 2
d

2~d21!
RR n

m 2~R una
am 1R n

a
ua
um !1hR n

m 1
d

2~d21!
R un

um

2
1

2~d21!
dn

mhR2
1

2
dn

mR b
a R a

b 1
d

8~d21!
dn

mR2G5
k2

2
T n

m . ~A15!

We calculate the projective Weyl tensor to find the geometrical meaning of the above equation as

E n
(2)m 5

dl2

~d22!2~d24!FR a
m R n

a 2
1

d21
RR n

m 2
d22

d
~R una

am 1Rnua
aum!1

d22

d
hR n

m 1
d22

2~d21!
R un

um

2
d22

2d~d21!
dn

mhR2
1

d
dn

mR b
a R a

b 1
1

d~d21!
dn

mR2G . ~A16!

Substituting this expression into Eq.~A15! yields our main result

Gmn
(4)5

~d22!k2

2l
Tmn1 l 2Pmn2Emn

(2) , ~A17!

where

P n
m 52

1

~d22!2FR l
m R n

l 2
d

2~d21!
RR n

m 2
1

2
dn

mR b
a R a

b 1
d12

8~d21!
d n

m R2G . ~A18!

Within the accuracy we are considering, using the lowest order equationR n
m 5k2/ l @(d22)/2T n

m 21/2dn
mT#, we get formally

the same result as that of Shiromizuet al.:

Gmn
(4)58pGNTmn1k4pmn2Emn

(2) , ~A19!

with

pmn52
1

4
Tm

l Tln1
1

4~d21!
TTmn1

1

8
gmnS TabTab2

1

d21
T2D . ~A20!

Thus, we have established the correspondence between the geometrical and AdS/CFT approaches in any dimensio
s.
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