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Brane world effective action at low energies and AdBCFT correspondence
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A low energy iteration scheme to study nonlinear gravity in the brane world is developed. As a result, we
obtain the brane world effective action at low energies. The relation between the geometrical approach and the
approach using the AdS/CFT correspondence is also clarified. In particular, wgefiedalized dark radiation
as homogeneous solutions in our iteration scheme. Moreover, the precise correspondence between the bulk
geometry and the brane effective action is established, which gives a holographic view of the brane world.
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I. INTRODUCTION whereT ,, is the energy-momentum tensor of mattey,, is
the projection of the Weyl tensc€y,,,|,-o, Gy denotes
The brane world scenario has been the subject of interNewton’s constant, and
sive investigation for the past few years. In particular, Ran-
dall and Sundrum proposed a simple model where the four-
dimensional brane with tensiom is embedded in the five- 1 1
dimensional asymptotically anti—de SittgkdS) bulk with a Ty ™= — ZTZTMJF 7 Tur
curvature scalé. The model is described by the action

1 1
1 12 + =g V(T“ﬁTa - —TZ). ®)
S=ﬁf dSX\/_g R+I—2 —Uf d4X\/—h 8> H £ 3
+ f d*x\—hLmater (1)  Here the relations
where R and «? are the scalar curvature and gravitational 2
constant in five dimensions, respectively. We impa&e KZO.ZE K_ZngN (4
I

symmetry on this spacetime, with the brane at the fixed point o

(y=0 in the coordinate system used latéfhroughout this

paper,h,,, represents the induced metric on the brane. They

showed that, in spite of the noncompact extra dimension, theave been assumed. From their effective equation of motion,
gravity is localized on the brane at the linearized Ig\et3]. one can see the “electric” part of the Weyl tendsff , which
Consequently, the conventional linearized Einstein equatiocharacterizes the bulk geometry effects on the brane dynam-
approximately holds at scales large compared with the cuiics. Conversely, the matter on the brane changes the bulk
vature scald. The cosmology in the context of this model geometry, as can be seen from the equat®fE”,

has also been investigated enthusiasticlly-19. It turns = x4V 7#  derived through the Bianchi identity. However, it
out that there is a nonconventional quadratic term of theshould be noted that it is by no means a closed system of

energy density at high energies and, even in the low energ¥quations. We need to solve the bulk geometry to determine
regime, there exists dark radiation caused by the black holglw completely.

in the bulk. This dark radiation component is also found in Unfortunate|y, it is a formidable task to solve the five-
the cosmological perturbatiof20,21]. dimensional Einstein equation exactly. However, notice that
It iS deSiI’able to eXtend thIS Understanding Of graVity |ntyp|ca||y the |ength sca'e Of the internal Space I|S
the brane world to general nonlinear cases. In order to Un<p.1 mm. On the other hand, the usual astrophysical and
derstand nonlinear gravity in the brane world scenario, Shizosmological phenomena take place at a scale larger than
romizuet al. proposed an elegant geometrical appro@a}.  this scale. Then we need only a low energy effective theory
They obtained the “effective” four-dimensional equations  to analyze a variety of problems, for example, the formation
@) 4 of the black hole, the propagation of the gravitational wave,
Gy =87G\Tt km =By (2 the evolution of the cosmological perturbation, and so on. It
should be stressed that low energy does not necessarily im-
ply weak gravity.
*Electronic address: kanno@phys.h.kyoto-u.ac.jp It has been suggested that gravity on the brane at low
TElectronic address: jiro@phys.h.kyoto-u.ac.jp energies can be understood through the AdS conformal field

0556-2821/2002/6@)/04352610)/$20.00 66 043526-1 ©2002 The American Physical Society



SUGUMI KANNO AND JIRO SODA PHYSICAL REVIEW D66, 043526 (2002

theory (CFT) correspondencg23]. From the correspon- Il. LOW ENERGY ITERATION SCHEME
gf;:jazne can guess the effective equations of motion on the In the Gaussian normal coordinate system, the geometry

of the brane world is described by

ds?=dy?+g,,(y,x*)dx“dx". (6)

G=8mGN(T,,+ TSI +{R? termg, (5) _ o ,
Note that the brane is located gt=0 in this coordinate

system. Then, the five-dimensional Einstein equation in the

where theR? terms represent the higher order curvaturebUIk becomes

terms andT°FT denotes the energy-momentum tensor of the (4)
cutoff version of conformal field theory. However, no one K#, y— KK, + R¥,
knows what is the cutoff CFT. Moreover, it should be noted
. . . 4 1 1
that the AdS/CFT correspondence is a specific conjecture. =— |_25f1f+,<2 —a 8+ TH — = 8T | 8(y),
Indeed, originally, Maldacena conjectured that the supergrav- 3 3
ity on AdS;X S° is dual to the four-dimensionaV/=4 super (7)

Yang-Mills theory[24]. We should be careful not to use such
a conjecture thoughtlessly. Nevertheless, the AAS/CFT Cormey _ papg — _ i_ K_(
spondence seems to be related to the brane world model as”Y @B I 3
has been demonstrated by several peppte-29.

Since both the geometrical and AdS/CFT approaches V,K,"—V,K=0, 9
seem to have their own merit, it would be beneficial to un-

. . X i Ho(4)
derstand the mutual relationship. Recently, Shiromizu and'N€"€R","™ is the curvature on the brane aR( denotes
nhe covariant derivative with respect to the megjg, . One

can read off the junction condition from the above equations

2
—40+T)8(y), 8

the geometrical point of vieW30]. They argued thatr”,

corresponds to the trace anomaly of the cutoff CFT on the

brane. However, this result is rather paradoxical because K2

there exists no trace anomaly in an odd dimensional brane [KY— 5’;K]|y:0=7(—05’;+T’;). (10)

althoughm* , exists even in that case. Thus, the more precise

relation between the geometrical and the AdS/CFT apRecall that we are considering t@® symmetric spacetime.

proaches remains to be understood. Decomposing the extrinsic curvature into the traceless part
In this paper, we derive the effective four-dimensionaland the trace part

theory without using any concept of the AdS/CFT correspon- 1 p

dencea priori. Thus, we avoid using the vague concept of _ - __ 7 —

cutoff CFT. To solve the five-dimensional equations of mo- Kin=2ut ghuks K 0)"09\/_9’ an

tion, we use a low energy iteration scheme. In particular, we . . . . . )

impose the Dirichlet boundary condition at the brane posi—We obtain the basic equations which hold in the bulk:

tion, in contrast to the AdS/CFT approach where the Dirich- 4) 1 @

let boundary condition is imposed at infinity. We also con- SH_KSH = _{ R — 5" R

sider the “constant” of the integration, i.e., homogeneous " "’ A

solutions, carefully. As a consequence, we show that the dark

radiation can be understood from the holographic point of 3 wa B

view. Moreover, the relation between the geometrical and ZK 2R, =

AdS/CFT approaches is uncovered. The correspondence be-

tween the bulk geometry and the brane effective action is 1, B 4

also explicitly found. Ky=zK 2= 12 (14
This paper is organized as follows. In Sec. Il, we develop

the iteration scheme to solve the Einstein equations at low 3

energies. In Sec. lll, we derive the brane effective action VxEA#—ZV#KZO- (15

from the junction condition. We see the effective equation

does not reduce to the conventional Einstein equation even in The problem now is separated into two parts. First, we

the low energy regime. This is due to the generalized darkvill solve the bulk equations of motion with the Dirichlet

radiation found in this paper. It is also found that the nonlo-boundary condition at the brang,,,(y=0,x*)=h,,(x*).

cal part of the effective equation is represented by theAfter that, the junction condition will be imposed at the

energy-momentum tensor with a trace part coinciding withorane. As it is the condition for the induced methig, , it is

the trace anomaly of CFT. Section 1V is devoted to the connaturally interpreted as the effective equations of motion for

clusion. In the Appendix, we analyze the gravity on the brane.

(d+1)-dimensional case because the result is qualitatively Along the normal coordinatg, the metric varies with a

different from the five-dimensional case. characteristic length scaleg,, y~d,.,/!. Denote the char-

: (12

@12
R +|—2, (13
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acteristic length scale of the curvature fluctuation on the Equation(20) can be readily integrated into
brane ad; then we hav&R~gM/L2. For the reader’s refer-
ence, let us také=1 mm, for example. Then, the relations Ou _ u
(4) give the scalex?=(10° GeV) % ando=1 TeV’. In p> g c*,=0, (29)
this paper, we will consider the low energy regime in the 9
sense that the energy density of matjeron the brane is \yhereC*, is the integration “constant.” Equatio(23) also
smaller than the brane tension, iglg<1. In this regime, a requiresC*,,,=0. It represents a radiationlike fluid on the

simple dimensional analysis brane. Although this deserves further investigation, the cal-

C'MV(XM)

(k21 [\2 culation is complicated. Furthermore, this term is not rel-
p _AKTIP <_) 1 (16)  evantto our realistic universe because it represents a strongly
o K’ L anisotropic universe. Indeed, as we see later, this term must

vanish in order to satisfy the junction condition. Therefore,

implies that the curvature on the brane can be neglectege simply putC* =0, hereafter. Now, it is easy to solve the
compared with the extrinsic curvature at low energies. Hereremaining equatiyons. The result is

we have used the relatio$) and Einstein’s equation on the

brane,R~gW/L2~GNp. Thus, the anti—Newtonian or gra- 4

dient expansion method used in the cosmological context is K(0)=|—- (29
applicable to our probleni31-34. The iteration scheme

consists in writing the metrig,,, as a sum of local tensors Using the definition of the extrinsic curvature
built out of the induced metric on the brane, the number of

gradients increasing with the order. Hence, we will seek the ) 19 )
metric as a perturbative series =" 3 gyur (26)
Gl Y. XH) =a2(Y)[N,, (X) + g Y XH) we get the zeroth order metric as
2
+g£w)(y,xﬂ) +-- ‘], (17) d82=dy2+ az(y)h#,,(x“)dxf‘dx”, a(y)ze—Zyll,
0) " (27)
9,,(y=0x*)=0, (18

5 ) ] where the tenson,,, is the induced metric on the brane.
wherea“(y) =exp(—2y/l) is extracted for reasons explained

later and we put the Dirichlet boundary conditiap,,(y

i, B. First ord
=0x)=h,,(x) at the brane. Other quantities are also ex- st order

panded as The next order solutions are obtained by taking into ac-
count the terms neglected at zeroth order. At first order, Egs.
K#, =KO# KO p@r oy (19  (12—(15) become
Our scheme is different from the calculation usually per- 4 (4) 1 @|W
formed in the AdS/CFT correspondence in that the Dirichlet 3k — l—E(l)”“V= -|R*,=Z8%R| . (29
boundary condition is imposed not at infinity but at the finite
pointy=0, the location of the brane. Furthermore, we care- 1
fully keep the constants of integration, i.e., homogeneous 6K(1)— (I;) 29
solutions. These homogeneous solutions are ignored in the T - ' (29)
calculation of AAS/CFT correspondence. However, they play
an important role in the brane world. 2
K§y1>—|—K<1>=o, (30)
A. Zeroth order
At zeroth order, we can neglect the curvature term. Then (1)) 3 (1)_
we have Db |)\_ZK|M_0’ (3D
E(O)MV,y— K(O)E(O)’LFO, (20 where the superscript (1) represents the order of the deriva-
3 1 tive expansion and denotes the covariant derivative with
@ respect to the metrib ,,. Here,[R*]*) means that the cur-
ZK(O)z_E(m ﬁE(O)Ba:Tf’ (21) p v [R)]

vature is approximated by taking the Ricci tensoagff pvin
place ofR™* It is also convenient to write it in terms of
1 4 he Ricci tensor oh,,,, denotedR*(h
KO _ ZK©®2_5 (0aps (0 _ = 29 the icci tensor of,,, denote il )'. ' .
Y4 DAY 12 22 Substituting the zeroth order metric inRS*), we obtain

3 |
VIO - ZVMK(O):O' (23) K(l)zgR(h). (32
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Hereafter, we omit the argument of the curvature for simplic- @@ 2
) ; ; . ) =[1 1 1
ity. Simple integration of Eq(28) also gives the traceless R =—|—— R*.Rf — _RZ? (40
- 2la* &% AT e 6|
part of the extrinsic curvature as
| 1 V(%) where we have used the formulaR,,=1/4 59“,4m
E(Vl)”z—z( R — Z8"R|+ ”4 , (33 +09%, 0= 09— 5glw|a‘“]. Using the above formula, the
2a 4 a trace part is deduced algebraically as
where the homogeneous solution satisfies the constraints ) E 2 _, E 1,
x*,=0andy*,,=0.As we see later, this term corresponds K( ):Q RYR7 , — ok~ 12 RYRE,— sR -
to dark radiation at this order. The metric can be obtained as (41)
12/1 1 1 By integrating the equation for the traceless part, we have
2 | 13 1
@Qp — _ _| L B _ T oeup2
| - 2= g @t 728" a2 | RRE 45VR)
where we have imposed the boundary condltlgﬁjy(y
=0x*)=0. This y field is essential to understanding the 13 u
origin of the dark radiation from the holographic point of NPT (42
view.
where we have defined the quantity
C. Second order 1 1 1
In this subsection, we do not include thdield because it S*,=R* R%, — §RR“V— Z&‘;( R“BRﬁa— §R2
complicates the equations. This is a consistent truncation
procedure. Of course, we have calculated the second order 2 1
solutions with the contribution of thg field. They include 3 R ot R"V““a— §R“‘|V—DR"V+ gaﬁDR),
terms such ag”,x",, etc.
At second order, the basic equations become (43
o 4_ o [ (a) 1 @]® et which is transverse and traceless,
mo— T2 =—I R —=6"R| +K w,
2y I R R = §*,,=0, §*,=0. (44
(35
_ It is also useful to notice that this tensor can be derived from
| 3
K@= _| - ZgD245Ma 3@ 1 1
6| 4 p 5f d*x=h 5| R*R,~ 3R? =f d*xy—hS,,89"".
| (45
+IR] |, (36) . .
The homogeneous solutid’f, must be determined so that

) 1 Eq. (38) holds. To be more precise, we must solve the con-
(@) “@_ T2, s (aps (1) straint equation
K = K@= K2 x0efx ), 37

t# L R*.RP  + ! RR ! R,R" =0. (46)
3 1/|,u_1_6 B™ alv ZS V_ﬂ pRe,=u.
PN KRR -TEMs Y =0, (39

As one can see immediately, there are ambiguities in inte-

Substituting the solution up to first order into the Ricci grating this equation. Indeed, there are two types of covariant
tensor and picking up the second order quantities, we obtailpcal tensor whose divergences vanish:

@) 1
@ 1 @ (1 1 1 H* —RE RY — - $RY.RP
Mmoo oM - | — - M~ RY v a't v v B a
R*,— 7R 5|~ 2| R“R— gRRY, 4
. 1 “Lges yreju —pRe — L aoR
— 7| RYRP— G R? 2\ et v a v
1 1 (47)
— E(RaM\Va-" RaV|M‘a)+ §RW‘V 1
IC”VzRR“V—Zé’;RZ—R‘“|V+5’V’“DR. (48)

: (39

1 1
+-0OR*,— =8OR

2 1277 These terms come from the variation of the action
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1 is a manifestation of the nonlocality of the brane model.
5f d4X\/—_h§R“ﬁRaﬁ:f d*x\—hH ,,89"", (490 Therefore, we have two kinds of nonlocality on the brane.
One is the nonlocality associated with homogeneous solu-
tions and the other is the infinite series which is the reflection

1
5f d*xy/—h ERzzf d*x\—hK ,, 89", (50)  of the extent in they direction.

respectively. Notice tha§* ,=H* —K*, /3. Thanks to the  Ill. EFFECTIVE EQUATIONS AND EFFECTIVE ACTION
Gauss-Bonnet topological invariant, we do not need to con-
sider the Riemann squared term. In addition to these Ioca(l1
tensors, we have to take into account the nonlocal terfspr
with the propertyr*, =0. Thus, we get

Now consider the consequences of the junction condition
0). The findings in this section are the following. We find
the generalized dark radiatigt’, . The quadratic correction
7*  is identified withP#, which is the local tensor defined

1 1 later. The relation between the geometrical approach and the
th = 3—25’,,‘( R% RP — §R2) AdS/CFT approach is revealed. The brane effective action is
obtained and the corresponding bulk geometry is given ex-

1 X B plicitly.
— — — 5" i e K
+24 RR*, 45VR + +aS”,+ 3’IC ., (51

A. Zeroth order
where the constantg and B represents the freedom of the

gravitational wave in the bulk. The conditid)’r‘lﬂzo leads to From the zeroth order solution, we obtain

3 K?
1 ga ! KO¥, — 4K O], o= —T84=— 08",  (57)
T"f‘g(RﬂRﬁa—ﬁRz)—ﬁDR. (52 (K= oK Bly—o=— p o= 5o,

AR - —
The quantity~*, cannot be written in the local covariant 1hen we get the well known relatior®oc=6/. Here, we
form. Hence, this part is interpreted as the CFT in the contexyVill assume that this relation holds exactly. It is apparent that

of the AdS/CFT correspondence. C*, is not allowed to exist.
D. nth order B. First order
In principle, we can continue our analysis up to a desired Let us focus on the role gf*, in this part. At this order,
order using the following recursive formulas: the junction condition can be written as
(n) 2
1 (4) 1 @ I 1 K
Mmp _ _ — 4 = Wr _stk@]. = | RE — Zg* T
2 ,uV_ a4f dya{ RMV 45’:}LR [K v 5VK ]|y—0 z(R v 25VR +X v 2T v
(58)
n—1
- K(p)E(”")ff] , (53 Using the solutions obtained in the previous section and the
p=1 formula
| n—1 3 3
=5 2, {‘ RO RSP B 2K, = B KK KK~ [0, (59
@) lculate the projective Weyl tensor BE =211 y*
+IR ’ (54  We calculate the projective Weyl tensor &S, =2/1x", .
Then we obtain the effective Einstein equation
KM _ EK(n)_E:l EK(p)K(nfp)Jrz(p)aﬁz(nfp) “ 1 “ K “ (L)p
Y | _p=1 4 af ’ R V_Eal/R: |_T V—E Ve (60)
(55)
n-1 At this order, we do not have the conventional Einstein equa-
s (M = EK(n)+ 2 {F(p)az(n—p))\ tions. Recall that the dark radiation exists even in the low
o g e =1 e # energy regime. Indeed, the low energy effective Friedmann
\ equation becomes
—TPrs =P s =0, (56)
As one can see from E@53), homogeneous solutions will HZZSWGNP LL‘, (62)
appear at each order. However, we note that the subtlety 3 ag(t)

discussed in the second order calculations never occurs in the
higher order calculations. The existence of the infinite seriesvhereay(t), H, andC denote the scale factor on the brane,

043526-5
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the Hubble constant, and a constant, respectively. This equa- A - ) 1 212
tion can be obtained from E¢60) by imposing the maximal ~ G\)=87Gy(T,,+ TSH -2l (a— Z) Sur™ 3 By
symmetry on the spatial part of the brane world. Hence, we (66)

observe thay*, is the generalization of the dark radiation
found in the cosmological context.

The conventional Einstein gravity can be recovered on th
brane at this order when we adopt the boundary condition fo
which x*, vanish.

ét is possible to use the result of CFT at this point. For

?xample, we can choose thié=4 super Yang-Mills theory

as the conformal matter. In that case, we simply g&t0.

This is the way the AdS/CFT correspondence comes into the

brane world scenario. Thus we get an explicit relation be-

tween the geometrical approach and the AdS/CFT approach.
In this subsection, we assumé,=0. Up to second or- One can see the relationship in a different way. Within the

der, the junction condition gives accuracy we are considering, we can Bét,= 7", using the

P lowest order equatioR* = «?/I(T#,— 1/26“T). Hence, we

™ +(a_ E)S“ + 2 n can rewrite Eq(64) as
14 4 14 3 14

C. Second order

K2
= —TI'L

.

1
RY,— 5 8/R+ 212

(62 GW=8mG\T,,+ k*m,,~E®. (67)
Let us try to arrange the terms so as to reveal the geometrical
meaning of the above equation. We can calculate the proje®ow, the similarity between Eq2) and Eq.(67) is apparent.

tive Weyl tensor as However, we note that our Eq67) is a closed system of
equations provided that the specific conformal field theory is
E@r =12/ PH, +27# +2| a— 1)8" + 2 prcn } chosen.
v v v 4 v 3 v Now we can read off the effective action as
(63
Substituting this expression into E(2) yields our main 1
e P ®2)y St~ T6mG f d“X = NR+ Spaert Scrr
2
a_K 2 2 1\,
GEW)—I—TMH P, —EZ, (64) a= 7| ) -
- — 124 R
+ 167G, fdx\/ h| R“'R,,, 3R}
where
1 1 1 1 + A fd“x\/—th (68)
P, == ZRARY+ ERRY + 2 IR RE, — 120" R 48mGy '

(65)
_ _ where we have used the relatiod$), (49), and(50) and we
Notice thatE*, contains the nonlocal part and the free pa-denoted the nonlocal effective action constructed frdmas
rameterse and 8. On the other handP”, is determined S.r. This effective action corresponds to the bulk geometry

locally. If we defineT$E™=—21%/x?7,,, we can write given by the metric

o 12 1o ) By 113l [ 1
9y X¥) = Ny 5| 2= 1| Ruw= ghuR® |+ 7| = gt 2= 7S 2 @2
B 1/ 1 L1 1 . 5.5 ) 11
X T#V-FCYSMV‘F §IC’M, "rg g—l RM)\R V—ERR’M,—ZhﬂyR ﬁR a+ 3_6h’U'VR —Z g—l
v 1 1 app o L 5
X RW\R V_ERR,UV_ 1—2hMVR ﬁR ot l_ZhMVR . (69

This gives the holographic view of the bulk geometry. Thea and 8 is available. Both represent the effects of the bulk
bulk geometry can be reconstructed provided the additionajeometry, which is apparent because they appear in the pro-
knowledge of the nonlocal componertt, and the constants jective Weyl tensoE*, .

043526-6
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IV. CONCLUSION tended to the two brane system. In particular, the low energy

dynamics of the radion could be treated by means of our

we de\_/eloped a low energy iteration schgme fpr SOlv'n%ethod[?;g]. We will also study more general models like
the equations of the brane world model. Using this l‘ormal-,[he Horava-Witten model in the future.

ism, we explicitly identified the low energy equations of mo-

tion describing gravity on the brane. The result should be

useful in the investigation of various phenomena occurring

in the brane world because it can treat nonlinear gravity as We would like to thank the participants of the YITP work-

far asl?R(h)<1. shop YITP-W-01-15 on “Braneworld—Dynamics of Space-
Our work was motivated by two important approachestime Boundary” for fruitful discussions. This work was sup-

the geometric approach and the AdS/CFT approach. In facRorted in part by Monbukagakusho Grant-in-Aid No.

one of the purposes of this work was to clarify the relation14540258.

between these approaches. In previous work, the trace

anomaly of the CFT is identified witl*, . This interpreta- APPENDIX: (d+1)-DIMENSIONAL RESULTS (d#4)

tion is rather paradoxical because, in the odd dimensional The qualitative consequences of the low energy expansion
brane, no trace anomaly exists although,, exists(see the  scheme depend on the dimensions. Hence, for completeness,
Appendi¥. We clarified this point by calculating the Weyl e investigated thed+ 1)-dimensional problem.

tensor. It turned out that, irrespective of dimensions,, We obtain basic equations which hold in the bulk as fol-
corresponds t&*, at low energies. In the case of the four- lows:
dimensional brane, the trace part Bf , accidentally coin-

cides with the trace anomaly of the CFT.
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d d
We found two kinds of nonlocality observed on the brane. B _KSH —_ | )M _ E M( )

X _ X 3, KR, R#,—=8'R], (A1)
One of them is encoded in the homogeneous solutions, and ' d
the other is found as an infinite series of the gradient expan-
sion of our scheme. Thus even when we truncate the series at d—1 dld—1
the second order, the knowledge of the homogeneous solu- _ K2—3e 38 —RW4 ( ; ) (A2)
tions is needed to solve the problem. Indeed, there are two d A @ | ’

homogeneous solutions because the system is described by a
second order differential equation. One is used to satisfy the
Dirichlet boundary condition at the brane. The other appears K o— EKz_EaﬁE — E (A3)
as the “dark” effects on the brane at each order of expansion Yod ap 12
in our scheme. At zeroth ordeC*, appears. However, this
term must vanish, from consistency. It is at first order that the
generalized dark radiation tergt*, appeared. This term re- v,S - tv K=0. (A4)
duces to the dark radiation in the effective Friedmann equa- K d *#
tion under the assumption of homogeneity. Note that it is . . o .
possible to pufy*,=0 if one prefers. This can be achieved Since the calcul'atlons are similar tq those in qtre4
by putting the black hole mass to zero in the cosmologicaFaSE?’ we simply write down the results in the following sub-
case. As for the general cases, further consideration jgections.
needed. At second order, we deduced the nonlocal compo-
nent7#  from the homogeneous solution. At this time, it is 1. Zeroth order
far from possible to put*,=0 without losing consistency. At the zeroth order, we have
We must treat it as an integro-differential equat{@3] or
coupled equations. d
Needless to say, the ambiguity of the effective action KO=_, (A5)
comes from the variety of the bulk geometry. We have given |
the explicit correspondence between the effective action and L
the bulk metric, which could give a holographic view of the The zeroth order metric is given by
brane world. Of course, this ambiguity should be fixed by
proper consideration of the bogndary conditio_n in the bulk dszzdy2+az(y)hw(x“)dx"dx”, a(y)=e /.
[36]. Once the boundary condition is determined, we can (AB)
attack various astrophysical and cosmological problems.
As an application of our results, it would be interesting to
consider the nature of the gravitational wave in the brane
world. It is also important to investigate the quantum brane At first order, the solutions are
world from this point of view. In particular, we will apply
our formalism to the inflation model driven by a bulk scalar KL= | R(h) (A7)
field [37,38. The analysis of the present paper can be ex- 2(d—1)a? '

2. First order
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where x4 is a homogeneous solution which satisfjgs$,
=0 andx”,,=0. This corresponds to the dark radiation atwhere we have imposed the boundary conditigffy)(y
this order. The metric can be deduced as =0x*)=0.
3. Second order
If we ignore they field then we get the following results:
3 3d—4 13 ( 1
(2) = a pB _ 2| _ apB ___ T R2
K 2(d—2)7a4<R R 4(d—1)2R) 2(d—1)(o|—2)a2\R R 2(d—1)R ‘ (AL0)
2<2>M=L RART -1 RR —E(R““ +ReIE)+ Toret Ru 1 s0R
v (d-2)(d-4a* " v d-1" v 2 lva ™ Ty fal T 5 v ad-1) v o4d-1)"
L SR RE+ oure|+ L " R RRE,— 2 (R, +R2#
d P RRet qra— 2R T @27 R R 2@ R 2 (R et R
+EDR" +-—— R —;&GR—E&”R“ RA +;5"R2 (A11)
2 vT4(d-1) " 1" 4(d-1)" d™v AT e 2d(d—1) " |

where the homogeneous solutith, satisfies the transverse and traceless conditions

t“vsz, t“#ZO.

(A12)

This is the point where the dependence on the dimensions appears. We do not have a trace anomaly, in contrast to the case o
d=4.

4. Effective equations and effective action

The consequences of the junction conditid@0), order by order, are the following. At zeroth order, we have

d—1 K2
(KO = 8K o=~ ——

- Vg
| 5 ool (A13)
Thus, we get the relationc?o=2(d— 1)/l and assume that this relation holds exactly.
At first order, we obtain
[K(l),u _5MK(1)]| _ :_I R,u_lgﬂR +x :K_ZTM (A14)
v v y=0 d—2 v 2% v 2 v

The homogeneous solutigy),, is the generalized dark radiation. Supposing the relatieg= (d— 2)«?/2l holds, then the
conventional Einstein equation can be recovered on the brane at this order when g, p@. This can be performed
without losing consistency.

Finally, up to second order, the junction condition gives
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E d
“ pa (pau a | “ [
+—2—(d—2) (d—4)[2R LR 2(d—1)RRM” (R |m+RVﬁy)+DR ”+2(d—1)R B

b R* 15”R
d—2\" v 2%
2

K
= TH . (A15)

1 d )
SUOR— 5 O4R*,RP + ———= 4R 5T

2 8(d—1)

- 2(d-1)

We calculate the projective Weyl tensor to find the geometrical meaning of the above equation as

g(@)u :d—lz R* R® —LRR" _d__z(Ra.u +Ra‘”)+ d__ZDR.u +d_—2R|M
v(d=2)%d-4) " v d-1""" d va Trlal T g V2=
—d_—zaﬂmR— 1(SI*RC’ RP +;5"R2 (A16)
2d(d—1) " dv AT el dd-1) " |
Substituting this expression into EGA15) yields our main result
(d—2)«?
4)_ 2 2
Gl=——27 — Tu+1?P,,—ER), (A17)
where
pH :——21 R“R' — =——RR —E&LR“ RE 4+ STC g (A18)
vo(d=2)? M 2(d—1) vo2v BT algd-1)" v |

Within the accuracy we are considering, using the lowest order equtipn KZ/I[(d—Z)IZT"V— 1/26%T], we get formally
the same result as that of Shiromietial.:

G =8mG\T,,+«*m,,—EZ), (A19)

with
lT”T ! TT ! TeAT ! T? A20
Tw=7"7 Hxﬁm wrt g9 Nt B (A20)

Thus, we have established the correspondence between the geometrical and AAS/CFT approaches in any dimensions.
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