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Inflaton condensate fragmentation in hybrid inflation models

John McDonald*
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Inflation ends with the formation of a Bose condensate of inflatons. We show that in hybrid inflation models
this condensate is typically unstable with respect to spatial perturbations and can fragment to condensate
lumps. The case of D-term inflation is considered as an example and it is shown that fragmentation occurs if
l*0.2g, wherel is the superpotential coupling andg is theU(1)FI gauge coupling. Condensate fragmenta-
tion can result in an effective enhancement of inflaton annihilations over decays as the main mode of reheating.
In the case of D-term inflation models in which the standard model fields carryU(1)FI charges, if condensate
fragmentation occurs then reheating is dominated by inflaton annihilations, typically resulting in the overpro-
duction of thermal gravitinos. Fragmentation may also have important consequences for SUSY flat direction
dynamics and for preheating.
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I. INTRODUCTION

A common feature of the cosmology of particle phys
models is the formation of Bose condensates of scalar
ticles. Examples include axion condensates@1#, condensates
of squarks and sleptons along flat directions of the minim
supersymmetric~SUSY! standard model~MSSM! ~Affleck-
Dine condensates@2–4#! and inflaton condensates whic
form at the end of inflation and whose decay is respons
for reheating the Universe@5#. It is usually assumed that th
scalar particles in the condensate are non-interacting, co
sponding to coherent oscillations in a purelyf2 potential.
However, in many cases this is not true. In the case of
ions, deviation of the angular pseudo–Nambu Goldstone
ion potential from a puref2 potential implies an attractive
force between the axions which results in the growth of s
tial perturbations and the formation of axion miniclusters@6#.
In the case of the Affleck-Dine condensate, deviation fr
the f2 potential, either due to the flattening of the potent
above the messenger field mass~gauge-mediated SUSY
breaking@7,8#! or due to radiative corrections from gaugin
loops ~gravity-mediated SUSY breaking@9,10#! results the
fragmentation of the condensate to form Q-balls@8–11#.
Thus the conventional view of cosmological condensate
being spatially homogeneous coherently oscillating sc
fields is not generally true. In particular, when the potentia
‘‘flatter-than-f2,’’ meaning min„V(f)/f2

… is at fÞ0 @with
V(0)50#, the condensate is unstable with respect to spa
perturbations and fragments to non-topological solito
which we will refer to as condensate lumps.

Here we consider the question of the stability of the
flaton condensate with respect to spatial perturbations
the consequences of its fragmentation. The most natura
flation models are hybrid inflation models@12#, which, un-
like the case of single-field inflation models, allow inflatio
to occur without requiring couplings to be very small. W
will therefore focus on hybrid inflation models in the follow
ing.

Although our results for inflaton condensate fragmen
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tion can apply to hybrid inflation models in general, we w
focus on the case of SUSY hybrid inflation models@13–15#,
which will allow us to illustrate the general phenomenon
inflaton condensate fragmentation while applying the res
to a case of considerable interest. SUSY hybrid inflat
models are either of the F-term@13# or D-term@14,16# type.
The most interesting are the D-term models, which c
evade the so-calledh-problem i.e. the flatness of the inflato
potential in the presence of supergravity corrections@15#. We
will therefore focus on D-term inflation, whilst presentin
the results in a form that will allow them to be applied
other hybrid inflation models.

Recently it has been shown that it is also possible
inflation to end via ‘‘tachyonic preheating’’ i.e. the rapi
growth of spatial perturbations of the inflaton field in th
presence of a tachyonic potential@17–19#. The mode by
which hybrid inflation ends~inflaton condensate fragmenta
tion or tachyonic preheating! will be sensitive to the initial
conditions at the phase transition ending hybrid inflation,
particular the rate of roll of the homogeneous scalar fi
relative to the rate of growth of the spatial perturbation
This requires a full analysis of the dynamics of the inflat
field, including the effect of radiative corrections to the i
flaton potential@20#. Since in this paper we wish to study th
growth of spatial perturbations of a homogeneous hybrid
flation condensate in general, using D-term inflation as
particular example, we will assume throughout that a coh
ently oscillating scalar field condensate initially exists.

The paper is organized as follows. In Sec. II we revie
the D-term hybrid inflation model. In Sec. III we discus
condensate instability in hybrid inflation models. In Sec.
we consider the evolution of spatial perturbations of a coh
ently oscillating condensate. In Sec. V we apply the result
the case of D-term inflation. In Sec. VI we consider possi
consequences of inflaton condensate fragmentation, in
ticular the enhancement of annihilations as a mode of reh
ing. In Sec. VII we comment on the relationship betwe
tachyonic preheating and inflaton condensate fragmenta
In Sec. VIII we present our conclusions.

II. D-TERM HYBRID INFLATION

The superpotential of D-term inflation models is@14#

W5lSF1F2 , ~1!
©2002 The American Physical Society25-1
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resulting in a scalar potential

V5l2uSu2~ uF1u21uF2u2!1l2uF1u2uF2u21
g2

2
~ uF1u2

2uF2u21j!2, ~2!

where Re(S) is the gauge singlet inflaton,F6 are fields with
charges61 with respect to a Fayet-IlliopoulosU(1) gauge
symmetry,U(1)FI , andj.0 is the Fayet-Illiopoulos term
For uSu.uScu5gAj/l, the minimum ofV(F1 ,F2 ;uSu) is
at F650. With F650, the tree-levelSpotential is flat with
V5Vo[g2j2/2 (j1/2'8.531015 GeV from COBE normal-
ization @15#!. One-loop corrections result in a potential forS
which causesS to slow-roll towardsS50 @14#. Once uSu
,uScu, the minimum of the potential for a given value ofuSu
is at F150 and

uF2u5Aj2
l2uSu2

g2
. ~3!

~In the following we may considerS and F2 to be real.!
Thus the expectation value ofF2 at the minimum of its
potential is a function of the value ofS. The mass square
terms along theS, F1 andF2 directions as a function ofuSu
and theF2 expectation value Eq.~3! are mS

25l2uF2u2,
mF1

2 5l2uF2u212l2uSu2 andm
F

28
2

5mA
252g2uF2u2, where

mF
28

is the mass atF2Þ0 minimum Eq.~3! and A is the

U(1)FI gauge boson.

III. CONDENSATE INSTABILITY IN HYBRID INFLATION
MODELS

The dependence of the minimum of theF2 potential on
the value of theSfield is the reason for the instability of th
inflaton condensate. OnceuSu,uScu, S and F2 oscillate
about the minimum of their potentials. Oscillations beg
oncemS.H. In the case of D-term inflation, this is satisfie
once uSu2/uScu25124pg2j/3l2M Pl

2 512231026g2/l2

@using mS5luF2u, with uF2u as given by Eq.~3!#, so S
oscillations typically begin whenuSu is close touScu. The
equation on motion for the inflaton, in terms of the conve
tionally normalized real scalar fields5A2Re(S), is

s̈13Hṡ2

¹2

a2
s52l2suF2u2, ~4!

whereH5ȧ/a is the expansion rate anda is the scale factor.
Suppose we consider the growth of a small spatial pertu
tion of s. As s decreases belowsc , the mean value of the
oscillatingF2 field at a point in space will be approximate
equal to the value at minimum of theF2 potential at that
point in space, which depends ofs(x,t). So if we average
over the coherent oscillations ofF2 about the minimum and
replaceF2 by the valueF2(s) at the minimum of its po-
tential, thes equation of motion becomes
04352
-
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s̈13Hṡ2

¹2

a2
s'2l2js1

l4s3

2g2
. ~5!

Therefore thes scalar field and perturbations will evolve as
the s field had a potential

Ve f f~s!'
l2js2

2
2

l4s4

8g2
. ~6!

This is a flatter thans2 potential, corresponding to an attra
tive interaction amongst thes scalars and a negative pressu
in the condensate@21,22#. Therefore spatial perturbations o
the s condensate will grow, eventually becoming non-line
and resulting in fragmentation into condensate lum
@8–10#. The procedure of averaging over coherent osci
tions of theF2 field is well-defined ifmF

28
is large com-

pared withmS , which is true ifA2g is large compared with
l, and we will focus on this case. In the case where o
cannot first average over theF2 oscillations the combined
dynamics of theSandF2 field will be more complicated. A
particular case of this is F-term hybrid inflation, for whic
there is only a single coupling in the scalar potential su
that the conditionl5A2g is effectively satisfied@13,15#. In
this case there exists an exact solution of the scalar fi
equations such that the inflaton is described by an effec
potential of the formas22busu31cs4 (a,b,c.0) @24#.

Although we have derivedVe f f(s) for the example of
D-term inflation, we emphasize that a2s4 attractive interac-
tion is a generic feature of all hybrid inflation models f
which we can average over the oscillations of the field t
minating inflation prior to discussing the dynamics of t
inflaton. Therefore our analysis may be readily applied
other hybrid inflation models.

IV. EVOLUTION OF PERTURBATIONS

We next consider the growth of spatial perturbations a
the fragmentation of the inflaton condensate. The lin
growth of perturbations has been discussed for a comp
scalar field in the context of Q-ball formation in@8#, using
the approach of@25#. Here we adapt this approach to the ca
of a real scalar field in the expanding Universe. The equa
of motion for a real scalar fieldF is

F̈13HḞ2

¹2

a2
F52

]V~F!

]F
. ~7!

We will assume throughout thatV(F) is a polynomial with
V(F)5V(2F). We defineF5(ao /a)3/2f, whereao is the
scale factor when the coherent oscillations begin. The eq
tion of motion then becomes

f̈2

¹2

a2
f52

]U~f!

]f
, ~8!

where
5-2
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]U~f!

]f
5S a

ao
D 3/2]V~F!

]F
1DHf, ~9!

where

DH52
3

2 S Ḣ1
3

2
H2D . ~10!

With f5R sinV, the equation of motion becomes

S R̈2RV̇22

¹2

a2
R1

R~] iV!2

a2
D sinV1S 2RV̈22ṘV̇

1
2] iR] iV

a2
1R

¹2

a2
V D cosV52

]U~f!

]f
, ~11!

where ] i5]/]xi ( i 51,2,3). Multiplying the equation by
sinV and averaging over coherent oscillations gives

R̈2RV̇22

¹2

a2
R1

R~] iV!2

a2
52

]Ue f f~R!

]R
, ~12!

where

]Ue f f~R!

]R
5

2

R K f
]U

]f L , ~13!

and where^ f (V)&[(1/2p)*0
2p f (V)dV denotes averaging

over oscillations. (DH is effectively constant on the timesca
of coherent oscillations. In fact, sinceDH is at most of the
order ofH2, theDH term in general contributes a negligib
correction to thef mass squared term. Thus we takeDH
50 in the following.! Multiplying both sides by cosV and
averaging gives

V̈12
Ṙ

R
V̇2

2

R

] iR] iV

a2
2

¹2

a2
V50. ~14!

In this we are assuming thatR andV̇ do not vary much over
the period of the oscillations. In practice we will be applyin
this method to the case of a2F4 interaction term in the
potential. Therefore this method is accurate if the2F4 term
is a small perturbation of theF2 term. ~In the pureF2 limit
R andV̇ are constant.!

With R5R1dR(x,t) and V5V(t)1dV(x,t), the per-
turbation equations are

dR̈2V̇2dR22V̇dV̇R2

¹2

a2
dR52S ]2Ue f f

]R2 D
R(t)

dR

~15!

and

dV̈12
Ṙ

R
dV̇12

V̇

R
dṘ22

ṘV̇

R2
dR2

¹2

a2
dV50. ~16!
04352
Assuming the perturbations have the formdR
5dRoeS(t)2 ik•x, dV5dVoeS(t)2 ik•x @8,25#, the perturbation
equations become

S ȧ1a22V̇21
k2

a2
1Ue f f9 D dR52aRV̇dV ~17!

and

S ȧ1a21
k2

a2
12

Ṙ

R
a D dV5dRS 2ṘV̇

R2
2

2V̇a

R D , ~18!

where a5Ṡ. Combining these gives a dispersion relati
@25,8#,

S ȧ1a22V̇21
k2

a2
1Ue f f9 D S ȧ1a21

k2

a2
12

Ṙ

R
a D

52aRV̇S 2ṘV̇

R2
2

2V̇a

R D . ~19!

In the case where there is no expansion the amplitude
oscillation is constant and so we haveṘ50. A growing per-
turbation solution is then given by@25,8#

a25

k2

a2 S Ue f f8

R
2Ue f f9 D

S 3Ue f f8

R
1Ue f f9 D ~20!

and ȧ50. In deriving this we have usedV̇25Ue f f8 /R @from

Eq. ~12! with constantR#. This solution exists ifk2/a2 is less
than kmax

2 /a25(Ue f f8 /R2Ue f f9 ). @In obtaining Eq.~20! it is

assumed that 16(k2/a2)Ue f f8 /R is small compared with
(3Ue f f8 /R1Ue f f9 )2, which is satisfied for allk up to kmax in
the case where the2F4 potential term is small compare
with the F2 term.#

In the case with expansion we generally have to solve
equations of motion and perturbation equations numerica
However, for condensate fragmentation we will be mos
interested in the case wherek25kmax

2 , corresponding to the
largest value ofa at a given time and so the first perturbatio
mode to go non-linear. We will also be considering oscil
tion amplitudes such that the2F4 potential term is small
compared with theF2 term. In this caseR may be consid-
ered constant throughout. Then ifȧ is non-zero, the solution
Eq. ~19! generalizes to

ã25

k2

a2 S Ue f f8

R
2Ue f f9 D

S ~4g21!
Ue f f8

R
1Ue f f9 D ~21!

whereã5a21ȧ andg5a2/ã2. Since typicallyuȧ/au'H,
we see that Eq.~20! will be approximately correct for the
5-3
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casek25kmax
2 so long asa(kmax).uȧ/au'H. The solution

of the perturbation equations is then

dR'dRoexpS E adtDeik•x ~22!

and

dV'dVoexpS E adtDeik•x. ~23!

We next apply the above to the case of the generic attrac
2F4 interaction of hybrid inflation models,

V~F!5
m2F2

2
2

hF4

4
. ~24!

From Eq.~13!,

]Ue f f~R!

]R
5

2

R K m2f22hf4S ao

a D 3L
5

2

R S m2R2

2
2

3hR4

8 S ao

a D 3D , ~25!

where we have used̂sin2V&51/2 and^sin4V&53/8. Thus

Ue f f~R!5
m2R2

2
2

3hR4

16 S ao

a D 3

. ~26!

Thus from Eq.~20! we find

a5S ao

a D 3/2S 3hR2

8m2 D 1/2

3S 12
9hR2

8m2 S ao

a D 3D 21/2uku
a

. ~27!

Equation ~27! is strictly valid only if the 2F4 term is a
small perturbation of theF2 term. In this caseR will be
essentially constant~equal to its initial valueRo) and „1
2(9hR2/8m2)(ao /a)3

… will be approximately equal to 1
conditions which we will assume to be satisfied in the f
lowing.

The growth of the perturbations is then given by

dR

R
'

dRo

Ro
expF S 3hRo

2

8m2 D 1/2
uku

aHo
S 2

522nD
3S ao

a D 3/22nS S a

ao
D 5/22n

21D G . ~28!

In this we have usedH5Ho(ao /a)n, wheren will be be-
tween 0 and 3/2 as theF oscillations develop from the en
of inflation to an approximatelyF2 potential. The condition
for fragmentation to occur is thatdR/R*1. The largest
growth at a given time corresponds to the modekmax, where
04352
ve

-

kmax
2

a2
5S Ue f f8

R
2Ue f f9 D

5
3

2
hR2S ao

a D 3

. ~29!

This determines the radius of the condensate lumps when
condensate fragments,r l ,

r l'
pa

ukmaxu

5S 2

3D 1/2S a

ao
D 3/2 p

~hR2!1/2
. ~30!

This is really the initial radius of the lumps immediately aft
fragmentation, and the lump will subsequently relax to
stable configuration, in which the attractive potential term
balanced by the gradient term in the equation of moti
However, the radius of the stable configuration is similar
that of the initial lump, since for a stable configuration of t
form f(r ,t)'f(r )sin(mt), the equation for f(r ) is
]2f(r )/]r 21(2/r )]f(r )]r'sin21(mt)]dV/]f, where V
5m2f2/21dV. For a stable lump of radiusr s and field am-
plitude f we therefore expect thatr s

2'fu]dV/]fu21 @the
left hand side of thef(r ) stable lump equation being
;f/r 2#. For dV52hf4/4 and f'R this implies thatr s
'(hR2)21/2.

To give a condition for inflaton condensate fragmentatio
we usek5kmax. The condition for fragmentation to occur i
then

1

2m S 3hRo
2

2 D 1

Ho
S 2

522nD S S ao

a D 1/2

2S ao

a D 32nD
*b[ logS Ro

dRo
D . ~31!

As a increases, the left hand side of Eq.~31! is maximized
for ao /a5@1/2(32n)#2/(522n) and then decreases. Conde
sate fragmentation in hybrid inflation models must theref
occur soon after coherent oscillations begin if it is to occur
all.

Assuming that the2F4 contribution to the potential is
small, the coherent oscillations are approximatelyF2 and so
n53/2, such that maximum growth occurs atao /a5 1

3 . The
condition for condensate fragmentation is then

1

2A3

hRo
2

mHo
*b, ~32!

where Ho is calculated using for the energy densityr
5m2Ro

2/2.

V. APPLICATION TO D-TERM INFLATION

For the case of D-term inflation,m25l2j and h
5l4/2g2. In order that the2F4 contribution to the potentia
5-4
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is small, we chooseRo5sc/2, such thatRo
25g2j/2l2. ~The

perturbations will start to grow as soon as coherent osc
tions begin with amplitudes'sc . However, as we canno
apply our method to calculate the growth for oscillation a
plitudes betweensc andsc/2, we are in factunderestimating
the total growth.! Thus from Eq.~32! the condition for con-
densate fragmentation becomes

l

g

1

b
*

8A2pj1/2

M Pl
'0.014. ~33!

In order to complete the fragmentation condition we need
value of b. The seed perturbations of the inflaton field a
expected to come from quantum de Sitter fluctuations of
scalar field during inflation. Modes with wave numberk
large compared withH will be excited by the increase of th
inflaton mass at the end of inflation from approximately ze
to mS'lj1/2. The largest wave number excited typically co
responds tokm'mS , with amplitude ds'mS /(2p) @23#.

Sinceukmaxu/a'A3/2lj1/2'km at a'ao , seed perturbations
of wave numberkmax/a will exist after inflation ends, with

b' logS 2psc

mS
D 5 logS 2A2pg

l2 D , ~34!

where we have useddRo /Ro'ds/sc . So with l,g*0.1, b
'5 – 10 is a typical value. Therefore, usingb510, we find
that the condition for fragmentation to occur is

l*0.2g. ~35!

Since this neglects the growth of perturbations for oscillat
amplitudes betweensc andsc/2, the true lower bound onl
for fragmentation is likely to be smaller. The radius of t
condensate lump relative to the horizon radius when the c
densate fragments is then

r l

H21
'S 8p3

9 D 1/2g

l

j1/2

M Pl

53.731023
g

l
. ~36!

The condition for the approximations leading to Eq.~22! to
be consistent,a(kmax).uȧ/au55H/2 at ao /a5 1

3 @where
we assumeH}a23/2 for s,sc/2 and we have useda
}a25/2 from Eq. ~27!#, is satisfied if

l

g
.

40A2pj1/2

M Pl
'0.07. ~37!

So if the fragmentation condition Eq.~35! is satisfied then
the approximations are consistent.

Therefore in D-term inflation models condensate fra
mentation is likely to occur ifl*0.2g. Since the true lower
bound onl for fragmentation is likely to be smaller, it i
probable that condensate fragmentation will occur ifl andg
both take values in the natural range 0.1–1.
04352
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VI. ENHANCEMENT OF INFLATON ANNIHILATIONS
BY CONDENSATE FRAGMENTATION

We next consider the possible consequences of infla
condenate fragmentation. One potentially important con
quence is that inflaton annihilations are effectively enhan
compared with the case of a homogeneous condensate
may dominate over decays as the primary mode of rehea

We first show that once the condensate fragments the
ticles within the condensate lump decouple from the exp
sion of the Universe, such that the number density and fi
amplitude inside the condensate lumps remains cons
This will be true if the force on the particles due to sca
interactions is greater than the gravitational force respons
for slowing the expansion of the Universe. Suppose the
ergy density is dominated by a pressureless homogen
energy densityr̄. ~For the case of inflaton condensate fra
mentation this is not strictly true, sincedr/ r̄'1 when the
condensate fragments. However, it is useful to make
assumption in order to obtain an expression that can be
plied to scalar field models in general.! Suppose then we
consider a spherical lump of radiusr. The gravitational ac-
celeration acting on a particle at the surface of the lump
then

r̈ 52
4pr̄

3M Pl
2

r . ~38!

If the force due to the attractive scalar interaction produce
smaller acceleration than this, the particles will follow th
expansion of the Universe, otherwise they will decoup
from expansion. To estimate the force due to the scalar
teraction consider a sphere of radiusr and with a fixed num-
ber of scalar particlesN,

N5
4pr 3

3 S mf2

2 D , ~39!

where the number density of scalars isn5mf2/2 and where
for simplicity we have considered a constant amplitudef for
the coherently oscillating field inside the sphere. This giv
f as a function ofr. With V(f)5(m2f2/2)1dV, the total
potential energy of the sphere is

Epot5
4pr 3

3 S m2f2

2
1dVD

5mN1
4pr 3

3
dV. ~40!

Thus the force due to the scalars is

Fs52
dEpot

dr

52S 4pr 2dV2
6N

mr

]dV

]f2 D . ~41!
5-5
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JOHN McDONALD PHYSICAL REVIEW D66, 043525 ~2002!
For the casedV52hf4/4, the force isFs52phf4r 2. The
condition that the acceleration due to scalar attraction
larger than the gravitational acceleration is then

f4.
mH2

2phr
. ~42!

Since condensate fragmentation occurs soon after cohe
oscillations begin~at ]V/]f'0), we havef2'm2/h. With
r'r l @with a'ao in Eq. ~30!# Eq. ~42! becomes

m3

h3/2R
.S 3

2D 1/2 H2

2p2
. ~43!

Note that if this condition is satisfied then from Eq.~38! we
haveu r̈ /r u*H2, which can be rewritten asu r̈ uH21*Hr[ ṙ .
Therefore the attractive force between the scalars will br
the expansion of the lump to a halt within an expansion tim
dt'H21. For the case of D-term inflation, Eq.~43! is satis-
fied if

l,S A6pM Pl
2

j
D 1/2

'43103, ~44!

which is generally strongly satisfied. Thus the scalars in
condensate lumps decouple from the gravitational expans

To see how condensate fragmentation effectively
hances annihilations, consider an interactionl2uSu2uQi u2 be-
tween inflatons and light scalarsQi ~in D-term inflationQi
will correspond to MSSM scalars@16#!. We will calculate the
annihilation rate assuming no Bose enhancement~i.e. no
parametric resonant decay of the condensate!, in which case
the annihilation rate simply corresponds to the perturba
annihilation rate of the scalars in the condensate. The a
age of the annihilation cross section times relative part
velocity in thev→0 limit is @26#

^sv&ann5
l4

64pmS
2

. ~45!

With the s number density in the condensate given byn
5mSs2/2, the annihilation rate of scalars in the condensat
then

Gann5n^sv&ann

5
l4s2

128pms
. ~46!

The condition for scalars to annihilate is thenGann.H
[Ho(ao /a)3/2. We can now see why annihilation is effe
tively enhanced when the condensate fragments. In the
of a homogeneous condensate, the scalars are freely exp
ing ands2}a23, so the annihilation rate drops more rapid
than the expansion rate as the scale factora increases. Thus
unless annihilations are effective immediately after the e
of inflation, they will never be significant and inflaton deca
will be the main mode of reheating. However, if the inflat
condensate fragments soon after oscillations begin then
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value of the amplitudes inside the lumps isconstantand so
Gann /H}a3/2 increasesasa increases. Therefore as the Un
verse expands annihilations will eventually occur and m
be the dominant mode of reheating. The reheating temp
ture due to annihilations is then

TR5S 45

4p3g~Td!
D 1/4

~GdM Pl!
1/2

5S 1

128p D 1/2S M Pl

mS
D 1/2S 45

4p3g~Td!
D 1/4

l2sc , ~47!

where we have useds'sc inside the lumps and whereg(Td)
is the number of degrees of freedom in thermal equilibriu
@5#.

We next apply this to the specific case of D-term inflatio
If the MSSM fields also carryU(1)FI charges, there is an
interaction with the scalars of the MSSM of the for
l2uQi u2uSu2 coming from integrating out theU(1)FI gauge
fields @16#, wherel is the superpotential coupling from Eq
~1!. The reheating temperature is then

TR5S 1

64p D 1/2S 45

4p3g~Td!
D 1/4

gl1/2j1/4M Pl
1/2

'5.531015S 100

g~TR!D 1/4

gl1/2 GeV. ~48!

The upper bound from requiring that gravitinos are not g
erated excessively by thermal scattering isTR&10829 GeV
@27#. Thus we require

gl1/2&1.831027S g~TR!

100 D 1/4S TR

109 GeV
D . ~49!

The smallest value ofl for which fragmentation occurs is
l'0.2g. In this case if condensate fragmentation occ
then from Eq.~49! the U(1)FI gauge coupling must satisf
g&731025. ~This upper bound will be even stronger in th
presence of parametric resonance.! This will not be satisfied
if, for example, theU(1)FI gauge coupling has the typica
magnitudeg'1 of the MSSM gauge couplings. Thus co
densate fragmentation is typically not compatible w
D-term inflation if the inflatons can annihilate to MSSM
fields. In order to have D-term inflation consistent with t
absence of thermal gravitinos we must either eliminate in
ton annihilations, which requires that the MSSM fields
not carry U(1)FI charges, or eliminate inflaton condensa
fragmentation, which requires thatl,0.2g.

VII. INFLATON CONDENSATE FRAGMENTATION
AND TACHYONIC PREHEATING

Throughout the preceding discussion we have assu
that a homogeneous inflaton condensate forms at the en
inflation. However, it has been shown that spatial pertur
tions of the inflaton field may grow and become non-line
much more rapidly~before homogeneous oscillations are e
5-6
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INFLATON CONDENSATE FRAGMENTATION IN HYBRID . . . PHYSICAL REVIEW D66, 043525 ~2002!
tablished! in a process known as tachyonic preheat
@17,18#. In this case the final state is composed of collidi
scalar field waves@17,18#. Recently it has also been show
@19# that condensate lumps occur in tachyonic prehea
~called ‘‘oscillating hot spots’’ in@19#!. Tachyonic preheating
typically occurs in less than the time for a single coher
oscillation @17#, making it impossible to average over a c
herently oscillating inflaton field. Inflaton condensate fra
mentation and tachyonic preheating may be regarded as
ferent manifestations of a general phenomena, namely
instability of the inflaton field with respect to spatial pertu
bations in hybrid inflation models.

The question of whether inflaton condensate fragme
tion or tachyonic preheating occurs at the end of hybrid
flation will depend upon the state of the field at the tim
when the inflaton reachessc , in particular the rate at which
the homogeneous fields(t) is rolling @where s5s(t)
1ds(x,t)# relative to the rate of tachyonic growth of th
spatial perturbationsds(x,t) at s,sc . If the homogeneous
field can catch up with the spatial perturbations~which cross
sc before the homogeneous field! before there is significan
growth of the perturbations due to the tachyonic mass term
s,sc , then there will be no tachyonic preheating. This d
pends crucially on the rate of rolling of the homogeneo
field at sc , which in turn requires that the full inflaton po
tential with radiative corrections be considered. For the c
of D-term inflation a full analysis has yet to be done@20#.

VIII. CONCLUSIONS

We have shown that it is possible for the inflaton cond
sate in hybrid inflation models to fragment to condens
lumps. The inflaton condensate is in general unstable, bu
instability reduces as the Universe expands, requiring
fragmentation occurs shortly after the end of inflation. T
state of the Universe after fragmentation, with the ene
density concentrated inside inflaton condensate lumps
quite different from the conventional post-inflation scena
of a homogeneous inflaton condensate. One consequen
inflaton condensate fragmentation is that inflaton annih
tions will be effectively enhanced relative to the case o
homogeneous inflaton condensate. In the case of D-term
flation models, which we have used as a specific exampl
hybrid inflation models in our discussion, if condensate f
mation and fragmentation occurs then the enhancemen
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inflaton annihilations implies that the reheating temperat
is typically large compared with the thermal gravitino upp
bound. Thus either inflaton annihilations must be suppres
which requires that the MSSM fields do not carryU(1)FI
gauge charges, or fragmentation must not occur, which
quires thatl,0.2g.

If inflaton annihilations do not occur, or if we consider
non-SUSY model for which there is no thermal gravitin
bound on the reheating temperature, then inflaton conden
fragmentation can safely occur. This may have interest
consequences for the inflaton dominated period follow
inflation. For example, the fact that the energy density of
Universe is now concentrated in condensate lumps co
greatly alter the dynamics of SUSY flat direction sca
fields, which acquire a mass from the SUSY breaking infl
ton energy density in the case of a homogeneous infla
condensate@3#. Another potentially important effect would
be for parametric resonant decay of the inflaton and preh
ing. In the case of a homogeneous condensate, param
resonance turns off as the Universe expands and the infl
oscillation amplitude decreases@28,29#. However, if the con-
densate fragments then, just as in our discussion of pertu
tive annihilations, the oscillation amplitude will be froze
inside the lumps and so parametric resonant decay sh
continue without stopping, resulting in more efficient pr
heating.

Growth of spatial perturbations of the inflaton field
hybrid inflation models has also been demonstrated in
context of tachyonic preheating. In general, the mode
which hybrid inflation ends is likely to be sensitive to bo
the model parameters and the initial conditions at the end
inflation. A detailed numerical investigation will therefore b
necessary in order to clarify how hybrid inflation ends in
given model@20#. However, it should be emphasized th
condensate lumps are a feature of both inflaton conden
fragmentation and tachyonic preheating@19#. Therefore our
discussion of the cosmology of condensate lumps should
ply to the tachyonic preheating case also.

It is important to emphasize that inflaton condensate fr
mentation is a natural possibility in all hybrid inflation mod
els and that it may have consequences for cosmology bey
what has been discussed here. A detailed understandin
inflaton condensate fragmentation will therefore be nec
sary in order to fully understand the cosmology of hyb
inflation models.
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