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Inflaton condensate fragmentation in hybrid inflation models
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Inflation ends with the formation of a Bose condensate of inflatons. We show that in hybrid inflation models
this condensate is typically unstable with respect to spatial perturbations and can fragment to condensate
lumps. The case of D-term inflation is considered as an example and it is shown that fragmentation occurs if
N=0.2g9, where\ is the superpotential coupling amgds theU(1)g, gauge coupling. Condensate fragmenta-
tion can result in an effective enhancement of inflaton annihilations over decays as the main mode of reheating.
In the case of D-term inflation models in which the standard model fields tHtyg, charges, if condensate
fragmentation occurs then reheating is dominated by inflaton annihilations, typically resulting in the overpro-
duction of thermal gravitinos. Fragmentation may also have important consequences for SUSY flat direction
dynamics and for preheating.
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[. INTRODUCTION tion can apply to hybrid inflation models in general, we will
focus on the case of SUSY hybrid inflation modgl8—15,

A common feature of the Cosmo|ogy of partide physmsWthh will allow us to illustrate the ge_neral pht_anomenon of
models is the formation of Bose condensates of scalar pafflaton condensate fragmentation while applying the results
ticles. Examples include axion condensdtel condensates to a case of. considerable interest. SUSY hybrid inflation
of squarks and sleptons along flat directions of the minima[i0dels are either of the F-terfi3] or D-term[14,1§ type.

supersymmetri¢SUSY) standard modelMSSM) (Affleck- The most interesting are the D-term models, which can
Dine condensate§2—4]) and inflaton condensates which evade the so-calleg-problem i.e. the flatness of the inflaton

form at the end of inflation and whose decay is responsiblé)c’ter]t""lI in the presence of supergravity correctidr. We

for reheating the Universis]. It is usually assumed that the will therefore focus on D-term inflation, whilst presenting

. . ; : the results in a form that will allow them to be applied to
scalar particles in the condensate are non-interacting, COM&iner hybrid inflation models

sponding to coherent oscillations in a pureb/ potential. Recently it has been shown that it is also possible for
However, in many cases this is not true. In the case of axpflation to end via “tachyonic preheating” i.e. the rapid
lons, deviation of the angular pseudo—Nambu Goldstone agrowth of spatial perturbations of the inflaton field in the
ion potential from a pureﬁ p_otentlal |mpl|es an attractive presence of a tachyonic potentigl7—19. The mode by
force between the axions which results in the growth of spawhich hybrid inflation endsinflaton condensate fragmenta-
tial perturbations and the formation of axion miniclustl  tion or tachyonic preheatingwill be sensitive to the initial

In the case of the Affleck-Dine condensate, deviation fromconditions at the phase transition ending hybrid inflation, in
the ¢? potential, either due to the flattening of the potentialparticular the rate of roll of the homogeneous scalar field
above the messenger field ma&guge-mediated SUSY relative to the rate of growth of the spatial perturbations.
breaking[7,8]) or due to radiative corrections from gaugino This requires a full analysis of the dynamics of the inflaton
loops (gravity-mediated SUSY breaking®,10]) results the field, including the effect of radiative corrections to the in-
fragmentation of the condensate to form Q-bdis-11).  flaton potentia[ZO]. Since in this paper we wish to study_the
Thus the conventional view of cosmological condensates agrowth of spatial perturbations of a homogeneous hybrid in-
being spatially homogeneous coherently oscillating scalaf@tion condensate in general, using D-term inflation as a
fields is not generally true. In particular, when the potential isParticular example, we will assume throughout that a coher-
“flatter-than-$2,” meaning mir(V(¢)/¢2) is at ¢+0 [with ently oscnlatln_g scalar_fleld condensate initially exists. _
V(0)=0], the condensate is unstable with respect to spatiilh The paper is organized as follows. In Sec. Il we review

! . : e D-term hybrid inflation model. In Sec. Il we discuss
&iﬁ?gﬁﬁgﬂﬁ r:PeO: t(f)rzgsrr::e(:)rr:tjer:csnatremlzr;oppsologlcaI soliton condensate instability in hybrid inflation models. In Sec. IV

Here we consider the auestion of the stability of the in- V& consider the evolution of spatial perturbations of a coher-
w ! quest ity : ently oscillating condensate. In Sec. V we apply the results to

flaton condensate Wit.h respect to §patia| perturbations a_nﬁ’1e case of D-term inflation. In Sec. VI we consider possible
the consequences of its fragmentation. The most natural insonsequences of inflaton condensate fragmentation, in par-
flation models are hybrid inflation model$2], which, un- tjcyjar the enhancement of annihilations as a mode of reheat-
like the case of single-field inflation models, allow inflation ing. In Sec. VIl we comment on the relationship between
to occur without requiring couplings to be very small. We tachyonic preheating and inflaton condensate fragmentation.
will therefore focus on hybrid inflation models in the follow- |n Sec. VIII we present our conclusions.
ing.

Although our results for inflaton condensate fragmenta- [Il. D-TERM HYBRID INFLATION

The superpotential of D-term inflation models] is4]
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resulting in a scalar potential V2 M43

S+ 3H's———zs~—>\2§s+ — (5)

2 a 292

VNS, 2+ [0 02D 202+ (@ [
Therefore thes scalar field and perturbations will evolve as if

—|®_[*+ )7, (2 thesfield had a potential
where Reg) is the gauge singlet inflato .. are fields with N2Es? NSt
charges*1 with respect to a Fayet-llliopoulds(1) gauge Veri(s)~ — e (6)

symmetry,U(1)g,, and£>0 is the Fayet-llliopoulos term.

For |S|>|SC|.=g\/E/)\, the minimum ofV(®, ,® _:[S|) IS Tpig is a flatter thas? potential, corresponding to an attrac-
at®..=0. With ®.. =0, the tree-leveS potential is flat with /e interaction amongst thescalars and a negative pressure
V=V,=g%¢?/2 (£/%~8.5x 10" GeV from COBE normal- in the condensatf21,22. Therefore spatial perturbations of
ization[15]). One-loop corrections result in a potential f8r  the s condensate will grow, eventually becoming non-linear
which causesS to slow-roll towardsS=0 [14]. Once|S|  and resulting in fragmentation into condensate lumps
<|S|, the minimum of the potential for a given value|&  [8-10]. The procedure of averaging over coherent oscilla-

is at®, =0 and tions of the®_ field is well-defined ifm, is large com-
T pared withms, which is true ify2g is large compared with

D |= /5_ \°[S| 3) \, and we will focus on this case. In the case where one
- 2 cannot first average over thk_ oscillations the combined

dynamics of thesand® _ field will be more complicated. A

(In the following we may consides and ®_ to be rea)  Particular case of this is F-term hybrid inflation, for which
Thus the expectation value @b_ at the minimum of its there is only a single coupling in the scalar potential such
potential is a function of the value & The mass squared that the condition\ = \/2g is effectively satisfied13,15. In
terms along th& @, and® _ directions as a function ¢8| this case there exists an exact solution of the scalar field
and the®_ expectation value Eq(3) are m3=\2|®_|?, equatipns such that the inflagon is4described by an effective
mZ =\ _|2+2\7S)? andm(zb, —m2=2g?|®_|2, where potential of the formasz—b_|s| +cs* (a,b,c>0) [24].

+ - Although we have derived/.¢¢(s) for the example of
Mg is the mass atb_#0 minimum Eq.(3) andA is the  p-term inflation, we emphasize that-as* attractive interac-

U(1)g, gauge boson. tion is a generic feature of all hybrid inflation models for
which we can average over the oscillations of the field ter-

IIl. CONDENSATE INSTABILITY IN HYBRID INFLATION minating inflation prior to discussing the dynamics of the
MODELS inflaton. Therefore our analysis may be readily applied to

other hybrid inflation models.

The dependence of the minimum of tHe_ potential on
the value of theSfield is the reason for the instability of the IV. EVOLUTION OF PERTURBATIONS
inflaton condensate. Oncks|<|S.|, S and ®_ oscillate _ . _
about the minimum of their potentials. Oscillations begin ~We next consider the growth of spatial perturbations and
oncems>H. In the case of D-term inflation, this is satisfied the fragmentation of the inflaton condensate. The linear
once |S|2/|Sc|2=1—477925/3)\2M$,|=1—2><10‘692/>\2 growth .of pgrturbatlons has been dlscuss_ed for a c_omplex
[using mg=\|®_|, with |®_| as given by Eq(3)], so S scalar field in the context of Q-ball formatlon i8], using
oscillations typically begin whens| is close to|S.|. The  the approach di25]. Here we adapt this approach to the case
equation on motion for the inflaton, in terms of the conven-Of @ real scalar field in the expanding Universe. The equation

tionally normalized real scalar fiels= \2Re(S), is of motion for a real scalar field is
S+3Hs— ——zs=—>\zs|<I>_|2, (4 ¢+3H®_;®:_ b )
a

. . ] We will assume throughout th&t(®) is a polynomial with
whereH =a/a is the expansion rate ars the scale factor. /() =\v(—®). We defined = (a,/a)¥%p, wherea, is the

Suppose we consider the growth of a small spatial perturbascale factor when the coherent oscillations begin. The equa-
tion of s. As s decreases below,, the mean value of the tjon of motion then becomes
oscillating® _ field at a point in space will be approximately

equal to the value at minimum of th® _ potential at that V2 U

o . : . U ()

point in space, which depends sfx,t). So if we average b—=—p=— , (8)
over the coherent oscillations &f_ about the minimum and a® dg

replace® _ by the value® (s) at the minimum of its po-

tential, thes equation of motion becomes where
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() [ a\¥2ov(d)
76 \a o5 TAne 9
where
Au=— o[ B+ Sz 10
H= 5| H+5HT). (10
With ¢=Rsin(}, the equation of motion becomes
.V R0y L
R—-RQ?— =R+ sinQ+| —RQ—2RQO
a? a2
20R2 0 V? IU( )
+—+R—0O |cosQ=— , (11
a? a’ d¢

where g;=dldx; (i=1,2,3). Multiplying the equation by
sin{) and averaging over coherent oscillations gives

.V RGO dU(R)
R—RO%2— =R+ =— ., (12
a2 a2 JR
where
Me(R) 2/ U
R R\ %) 13

and where(f(Q))=(1/27)[3"f(Q)dQ denotes averaging
over oscillations. 4 is effectively constant on the timescale
of coherent oscillations. In fact, sinde, is at most of the
order ofH?, the A, term in general contributes a negligible
correction to the¢p mass squared term. Thus we take
=0 in the following) Multiplying both sides by cof and
averaging gives

R, 24R3Q V?
O+2-0-— =
R R

- ~Q=0. (14)

a a

In this we are assuming th&tand() do not vary much over
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Assuming the perturbations have the formsR
= 6R,eSV kX 50 = 50,eSV kX8 25), the perturbation
equations become

. . k2 )
ata’= 0%+ — +UL| (R=2aR0Q8Q  (17)
a
and
v+ 2+k2+2 50 = 2RQ _ 20a 18
o o a2 Ra - RZ R a( )

where a=S. Combining these gives a dispersion relation
[25,8],

2

2
) 2_02 K "
a2

—+2-a
a® R

(d-l— a’+

2RQ 20«

R2 R

=2aRQO

(19

In the case where there is no expansion the amplitude of

oscillation is constant and so we haRe=0. A growing per-
turbation solution is then given Hy5,8]|

k2 U(Ieff "
, ? R _Ueff
' EmE——— (20
3Ueff+ ”
R eff

anda=0. In deriving this we have used?=U/,/R [from

Eq. (12) with constanR]. This solution exists ik?/a? is less
thank?,/a?=(U};/R—U%). [In obtaining Eq.(20) it is
assumed that 18¢/a?)U./R is small compared with
(3UL¢/R+U%)?, which is satisfied for alk up toKyay in
the case where the ®* potential term is small compared
with the ®2 term]

In the case with expansion we generally have to solve the
equations of motion and perturbation equations numerically.

the period of the oscillations. In practice we will be applying However, for condensate fragmentation we will be mostly

this method to the case of a®* interaction term in the
potential. Therefore this method is accurate if thé* term
is a small perturbation of thé? term. (In the pured®? limit
R and() are constan}.

With R=R+ dR(x,t) and Q=Q(t)+ 6Q(x,t), the per-
turbation equations are

U et
SR
R(t)

VZ
SR—025R— 20 8OR—=— 6R=— (

a2 IR?
(15
and
R0 RO VP
80 +2—50+2—SR—2— SR— =—50=0. (16)
R R RZ az

interested in the case whek8=k? ., corresponding to the
largest value ofr at a given time and so the first perturbation
mode to go non-linear. We will also be considering oscilla-
tion amplitudes such that the ®* potential term is small

compared with theb? term. In this cas&k may be consid-

ered constant throughout. Thenifis non-zero, the solution
Eq. (19) generalizes to

k2 (,eff 1
_2 R _Ueff
~5 a 21
a = U,ff ( )
€ ”
((47_1)?+Ueff)

wherea = a?+ a and y= a?/a?. Since typically|a/a|~H,
we see that Eq(20) will be approximately correct for the
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casek?=k2,, so long aSa_(kma_X)>|c'z/a|wH. The solution k2. [ Ul .,
of the perturbation equations is then 22 =Y —Uets
- ik-x 3 a\3
SR 5Roexp( f adt)e (22) _3 R _o) | 29
2 a
and This determines the radius of the condensate lumps when the
_ condensate fragments,,
5Q~590exp< f adt)e'k'x. (23
Ta
N~
We next apply the above to the case of the generic attractive [Kmad
—®* interaction of hybrid inflation models, o\12 5132
m2q)2 7](1)4 - (§ a_O ( 77R2) 1/2° (30)
V(®)= > T4 (24
This is really the initial radius of the lumps immediately after
fragmentation, and the lump will subsequently relax to its
From Eq.(13), ) L . i ; )
stable configuration, in which the attractive potential term is
U (R) 2 a.\3 balanced by the gradient term in the equation of motion.
Z—R: §< m2¢p?— nd* EO > However, the radius of the stable configuration is similar to

that of the initial lump, since for a stable configuration of the
form ¢(r,t)=¢(r)sin(mt), the equation for ¢(r) is

, (25 FPp(r)lar2+(2Ir)dp(r)or ~sin Y (miasViop, where V
=m?¢?/2+ 6V. For a stable lump of radius, and field am-

where we have usein’Q)=1/2 and(sin*Q)=3/8. Thus plitude ¢ we therefore expect that~¢|doV/ag|~* [the
left hand side of the¢(r) stable lump equation being

a,\®

a

R

2 8

2 (mZRZ 37R*

m?R%2  37R*(a,)3 ~¢/r22]._ligr 8V=—n¢*4 and p~R this implies thatr
Uet RI=——~—5 |3 (26) ~(yR%) "2
To give a condition for inflaton condensate fragmentation,
Thus from Eq.(20) we find m(z#sekzkmax. The condition for fragmentation to occur is
3/2 o\ 1/2 B
a:(ﬁ) 377F\; i 377Rc2> i 2 a, 1/2_ 2 3-n
a 8m 2m\ 2 JH,\5-2n/\|a a
w1 O7R (20 | 2 log 22 31
— [ _ = [R=
Equation (27) is strictly valid only if the —®* term is a As aincreases, the left hand side of E§1) is maximized

small perturbation of thab? term. In this caseR will be O @/a=[1/2(3— n)]#~2Y and then decreases. Conden-

essentially constantequal to its initial valueR,) and (1 sate fragmentation in hybrid inflation models must therefore
— (97R2/8m?)(a,/a)%) will be approximately zzqual to 1. occur soon after coherent oscillations begin if it is to occur at
(0] )

conditions which we will assume to be satisfied in the fol-al'

lowing. Assuming that the- ®* contribution to the potential is
The growth of the perturbations is then given by small, the coherent osplllauons are approxmatéfi/?nd o)
n=3/2, such that maximum growth occursat/a=3. The
SR R, 31;R§ 1/2 K| 2 condition for condensate fragmentation is then
RR, ¥l sm2/ aH,|5-2n 1 7R
3/2-n 5/2-n J3 mH =P (32
a, a 2y3 o
x| — — =111 (28 ) , :
a 2N where H, is calculated using for the energy density
— m2p2
=m°Rg/2.

In this we have used=H,(a,/a)", wheren will be be-
tween 0 and 3/2 as th@ oscillations develop from the end
of inflation to an approximatelyp? potential. The condition
for fragmentation to occur is thafR/R=1. The largest For the case of D-term inflationm?=\2¢ and 7
growth at a given time corresponds to the mégdg,, where  =\*/2g2. In order that the- ®* contribution to the potential

V. APPLICATION TO D-TERM INFLATION
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is small, we choos®,=s./2, such thaR3=g?¢/2\%. (The

perturbations will start to grow as soon as coherent oscilla-

tions begin with amplitudes~s.. However, as we cannot
apply our method to calculate the growth for oscillation am-
plitudes betwees, ands./2, we are in facunderestimating
the total growth. Thus from Eq.(32) the condition for con-
densate fragmentation becomes

N1 8\2mgl?
__2—
gp Mp,

In order to complete the fragmentation condition we need th
value of 8. The seed perturbations of the inflaton field are
expected to come from quantum de Sitter fluctuations of th
scalar field during inflation. Modes with wave numbler
large compared witd will be excited by the increase of the
inflaton mass at the end of inflation from approximately zer
to ms~\ £Y2. The largest wave number excited typically cor-
responds tok,,~mg, with amplitude Ss~mg/(27) [23].
Since|kma,/a~ 32\ £~k ata~a,, seed perturbations
of wave numbek,,5,/a will exist after inflation ends, with
27S,

i)

where we have usedR,/R,~ §s/s;. So withA,g=0.1, B
~5-10 is a typical value. Therefore, usiy= 10, we find
that the condition for fragmentation to occur is

~0.014. (33

2 \/Ezwg (34)
A

B~Iog(

A=0.29. (35)

[0)
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VI. ENHANCEMENT OF INFLATON ANNIHILATIONS
BY CONDENSATE FRAGMENTATION

We next consider the possible consequences of inflaton
condenate fragmentation. One potentially important conse-
guence is that inflaton annihilations are effectively enhanced
compared with the case of a homogeneous condensate and
may dominate over decays as the primary mode of reheating.

We first show that once the condensate fragments the par-
ticles within the condensate lump decouple from the expan-
sion of the Universe, such that the number density and field
amplitude inside the condensate lumps remains constant.

&his will be true if the force on the particles due to scalar

interactions is greater than the gravitational force responsible

for slowing the expansion of the Universe. Suppose the en-

ergy density is dominated by a pressureless homogeneous
energy densityp. (For the case of inflaton condensate frag-

mentation this is not strictly true, sincgp/p~1 when the
condensate fragments. However, it is useful to make this
assumption in order to obtain an expression that can be ap-
plied to scalar field models in genepaBSuppose then we
consider a spherical lump of radius The gravitational ac-
celeration acting on a particle at the surface of the lump is
then

477';
3M3,

r. (39

If the force due to the attractive scalar interaction produces a
smaller acceleration than this, the particles will follow the
expansion of the Universe, otherwise they will decouple

Since this neglects the growth of perturbations for oscillatiorfom expansion. To estimate the force due to the scalar in-

amplitudes betwees; ands./2, the true lower bound oR  teraction consider a sphere of radiuand with a fixed num-
for fragmentation is likely to be smaller. The radius of the per of scalar particled|,

condensate lump relative to the horizon radius when the con-

densate fragments is then 4713 [ mep?
S e
() (8773)1’2g {112 3 2
H™ 9 A M, where the number density of scalarsis m¢?/2 and where
for simplicity we have considered a constant amplitgdfor
=3.7%X 10—3% (36) the coherently oscillating field inside the sphere. This gives

The condition for the approximations leading to EZ_2) to

¢ as a function ofr. With V()= (m?$?/2)+ 6V, the total
potential energy of the sphere is

be consistenta(Kmay) >|al/a|=5H/2 at a,/a=% [where 4rr3 | M2 g2
we assumeHxa 3?2 for s<s./2 and we have usedr pot:T< 5 T 5V)
sa~ 2 from Eq.(27)], is satisfied if
4qr3
N 40\2mE2 =mN+— (40)
—>———~0.07. (37
g Mp)
So if the fragmentation condition E@35) is satisfied then Thus the force due to the scalars is
the approximations are consistent. dE
Therefore in D-term inflation models condensate frag- S___pot
mentation is likely to occur ih=0.2g. Since the true lower dr
bound on\ for fragmentation is likely to be smaller, it is
probable that condensate fragmentation will occir &ndg - _ ( 47rr25V—6—N ﬂ ) (41)
both take values in the natural range 0.1-1. mr g¢?2
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For the cas&V = — n¢*/4, the force iF= — myp¢*r2. The  value of the amplituds inside the lumps igonstantand so
condition that the acceleration due to scalar attraction i§ ,,,/H>a%? increasesasa increases. Therefore as the Uni-

larger than the gravitational acceleration is then verse expands annihilations will eventually occur and may
) be the dominant mode of reheating. The reheating tempera-
4 mH ture due to annihilations is then
P> . (42
2mr Ua
Since condensate fragmentation occurs soon after coherent R:(4 (T (TgMpp ¥
oscillations begin(at 3V/9¢$~0), we havep?~m?/ 5. With 79(Tq)
r=~r, [with a=~a, in Eq. (30)] Eq. (42) becomes ( 1 \¥2 Mp, 1/2 45 1/4)\2 w
=| 55— — —_— Sc s
m3 3|12 Y2 1287 Mg 4139(Ty) ¢
3 > E Y (43)
7R 2m where we have usesk s, inside the lumps and wheg T )

Note that if this condition is satisfied then from EG8) we |sé]the number of degrees of freedom in thermal equilibrium

have|r/r|=H?, which can be rewritten as|H '=Hr=r. ~ "\e next apply this to the specific case of D-term inflation.
Therefore the attractive force between the scalars will bringf the MSSM fields also carryJ(1)g, charges, there is an
the expansion of the lump to a halt within an expansion timejnteraction with the scalars of the MSSM of the form
St~H™1. For the case of D-term inflation, E(43) is satis- 22|Q;|2|S|2 coming from integrating out th&)(1)g, gauge

fied if fields [16], where is the superpotential coupling from Eq.
JoaMz,| 12 (1). The reheating temperature is then
A< ( —2 ~axac, (44) 12 va
f — i L 1/2 1/4M 1/2
R™ 6417 4 3 T g)\ g Pl
which is generally strongly satisfied. Thus the scalars in the 7°g(Ta)

condensate lumps decouple from the gravitational expansion. 100
To see how condensate fragmentation effectively en- ~5.5X 109
hances annihilations, consider an interactiéhS|?|Q;|? be- (Q(TR)
tween inflatons and light scala€g; (in D-term inflationQ; . N
will correspond to MSSM scalaf46]). We will calculate the ~ The upper bound from requiring that gravitinos are not gen-
annihilation rate assuming no Bose enhancenfeat no  erated excessively by thermal scatteringTig< 10°~° GeV
parametric resonant decay of the condensatewhich case [27]. Thus we require
the annihilation rate simply corresponds to the perturbative
annihilation rate of the scalars in the condensate. The aver-
age of the annihilation cross section times relative particle
velocity in thev—0 limit is [26]

1/4
g\t? Gev. (48)

Tr
10° GeV/

(49

g(Tgr) e
100

g\2<1.8% 10—7(

The smallest value ok for which fragmentation occurs is
A NA=~0.29. In this case if condensate fragmentation occurs
W' 49 then from Eq.(49) the U(1)g, gauge coupling must satisfy
g=7x10"°. (This upper bound will be even stronger in the

With the s number density in the condensate given by Presence of parametric resonancehis will not be satisfied

=mgs?/2, the annihilation rate of scalars in the condensate ié, for example, theU(1)g gauge coupling has the typical
then magnitudeg~1 of the MSSM gauge couplings. Thus con-

densate fragmentation is typically not compatible with

[ ann=n{(o0)ann D-term inflation if the inflatons can annihilate to MSSM
42 fields. In order to have D-term inflation consistent with the
_ A's (46) absence of thermal gravitinos we must either eliminate infla-
128mmg’ ton annihilations, which requires that the MSSM fields do

N . ] not carryU(1)g, charges, or eliminate inflaton condensate
The condition for scalars to annihilate is théhy,>H  fragmentation, which requires that0.2g.

=H,(a,/a)®% We can now see why annihilation is effec-
tively enhanced when the condensate fragments. In the case
of a homogeneous condensate, the scalars are freely expand-
ing ands?xa 3, so the annihilation rate drops more rapidly
than the expansion rate as the scale faatorcreases. Thus Throughout the preceding discussion we have assumed
unless annihilations are effective immediately after the endhat a homogeneous inflaton condensate forms at the end of
of inflation, they will never be significant and inflaton decaysinflation. However, it has been shown that spatial perturba-
will be the main mode of reheating. However, if the inflatontions of the inflaton field may grow and become non-linear
condensate fragments soon after oscillations begin then theuch more rapidlybefore homogeneous oscillations are es-

(oV)ann=

VII. INFLATON CONDENSATE FRAGMENTATION
AND TACHYONIC PREHEATING
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tablished in a process known as tachyonic preheatinginflaton annihilations implies that the reheating temperature
[17,18. In this case the final state is composed of collidingis typically large compared with the thermal gravitino upper
scalar field wave$17,18. Recently it has also been shown bound. Thus either inflaton annihilations must be suppressed,
[19] that condensate lumps occur in tachyonic preheatingvhich requires that the MSSM fields do not catdy(1)e,
(called “oscillating hot spots” if19]). Tachyonic preheating 9gauge charges, or fragmentation must not occur, which re-
typically occurs in less than the time for a single coherenguires that\ <0.2g.
oscillation[17], making it impossible to average over a co- [f inflaton annihilations do not occur, or if we consider a
herently oscillating inflaton field. Inflaton condensate frag-non-SUSY model for which there is no thermal gravitino
mentation and tachyonic preheating may be regarded as dipound on the reheating temperature, then inflaton condensate
ferent manifestations of a general phenomena, namely théagmentation can safely occur. This may have interesting
instability of the inflaton field with respect to spatial pertur- consequences for the inflaton dominated period following
bations in hybrid inflation models. inflation. For example, the fact that the energy density of the
The question of whether inflaton condensate fragmentalniverse is now concentrated in condensate lumps could
tion or tachyonic preheating occurs at the end of hybrid ingreatly alter the dynamics of SUSY flat direction scalar
flation will depend upon the state of the field at the timefields, which acquire a mass from the SUSY breaking infla-
when the inflaton reachess, in particular the rate at which ton energy density in the case of a homogeneous inflaton
the homogeneous fields(t) is rolling [where s=s(t) condensatg3]. Another potentially important effect would
+ 8s(x,t)] relative to the rate of tachyonic growth of the be for parametric resonant decay of the inflaton and preheat_—
spatial perturbation$s(x,t) at s<s.. If the homogeneous iNg. In the case of a homogeneous condensate, parametric
field can catch up with the spatial perturbatigmaich cross ~ resonance turns off as the Universe expands and the inflaton
s, before the homogeneous figldefore there is significant 0scillation amplitude decreasg28,29. However, if the con-
growth of the perturbations due to the tachyonic mass term &fensate fragments then, just as in our discussion of perturba-
s<s;, then there will be no tachyonic preheating. This de-tive annihilations, the oscillation amplltude will be frozen
pends crucially on the rate of rolling of the homogeneoudnside the lumps and so parametric resonant decay should
field ats,, which in turn requires that the full inflaton po- continue without stopping, resulting in more efficient pre-
tential with radiative corrections be considered. For the casBeating.

of D-term inflation a full analysis has yet to be ddize)]. Growth of spatial perturbations of the inflaton field in
hybrid inflation models has also been demonstrated in the

context of tachyonic preheating. In general, the mode by
which hybrid inflation ends is likely to be sensitive to both
We have shown that it is possible for the inflaton condenthe model parameters and the initial conditions at the end of
sate in hybrid inflation models to fragment to condensaténflation. A detailed numerical investigation will therefore be
lumps. The inflaton condensate is in general unstable, but theecessary in order to clarify how hybrid inflation ends in a
instability reduces as the Universe expands, requiring thagiven model[20]. However, it should be emphasized that
fragmentation occurs shortly after the end of inflation. Thecondensate lumps are a feature of both inflaton condensate
state of the Universe after fragmentation, with the energyfragmentation and tachyonic preheatifi®]. Therefore our
density concentrated inside inflaton condensate lumps, idiscussion of the cosmology of condensate lumps should ap-
quite different from the conventional post-inflation scenarioply to the tachyonic preheating case also.
of a homogeneous inflaton condensate. One consequence oflt is important to emphasize that inflaton condensate frag-
inflaton condensate fragmentation is that inflaton annihilamentation is a natural possibility in all hybrid inflation mod-
tions will be effectively enhanced relative to the case of aels and that it may have consequences for cosmology beyond
homogeneous inflaton condensate. In the case of D-term irwhat has been discussed here. A detailed understanding of
flation models, which we have used as a specific example ahflaton condensate fragmentation will therefore be neces-
hybrid inflation models in our discussion, if condensate for-sary in order to fully understand the cosmology of hybrid
mation and fragmentation occurs then the enhancement dfflation models.

VIIl. CONCLUSIONS
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