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Observational test of two-field inflation
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We study adiabatic and isocurvature perturbation spectra produced by a period of cosmological inflation
driven by two scalar fields. We show that there exists a model-independent consistency condition for all
two-field models of slow-roll inflation, despite allowing for model-dependent linear processing of curvature
and isocurvature perturbations during and after inflation on super-horizon scales. The scale dependence of all
spectra are determined solely in terms of slow-roll parameters during inflation and the dimensionless cross-
correlation between curvature and isocurvature perturbations. We present additional model-dependent consis-
tency relations that may be derived in specific two-field models, such as the curvaton scenario.
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I. INTRODUCTION

The primary interest in inflation@1–3# is as a mechanism
to explain the origin of structure in the Universe fro
vacuum fluctuations in an early inflationary era which a
swept up to arbitrarily large scales. The simplest inflation
models predict an almost scale-invariant spectrum of Ga
ian, adiabatic density perturbations. Such a spectrum
already known as a likely model of structure formation lo
before inflation was proposed. Inflation also predicts a sp
trum of gravitational waves or ‘‘tensor’’ fluctuations. I
single-field models of slow-roll inflation there is a cons
tency condition between the slope of the spectrum of ten
perturbations and the ratio of tensor to scalar metric fluct
tions@1#. The observational confirmation of such a predicti
is one of the holy grails of modern cosmology.

Recent studies of multi-field models of inflation have
however—threatened to destroy this appealing theore
prediction. Indeed, entropy perturbations generated in a
tional light fields can alter the evolution of the curvatu
perturbation even on large scales. This additional source
the late-time scalar curvature perturbation breaks the sin
field consistency relations, yielding only an upper bound
the tensor-scalar ratio@4–6#.

Consistency relations have recently been derived for a
batic and entropy perturbations during two-field inflation@7#.
One of these relations explicitly shows how the single-fi
consistency condition is modified through the cro
correlation between the entropy and the curvature pertu
tions. On the other hand, the model dependent nature o
heating at the end of inflation makes it impossible to quan
the late-time amplitude of entropy perturbations solely
terms of the evolution during inflation.

In this paper we introduce a model-independent desc
tion of the coupling between adiabatic and entropy pertur
tions both during and after inflation in order to relate la
time observables to perturbation spectra generated du
inflation. We show that the scale dependence of all spe
depend only on quantities at horizon crossing during slo
roll inflation and the cross-correlation between curvature
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isocurvature perturbations. This cross-correlation generic
arises in inflation models for the origin of curvature a
isocurvature perturbations@8,9,7#. If it can be determined
observationally@10–13# then one can reconstruct the sca
curvature perturbation at horizon crossing. We are thus a
to derive a generalized consistency condition for the
served tensor-scalar ratio that holds inall two-field models
of slow-roll inflation.

The paper is organized as follows. In Sec. II we introdu
the notion of transfer functions and deal with slow-roll infl
tion in Sec. III. In Secs. IV and V we compute the pow
spectra at horizon crossing and at late times, respectiv
and derive the consistency relation holding for all two-fie
models of inflation. In Sec. VI we present additional re
tions that hold for restricted classes of slow-roll models.
nally, in Sec. VII we draw our conclusions.

II. TRANSFER FUNCTIONS

We will first construct dimensionless quantities to d
scribe the instantaneous adiabatic~curvature! and entropy
~isocurvature! perturbations both during and after inflatio
We can then relate their values on large scales during
after inflation by a model-dependent transfer matrix, who
general form will be given in Eq.~6!.

During the conventional radiation-dominated era~after in-
flation! there is a conventional gauge-invariant definition f
the large-scale density–curvature perturbation@14–16#

R5c1
Hdr

ṙ
, ~1!

wherec is the gauge-dependent curvature perturbation
dr the total density perturbation in that gauge. T
isocurvature-entropy perturbation is usually defined as
perturbation in the ratio of the matter and photon num
densities
©2002 The American Physical Society20-1
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S5
dnm

nm
2

dng

ng
523S Hdrm

ṙm

2
Hdrg

ṙg
D , ~2!

which is naturally gauge-independent.
The ‘‘primordial’’ adiabatic and isocurvature perturb

tions on cosmological scales (1 –104 Mpc) are usually de-
fined in terms of the early-time–large-scale limit deep in
radiation dominated era@17#, e.g., around the epoch of pr
mordial nucleosynthesis (T;1010 K). The power spectrum
and cross-correlation of the primordial adiabatic and isoc
vature perturbations on cosmological scales can then be
strained by observations, such as the cosmic microw
background angular power spectrum@18,10–13#.

During two-field inflation the general definition of th
curvature perturbation~1! yields

R.
H~ḟdf1ẋdx!

ḟ21ẋ2
~3!

where . denotes equality in the slow-roll approximation1

The generalized entropy~isocurvature! perturbation is given
by @6,9#

S5
H~ḟdx2ẋdf!

ḟ21ẋ2
. ~4!

As S is not directly observable during inflation, its norma
ization is somewhat arbitrary. This particular choice kee
the subsequent analysis of power spectra simpler by giv
curvature and isocurvature spectra equal power at hor
crossing@see Eq.~27!#. A different choice for the normaliza
tion of S would lead to a different overall factor multiplyin
the transfer functionsTRS andTSS in Eq. ~6!.

In order to relate the initial curvature and entropy pert
bations~3! and ~4! generated by a period of inflation in th
very early universe, to the observable curvature and entr
perturbations~1! and~2! at much later cosmic times, we nee
to model the evolution on large~‘‘super-horizon’’! scales. We
will work in a large-scale limit where the divergence of th
velocity field and shear can be neglected so that the lo
dynamics are those of a homogeneous and isotropic F
model @16#. During slow-roll inflation this becomes a goo
approximation soon after a mode leaves the Hubble s
(k,aH), and it remains valid up until the mode re-enters t
Hubble scale during the subsequent radiation or matter do
nated eras. Adiabatic perturbations correspond to pertu
tions which locally follow the same trajectory in phase spa
as the unperturbed background, whereas entropy pertu
tions correspond to perturbations off the background tra
tory @16#.

1Although the curvature and field perturbations are, in gene
gauge-dependent, this gauge-dependence can for most purpos
neglected at leading order in the slow-roll approximation. For d
niteness one can take all field perturbations to be evaluated in
spatially-flat gauge@19#.
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The curvature perturbationR remains constant for purely
adiabatic perturbations in the large-scale limit simply as
consequence of local energy conservation@16#, irrespective
of the physical processes going on during inflation or rehe
ing. Purely adiabatic perturbations can never generate
tropy perturbations on large scales, but entropy perturbat
~specifically a non-adiabatic pressure perturbation or ene
transfer! can change the curvature perturbation. Moreov
the entropy perturbation itself can evolve on large scales
imperfect fluids.2 One can thus argue on very gener
grounds@16# that the time dependence of adiabatic and
tropy perturbations in the large-scale limit can always
described by

Ṙ5aHS, Ṡ5bHS, ~5!

wherea andb are in general time-dependent dimensionle
functions. The explicit form of the interaction between t
curvature and entropy perturbations has recently been ex
itly demonstrated in the case of interacting scalar fie
@9,20,21# and non-interacting fluids@22#.

Integrating Eqs.~5! over time we can obtain the gener
form of the transfer matrix relating curvature and entro
perturbations generated when a given mode is stretched
side the Hubble scale during inflation (k5aH, denoted by an
asterisk! to curvature and entropy perturbations at some la
time @13#:

S R
S D 5S 1 TRS

0 TSS
D S R

S D
*

, ~6!

where

TRS~ t* ,t !5E
t
*

t

a~ t8!TSS~ t* ,t8!H~ t8!dt8,

~7!

TSS~ t* ,t !5expS E
t
*

t

b~ t8!H~ t8!dt8D .

Although the evolution in the large-scale limit is indepe
dent of scale~by definition!, the transfer functionsTRS and
TSS are implicit functions of scale due to their dependen
upont* (k). The scale dependence of the transfer function
proportional to

H
*
21 ]TRS

]t*
52a* 2b* TRS ,

~8!

H
*
21 ]TSS

]t*
52b* TSS .

Thus the scale dependence of the transfer functions is d
mined by a* and b* which describe the evolution of th
curvature and entropy fluctuations at Hubble exit during
l,
s be
-
he

2For the special case of two non-interacting perfect fluids, such
matter and radiation, the isocurvature perturbation defined in
~2! is constant on large scales.
0-2
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flation. We shall now show how these can be related to
dimensionless slow-roll parameters during inflation.

III. SLOW-ROLL INFLATION

We will consider inflation driven by minimally-couple
real scalar fieldsf and x with arbitrary potentialV(f,x).
Homogeneous scalar fields in a flat FRW cosmology o
the coupled Klein-Gordon equations

f̈13Hḟ52Vf ,
~9!

ẍ13Hẋ52Vx ,

whereVx denotes]V/]x, subject to the Friedmann constrai

H25
8pG

3 S 1

2
ḟ21

1

2
ẋ21VD . ~10!

Fields interact both through their explicit interaction pote
tial and gravitationally.

Inhomogeneous but linear perturbations about the n
linear but homogeneous background solutions obey the
turbed Klein-Gordon equations which can be written as@23#

d f̈13Hd ḟ1F k2

a2 1Vff2
8pG

a3

d

dt S a3

H
ḟ2D Gdf

52FVfx2
8pG

a3

d

dt S a3

H
ḟẋ D Gdx,

~11!

d ẍ13Hd ẋ1F k2

a2 1Vxx2
8pG

a3

d

dt S a3

H
ẋ2D Gdx

52FVxf2
8pG

a3

d

dt S a3

H
ẋḟ D Gdf.

where the field perturbations are defined in the spatially-
gauge@19,24,25#.

In the standard approach@5–7# one defines five slow-rol
parameters, two describing the slope of the potential

ef[
1

16pGS Vf

V D 2

, ex[
1

16pGS Vx

V D 2

, ~12!

and three describing the curvature

hff[
1

8pGS Vff

V D , hxx[
1

8pGS Vxx

V D ,

hfx[
1

8pG S Vfx

V D . ~13!

The slow-roll equations give an approximate solution for
growing mode solution when max$e i ,uh i j u%!1. The slow-
roll solutions for the homogeneous background are given

ḟ2.
2

3
efV, ẋ2.

2

3
exV, ~14!
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where . denotes equality in the slow-roll approximatio
while linear perturbations on large scales (k!aH) obey

H21d ḟ.~2ef2hff!df1~62Aefex2hfx!dx,
~15!

H21d ẋ.~2ex2hxx!dx1~62Aexef2hfx!df.

The h i j slow-roll parameters represent the explicit intera
tion via the potentialV(f,x), while e i terms are due to the
gravitational coupling.

We will adopt the approach of Gordonet al. @9# and per-
form a local field rotation to identify the instantaneous ad
batic and entropy perturbations along and orthogonal to
background trajectory in field space:

ds5cosudf1sinudx,
~16!

ds52sinudf1cosudx,

where tanu5ẋ/ḟ.6Aex /ef. This approach can be readil
extended to include multiple scalar fields and non-minim
coupling @21#. The curvature and entropy perturbations, d
fined in Eqs.~3! and~4! during inflation, then take the simpl
form

R.
Hds

ṡ
, S5

Hds

ṡ
. ~17!

The local field rotation~16! allows one of the slow-roll
parameters to be eliminated, in this case the slope orthog
to the trajectory,es.0 in slow roll, and we are left with four
parameters: one describing the slope of the potential

e[
1

16pG S Vs

V D 2

.ef1ex , ~18!

and three describing the curvature

hss5hffcos2u12hfxcosu sinu1hxxsin2u,

hss5~hxx2hff!sinu cosu1hfx~cos2u2sin2u!,
~19!

hss5hffsin2u22hfxsinu cosu1hxxcos2u.

Alternatively we could choose to diagonalize the mass m
trix, Vi j , to eliminate oneh term and have two slopes an
two curvature parameters. Either way we see that the lo
evolution of the fields and their perturbations at any inst
can be described byfour slow-roll parameters.

The background slow-roll solution is then given by

ṡ2.
2

3
eV, H21u̇.2hss , ~20!

while the perturbations obey

H21d ṡ.~2e2hss!ds22hssds, ~21!

H21d ṡ.2hssds.
0-3
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The entropy field perturbationds evolves independently o
the adiabatic field perturbationds on large scales. Howeve
the large-scale entropy perturbations do affect the evolu
of the adiabatic perturbations whenhssÞ0.

In terms of the dimensionless perturbationsR andS we
have

Ṙ.22hssHS,
~22!

Ṡ.~22e1hss2hss!HS.

which provides a specific example of the more general fo
for the evolution of curvature and entropy perturbatio
given in Eqs.~5!. In particular the scale dependence of t
integrated transfer functions, Eqs.~8!, can be written in terms
of the slow-roll parameters when the mode crosses out
the Hubble scale:

a* .22hss ,
~23!

b* .22e1hss2hss.

IV. INITIAL POWER SPECTRA

Weakly interacting, light fields acquire a spectrum
vacuum fluctuations at Hubble crossing (k5a* H* ) @1#

Pdfu* .Pdxu* .S H*
2p D 2

, ~24!

which describe independent Gaussian random fields, i.e.
cross-correlation

Cdf,dxu* 50. ~25!

The local rotation~16! to the instantaneous adiabatic a
entropy field perturbations gives

Pdsu* .Pdsu* .S H*
2p D 2

,

Cds,dsu* 50. ~26!

Hence, using Eq.~17!, the adiabatic and entropy powe
spectra at Hubble crossing are given by

PRu* .PSu* .S H2

2pṡ
D

*

2

.
8

3e

V*
M P

4 . ~27!

Although, as explained earlier, the normalization of the
mensionless entropy perturbation during inflation is arbitra
it proves convenient to use that given in Eq.~4! so thatR
andS have equal power at Hubble crossing.

The spectral tilts~defined bynx[d ln Px /d ln k) are given
by

nRu* .nSu* .26e12hss . ~28!

Gravitational waves are generated with a spectrum@1#
04352
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PTu* .
128

3

V*
M P

4 ~29!

and spectral tilt

nTu* .22e. ~30!

A key observation is that the tensor-scalar ratio at Hub
crossing, even in multi-field slow-roll inflation, can be give
from Eqs.~27!, ~29! and ~30! as

S PT

PR
D
*

.16e.28nTu* . ~31!

V. FINAL POWER SPECTRA

Applying the transfer matrix~6! to the initial scalar spec-
tra we obtain the resulting curvature and isocurvature po
spectra at the start of the conventional radiation-domina
era:

PR5~11TRS
2 !PRu* , ~32!

PS5TSS
2 PRu* , ~33!

CRS5TRSTSSPRu* . ~34!

A dimensionless measure of the correlation can be define
terms of a correlation angleD such that

cosD[
CRS

PR
1/2PS

1/2
.

TRS
A11TRS

2
. ~35!

Note that the scalar metric perturbation at Hubble cross
can thus be reconstructed from the observed curvature
turbation at late times and the cross-correlation angle:

PRu* .PRsin2D. ~36!

The tensor perturbations, in contrast to the scalar per
bations, remain ‘‘frozen-in’’ on large scales, and decoup
from the scalar perturbations at linear order. Thus the prim
dial perturbation spectrum for gravitational waves is giv
by Eqs.~29! and ~30!

PT5PTu* , nT5nTu* . ~37!

The consistency condition for the tensor-scalar amplitu
at Hubble crossing can thus be rewritten using Eqs.~31!,
~36! and ~37! as a consistency relation between the tens
scalar amplitudes at late times:

PT

PR
.28nTsin2D. ~38!

Any two-field model of slow-roll inflation predicts that thi
relation should hold between quantities which are direc
observable, so long as the amplitude of the isocurvature
tensor perturbations prove to be large enough. This rela
was first obtained in Ref.@7# just at the endof an inflationary
0-4
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period where two scalar fields are present@see Eq.~59! of
Ref. @7##. We have shown that this consistency relation~38!
between the tensor-scalar amplitudes is not modified by
linear processes the matter perturbations may undergo
tween the end of inflation and some later timet.

The scale dependence of the final scalar power spe
depends both on the scale dependence of the initial spe
(nRu* ) and on the transfer functionsTRS andTSS . The spec-
tral tilts are given from Eqs.~32!–~34! by3

nR5nRu* 1H
*
21~]TRS /]t* !sin 2D,

nS5nRu* 12H
*
21~] ln TSS /]t* !,

nC5nRu* 1H
*
21@~]TRS /]t* !tanD

1~] ln TSS /]t* !#, ~39!

where we have used Eq.~35! to eliminateTRS in favor of the
observable correlation angleD. Substituting in Eq.~28! for
the tilt at Hubble exit, and Eqs.~8! and ~23! for the scale
dependence of the transfer functions, we obtain

nR.2~624 cos2D!e12~hss sin2D12hsssinD cosD

1hsscos2D!,

nS.22e12hss,

nC.22e12hss12hsstanD. ~40!

We emphasize that although the overall amplitude of
transfer functionsTRS andTSS are dependent upon the ev
lution after Hubble exit, through reheating and into the
diation dominated era, the spectral tilts of the resulting p
turbation spectra can be expressed solely in terms of
slow-roll parameters at Hubble crossing during inflation a
the correlation angleD which can ~in principle! be deter-
mined by observations.

VI. MODEL-DEPENDENT RELATIONS

In addition to the consistency condition~38! that applies
to any slow-roll model of two-field inflation, there are add
tional model-dependent relations that will hold for restrict
classes of two-field inflation.

In Ref. @7# a second consistency relation was derived
curvature and entropy perturbations at the end of inflat
using the integrated slow-roll solutions:

nC2nS1
nR1nS22nC

2 sin2D
'0. ~41!

From Eqs.~39! one sees that in fact this holds for all mode
for which H

*
21] ln TSS /]t* '0. This requiresb* '0 in Eq.

3In this notation, the spectral index for adiabatic scalar pertur
tions is conventionally given asn511nR so that a scale-invarian
~Harrison-Zel’dovich! spectrum corresponds tonR50.
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~8! which can be given as a constraint on the slow-roll p
rameters at Hubble exit by Eq.~23!.

Another class of two-field inflation models are those
which the curvature and isocurvature perturbations are ef
tively decoupled around the time of Hubble exit,a* '0 in
Eq. ~5!. In terms of slow-roll parameters at Hubble exit th
requires, from Eq.~23!, thathss'0. This includes models in
which only one scalar field evolves during inflation, b
where both fields play a significant dynamical role duri
reheating or afterwards. From Eqs.~40! we see immediately
that we have the constraint

nS'nC . ~42!

The curvaton model for the origin of cosmological stru
ture proposed in Refs.@26,27# falls into this class of models
In the curvaton scenario the initial curvature perturbation
Hubble exit ~or later! during inflation is taken to be negli
gible, i.e.,R* !R. The curvature perturbation observed du
ing the subsequent radiation or matter dominated eras is
posed to be due entirely to an initial isocurvatu
perturbation at Hubble exit. As can be seen from Eq.~36!
this implies that the resulting curvature and isocurvature p
turbations must be 100% correlated, sinD'0. Unfortunately
Eq. ~38! then shows that the amplitude of tensor perturb
tions must be negligible,PT'0. Instead we have a constrain
solely in terms of the scalar spectra from Eqs.~40!:

nR'nS'nC . ~43!

VII. CONCLUSIONS

In this paper we have shown how curvature and entro
perturbations produced by any slow-roll model of two-fie
inflation can be related to observable curvature and ma
isocurvature perturbation spectra at late times.

The resulting amplitude and tilt of the spectra of curvatu
and entropy perturbations and their correlation can be
scribed by six parameters which may in principle be det
mined observationally. These six observables are determ
by seven model parameters: the Hubble rate during inflat
four dimensionless slow-roll parameters, and two trans
functions TRS and TSS which are dependent upon the d
tailed physics of reheating. This situation is analogous to
case of single-field inflation where the two observables~am-
plitude and tilt! of the adiabatic curvature perturbation spe
trum is determined by three model parameters: the Hub
rate during inflation and two slow-roll parameters.

To break the degeneracy we require an observable s
trum of gravitational waves produced during inflation, who
amplitude and tilt gives two more observables, and hence
observationally testable consistency relation~38!, which is a
generalization of the single-field relation@1#.

Although the amplitude of the isocurvature and cro
correlation spectra are dependent upon two transfer funct
TRS andTSS which are,a priori, unknowns, the correlation
angle, D, is a direct measure of one of these,TRS . This
enables one to quantify the contribution of non-adiabatic p
turbations to the late-time curvature and hence reconst

-

0-5
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the original curvature perturbation spectrum at Hubble e
from that observed at late times. A measure of the amplit
of the late-time isocurvature amplitude then allows one
determineTSS .

We have shown that the spectral tilts of the tensor a
scalar spectra can be written in terms of the four slow-
parameters describing the evolution at the time of Hub
exit during inflation. This yields additional consistency re
tions in specific models such as the curvaton scen
@26,27#.

Finally we note that the relation~36! between the isocur
vature correlation angleD and the change in the large-sca
curvature assumes that only one entropy mode exists at
rizon exit during inflation. In inflation models with mor
than two light fields during inflation, an additional uncorr
lated entropy mode at horizon crossing could contribute
the isocurvature without affecting the curvature at late tim
Thus our generalized consistency relation~38! only applies
to two-field models of inflation. For three or more light field
during inflation we again have an inequality
-
e,

y

ki

v.

e
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PT

PR
<28nTsin2D. ~44!

At the same time, we have only considered one observa
isocurvature mode in the radiation-dominated era. The g
eral cosmological perturbation can include as many isoc
vature modes as there are distinguishable matter compon
@28#. The correlation of these additional modes with the c
vature could enable one to reconstruct the curvature pe
bation at horizon exit even in the presence of additional li
fields during inflation. In general one would expect to be a
to find a tensor-scalar consistency condition when there
as many observable perturbation modes in the radia
dominated universe after inflation as there are light fie
during inflation.
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