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Observational test of two-field inflation
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We study adiabatic and isocurvature perturbation spectra produced by a period of cosmological inflation
driven by two scalar fields. We show that there exists a model-independent consistency condition for all
two-field models of slow-roll inflation, despite allowing for model-dependent linear processing of curvature
and isocurvature perturbations during and after inflation on super-horizon scales. The scale dependence of all
spectra are determined solely in terms of slow-roll parameters during inflation and the dimensionless cross-
correlation between curvature and isocurvature perturbations. We present additional model-dependent consis-
tency relations that may be derived in specific two-field models, such as the curvaton scenario.
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[. INTRODUCTION isocurvature perturbations. This cross-correlation generically
arises in inflation models for the origin of curvature and
The primary interest in inflatiofl —3] is as a mechanism isocurvature perturbationg,9,7. If it can be determined
to explain the origin of structure in the Universe from observationallyf10-13 then one can reconstruct the scalar
vacuum fluctuations in an early inflationary era which arecurvature perturbation at horizon crossing. We are thus able
swept up to arbitrarily large scales. The simplest inflationano derive a generalized consistency condition for the ob-
models predict an almost scale-invariant spectrum of Gaus§erved tensor-scalar ratio that holdsaith two-field models
ian, adiabatic density perturbations. Such a spectrum wa@f slow-roll inflation.
already known as a likely model of structure formation long  The paper is organized as follows. In Sec. Il we introduce
before inflation was proposed. Inflation also predicts a sped.he notion of transfer functions and deal with slow-roll infla-
trum of gravitational waves or “tensor” fluctuations. In tion in Sec. Ill. In Secs. IV and V we compute the power
single-field models of slow-roll inflation there is a consis- SPectra at horizon crossing and at late times, respectively,
tency condition between the slope of the spectrum of tensoand derive the consistency relation holding for all two-field
perturbations and the ratio of tensor to scalar metric fluctuamodels of inflation. In Sec. VI we present additional rela-
tions[1]. The observational confirmation of such a predictiontions that hold for restricted classes of slow-roll models. Fi-
is one of the holy grails of modern cosmology. nally, in Sec. VIl we draw our conclusions.
Recent studies of multi-field models of inflation have—

however—threatened to destroy this appealing theoretical
prediction. Indeed, entropy perturbations generated in addi- [l. TRANSFER FUNCTIONS
tional light fields can alter the evolution of the curvature
perturbation even on large scales. This additional source fogC
the late-time scalar curvature perturbation breaks the sing|

We will first construct dimensionless quantities to de-
cribe the instantaneous adiabateurvature and entropy

. : . C - E‘(isocurvaturee perturbations both during and after inflation.
field consistency relations, yielding only an upper bound "We can then relate their values on large scales during and

the tens_or-scalar rat_IEﬂ—G]. . . after inflation by a model-dependent transfer matrix, whose
Consistency relations have recently been derived for adia-

) X : o general form will be given in Eq6).
B B, DU e conventional it dominated e -
consistency condition is modified through the CrOSS_flatlon) there is a con_ventlonal gauge-invariant definition for

- the large-scale density—curvature perturbafibh—16
correlation between the entropy and the curvature perturba-
tions. On the other hand, the model dependent nature of re-
heating at the end of inflation makes it impossible to quantify
the late-time amplitude of entropy perturbations solely in — H_b‘p
ftude of entrop) R=y+ = @

terms of the evolution during inflation. p

In this paper we introduce a model-independent descrip-
tion of the coupling between adiabatic and entropy perturba-
tions both during and after inflation in order to relate late-where ¢ is the gauge-dependent curvature perturbation and
time observables to perturbation spectra generated duringp the total density perturbation in that gauge. The
inflation. We show that the scale dependence of all spectrsocurvature-entropy perturbation is usually defined as the
depend only on quantities at horizon crossing during slowperturbation in the ratio of the matter and photon number

roll inflation and the cross-correlation between curvature andiensities
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The curvature perturbatigR remains constant for purely
, (2)  adiabatic perturbations in the large-scale limit simply as a
consequence of local energy conservalfidf], irrespective
of the physical processes going on during inflation or reheat-
which is naturally gauge-independent. ing. Purely adiabatic perturbations can never generate en-
The “primordial” adiabatic and isocurvature perturba- tropy perturbations on large scales, but entropy perturbations
tions on cosmological scales (1-*104pc) are usually de- (specifically a non-adiabatic pressure perturbation or energy
fined in terms of the early-time—large-scale limit deep in thetransfey can change the curvature perturbation. Moreover,
radiation dominated erl7], e.g., around the epoch of pri- the entropy perturbation itself can evolve on large scales for
mordial nucleosynthesisT(~10" K). The power spectrum imperfect fluids> One can thus argue on very general
and cross-correlation of the primordial adiabatic and isocurgrounds[16] that the time dependence of adiabatic and en-

vature perturbations on cosmological scales can then be cofropy perturbations in the large-scale limit can always be
strained by observations, such as the cosmic microwavgescribed by

background angular power spectriitr8,10—13.
During two-field inflation the general definition of the R=aHS, &=pBHS, (5)
curvature perturbatiofil) yields

on on H S, H
S= m :_3( pm_ Py

Pm Py

wherea and B are in general time-dependent dimensionless
H(pSp+ xx) functions. The explicit form of Fhe interaction between thg
T 3 curvature and entropy perturbations has recently been explic-
P+ x itly demonstrated in the case of interacting scalar fields
[9,20,21 and non-interacting fluidg22].
where = denotes equality in the slow-roll approximatibn. — Integrating Eqs(5) over time we can obtain the general
The generalized entropysocurvaturg perturbation is given  form of the transfer matrix relating curvature and entropy
by [6,9] perturbations generated when a given mode is stretched out-
side the Hubble scale during inflatiok=€ aH, denoted by an
H($Sx— xd¢d) asterisk to curvature and entropy perturbations at some later

IR 4 time[13]:
R
) , (6)

S

R 1 Trs
As S is not directly observable during inflation, its normal- S) =<0 T
ization is somewhat arbitrary. This particular choice keeps S8
the subsequent analysis of power spectra simpler by givm%here
curvature and isocurvature spectra equal power at horizon
crossing/see Eq(27)]. A different choice for the normaliza- t
tion of S would lead to a different overall factor multiplying Trs(t, ,t)=f a(t’)Tes(t, ,t")H(t")dt’,
the transfer function¥ 55 and Tss in Eq. (6). b

In order to relate the initial curvature and entropy pertur- . @)
bations(3) and (4) generated by a period of inflation in the Tos(t, ,t)=ex;{J’ ,B(t’)H(t’)dt’) _
very early universe, to the observable curvature and entropy t,
perturbationg1) and(2) at much later cosmic times, we need o o
to model the evolution on largésuper-horizon”) scales. We Although the evolution in the large-scale limit is indepen-
will work in a large-scale limit where the divergence of the dent of scaleby definition, the transfer function3 s and
velocity field and shear can be neglected so that the localss are implicit functions of scale due to their dependence
dynamics are those of a homogeneous and isotropic Fpront*(k). The scale dependence of the transfer functions is
model[16]. During slow-roll inflation this becomes a good Proportional to
approximation soon after a mode leaves the Hubble scale

(k<aH), and it remains valid up until the mode re-enters the H,1<9TR5: —a,—B, T

Hubble scale during the subsequent radiation or matter domi- *oaty X PxORe

nated eras. Adiabatic perturbations correspond to perturba- (8

tions which locally follow the same trajectory in phase space ,0Tss _

as the unperturbed background, whereas entropy perturba- * ogt, xS

tions correspond to perturbations off the background trajec-

tory [16]. Thus the scale dependence of the transfer functions is deter-

mined by «, and B, which describe the evolution of the
curvature and entropy fluctuations at Hubble exit during in-

Although the curvature and field perturbations are, in general,
gauge-dependent, this gauge-dependence can for most purposes be
neglected at leading order in the slow-roll approximation. For defi- 2For the special case of two non-interacting perfect fluids, such as
niteness one can take all field perturbations to be evaluated in theatter and radiation, the isocurvature perturbation defined in Eqg.
spatially-flat gaug¢19]. (2) is constant on large scales.
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flation. We shall now show how these can be related to thevhere = denotes equality in the slow-roll approximation

dimensionless slow-roll parameters during inflation. while linear perturbations on large scaldsgaH) obey
IIl. SLOW-ROLL INFLATION H™ 15 ¢=(2€,— n44) 5+ (+2\eye,— 14,) X,
. o . - _ (15
We will consider inflation driven by minimally-coupled H_15X2(2€X— ) Ox+(£2 /—EXE¢_ N4y) 0.

real scalar fieldsp and y with arbitrary potentiaM(¢,x).
Homogeneous scalar fields in a flat FRW cosmology obeyrhe 7;; slow-roll parameters represent the explicit interac-

the coupled Klein-Gordon equations tion via the potentiaV(¢, x), while ¢ terms are due to the
. . gravitational coupling.
¢p+3HP=—V,, We will adopt the approach of Gordat al.[9] and per-
(99  form a local field rotation to identify the instantaneous adia-
x+ 3Hj(= -V, batic and entropy perturbations along and orthogonal to the

background trajectory in field space:
whereV, denotes)V/dx, subject to the Friedmann constraint
S0=Cc0S05¢p+sinhdy,
H2_87TG 1. 2, 1. 24y
=3 |2 X

(16)

: (10 8s= —sin#¢+coshdy,

Fields interact both through their explicit interaction poten-where tard= x/¢=* \e, / €,. This approach can be readily
tial and gravitationally. extended to include multiple scalar fields and non-minimal

Inhomogeneous but linear perturbations about the noncoupling[21]. The curvature and entropy perturbations, de-
linear but homogeneous background solutions obey the pefined in Eqs(3) and(4) during inflation, then take the simple
turbed Klein-Gordon equations which can be writterf2g] ~ form

: oK 87G d (a®. , H oo Hos
6¢p+3HS P+ ¥+V¢¢ ?a ﬁd) o R—T, S—T (17)
_ _ @ E a_3¢ }5 The local field rotation(16) allows one of the slow-roll
T T@® dt|HPX)|ox parameters to be eliminated, in this case the slope orthogonal
(11)  to the trajectoryes=0 in slow roll, and we are left with four
Syt 3HS k2 v 87G d (ad. 5 parameters: one describing the slope of the potential
Xt x+t az+ T a3 dil mX X Loy
8wG d [as. . €= 167TG(V) =€pt €y, (18
T Ve T T a w0
and three describing the curvature
where the field perturbations are defined in the spatially-flat ) )
gauge[19,24,25, Moo= 1g4sC0S 0+ 27,4 ,€0S0 SN O+ 7, SIPH,
In the standard approa¢b—7] one defines five slow-roll ) )
parameters, two describing the slope of the potential Nos= (T~ 744)SIN 0 COSO+ ’7¢X(C0520_5'”292i9)
1 [Vy\2 1 (V,\2
€4= R( V(b) y 6= m( VX> , (12 Nss— 77¢,¢sin20— 274,Sin 6 coso+ nXXCOS20.

Alternatively we could choose to diagonalize the mass ma-
trix, Vj;, to eliminate onen term and have two slopes and
1 (v 1 (v two cgrvature parameters. Elther way we see that the local
( W’)' ( XX), evolution of the fields and their perturbations at any instant
can be described bfpur slow-roll parameters.
The background slow-roll solution is then given by

and three describing the curvature

166~ 87G| V

o M) . (13

L, 2 L
o’=5eV, H Mo=—17,, (20)

The slow-roll equations give an approximate solution for the
growing mode solution when mé | 7;;|}<1. The slow-  while the perturbations obey
roll solutions for the homogeneous background are given by

H 180=(2e—7,,) 00— 27,55, (21)
¢2:Ee Y% 5(2226 v (14) -
3¢ 3 H™15s=— 50s.

043520-3



WANDS, BARTOLO, MATARRESE, AND RIOTTO PHYSICAL REVIEW D66, 043520(2002

The entropy field perturbatioAs evolves independently of 128 V,
the adiabatic field perturbatiofio on large scales. However Prls= 3 MZ (29)
the large-scale entropy perturbations do affect the evolution P
of the adiabatic perturbations whep,s#0. and spectral tilt
In terms of the dimensionless perturbatioRsand S we
have Nyl = — 2e. (30
R — 27,4HS, A key observation is that the tensor-scalar ratio at Hubble
(22 crossing, even in multi-field slow-roll inflation, can be given
S=(—2e+ 7,,— 7s)HS. from Egs.(27), (29) and(30) as
which provides_ a specific example of the more general form (ﬁ ~16e~—8n+|, . (31)
for the evolution of curvature and entropy perturbations Pr/,
given in Eqgs.(5). In particular the scale dependence of the
integrated transfer functions, Ed8), can be written in terms _ V. FINAL POWER SPECTRA
of the slow-roll parameters when the mode crosses outside
the Hubble scale: Applying the transfer matrix6) to the initial scalar spec-
tra we obtain the resulting curvature and isocurvature power
Ay =—27,s, spectra at the start of the conventional radiation-dominated
(23) era:
By=—2€+ N55— Nss- 5
Pr=(1+T%s)Prls , (32
IV. INITIAL POWER SPECTRA
Weakly interacting, light fields acquire a spectrum of
vacuum fluctuations at Hubble crossing=a, H, ) [1] Crs=TrsTssPrl« - (34

2 A dimensionless measure of the correlation can be defined in

' (249 terms of a correlation anglé such that

H.
P5¢|*:P5x|*: P

which describe independent Gaussian random fields, i.e. zero cosA= Crs  Tgs (35
cross-correlation PYZpL2 1+ TR? s

Csg,6xl% =0. (25 Note that the scalar metric perturbation at Hubble crossing

. . , . can thus be reconstructed from the observed curvature per-
The local rotation(16) to the instantaneous adiabatic and y, hation at late times and the cross-correlation angle:

entropy field perturbations gives

o2 Prly =PrSirfA. (36)
*
Psolx =Posls :<ﬂ) ' The tensor perturbations, in contrast to the scalar pertur-
bations, remain “frozen-in” on large scales, and decoupled
Cso 55lx =0. (26)  fromthe scalar perturbations at linear order. Thus the primor-

dial perturbation spectrum for gravitational waves is given
Hence, using Eq(17), the adiabatic and entropy power by Egs.(29) and(30)
spectra at Hubble crossing are given by

Pr="Prlx, nr=nq,. (37)
2\ 2
Prl, =P, = _H :EV_,Z. (27) The consistency condition for the tensor-scalar amplitudes
* * \2weo . 3e Mp at Hubble crossing can thus be rewritten using E§4),

(36) and (37) as a consistency relation between the tensor-

Although, as explained earlier, the normalization of the di-scalar amplitudes at late times:
mensionless entropy perturbation during inflation is arbitrary,

it proves convenient to use that given in Ed) so thatR E:—SnTsinzA. (39)
and S have equal power at Hubble crossing. Pr
The spectral tiltgdefined byn,=d In P, /d In k) are given ) ) . ) .
by Any two-field model of slow-roll inflation predicts that this
relation should hold between quantities which are directly
Ngly=ng,=—6e+27,,. (28)  observable, so long as the amplitude of the isocurvature and
tensor perturbations prove to be large enough. This relation
Gravitational waves are generated with a spectfim was first obtained in Ref7] justat the endof an inflationary
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period where two scalar fields are presesge Eq.(59) of  (8) which can be given as a constraint on the slow-roll pa-
Ref.[7]]. We have shown that this consistency relat{88) rameters at Hubble exit by E@3).
between the tensor-scalar amplitudes is not modified by any Another class of two-field inflation models are those in
linear processes the matter perturbations may undergo behich the curvature and isocurvature perturbations are effec-
tween the end of inflation and some later time tively decoupled around the time of Hubble exi, ~0 in

The scale dependence of the final scalar power spectiag. (5). In terms of slow-roll parameters at Hubble exit this
depends both on the scale dependence of the initial spectraquires, from Eq(23), that#,s~0. This includes models in
(nzl+) and on the transfer functiols, s andTgs. The spec- which only one scalar field evolves during inflation, but

tral tilts are given from Eqs(32)—(34) by® where both fields play a significant dynamical role during
. _ reheating or afterwards. From Eq40) we see immediately
Nr=ngl, +H, (dTrs/dt,)sin 2A, that we have the constraint
nSZnR|*+2H;l((9|nT55/(9t*), nS%nc. (42)
Ne=nNg|, + H;l[(&TRS/&t*)tanA The curvaton model for the origin of cosmological struc-

ture proposed in Ref$26,27 falls into this class of models.

In the curvaton scenario the initial curvature perturbation at
Hubble exit(or latep during inflation is taken to be negli-
gible, i.e.,R,<R. The curvature perturbation observed dur-
ing the subsequent radiation or matter dominated eras is sup-
posed to be due entirely to an initial isocurvature
perturbation at Hubble exit. As can be seen from E3§)

+(dInTgs/ty)], (39

where we have used E(B5) to eliminateT ;s in favor of the
observable correlation angle. Substituting in Eq(28) for

the tilt at Hubble exit, and Eqg8) and (23) for the scale
dependence of the transfer functions, we obtain

No=—(6—4 co2A)e+2 SIPA + 27 .SinA COSA this implies that the resulting curvature.and isocurvature per-
= )€+ 2(7a0 s turbations must be 100% correlated, A 0. Unfortunately
+ 75 LOSA), Eqg. (38) then shows that the amplitude of tensor perturba-
tions must be negligible?r~0. Instead we have a constraint
Ng=—2€+27ss, solely in terms of the scalar spectra from EG):
Ne=—2€+2nsst+ 27n,sanA. (40 Np~Ng~nNc. (43

We emphasize that although the overall amplitude of the
transfer functiondl s and T 35 are dependent upon the evo-

turbation spectra can be expressed solely in terms of th@fjation can be related to observable curvature and matter-

VII. CONCLUSIONS

the correlation angled which can(in principle) be deter- The resulting amplitude and tilt of the spectra of curvature
mined by observations. and entropy perturbations and their correlation can be de-
scribed by six parameters which may in principle be deter-
VI. MODEL-DEPENDENT RELATIONS mined observationally. These six observables are determined

by seven model parameters: the Hubble rate during inflation,
four dimensionless slow-roll parameters, and two transfer
tional model-dependent relations that will hold for restrictedigﬁggopnﬁygéss 3??;1‘;%;\:{3?2%?;88i?faﬁieonr? ‘i%\sn;rl:aplggott?se t(()j Gt)h o
classes of two-field mflatlon._ . . case of single-field inflation where the two observaljies-

In Ref.[7] a second consistency relation was deny ed for litude and tilj of the adiabatic curvature perturbation spec-
curvature .and entropy perturbatlops a_t the end of inflatio rum is determined by three model parameters: the Hubble
using the integrated slow-roll solutions: rate during inflation and two slow-roll parameters.

To break the degeneracy we require an observable spec-
_ (41) trum of gravitational waves produced during inflation, whose
2 sirfA amplitude and tilt gives two more observables, and hence the
observationally testable consistency relat{88), which is a
From Egs.(39) one sees that in fact this holds for all models generalization of the single-field relatidf].
for which H, 9In Tgs/dt, ~0. This requires3, ~0 in Eq. Although the amplitude of the isocurvature and cross-
correlation spectra are dependent upon two transfer functions
Trs and Tgs which are,a priori, unknowns, the correlation
3In this notation, the spectral index for adiabatic scalar perturba@ngle, A, is a direct measure of one of theSkgs. This
tions is conventionally given as=1+nj so that a scale-invariant enables one to quantify the contribution of non-adiabatic per-
(Harrison-Zel'dovich spectrum corresponds t9,=0. turbations to the late-time curvature and hence reconstruct

In addition to the consistency conditidB88) that applies
to any slow-roll model of two-field inflation, there are addi-

Nr+Ns—2n;
N—Ngt —————~
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the original curvature perturbation spectrum at Hubble exit

. . T < i
from that observed at late times. A measure of the amplitude .= 8nysi A. (44)
of the late-time isocurvature amplitude then allows one to ®
determineT g5. At the same time, we have only considered one observable

We have shown that the spectral tilts of the tensor andsocurvature mode in the radiation-dominated era. The gen-
scalar spectra can be written in terms of the four slow-rolleral cosmological perturbation can include as many isocur-
parameters describing the evolution at the time of Hubble/ature modes as there are distinguishable matter components
exit during inflation. This yields additional consistency rela-[28]. The correlation of these additional modes with the cur-
tions in specific models such as the curvaton scenaridature could enable one to reconstruct the curvature pertur-
[26,27. bation at _hori_zon _exit even in the presence of additional light

Finally we note that the relatiof86) between the isocur- fi€lds during inflation. In general one would expect to be able

vature correlation angld and the change in the large-scale to find a tensor-scalar consistency condition when there are
gs many observable perturbation modes in the radiation

dominated universe after inflation as there are light fields

rizon exit during inflation. In inflation models with more L .
during inflation.

than two light fields during inflation, an additional uncorre-
lated entropy mode at horizon crossing could contribute to
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