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Loop corrections to scalar quintessence potentials

Michael Doran* and Jo¨rg Jäckel†

Institut für Theoretische Physik der Universita¨t Heidelberg, Philosophenweg 16, D-69120 Heidelberg, Germany
~Received 10 May 2002; published 19 August 2002!

The stability of scalar quintessence potentials under quantum fluctuations is investigated for both uncoupled
models and models with a coupling to fermions. We find that uncoupled models are usually stable in the late
universe. However, the coupling to fermions is severely restricted. We check whether a graviton induced
fermion-quintessence coupling is compatible with this restriction.
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I. INTRODUCTION

Observations indicate that dark energy constitutes a s
stantial fraction of our Universe@1–5#. The range of possible
candidates includes a cosmological constant and—m
flexibly—some form of dark energy with a time depende
equation of state, called quintessence@6#. Commonly, real-
izations of quintessence scenarios feature a light scalar
@7–9#.

The evolution of the scalar field is usually treated at
classical level. However, quantum fluctuations may alter
classical quintessence potential. In this article, we will inv
tigate one-loop contributions to the effective potential fro
both quintessence and fermion fluctuations. We will sh
that in the late universe quintessence fluctuations are ha
less for most of the potentials used in the literature. F
inverse power laws and supergravity~SUGRA! inspired
models, this has already been demonstrated in@10#. That the
smallness of the quintessence mass needs to be protect
some symmetry has been pointed out in@11,12#.

In contrast with the rather harmless quintessence fi
fluctuations, fermion fluctuations severely restrict the mag
tude of a possible coupling of quintessence to fermionic d
matter, as we will show.

In Euclidean conventions, the action we use for the qu
tessence fieldF and a fermionic speciesC to which it may
couple@13–15# is

S5E d4xAgFM P
2R1

1

2
]mF~x!]mF~x!

1V„F~x!…1C̄~x!@ i¹” 1g5mf~F!#C~x!G , ~1!

with mf(F) as aF dependent fermion mass. ThisF depen-
dence~if existent in a model! determines the coupling of th
quintessence field to the fermions. As long as one is
interested in quantum gravitational effects, one may
Ag51, R50, and replace¹” →]” in the action 1.

By means of a saddle point expansion@16#, we arrive at
the effective actionG@Fcl# to one-loop order of the quintes
sence field. The equation governing the dynam
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of the quintessence field is then determined
dG@Fcl# uFcl5F

cl
!50. When estimating the magnitude of th

loop corrections, we will assume thatFcl
! is close to the

solution of the classical field equations:dS50. EvaluatingG
for constant fields, we can factor out the space-time volu
U from G5UV. This gives the effective potential

V
1 loop

~Fcl!5V~Fcl!1
L2

32p2
V9~Fcl!2

L ferm
2

8p2
@mf~Fcl!#

2.

~2!

Here, primes denote derivatives with respect toF; Fcl is the
classical field value andL andL ferm are the ultraviolet cut-
offs of scalar and fermion fluctuations. The last term in E
~2! accounts for the fermionic loop corrections as shown
Fig. 1. The second term in Eq.~2!, is the leading order scala
loop, depicted in Fig. 2~a!. We neglect graphs of the orde
(Vucl9 )2 and higher, like the one in Fig. 2~b!, becauseV and its
derivatives are of the order 102120 ~see Sec. III!. We have
also ignoredF independent contributions, as these will n
influence the quintessence dynamics.

However, theF independent contributions add up to
cosmological constant of the orderL4'O(MP

4). This is the
old cosmological constant problem, common to most fi
theories. We hope that some symmetry or a more fundam
tal theory will force it to vanish. The same symmetries
theories could equally well remove the loop contribution
some cancelling mechanism. After all, this mechanism m
be there, for the observed cosmological constant is far
than the naively calculatedO(M P

4 ). Unfortunately, super-
symmetry~SUSY! is broken too badly to be this symmetr
@11#.

In addition, none of the potentials under investigation c
be renormalized in the strict sense. However, as we will s

FIG. 1. Correction to the quintessence potential due to ferm
fluctuations. Fermion lines are solid, quintessence lines das
Shown is the case wheremf(F) gives a Yukawa coupling, i.e.
c(F)5bF, corresponding to one quintessence line. Of course,
more complicatedmf(F) such asmf(Fcl)5mf

0exp(2bFcl), several
external lines as in Fig. 2 would appear.
©2002 The American Physical Society19-1
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terms preventing renormalization may in some cases be
sent to leading order inVucl9 . As the mass of the quintessen
field is extremely small, one may for all practical purpos
view these specific potentials~such as the exponential pote
tial! as renormalizable.

There is also a loophole for all models that will be rul
out in the following: The potential used in a given mod
could be the full effective potential including all quantu
fluctuations, down to macroscopic scales. For coupled q
tessence models, this elegant argument is rather problem
and the loophole shrinks to a point~see Sec. III!.

In the following, we apply Eq.~2! to various quintessenc
models in order to check their stability against one-loop c
rections. We do this separately for coupled and uncoup
models. We use units in whichMP51. For clarity, we restore
it when appropriate.

II. UNCOUPLED QUINTESSENCE

Here, we are going to discuss inverse power law, pure
modified exponential, and cosine-type potentials.

A. Inverse power law and exponential potentials

Inverse power laws@7,8#, exponential potentials@9,17#,
and mixtures of both@18# can be treated by considering th
potentialV5AF2aexp(2lFg) @19#. Limiting cases include
inverse power laws, exponentials, and SUGRA inspi
models. Deriving twice with respect toF, we find

V95AF2aexp~2lFg!$a~a11!F2212algFg22

1l2g2F2g222lg~g21!Fg22%. ~3!

1. Inverse power laws

For inverse power laws, we setg5l50. This gives the
classical potentialVcl

IPL5AFcl
2a and by means of Eq.~2! the

loop corrected potential

V1 loop
IPL 5Vcl

IPLS 11
1

32p2
L2a~a11!Fcl

22D . ~4!

The potential is form stable i
(1/32p2)L2a(a11)F22!1, which today is satisfied, a
F'MP @18#.

However, if the field is on its attractor today, the
F}(11z)23/(a12), wherez is the redshift@18#. Using this,
we have forz@1

FIG. 2. Pure quintessence fluctuations~depicted as dashe
lines!. The loop of the fluctuating quintessence field modifies
potential. Since the potential involves in principle arbitrary pow
of F, we depictV9 as multiple external lines.
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V1 loop
IPL 'Vcl

IPLS 11
1

32p2
L2a~a11!z6/(a12)D . ~5!

Thus, the cutoff needs to satisfyL2!32p2/a(a11)
3z26/(a12). Cosmologically viable inverse power law pote
tials seem to be restricted toa,2 @20,21#. Usinga51 and
z'104 for definiteness, the bound becomesL2!1026.

So, at equality~and even worse before that epoch!, the
cutoff needs to be well below 1012 GeV, if classical calcu-
lations are meant to be valid. In@10# it is argued that for
inverse power laws the quintessence content in the early
verse is negligible and hence the fluctuation corrections
important only at an epoch where quintessence is subdo
nant. As the loop corrections introduce only higher negat
powers in the field, it is hoped that, even though one does
know the detailed dynamics, the field will nevertheless r
down its potential~which at that time is supposed to be mu
steeper! and by the time it is is cosmologically relevant, th
classical treatment is once again valid. Having no mean
calculating the true effective potential for the inverse pow
law in the early universe, this view is certainly appealing

2. Pure exponential potentials

The pure exponential potential is special because its
rivatives are multiples of itself. The classical potential~with
a50,g51) is Vcl

EP5Aexp(2lFcl) and to one-loop order

V1 loop
EP 5Vcl

EPH 11
1

32p2
L2l2J . ~6!

It is easy to see that a rescaling ofA→A/@1
1(1/32p2)L2l2# absorbs the loop correction, leading to
stable potential up to orderVcl9 . Working to next to leading
order, i.e., restoring terms of order (Vcl9 )2, we get

V1 loop,n.l.
EP 5

1

32p2
~Vcl9 !2lnS Vcl9

L2D .

It is this term which in four dimensions spoils strict reno
malizability.

B. Nambu-Goldstone cosine potentials

Cosine-type potentials resulting from a quintessence
ion were introduced in@22,23# and their implications for the
cosmic microwave background~CMB! have been studied in
@24#. They take on the classical potentialVcl

NG5A@1
2cos(Fcl / f Q)# and including loop corrections

V1 loop
AS 5AF12H 12

1

32p2

L2

f Q
2 J cosS Fcl

f Q
D G .

Upon a redefinitionA→A/$12(1/32p2)L2/ f Q
2 % and, recall-

ing that the loop correction is only defined up to a consta
one arrives at the same functional form as the classical
tential.

e
s

9-2



y

a

ti

th
re

u
m

n
b

to
ed

for

part

-

nd
n via

e

on-
ay,

d

,
ked
and
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C. Modified exponentials

In the model proposed by Albrecht and Skordis@25#, the
classical potential isVcl

AS5Vpexp(2lFcl), where Vp is a
polynomial in the field. To one-loop order, this leads to

V1 loop
AS 5Vcl

ASH 11
1

32p2
L2S Vp9

Vp
22l

Vp8

Vp
1l2D J . ~7!

Let us for definiteness discuss the example given in@25#,
where the authors choseVp(F)5(F2B)21C. With this
choice, we have

V1 loop
AS, EXMPL5Vcl

AS, EXMPLH 11
1

32p2

3L2S 1

Vp
@224l~Fcl2B!#1l2D J . ~8!

Now consider field values close to the minimum ofVp , i.e.,
let the absolute value ofj[Fcl2B be small compared to
AC. Then

V1 loop
AS, EXMPL5Vcl

AS, EXMPLH 11
L2

32p2 S 224lj

C1j2
1l2D J ,

~9!

and to leading order inj

V1 loop
AS, EXMPL'Vcl

AS, EXMPLH 11
L2

32p2 S 1

C
@224lj#1l2D J .

~10!

Now consider, as was the case in the example given in@25#,
C50.01 for definiteness. If we assume a cutoffL and a
Plank mass of approximately the same order, we get

V1 loop
AS, EXMPL'Vcl

AS, EXMPLH 11
1

32p2
~100@224lj#1l2!J .

~11!

The j ~and henceFcl) dependent contribution in the curl
brackets of Eq.~11! is 225/(2p2)lj which for the value
l58 chosen in the example gives2200/(2p2)j'210j.

If we now look at the behavior of the loop correction as
function of Fcl and hencej in the vicinity of the minimum
of this example polynomial, we see that for, e.g.,j50.01,
the one-loop contribution dominates the classical poten
giving rise to a linear term inFcl unaccounted for in the
classical treatment. For many values of the parametersB and
C, this just changes the form and location of the bump in
potential. In principle, however the loop correction can
move the local minimum altogether~see Fig. 3!.

Needless to say, this finding depends crucially on the c
off. If it is chosen small enough, the conclusion is circu
vented. In addition, only the specific choice ofVp above has
been shown to be potentially unstable. The space of poly
mials is certainly large enough to provide numerous sta
potentials of the Albrecht and Skordis form.
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III. COUPLED QUINTESSENCE

Various models featuring a coupling of quintessence
some form of dark matter have been propos
@26,14,27,28,15#. From the action Eq.~1!, we see that the
mass of the fermions could beF dependent:mf5mf(Fcl).
Two possible realization of this mass dependence are,
instance,mf5mf

0exp(2bFcl) andmf5mf
01c(Fcl), where in

the second case, we may have a large field independent
together with small couplings to quintessence.1 For the
model discussed in@14#, the coupling is of the first form,
whereas in@15#, the coupling is realized by multiplying the
cold dark matter Lagrangian by a factorf (F). This factor is
usually taken of the formf (F)511a(F2F0)b. Hence,
the coupling ismf(F)5 f (F)mf

0 , if we assume that dark
matter is fermionic. If it were bosonic, the following argu
ments would be similar.

We will first discuss general bounds on the coupling a
in a second step check whether these bounds are broke
an effective gravitational coupling.

A. General bounds on a coupling

We will discuss only the new effects coming from th
coupling and set

V
1 loop

5V
cl

2DV, ~12!

where DV5L ferm
2 @mf(Fcl)#2/(8p2). If we assume that the

potential energy of the quintessence field constitutes a c
siderable part of the energy density of the universe tod
i.e., rq;rcritical , we see from the Friedmann equation

3H25rcritical ~13!

1The constantmf
0 is not the fermion mass today, which woul

rather bemtoday5mf„Fcl(today)….

FIG. 3. Classical and one-loop corrected potential~in
102123MP

4) for Vcl
AS5@(F2B)21C# exp(2lFcl) with B534.8,

C50.013, L51.2. The classical potential has a local minimum
which is absent for the loop corrected one. This is a hand-pic
example and in most cases the bump will not vanish but move
change its form.
9-3
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MICHAEL DORAN AND JÖRG JÄCKEL PHYSICAL REVIEW D 66, 043519 ~2002!
that V
cl
;H2. With today’s Hubble parameterH58.9

310261h (h50.5–0.9), we have

Vcl;7.93102121h2. ~14!

The ratio of the ‘‘correction’’ to the classical potential is

DV

V
cl

5
1

8p2

L ferm
2 @mf~Fcl!#

2

V
cl

. ~15!

Let us first consider the case that all of the fermi
mass is field dependent, i.e., we consider cases
mf5mf

0exp(2bFcl). As an example, we choose a fermio
cutoff at the grand unified theory~GUT! scaleL ferm51023,
and a fermion massmf(Fcl) of the order of 100 GeV
510216MP. Then Eq.~15! gives the overwhelmingly large
ratio

DV

V
cl

'1080. ~16!

Thus, the classical potential is negligible relative to the c
rection induced by the fermion fluctuations.

Having made this estimate, it is clear that the fermi
loop corrections are harmless only if the square of the c
pling takes onexactlythe same form as the classical pote
tial itself. If, for example, we have an exponential potent
V

cl
5A exp(2lFcl) together with a coupling mf(Fcl)

5mf
0exp(2bFcl), then this coupling can only be tolerated

2b5l.2 Taken at face value, this finding restricts mode
with these types of coupling. It is, however, interesting
note that for exponential coupling the case 2b5l is not
ruled out by cosmological observations@28#.

Turning to the possibility of a fermion mass that consi
of a field independent part and a coupling, i.e.,mf5mf

0

1c(Fcl), Eq. ~15! becomes

DV

V
cl

5
1

8p2

L ferm
2 @2mf

0c~Fcl!1c~Fcl!
2#

V
cl

, ~17!

where we have ignored a quintessence field independent
tribution proportional to (mf

0)2. Assumingc(Fcl)!mf
0 , and

demanding that the loop corrections should be small co
pared to the classical potential, Eq.~17! yields the bound

c~Fcl!!
4p2V

cl

L ferm
2 mf

0
. ~18!

If, as above, we assumeL ferm51023MP, mf
0510216MP,

andV
cl

from Eq. ~14!, this gives

c~Fcl!!3310297, ~19!

2Of course, a sufficiently smallb will lead to a more or less
constant contribution, wheremf(Fcl)'mf

02bFcl .
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in units of the Planck mass. Once again, the bound from
~18! applies only if the functional form of the loop correctio
differs from the classical potential. Assuming a Yukawa-ty
couplingc(Fcl)5bFcl and field values of at least the orde
of the Plank mass, we getb!10297.

For the couplingc(F)5mf
0a(F2F0)b with the values

a550,b58,F0532.5 given in@15#, c(F) is usually larger
than mf

0 . Therefore we take mf(Fcl)'c(Fcl). With
mf(Fcl)510216 as before, we get the same result as in E
~16!.

The coupled models share one property: the loop con
bution from the coupling is by far larger than the classic
potential. At first sight, the golden way out of this seems
be to view the potential as already effective: all fluctuatio
would be included from the start. However, there is no p
ticular reason, whyany coupling of quintessence to dar
matter should produce just exactly the effective poten
used in a particular model: there is a relation between
coupling and the effective potential generated. Put ano
way, if the effective potential is of an elegant form and w
have a given coupling, then it seems unlikely that theclas-
sical potential could itself be elegant or natural.

B. Effective gravitational fermion quintessence coupling

The bound in Eq.~18! is so severe that the question aris
whether gravitational coupling between fermions and
quintessence field violates it. To give an estimate,
calculate3 two simple processes depicted in Fig. 4. We eva
ate the diagrams for vanishing external momenta. This
consistent with our derivation of the fermion loop correcti

3Unfortunately, the field dependent propagator matrix is non
agonal (FclÞ0 usually!. This is a subtle point. We split the ful
propagator into a field independent partP and a field dependent par
F. The logarithm in STr log(P1F) is then expanded in powers ofF.
For the Weyl-Frame calculation in Sec. IV this is no longer po
sible, as the graviton-graviton propagator involves the fieldx2 and
thus the field independent partP is noninvertible. For simplicity, we
ignored the gravity part in the Weyl-Frame calculation~including
the coupling of gravitons tox).

FIG. 4. Effective fermion-quintessence coupling via gravit
exchange. The fermions~solid lines! emit gravitons~wiggled lines!
which are caught by the quintessence field~dashed lines!. As the
graphs involve couplings of the gravitons to the classical quin
sence potential, the generated coupling is proportional to the c
sical potential. Since the potential involves arbitrary powers ofF,
we depict it as severalF lines. A Yukawa-type coupling, corre
sponding to just one line, is then generated by power expand
V(F)5V(Fcl) 1Vucl8 (F2Fcl) in the fluctuating field.
9-4
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LOOP CORRECTIONS TO SCALAR QUINTESSENCE . . . PHYSICAL REVIEW D 66, 043519 ~2002!
Eq. ~2!, in which we have assumed momentum independ
couplings. The effective coupling due to the graviton e
change contributes to the fermion mass, which becomesFcl
dependent. We assume that this coupling is small comp
to the fermion mass and writemf(Fcl)5mf

01c(Fcl).
From the first diagram, Fig. 4~a! we get~see the Appen-

dix!:

c~Fcl!5
1

8p2mf
0V~Fcl!3F lnS L2

L21@mf
0#2D

2 lnS l2

l21@mf
0#2D G , ~20!

whereas Fig. 4~b! gives

c~Fcl!5
5

8p2
mf

0V~Fcl!lnS L

l D . ~21!

Here, we have introduced infrared and ultraviolet cutoffsl
andL for the graviton momenta. We assumeL to be of the
orderMP andl about the inverse size of the horizon. Sin
the results depend only logarithmically on the cutoffs, t
choice is not critical, and in addition ln(MP/H)'140, which
is small. From Eqs.~17!, ~21!, ~20!, we see that, in leading
order, the change in the quintessence potential due to
effective fermion coupling would be proportional toV(Fcl)
and could hence be absorbed upon redefining the prefact
the potential~see also Fig. 5!. In next to leading order, the
contribution is proportional toV(Fcl)

2, which is negligible.
From the Appendix, in which we present the calculati

in more detail, it is clear that there are processes where
vertices are more complicated. However, to this order
diagrams are proportional toV(Fcl). Thus, they can be ab
sorbed just like the two processes presented above.

IV. WEYL TRANSFORMED FIELDS

So far, we have assumed a constant Planck mass tog
with a field independent cutoff. We could, however, assu
that the Planck mass is not constant, but rather given by
expectation value of a scalar fieldx. We will call the frame
resulting from this Weyl scaling the Weyl frame, as oppos
to the frame with a constant Plank mass which we will c
the Einstein frame. From the classical point of view, bo
frames are equivalent. On calculating quantum correctio
we have to evaluate a functional integral. Usually, the fu
tional measure in the Einstein frame is set to unity. In pr
ciple, the variable change associated with the Weyl sca

FIG. 5. Fermion loop contribution to the quintessence poten
involving the effective coupling Fig. 4~a!. The cross in the fermion
line depicts the field independent fermion massmf

0 .
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leads to a nontrivial Jacobian and therefore a different fu
tional measure. Taking the position that the Weyl frame
fundamental, this measure could equally well be set to un
in the Weyl frame. Therefore, it isa priori unclear whether
the loop corrected potential in the Weyl frame, when tra
formed back into the Einstein frame, will be the same as
one from Eq.~2!.

As the cutoff in the Einstein frame is a constant ma
scale and hence proportional to the Plank mass, it se
natural to assume that the cutoff in the Weyl frame is p
portional tox. We restrict our discussion to this case. F
other choices of thex dependence of the cutoff, the resul
may differ.

The Weyl transformation is achieved by scaling the m
ric, the curvature scalar, all fields, and the tetrad by app
priate powers ofx/MP ~see Table I! @9,26#:

S̃5E d4xAg̃Fx2R̃1
z

2
]mx]mx1W~x!

1C̃̄S i g̃m~x!¹m1x
mf~Fcl!

MP
g52

3

2
i g̃m~x!ln x ,mD C̃ G ,

~22!

whereF5(121z)1/2MPln(x/MP) and

W~x![S x

MP
D 4

V„F~x!…. ~23!

The term proportional to lnx,m in Eq. ~22! is somewhat in-
convenient. Adopting the position that the Weyl frame is fu
damental, this term is unnatural. Instead, one could formu
the theory with canonical couplings for the fermions. Dro
ping this term,

S̃can5E d4xAg̃Fx2R̃1
z

2
]mx]mx1W~x!

1C̃̄S i g̃m~x!¹m1
x

MP
mf„F~x!…g5D C̃G , ~24!

we observe by going back to the usual actionS̃can→S,

l

TABLE I. Weyl scaling of various quantities. The transform
tion of the curvature scalarR follows from the scaling of the metric
This scaling, in turn, originates from the condition that, instead
the Plank mass squared multiplyingR in the action in the Einstein
frame, a factorx2 should appear. Here, we have sets5 ln(x/MP).

gmn→(x/MP)
2g̃mn

gmn→(x/MP)
22g̃mn

Ag→(x/MP)
4Ag̃

R→(x/MP)
22(R̃26g̃mns ;̃mn26g̃mns ,ms ,n)

ea
m(x)→(x/MP)

21ẽa
m(x)

C→(x/MP)
23/2C̃
9-5
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MICHAEL DORAN AND JÖRG JÄCKEL PHYSICAL REVIEW D 66, 043519 ~2002!
S5E d4x AgF1

2
]mF~x!]mF~x!1V„F~x!…

1C̄~x!S i¹” 1g5mf~F!1
3

2MP
i gm~x!f ,mDC~x!G ,

~25!

that the canonical form of the action in the Weyl frame giv
rise to a derivative coupling of the quintessence field to
fermions in the Einstein frame, which we can safely ignor4

Working with Eq.~24!, we get the loop correction in th
Weyl frame by replacingV→W and F→x in Eq. ~2!. In
addition, the constant cutoffsL and L ferm are replaced by
const•x:

W
1 loop

5W~x!1
~Cx!2

32p2z2
W9~x!2

~Cfx!2

8p2 F x

MP
mf~x!G2

.

~26!

TransformingW
1 loop

back into the Einstein frame, the pote

tial V is modified by

V
1 loop

5V~Fcl!1
~CfMP!2

8p2
@mf~Fcl!#

21
~CMP!2

32p2 z2

3F12
V~Fcl!

MP
2

17A121z
V8~Fcl!

MP

1~121z!V9~Fcl!G . ~27!

As an example, let us calculate the correction to the p
exponential potentialVcl

EP5A exp(2lFcl), once again set-
ting MP51. The Weyl frame potential is

W~x!5Ax4 exp@2lFcl~x!#5Ax (42lA121z). ~28!

Neglecting fermion fluctuations and choosingz51,

W1 loop5F11
C2

32p2 z2
~42lA13!~32lA13!GW~x!.

~29!

Again ~and not surprisingly! we can absorb the terms i
square brackets in a redefinition of the prefactorA. In the
case of an inverse power law, the term proportional toV8 in
Eq. ~27! leads to a slightly different contribution compared
Eq. ~4! ~a term}Fcl

2a21 arises!. For the modified exponen
tial potentials the expressions corresponding toV8 in Eq.
~27! make no structural difference.

4Actually, this coupling is nonrenormalizable in the strict sen
Since the theory is nonrenormalizable anyway, this is not of g
concern. In addition, if one believes that the Weyl frame is fun
mental, there is no need to go back to the Einstein frame and h
no need to face this nuisance.
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V. CONCLUSIONS

We have calculated quantum corrections to the class
potentials of various quintessence models. In the late u
verse, most potentials are stable with respect to the sc
quintessence fluctuations. The pure exponential and Nam
Goldstone-type potentials are form invariant up to orderV9,
yet terms of order (V9)2 prevent them from being renorma
izable in the strict sense.

For the modified exponential potential introduced by A
brecht and Skordis, stability depends on the specific form
the polynomial factorVp in the potential. In some cases th
local minimum in the potential can even be removed by
loop.

An explicit coupling of the quintessence field to fermio
~or similarly to dark matter bosons! seems to be severel
restricted. The effective potential to one-loop level would
completely dominated by the contribution from the fermi
fluctuations. All models in the literature share this fate. O
way around this conclusion could be to view these potent
as already effective. They must, however, not only be eff
tive in the sense of an effective quantum field theory ori
nating as a low-energy limit of an underlying theory, but al
include all fluctuations from this effective QFT. In this cas
there is a strong connection between coupling and poten
and it is rather unlikely that thecorrect pair can be guessed

The bound on the coupling is so severe that for con
tency we have calculated an effective coupling due to gra
ton exchange. To lowest order inV(F), this coupling leads
to a fermion contribution which can be absorbed by rede
ing the prefactor of the potential.

To check that the results are not artifacts from the Einst
frame, we switched to the Weyl frame. As the transition fro
F→x involves a nontrivial Jacobian, the details of the r
sults differ. However, the basic results stay the same.

Surely, the one-loop calculation does not give the tr
effective potential. Symmetries or more fundamental theo
that make the cosmological constant as small as it is co
force loop contributions to cancel. In addition, the back
action of the changing effective potential on the fluctuatio
remains unclear in the one-loop calculation. A renormali
tion group treatment would therefore be of great value.
leave this to future work.
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APPENDIX: COUPLING TO GRAVITONS

Fermions in general relativity are usually treated with
the tetrad formalism. Theg matrices become space-time d
pendent:gm(x)[gaea

m(x). Together with the spin connec
tion v, one uses~see, e.g.,@29,30#!

¹” 5ea
m~x!gaS ]m1

i

4
sbcvm

bcD . ~A1!

.
at
-
ce
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The action 1 can then be expanded in small fluctuati
around flat space:gmn5dmn1hmn /MP.

Using the gauge fixing term2 1
2 (]nhmn2 1

2 ]mhn
n)2 and ex-

panding the action to second order inh, we find the propa-
gator @30#

Pgrav
21 ~k!5

dmadnb1dmbdna2dmndab

k2
. ~A2!

The diagrams in Fig. 4 are generated by the expansio
Ag511 1

2 hmm2 1
4 (hmn)21 1

8 (hmm)2 multiplying the matter
et

04351
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Lagrangian. Additional~and more complicated! vertices
originate from the spin connection and the tetrad.

However, we do not consider external graviton line
which would only give corrections to the couplings and wa
function renormalization of the gravitons. Therefore only i
ternal gravitons appear. In order to contribute a quintesse
dependent part to the fermion mass, the gravitons star
from the fermion-graviton vertices~complicated as they may
be! have to touch quintessence-graviton vertices. As th
quintessence vertices are proportional toV(Fcl), all dia-
grams to lowest order inV(Fcl) will only produce mass
contributions proportional toV(Fcl).

Evaluating the diagrams in Fig. 4 for vanishing extern
momenta we get Eqs.~20! and ~21!.
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