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Loop corrections to scalar quintessence potentials
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The stability of scalar quintessence potentials under quantum fluctuations is investigated for both uncoupled
models and models with a coupling to fermions. We find that uncoupled models are usually stable in the late
universe. However, the coupling to fermions is severely restricted. We check whether a graviton induced
fermion-quintessence coupling is compatible with this restriction.
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[. INTRODUCTION of the quintessence field is then determined by
l'[®ylip,-e*=0. When estimating the magnitude of the
Observations indicate that dark energy constitutes a sul Sy i *
9y oop corrections, we will assume thdtg is close to the

stantial fraction of our Universgl—5]. The range of possible 5o tion of the classical field equationsS=0. Evaluatingl

candidates includes a cosmological constant and—morg, constant fields, we can factor out the space-time volume
flexibly—some form of dark energy with a time dependent

: . U from I'=UV. This gives the effective potential
equation of state, called quintesserié¢ Commonly, real-

izations of quintessence scenarios feature a light scalar field 2 A2

[7-9. V] o @) = V(@) + —— V(D) = —2[my(dgy) |2
The evolution of the scalar field is usually treated at the ' 327? 8m?

classical level. However, quantum fluctuations may alter the 2

classical quintessence potential. In this article, we will inves—H . q derivati ith & is th
tigate one-loop contributions to the effective potential from ere, primes denote derivatives wit respeclto ol IS the
both quintessence and fermion fluctuations. We will showfF'@ssical field value and. and A, are the ultraviolet cut-
that in the late universe quintessence fluctuations are har ffs of scalar and fermlor) flgctuatlons. ThF.“ last term in EQ.
less for most of the potentials used in the literature. Fo 2.) accounts for the fer”."O”'C Io_op corrections as shown in
inverse power laws and supergravitBUGRA) inspired Fig. 1. Thg secc_md term in E®), is the leading order scalar
models, this has already been demonstratdd@ That the 00P; depicted in Fig. @). We neglect graphs of the order

smallness of the quintessence mass needs to be protected (Bﬁ’c_l)2 and higher, like the one |n0F|g(I2), becaus&/ and its
some symmetry has been pointed oufia,12. derivatives are of the order 18 (see Sec. lll. We have

In contrast with the rather harmless quintessence fiel@!SC ignored® independent contributions, as these will not
fluctuations, fermion fluctuations severely restrict the magniinfluence the quintessence dynamics.
tude of a possible coupling of quintessence to fermionic dark However, the® independent contributions add up to a
matter, as we will show. cosmological constant of the ordAr“wO(M‘F‘,). This is the

In Euclidean conventions, the action we use for the quinold cosmological constant problem, common to most field
tessence field and a fermionic specie® to which it may theories. We hope that some symmetry or a more fundamen-
couple[13-15 is tal theory will force it to vanish. The same symmetries or

theories could equally well remove the loop contribution by
) 1 some cancelling mechanism. After all, this mechanism must
MR+ 53,2 (x) 9P (X) be there, for the observed cosmological constant is far less
than the naively caIcuIated?(M‘F‘,). Unfortunately, super-
V@) + T[T + o m( @) (x|, @) [si/{?metry(SUSY) is broken too badly to be this symmetry
In addition, none of the potentials under investigation can
with my(®) as ad® dependent fermion mass. This depen-  be renormalized in the strict sense. However, as we will see,
dence(if existent in a modeldetermines the coupling of the
quintessence field to the fermions. As long as one is not
interested in quantum gravitational effects, one may set
Jg=1, R=0, and replac& — 4 in the action 1.

By means of a saddle point expansidr6], we arrive at
the effective actiod[®] to one-loop order of the quintes- £, 1. Correction to the quintessence potential due to fermion
sence field. The equation governing the dynamicSjyctuations. Fermion lines are solid, quintessence lines dashed.

Shown is the case whem(®) gives a Yukawa coupling, i.e.,

c(®)=pBPd, corresponding to one quintessence line. Of course, for
*Electronic address: doran@thphys.uni-heidelberg.de more complicatedn;(®) such agny(® ) =mPexp(—Bd,), several
Electronic address: jaeckel@thphys.uni-heidelberg.de external lines as in Fig. 2 would appear.

S= f d*x\/g|
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i) ) V) IPL IPL 1 o 6/(a+2)

VIPL ~VPH 14 ——A2a(a+1)28@*2 | (5)
A R S S8 oo~ Vor | 11 g5 5 AT
() B / (;) Thus, the cutoff needs to satisfh\2<327%/a(a+1)

x z~®(«*2) Cosmologically viable inverse power law poten-
FIG. 2. Pure quintessence fluctuatiofdepicted as dashed tjgls seem to be restricted to<2 [20,21]. Usinga=1 and
lines). The loop of the fluctuating quintessence field modifies they~ 10* for definiteness, the bound becom&<10 6.
potential. Sin(_:e the potent_ial involves in_ principle arbitrary powers So, at equality(and even worse before that epcthe
of @, we depictV” as multiple external lines. cutoff needs to be well below 19 GeV, if classical calcu-

) o ) lations are meant to be valid. [10] it is argued that for
terms preventing renormalization may in some cases be alyyerse power laws the quintessence content in the early uni-
sent to leading order iN[, . As the mass of the quintessence verse is negligible and hence the fluctuation corrections are
field is extremely small, one may for all practical purposesimportant only at an epoch where quintessence is subdomi-
view these specific potentialsuch as the exponential poten- nant. As the loop corrections introduce only higher negative
tial) as renormalizable. powers in the field, it is hoped that, even though one does not

There is also a loophole for all models that will be ruled know the detailed dynamics, the field will nevertheless roll
out in the following: The potential used in a given model down its potentialwhich at that time is supposed to be much
could be the full effective potential including all quantum steeperand by the time it is is cosmologically relevant, the
fluctuations, down to macroscopic scales. For coupled quingjassical treatment is once again valid. Having no means of
tessence models, this elegant argument is rather problemaiigiculating the true effective potential for the inverse power

and the loophole shrinks to a poifgee Sec. Il law in the early universe, this view is certainly appealing.
In the following, we apply Eq(2) to various quintessence
models in order to check their stability against one-loop cor- 2. Pure exponential potentials

rections. We do this separately for coupled and uncoupled
models. We use units in whidWd ,= 1. For clarity, we restore
it when appropriate.

The pure exponential potential is special because its de-
rivatives are multiples of itself. The classical potentialth
a=0,y=1) is V5P=Aexp(-\®,) and to one-loop order

Cl

IIl. UNCOUPLED QUINTESSENCE

1
VETOOP: vgp{ 1+ @AZV . (6)

Here, we are going to discuss inverse power law, pure and
modified exponential, and cosine-type potentials.

It is easy to see that a rescaling oA—A/[1
A. Inverse power law and exponential potentials +(1/3272) A%\?] absorbs the loop correction, leading to a

Inverse power lawg7,8], exponential potential§o,17,  Stable potential up to ordery. Working to next to leading
and mixtures of botti18] can be treated by considering the Order, i.e., restoring terms of ordev{)®, we get
potential V=Ad ™ “exp(—\d?) [19]. Limiting cases include
inverse power laws, exponentials, and SUGRA inspired ep 1 5 u
models. Deriving twice with respect @, we find Vi |oop,n_|.:@(vc| In P .

V'=AD " “exp — AP {a(a+1)® 2+2aNyd?? o o . _ . _
It is this term which in four dimensions spoils strict renor-

FNZYPDZT 2= N y(y—1) D7 (3 malizability.
1. Inverse power laws B. Nambu-Goldstone cosine potentials
For inverse power laws, we s¢t=\=0. This gives the Cosine-type potentials resulting from a quintessence ax-
classical potentiaV/; "= A®,* and by means of Eq2) the  jon were introduced ifi22,23 and their implications for the
loop corrected potential cosmic microwave backgroun€MB) have been studied in
[24]. They take on the classical potentidly®=A[1
PL PL 1 ) 5 —cosfy/fq)] and including loop corrections
VPLe= VI 1+ —— A2a(a+ Ddg2|. @
327T 1 A2 q) |
VoAl 1—1 1 — cos{ —C) .
The potential is form stable if 327 5 fa
(1/327%)A%a(a+1)P ~?<1, which today is satisfied, as
d~Mp[18]. Upon a redefinitiorA— A/{1—(1/327%) A%/f3} and, recall-

However, if the field is on its attractor today, then ing that the loop correction is only defined up to a constant,
dx(1+2) ¥@t2) wherez is the redshiff18]. Using this, one arrives at the same functional form as the classical po-
we have forz>1 tential.
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C. Modified exponentials 1.5 T
In the model proposed by Albrecht and Skorf2%], the \\ assical
classical potential isv}°=Vexp(- dy), whereV,, is a al \ —=—- 1-loop

polynomial in the field. To one-loop order, this leads to

l VH V! —_
VAS  —\/AS 1+—A2(—p—2)\—p+)\2 ) a3t
1 loop cl 3277_2 Vp Vp =
Let us for definiteness discuss the example giverh2is|,
where the authors choSép(CD):(CI)—B)er C. With this 121
choice, we have
AS, EXMPL__ \ /AS, EXMPL 1 s 349 35 35.1
Vl loop :Vcl ' 1+ @ . . d .
1 FIG. 3. Classical and one-loop corrected potentigh
123\ %) for VAS=[(®—B)2+C] exp(—ADdy) with B=34.8
X A2 —[2— — AR 10 ] cl p cl )
A Vp[2 AN Pg=B)]+A ] ®) C=0.013, A=1.2. The classical potential has a local minimum,
which is absent for the loop corrected one. This is a hand-picked
Now consider field values close to the minimum\f, i.e., example and in most cases the bump will not vanish but move and
let the absolute value of=®4—B be small compared to change its form.
JC. Then
I1l. COUPLED QUINTESSENCE
2 —_ . . . .
\/AS, EXMPL_ | /AS, EXMPL A [2 47‘§+}\2 Various models featuring a coupling of quintessence to
1 loop o 3272\ Cc+¢2 ' some form of dark matter have been proposed

(9 [26,14,27,28,1F From the action Eq(1), we see that the
mass of the fermions could b& dependentm;=my(®d).
Two possible realization of this mass dependence are, for
] instancem;= mPexp(— Ad) andm;=m?+c(P), where in

and to leading order i

2

the second case, we may have a large field independent part
together with small couplings to quintessefc&or the
(100  model discussed i14], the coupling is of the first form,
whereas i 15], the coupling is realized by multiplying the
cold dark matter Lagrangian by a factifd). This factor is
usually taken of the fornf(®)=1+ a(®—®,)?. Hence,
the coupling ismf(tb):f(q))m?, if we assume that dark

AS, EXMPL__\ /AS, EXMPL,
Vl loop '\’Vcl { 1+

! 2—ANE] N2
3072 E[ £]

Now consider, as was the case in the example givd25h
C=0.01 for definiteness. If we assume a cutdffand a
Plank mass of approximately the same order, we get

1 matter is fermionic. If it were bosonic, the following argu-
V’flsc;OEpXMPL%VQS’ EXMPL[ 1+ (1oqz_4)\§]+)\2)} ) ments would be similar.
327? We will first discuss general bounds on the coupling and

(11)  in a second step check whether these bounds are broken via

The ¢ (and henceb.) dependent contribution in the curly an effective gravitational coupling.

brackets of Eq(11) is —25/(2w?)\ ¢ which for the value _
A =8 chosen in the example gives200/(272) &~ — 10¢. A. General bounds on a coupling

If we now look at the behavior of the loop correction as a  We will discuss only the new effects coming from the
function of ® and hencet in the vicinity of the minimum  coupling and set
of this example polynomial, we see that for, e.§=0.01,
the one-loop contribution dominates the classical potential \
giving rise to a linear term inb unaccounted for in the
classical treatment. For many values of the param@ensd ~ where AV=AZ [m(®.)]%/(87?). If we assume that the
C, this just changes the form and location of the bump in thepotential energy of the quintessence field constitutes a con-
potential. In principle, however the loop correction can re-siderable part of the energy density of the universe today,

V_—AV, (12)

1 Ioop_ cl

move the local minimum altogethésee Fig. 3. i.€., pq™ Pcritical» We see from the Friedmann equation
Needless to say, this finding depends crucially on the cut- 5
off. If it is chosen small enough, the conclusion is circum- 3H"= peritical (13

vented. In addition, only the specific choice\gf above has

been shown to be potentially unstable. The space of polyno=—

mials is certainly large enough to provide numerous stable The constanim? is not the fermion mass today, which would
potentials of the Albrecht and Skordis form. rather bem;gga= My(P ¢ (today)).
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that VC|~H2. With today’s Hubble parameteH=8.9
%1075 (h=0.5-0.9), we have

Vy~7.9x10 21h?, (14
The ratio of the “correction” to the classical potential is
A_V_ i Afzerrr[mf(q)cl)]2
V., 8n? % '

cl cl

(19

Let us first consider the case that all of the fermion
mass is field dependent, i.e., we consider cases likd

mf=m?exp(—ﬁd>c|). As an example, we choose a fermion
cutoff at the grand unified theoGUT) scaleA form= 103,
and a fermion massn(®d.) of the order of 100 GeV
=10 'Mp. Then Eq.(15) gives the overwhelmingly large
ratio

—~10%. (16)
Vv
cl
Thus, the classical potential is negligible relative to the cor
rection induced by the fermion fluctuations.

Having made this estimate, it is clear that the fermion

PHYSICAL REVIEW D 66, 043519 (2002

V(®a) V(®4)

(a)

(b)

FIG. 4. Effective fermion-quintessence coupling via graviton
exchange. The fermior(solid lineg emit gravitons(wiggled lines
which are caught by the quintessence fiéddshed lines As the
raphs involve couplings of the gravitons to the classical quintes-
Sence potential, the generated coupling is proportional to the clas-
sical potential. Since the potential involves arbitrary powerdof
we depict it as severab lines. A Yukawa-type coupling, corre-
sponding to just one line, is then generated by power expanding
V() =V(®y) +V[y(P— D) in the fluctuating field.

in units of the Planck mass. Once again, the bound from Eg.
(18) applies only if the functional form of the loop correction
differs from the classical potential. Assuming a Yukawa-type
couplingc(® ) = BP and field values of at least the order
of the Plank mass, we g@t<10 .

For the couplingc(d)):m?a(d)—tbo)ﬁ with the values
a=50,8=8,0,=32.5 given in[15], c(P) is usually larger

0 N .
loop corrections are harmless only if the square of the couthan my. Therefore we takem(®q)~c(®y). With

pling takes orexactlythe same form as the classical poten-

mi(P ) =10 1€ as before, we get the same result as in Eq.

tial itself. If, for example, we have an exponential potential(lﬁ)-

VC|=A exp(—A®d,) together with a couplingmy(®d)
= m?exp(—ﬂfbd), then this coupling can only be tolerated if

2B=\.2 Taken at face value, this finding restricts models
with these types of coupling. It is, however, interesting to

note that for exponential coupling the cas@=2\ is not
ruled out by cosmological observatiof28].

Turning to the possibility of a fermion mass that consists

of a field independent part and a coupling, i.8y=m}
+c(dy), Eq. (15 becomes

2
ferl

AV 1 A
V. 8n2

cl

L 2mlc(® ) +c(®y)?]

7

cl

The coupled models share one property: the loop contri-
bution from the coupling is by far larger than the classical
potential. At first sight, the golden way out of this seems to
be to view the potential as already effective: all fluctuations
would be included from the start. However, there is no par-
ticular reason, whyany coupling of quintessence to dark
matter should produce just exactly the effective potential
used in a particular model: there is a relation between the
coupling and the effective potential generated. Put another
way, if the effective potential is of an elegant form and we
have a given coupling, then it seems unlikely that ¢khees-
sical potential could itself be elegant or natural.

B. Effective gravitational fermion quintessence coupling

where we have ignored a quintessence field independent con- The bound in Eq(18) is so severe that the question arises

tribution proportional to )2, Assumingc(®y)<m?, and

whether gravitational coupling between fermions and the

demanding that the loop corrections should be small comquintessence field violates it. To give an estimate, we

pared to the classical potential, E4.7) yields the bound

472V
cl

my

c(Py)< (18

ferm

If, as above, we assuUM&m=10 3Mp, mP=10"1M,,
andVCI from Eq. (14), this gives

c(dy)<3x10"Y, (19

20f course, a sufficiently smalB will lead to a more or less
constant contribution, whene(® )~ m?f LD .

calculaté two simple processes depicted in Fig. 4. We evalu-
ate the diagrams for vanishing external momenta. This is
consistent with our derivation of the fermion loop correction

SUnfortunately, the field dependent propagator matrix is nondi-
agonal (@,#0 usually. This is a subtle point. We split the full
propagator into a field independent pBrand a field dependent part
F. The logarithm in STrlod?+F) is then expanded in powers bBf
For the Weyl-Frame calculation in Sec. IV this is no longer pos-
sible, as the graviton-graviton propagator involves the figidind
thus the field independent pdtis noninvertible. For simplicity, we
ignored the gravity part in the Weyl-Frame calculati@ncluding
the coupling of gravitons tg).

043519-4
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V{(dy) TABLE I. Weyl scaling of various quantities. The transforma-
tion of the curvature scald follows from the scaling of the metric.
This scaling, in turn, originates from the condition that, instead of
2 the Plank mass squared multiplyifgin the action in the Einstein
frame, a factory? should appear. Here, we have setIn(x/Mp).

FIG. 5. Fermion loop contribution to the quintessence potential M)
. . . . . . . g,uv_)(X P) g//,v
involving the effective coupling Fig.(4). The cross in the fermion v / Ty
line depicts the field independent fermion ma:#,é. 9" —(x/Me) g
Ja—(xMp)*Va
Eq. (2), in which we have assumed momentum independent R_,(X/MP)—Z(R_Gauvoﬂw_(;awo_ﬂavy)

couplings. The effective coupling due to the graviton ex-
change contributes to the fermion mass, which becoings ~
dependent. We assume that this coupling is small compared W (xIMp) ¥
to the fermion mass and wrimf(CDd):m?Jr c(dy).

From the first diagram, Fig.(d) we get(see the Appen-
dix):

e (x)— (x/Mp) ~ek(x)

leads to a nontrivial Jacobian and therefore a different func-
tional measure. Taking the position that the Weyl frame is
A2 fundamental, this measure could equally well be set to unity
) in the Weyl frame. Therefore, it ia priori unclear whether
the loop corrected potential in the Weyl frame, when trans-
) formed back into the Einstein frame, will be the same as the
“n A (20) one from Eq.(2).
)\2+[m?]2 As the cutoff in the Einstein frame is a constant mass
scale and hence proportional to the Plank mass, it seems
whereas Fig. &) gives natural to assume that the cutoff in the Weyl frame is pro-
portional to y. We restrict our discussion to this case. For
5 5 A other choices of theg dependence of the cutoff, the results
C((Dd): ;me(QDd)In I . (21) may differ.
m The Weyl transformation is achieved by scaling the met-

Here, we have introduced infrared and ultraviolet cutaffs iC, the curvature scalar, all fields, and the tetrad by appro-
and A for the graviton momenta. We assumeto be of the ~ Priate powers ofy/Mp (see Table)I[9,26]:

orderMp and\ about the inverse size of the horizon. Since

the results depend only logarithmically on the cutoffs, this ~S:J' d4x\/a

In

1
c((Dd):Wm?V((Dd)X m
f

~ A
X°R+ 539, x"x+W(x)

choice is not critical, and in addition Iklp/H)~ 140, which 2

is small. From Eqs(17), (21), (20), we see that, in leading (@) 3

order, the change in the quintessence potential due to this R e n M Pe) 5 9.~ )~
effective fermion coupling would be proportional Y{® ) YT OVt X Mp vyl OOl Y, | ¥,

and could hence be absorbed upon redefining the prefactor of 22)
the potential(see also Fig. b In next to leading order, the
contribution is proportional t&/(®)2, which is negligible. _ 2
From the Appendix, in which we present the calculationVNere® = (12+2) "Mein(x/Mg) and
in more detail, it is clear that there are processes where the 4
vertices are more complicated. However, to this order all Wi E(L) V(P 23
diagrams are proportional é(®d ). Thus, they can be ab- () Mp (©(0). @3
sorbed just like the two processes presented above.
The term proportional to liy, in Eq. (22) is somewhat in-
IV. WEYL TRANSFORMED FIELDS convenient. Adopting the position that the Weyl frame is fun-
damental, this term is unnatural. Instead, one could formulate

_So far, we have assumed a constant Planck mass togethg theory with canonical couplings for the fermions. Drop-
with a field independent cutoff. We could, however, assume,ing this term,

that the Planck mass is not constant, but rather given by the

expectation value of a scalar field We will call the frame

resulting from this Weyl scaling the Weyl frame, as opposed [ f d4x\/§
to the frame with a constant Plank mass which we will call

the Einstein frame. From the classical point of view, both -
frames are equivalent. On calculating quantum corrections, +¥
we have to evaluate a functional integral. Usually, the func-

tional measure in the Einstein frame is set to unity. In prin- 5
ciple, the variable change associated with the Weyl scalingve observe by going back to the usual acti®g— S,

~ z
Y°R+ E&M)(&“)(-l-W(X)

isf“(X)VﬁMime(‘D(X))?’S)‘i’}, (24)
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1 V. CONCLUSIONS
50, PP (X) +V(D(x)

S=fd4x Jg

We have calculated quantum corrections to the classical
potentials of various quintessence models. In the late uni-
verse, most potentials are stable with respect to the scalar
quintessence fluctuations. The pure exponential and Nambu-

(25) Goldstone-type potentials are form invariant up to ordér
yet terms of order\”)? prevent them from being renormal-

that the canonical form of the action in the Weyl frame givesizable in the strict sense.
rise to a derivative coupling of the quintessence field to the For the modified exponential potential introduced by Al-
fermions in the Einstein frame, which we can safely igrfbre. brecht and Skordis, stability depends on the specific form of

Working with Eq.(24), we get the loop correction in the the polynomial factolV, in the potential. In some cases the
Weyl frame by replacing/ =W and ®—y in Eqg. (2). In local minimum in the potential can even be removed by the
addition, the constant cutoff& and A, are replaced by loop.

+\?(x)

3
v+ Ysmf(‘l’)-*-z—,vlpi 7“(X)¢>,M)‘I’(X)

const y: An explicit coupling of the quintessence field to fermions
(or similarly to dark matter bosopseems to be severely

cx)? . (Cx)?[ x 2 restricted. The effective potential to one-loop level would be

Lioop WO+ 3277222W (x)— 872 M_me(X) - completely dominated by the contribution from the fermion

(26) fluctuations. All models in the literature share this fate. One

way around this conclusion could be to view these potentials

TransformingW, _ back into the Einstein frame, the poten- @s already effective. They must, however, not only be effec-

. . . Lloop tive in the sense of an effective quantum field theory origi-
tial V is modified by . . :

nating as a low-energy limit of an underlying theory, but also

(CMp)? (CM p)2 includg all fluctuations fro_m this effective QET. In this case,
Vi oor V(Pa) + —Z[mf((l)c,)]2+ > there is a strong connection between coupling and potential
oop 8m 32m°z and it is rather unlikely that theorrect pair can be guessed.
, The bound on the coupling is so severe that for consis-
> 12V((Dcl)+7\/mv (Pa) tency we have calculated an effective coupling due to gravi-
,2, Mp ton exchange. To lowest order VYW ®), this coupling leads

to a fermion contribution which can be absorbed by redefin-

ing the prefactor of the potential.
: (27) To check that the results are not artifacts from the Einstein
frame, we switched to the Weyl frame. As the transition from
& — x involves a nontrivial Jacobian, the details of the re-
sults differ. However, the basic results stay the same.

Surely, the one-loop calculation does not give the true

effective potential. Symmetries or more fundamental theories
that make the cosmological constant as small as it is could
force loop contributions to cancel. In addition, the back re-
action of the changing effective potential on the fluctuations
remains unclear in the one-loop calculation. A renormaliza-

+(12+2)V" (D)

As an example, let us calculate the correction to the pur

exponential potentiaV5"= A exp(—\d,), once again set-

ting Mp=1. The Weyl frame potential is
W(x)=Ax" exi —\Dg(x)]=Ax“ M. (28

Neglecting fermion fluctuations and choosing 1,

2 tion group treatment would therefore be of great value. We
Wi j00p=| 1+ mm_ AV13)(3— )\\/fg)]w(x), leave this to future work.
(29)
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Eq. (27) leads to a slightly different contribution compared to
Eq. (4) (a termoc(I)&”"l arise$. For the modified exponen-
tial potentials the expressions correspondingvtoin Eg.

(27) make no structural difference. Fermions in general relativity are usually treated within
the tetrad formalism. The matrices become space-time de-

4 . o ) . ) pendent: y*(x)=y?e4(x). Together with the spin connec-
Actually, this coupling is nonrenormalizable in the strict SeNSe.tion w. one usegsee, e.9.[29,30)

Since the theory is nonrenormalizable anyway, this is not of great ' ' '

concern. In addition, if one believes that the Weyl frame is funda-

mental, there is no need to go back to the Einstein frame and hence Y =e(x)y?

. . — La y
no need to face this nuisance.

APPENDIX: COUPLING TO GRAVITONS

dut 2

crbca)zc) . (A1)
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The action 1 can then be expanded in small fluctuationgdagrangian. Additional(and more complicatedvertices

around flat spaceg,,=6,,+h,,/Mp.

Using the gauge fixing term 3(9"h,,—34d,h’)? and ex-
panding the action to second ordertinwe find the propa-
gator[30]

6,,0,51t6,36,,—6,,0,
_ a%vp BPva v©ap
Pgr;\)( k)= E Mkz E .

(A2)

originate from the spin connection and the tetrad.

However, we do not consider external graviton lines,
which would only give corrections to the couplings and wave
function renormalization of the gravitons. Therefore only in-
ternal gravitons appear. In order to contribute a quintessence
dependent part to the fermion mass, the gravitons starting
from the fermion-graviton verticegomplicated as they may
be) have to touch quintessence-graviton vertices. As these
quintessence vertices are proportional t¢d ), all dia-
grams to lowest order ivV(d) will only produce mass
contributions proportional t&/(®).

The diagrams in Fig. 4 are generated by the expansion of Evaluating the diagrams in Fig. 4 for vanishing external

Jg=1+1h##—1(h#)2+ 1 (h##)2 multiplying the matter

momenta we get Eq$20) and (21).
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