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Shear-free rotating inflation
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We demonstrate the existence of shear-free cosmological models with rotation and expansion which support
inflationary scenarios. The corresponding metrics belong to the family of spatially homogeneous models with
the geometry of the closed univeréianchi type 1X. We show that the global vorticity does not prevent
inflation and can even accelerate it.
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I. INTRODUCTION Here the indices,b,c=1,2,3 label the spatial coordinates,
R=R(t) is the scale factor, and
Rotation is a universal physical phenomenon. All known

objects from the fundamental particles to planets, stars, and Na=VA€h, Yab=PBas€seh 2
galaxies are rotating. We then naturally come to the question
of whether the largest physical system—the universe—ha¥ith the constant coefficients,8xs (A,B=1,2,3). The
such a property. This problem comprises several aspects. fne-formse”=ef(x)dx* are invariant with respect to the
our world does not rotate, then why and how does this hapaction of a three-parameter group of motion which is admit-
pen? Since the rotating models cannot be excluded from corted by the space-timél). The action of this group is simply
siderationa priori, it is necessary to reveal a physical mecha-transitive on the spatiak & const) hypersurfaces. There exist
nism which prevents universal rotation. On the other hand, if'in€ types(Bianchi types of such manifolds, distinguished
the world can and does rotate, then what are the corresponfY (t:he Killing vectorséa and their commutator§éa, ég]
ing observational manifestations of the cosmic rotation? Agéc- o
Technically, this reduces to the study of the geometry of a . 1 e modeld1) are shear free but the vorticity and expan-

rotating cosmological model and to the analysis of the moSIon aré nontrivial, in general. THenematicanalysis{4] of

tion of particles and light in such a spacetime manifold. Andthe modelg1) reveals their several attractive properties: the

the ultimate question is of course about the dynamical realgomplete causalityno timelike closed curvgsthe absence

ization of the rotating models, i.e., the description of realisticOf parallax effects, and the isotropy of the microwave back-

it d the derivati fth luti f th(:ground radiation. As a result, these shear-free models satisfy
matter sources an € denvation of the solutions o Il the known observational criteria for cosmic rotation. In
gravitational field equations.

; particular, it is worthwhile to note that the vorticity bounds
_Since the early work of Lanczoil], Gamow([2], and  [5] are not applicable to the class of metrid3. The satis-
Godel [3], cosmological models with rotation have beenfactory observational properties suggest that the shear-free
studied in a great number of publicatiofsee the overview pomogeneous models can be considered as viable candidates
in [4] and the exhaustive list of references the)’.e@uite for the description of cosmic rotation.
strong upper limits for the cosmic vorticity were obtained The aim of the present paper is to address diggamic
from the analysis of the observed properties of the microaspect of the theory, namely, to study the realization of the
wave background radiatiofb]. However, all these works models(1) as exact solutions of the gravitational field equa-
deal with models in which shear and vorticity are inseparablgions. This represents a nontrivial problem, in general, as it is
(in the sense that zero shear automatically implies zero vomotoriously difficult to combine the expansion with vorticity
ticity). Correspondingly, the limitg5] are actually placed not in a realistic cosmological model. In technical terms, the
on the vorticity, but rather on the shear induced by it withinmost important thing needed is to determine the physically
the specific geometrical models. One thus needs a separatgasonable matter content of such cosmologies.
analysis of cosmological models with trivial shear but non- In this paper we continue the study of Bianchi type IX

zero rotation and expansion. . models belonging to the clag). The Bianchi type IX type
Earlier[4] we studied the wide class of spatially homoge-is distinguished among the other spatially homogeneous
neous models described by the metric models by the fact that its geometry describes a spatially

closedworld. Many very interesting questions related to the
Mach principle arise in this connection. In particular, it is a
ds?=dt?—2Rn,dx2dt— R?y,,dx3dxP. (1)  matter of principal importance to know whether Einstein’s
field equations admit truly anti-Machian solutions or not. A
first example of such a solution was given by the stationary
*On leave from Department of Theoretical Physics, Moscow Statenodel of Ozsvth and Schaking [6]. However, later its anti-

University, 117234 Moscow, Russia. Machian nature was questioned by Kifig who developed
TAlso at FB Mathematik, Technische Universigerlin, Str. d. 17.  the idea that the total angular velocity of the closed world is
Juni 136, D-10623 Berlin. ultimately zero because the cosmic vorticity is compensated
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by rotating gravitational waves. Recently, we demonstrated . Ry R
the existence of another stationary rotating closed Bianchi IX ad=—2 f= 3=, (7)
world in which the cosmic vorticity is balanced by the spin
of the cosmological mattd8].

The above mentioned results refer to stationary models, w34 w3
which are clearly of the academic interest only because of 237 2Rkgks’ 317 2Rkks’
the absence of expansion. Here we give two explicit ex-
amples of more physically realistic nonstationary closed Bi- V3
anchi IX worlds with nontrivial rotation and expansion. After wi= 2Rk.k» " ®)
the description of the spacetime geometry in Sec. Il, we
present the rotating version of the de Sitter solution in Sec.
[Il. Further, in Sec. IV we demonstrate that shear-free models
W|th I’Otation and eXpanSion arise in the Standard inﬂationary First we Study the case When matter is represented by just
scheme. the cosmological constant. An equivalent physical model is

given by the ideal fluid with the vacuum equation of state.
[l. CLOSED WORLD GEOMETRY The total Lagrangian reads

Ill. ROTATING de SITTER WORLD

Closed spatially homogeneous Bianchi type IX worlds are 1
constructed with the help of the triad of invariant one-forms L=——(R+2A), 9

e” which satisfy the structure equations 2k
deAzf’chB/\eC 3) anld the Iift-hand side of the Einstein field _equat_i(mgg
—3R0,5=A 0,4, take the form(Al)—(A10) given in the

with Appendix.
As a first step, we specialize to the case
f%sz fglz f?zz 1.
v1#0, wvy,=v3=0. (10
Denoting the spatial coordinates- x*,y=x?,z=x3, one can
choose them in the following explicit realization: Then there remains only the “01” nontrivial off-diagonal
equation which reduces to
el=cosy cosz dx—sinz dy,
R R? k2

——+—+———=0. (12
R R? 4R?k3k3

e?=cosy sinz dx+ cosz dy,

e=—siny dx+dz (4) , , L ,
The analysis of the four diagonal Einstein equatig¢sse

We assume the diagonghg and can write the ansatz for the Eds. (A1)—(A4)] shows that they are consistent under the

line element(1) as algebraic conditions
ds?=9,,0%9%, g.,5=diagl—1,-1,-1), (5 ks=k, and ki=k?—u3, (12)
where the orthonormal coframe one-fori$ read Then the diagonal equations, using Efl), reduce to the

A A first order equation
ﬁozdt_ R VA eA, 19]': R kl el,

(13

RZ K ) K2

92=R ky €2, =R, €%, (6) R aReKE) K

Here, Ky k; ks are positive constant parameters. The greekl'his can be straightforwardly integrated, yielding the solu-

indices «,B, ...=0,1,2,3 hereafter label objects with re- ..

spect to the orthonormal frame; the carets over indices detlon
note the separate frame components of these objects. 1 3 k. /A

The kinematic properties of the spacetime geometry are R(t)= —\ﬁcosk(—l\ﬁt ] (14)
described by the vorticityw,,= hthV[auB] , the shear 2k VA ko V3

3

ow=hﬁhfv(auﬁ)—% h,,V,u*, and the volume expansion
0=V, u*. Hereu= ¢, is the comoving velocitynormalized
by u,u*=1) andh,,=g,,—u,u, is the standard projector
on the rest three-space. A direct calculation yields

One can check that EqLl) is then identically fulfilled. The
metric (5),(6) with the scale factof14) represents the rotat-
ing version of the de Sitter world. A slightly different form of
that solution was obtained [10]. Another rotating generali-
R zation of the de Sitter model is described @, which is also
3_"V2 shear-free Bianchi type 1X, although it does not belong to the
Rk’ class(1).
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IV. ROTATING INFLATIONARY MODELS

Inspired by the above preliminary demonstration that ro
tation can coexist with inflation, we now consider the general

inflationary model(see[11-14, for example which is de-
scribed by the Lagrangian with the scalar field

1 1
L=—5 R+ 5(0,4)(3"¢) = V(). (19

2k

The Einstein equations now reaaaﬁ—%R Gup=K Tog,

where the explicit form of the energy-momentum compo-

nents is given in the Appendipsee Eqs(A11)—(A16)].
Again specializing to the casd0), we find that all the

off-diagonal equations are trivially fulfilled except for the

“01” component. The latter reads

R R? k?

2l — s+ =St+t——55
R R? 4R?k3k3

=k ¢ (16)

Substitutingx ¢ from Eq. (16) into the four diagonal Ein-
stein equationguse Eqs(Al)—(A4) and(Al11)—(Al4)], we
again discover the consistency conditid®). As a result, the
diagonal equations reduce to

R R K2 K

+2—+ =—kV.
R R? 2R%kj K5

7
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The form of the exact or approximate solutions of the final
system depends on the inflation potentidlp), and we refer

o the relevant analysis of the standard inflationary system
E11—14| (see alsq15] and references thergimhich is com-
pletely applicable to our rotating world after we make the
redefinitions(21).

V. DISCUSSION AND CONCLUSION

The results of Sec. Il represent a particular case of the

general inflationary model wheh=0 with V playing the
role of the cosmological constant. However, we found it
more instructive to consider that special case separately, in
particular because then it is possible to make a direct com-
parison with the earlier results p8]. With an account of the
algebraic condition$10) and (12), we have constructed the
exact solution of the Einstein equations in the form of the
line element

ds?=dt?>— 2y, Rdt &

— k3 R?[(e")?+(e?)2+(e%)?], (22
where the scale factd® is determined from Eq.14) or from

the inflationary systenil8)—(20). This model is shear free,
and the results obtained thus contribute to studies of the
shear-free conjecturésee[16], for example. The volume

expansion is9=3R/R and the vorticity is decreasing in the
expanding universe with the only nontrivial component

In addition to the Einstein equations, we have the Klein-

Gordon equation for the scalar field,D*¢$+V'=0
[whereV':=dV(¢)/d¢]. For the metria5), (6) it reads

L R.K
¢+3§¢+ k—SV =0. (18

Only two of the three equationd 6)—(18) are indepen-
dent. In order to see this, let us take, instead of Etf8.and
(17), their sum and difference. This yields

R K« 1;1,2+kiv (19)
R? 4R?k3 3127 k2 )’
R_« '2+kiv 20
R3¢ k_§ : (20)

During the de Sitter ergl4) the cosmic rotation rapidly de-
cays.

Our results confirm and extend the conclusions ofrGro
[9] (see als¢17,18) in that cosmic rotation does not prevent
inflation, whereas the latter yields a quick decrease of vor-
ticity. The preliminary and qualitative conclusions[df7,1§
were derived on the basis of the conservation law of angular
momentum without analyzing Einstein’s equations. The be-
havior of our exact solution now provides direct evidence in
support of these results. Moreover, because of (Et), we
can see now that the cosmic vorticity in fact enhances the
inflation: when the vorticity is largey;—« for a fixed value
of k,) the coefficienk, /k,>1 makes the inflation rate much
bigger than in the vorticity-free casé&,(/k,=1 for »;=0).

Summarizing, we have demonstrated the existence of a

We can take as the independent dynamical equations eithesalistic cosmological model with rotation and expansion:

(19 together with(18), or (19) together with(20). Then,

The exact Bianchi type IX solutiof22) is determined by the

correspondingly, the third equation will be derived from thestandard inflationary systenil9)—(20). Here we do not

first two, providedg#0.

specify the explicit form of the inflation potential which rep-

We thus have recovered the system of the usual inflationresents a separate complicated subject in modern cosmology.

ary model in which the spatial curvatukeand the inflation
potential are “corrected” by the rotation parameters

(21)

However, for each giveV(¢) the evolution of the scalar
field and the cosmological scale factor can be found straight-
forwardly.

In our final remark, let us come back to the Mach prin-
ciple. Since our model describeglsedworld, its existence
again raises the question whether the true anti-Mach cosmol-
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ogy is possible. The earlier discussion of stationary models

[6—8] has revealed some mechanisms of compensation of the
global vorticity by gravitational waves or by local spin of
matter. As far as we can see, such a compensation does no

exist for the new solution. This means that the shear-free
rotating inflational Bianchi type IX model describes a true
(and far more realistic due to the nontrivial expangianti-

Machian model. In this connection, it would also be interest-
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The left-hand side of the Einstein gravitational field equa-

ing to study Bianchi type V rotating models, which containtions is described by the Einstein tens@,;=R.z

open standard cosmology as a particular case.

o R R?
Goo=—| 25 =2
R R2
Gii= 2§+—2
R ~2
Gééz 2§+—2
R R?
Ga3= 2§+—2
R2
Gpi=2 R+§
R2
Gpz=2 _R+§
o R R?
Gpz=2 R E
o R R?
612—2 _ﬁ“f‘g
R2
Gié—z —§+§
o R R?
Gs3=2 R E

V2 V2
—1+ 242 +3

_—  ~  — ~ o~~~

vi v3 5
= 43—+

- 3R g,p. For the metric(5),(6), it reads

R?2  —ki—k3—Kki+2(k3k3+kak3+k3k3) + 3(K2vi+ kava+k3v3)

R2

s 2
R v

4R? (Kykaks)?

3k — K3 —k3+2(— k2k3— k2k3+ k3k3) — K2vi+ kava+ k3v3

R? k3

4R (kikoks)?

’

—kj+3k5—k3+2(—kik3+k2k3— k3k3) + k2 v —k3v5+ k3v3

R2 K3

2 2 52 2
vy V3 R v5

—+—) 3
2

4R? (kykoks)?

—ki—k3+ 3K+ 2(K2Kk3— k3k3— k3k3) + k2w + k

ovs—k

2.2
3V3

V1 R k1v2v3(k§—k§) kyvg

ki R?  (kjkoks)? 2R?Kk2K2'

¢ R k2v1v3(k§—k§) kovp

k_+_2 2 21,22

2 R% (Kikqks) 2R? k2K3

E EksVle(k%_ki) k3vs

ks R?  (kjkoks)? 2R?Kk2K2'

ViV R k1k2v3(k§—k§) Vivo
+_ - L

kika  R?  (Kkikyks)? 2R? k1kok3

V1V3 R k1k3V2( kg_ ki) Viv3
+_ - L

kiks  R?  (kikyks)? 2R? k1k3ks

VoV3 5 k2k3vl(k§_k§) _ VaV3

koks  R?  (k;koks)2 2R? k2K ks
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The right-hand side of Einstein’s equations is the energy- $? 2 2 2
momentum tensor of the scalar field,;= (D ,¢)(Dg¢) T33= > ——;——j —:23 -V, (A14)
—3(D,$)(D*¢) Gap+V gap. For the metric(5),(6), we ki ki k3
find

2 2 2 2 AA_'ZV]' AA_'ZVZ AA—.2V3
v v T - T, T - 1, T - T
T05=%(1+—;+ 22y, (A1D) T Te g TeTO
ki k3 k3 (A15)
¢2 V% V% V% . V]_Vz . V1V3
Tyi=—7=|1+—=———— -V, (A12) Tis=d2—= Tria=d?
R 127k T P
(Al6)
¢2( V% vy V% VoV
Tos=%|1-S5+—5——| -V, (A13) To= 2.
2 K2 k3 K3 23 koks
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