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Variations of alpha in space and time
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We study inhomogeneous cosmological variations in the fine structure “consgtantFriedmann universes.
Inhomogeneous motions of the scalar field driving changes display spatial oscillations that decrease in
amplitude with increasing time. The inhomogeneous evolution quickly approaches that found for exact Fried-
mann universes. We prove a theorem to show that oscillationg iof time (or redshify cannot occur in
Friedmann universes in the Bekenstein-Sandvik-Barrow-Magueijo theories considered here.
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[. INTRODUCTION variation that is suggested by recent astronomical observa-
tions of quasar spectra, or allowed by geophysical data at
Elsewherd 1,2] we have discussed the behavior of a clasgecent times, is very smallya/a~10"°, and spatial varia-
of cosmologies in an exact theory in which the fine structurdions in the rate of time variation could easily be of similar
“constant” varies in time. This theory of Sandvik, Barrow order[13]. It is therefore important to determine if spatial
and Magueijo is an extension, to include the self-gravitatiorvariations in the rate of change of are significant in the
of the dielectric medium, of Bekenstein’s prescriptj@ for ~ BSBM theory and whether they allow different modes of
generalizing Maxwell’'s equations to incorporate varyingtime variation to occur in addition to those studied in the
electron charge. We will refer to it as the Bekenstein-purely homogeneous variations found in Refs2].
Sandvik-Barrow-MagueijadBSBM) theory. The fine struc-
ture “constant” « varies through the space-time dynamics of
a scalar “dielectric” field 4 (where a=exd2¢]) in these
theories. However the overall behavior is significantly af- There are a number of possible theories allowing for the
fected by the form of the coupling. Even though the requirevariation of the fine structure constant, In the simplest
ment that the energy iy be positive definite fixes the sign cases one takes and # to be constantgsee however
of the coupling constanb, we find thaty is driven by aterm  [15,16) and attributes variations ia to changes in the elec-
of the form L.,/w, where Lqp,, is the electromagnetic La- tron chargeeg, or the permittivity of free spacesee Ref[14]
grangian. In generall., can be positive or negative, a fact for a discussion of the meaning of this choic€his is done
we parametrize in terms df= L. ,/p, wherep is the energy by letting e take on the value of a real scalar field which
density. The sign o for the dark matter in the universe varies in space and tim@r more complicated cases, resort-
turns out to be of exceptional significance. ing to complex fields undergoing spontaneous symmetry
In our earlier studie$1,2] we have focused on the case breaking, see the case of fast tracks discuss¢diSh. Thus
where{<0 and the dark matter in the universe is dominatede,— e=eye(x*), wheree is a dimensionless scalar field and
by magnetic field couplings. This was motivated by the dis-e, is a constant denoting the present valuee.cThis opera-
covery that{<0 matter leads to a slowlogarithmig in- tion implies that some well established assumptions, like
creasein the value ofa with cosmic time during the matter charge conservation, must give wgl7]. Nevertheless, the
era of the universe and constant behavior during any periogrinciples of local gauge invariance and causality are main-
in which the expansion is curvature dominated, acceleratesained, as is the scale invariance of #héield (under a suit-
or is dominated by radiation in universes with a matter-able choice of dynamig¢sin addition there is no conflict with
radiation balance such as our own. Thus §er0 we find local Lorentz invariance or covariance. With this setup in
slow time-evolution of the fine structure 'constant’ that is mind, the dynamics of our theory is then constructed as fol-
consistent with the observations of Webb et [@-6] of  lows. Sincee is the electromagnetic coupling, the field
Aala=(—0.72+0.18)x 10 ° at z=1—3.5. They are also couples to the gauge field &%, in the Lagrangian and the
consistent with the low-redshifz~0.1, upper limits on time  gauge transformation which leaves the action invariant is
variation ofa provided by Okl 7,8], and high-redshift con-  eA,— €A+ x ,, rather than the usu#l,—A,+x ,. The
straints imposed by the microwave background temperaturgauge-invariant electromagnetic field tensor is therefore
fluctuations [9,10], and primordial nucleosynthesigll].
Other hints of varying constants in astronomical studies have 1
recently been reported by Ivanchik et g12]. Fuo==[(eA,) ,—(€A,) ,], ()]
All of the studies described above have been performed in €
the context of an exact isotropic and homogeneous Fried-
mann universe. All variations in the fine structure “constant” which reduces to the usual form whenis constant. The
therefore depend only on cosmic time. However, the rate oélectromagnetic part of the action is still

Il. THE BSBM THEORY
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1 ter, {,, can be virtually anything between1 and+1. The
Sem= — Zf d*x\—gF*'F,,,, (2)  uncertainties in the underlying quark physics and especially
the constituents of the dark matter make it difficult to impose
and the dynamics of the field are controlled by the kinetic more certain bounds of, .

term We should not confuse this theory with other similar
variations. Bekenstein's theof$] does not take into account
1 4c 4 € et the stress energy tensor of the dielectric field in Einstein’s
Se=— > |—2 d x\/—_g 2 ) equations. Dilaton theories predict a global coupling between

the scalar and all other matter fields. As a result they predict
variations in other constants of nature, and also a different
dynamics to all the matter coupled to electromagnetism. This
ewodel may be seen as a more conservative alternative to

as in dilaton theories. Herkijs the characteristic length scale
of the theory, introduced for dimensional reasons. This con=
stant length scale gives the scale down to which the electri
field around a point charge is accurately of Coulomb typeYa7ying-speed-of-light scenarigd4,22—2@. An interesting
The corresponding energy scaie=7ic/l, has to lie between application of our approach has also recently been made to
a few tens of MeV and Planck scale,10!® GeV, to avoid Praneworld cosmology by Youri21]. Assuming a homoge-
conflict with experiment. neous and isotropic Friedmann met_rlc with expansmn_scale
Our generalization of the scalar theory proposed by Bekiactora(t) and curvature parametérin Eq. (4), we obtain

enstein[3] described in Ref[1] includes the gravitational the field equationsq=1)

effects of y=loge. It gives the field equations 2?2 8rG
r
G,,=87G(T, +TV +ToNe 2%), (4) (5 =3 (pm(l+|§m|exr{ 241])

where the varioud ,, are the matterys and electromagnetic k A

mv _— —
stress energy tensors. Recall thje Lagrangian is.,= Tprexd -2y ]+ '/f 2 3’ ©®
—(w/2)d,,d*¢ and they field obeys the equation of mo-
tion whereA is the cosmological constant. For the scalar field we

have the propagation equation
2
U= Ee_zwﬁem- 5) . . 2
U+ 3HY=— —ext ~ 201 Lmpm, @)

where we have defined the coupling constant (7.c)/12.

This constant is of order-1 if, as in[1], the energy scale is whereH=a/a is the Hubble expansion rate. Note that the
similar to the Planck scale. It is clear th¢,, vanishes for a  sign of the evolution ofys is dependent on the sign df,.
sea of pure radiation since thefy,=(E*~B?)/2=0. We  Since the observational data are consistent witbrraller
therefore expect the variation i to be driven by electro- value of« in the past, we will in this paper confine our study
static and magnetostatic energy-components rather than elegr negativevalues of¢,,, in line with our recent discussion

tromagnetic radiation. In order to make quantitative predicin Ref.[1]. The conservation equations for the noninteracting
tions we need to know how much of the nonrelativistic rgdiation and matter densities are

matter contributes to the right-hand sitRHS) of Eq. (5).

This is parametrized by=L./p, Wwherep is the energy pm+3Hp,=0 (8)

density, and for baryonic mattel, ,= E2/2. For protons and

neutrons,{, and {,, can beestimatedfrom the electromag- p+4Hp, =20p 9)
r r rs

netic corrections to the nucleon mass, 0.63 MeV and

—-0.13 MeV, respectivel{l&lq This correction contains and Sopmoca73 andprefzwocaf“, respectively_ If additional
the E*/2 contribution(always positivg but also terms of the  noninteracting perfect fluids satisfying the equation of state
form j ,a* (wherej, is the quarks’ currentand so cannotbe p=(y—1)p are added to the universe then they contribute

used dlrectly Hence we take a guiding valfje={,~10"*.  density termsy=a 37 to the RHS of Eq(6) as usual.
Furthermore the cosmological value fdenoted;,,) has to

be weighted by the fraction of matter that is nonbaryonic, a
point ignored in the literaturé3,20. Hence, {,, depends
strongly on the nature of the dark matter and can take both The Friedmann models with varying have shown that
positive and negative values depending on whether thevhen{,,<0 the homogeneous motion of thiedoes not in
Coulomb-energy or magnetostatic energy dominates the dadeneral create significant metric perturbations at late times
matter of the Universe. It could be thétpy~ —1 (super- and we can safely assume that the expansion scale factor is
conducting cosmic strings, for whicl.~—B?/2), or that of the usual Friedmann universe for the appropriate
{com<<1 (neutrinog. Big-bang nucleasynthesi®BN) pre-  fluid. The behavior ofy then follows from a solution of the
dicts an approximate value for the baryon density(hf s conservation equation in which the expansion scale factor
~0.03 with a Hubble parameter ofi;=~0.6, implying is taken to be that of the Friedmann universe for matter with
Qcpw=~0.3. Thus depending on the nature of the dark matthe same equation of state in general relativigy=¢=0).

IIl. INHOMOGENEOUS SOLUTIONS WITH VARYING «
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Our earlier analyses found thégtis approximately constant hayve an expansion maximufminimum) since ,=0 and

during the rat_zliation era, anal incre_ases as I‘an(t) during . y<0(>0) there. Therefore/;, cannot oscillate in time and
the dust dominated era when spatial curvature is negllglbleBo neither cany=exy 2y

and tends to a constant in any subsequent era dominated Y\We see that in the case of interest. wHeR 0 ¥ can

negative spatial curvature or a positive cosmologiqal CONKhave a minimum but thereafter it must always increase irre-
stant[ﬁ]. When g.<0 V\_/ehcan use the same t.est-mot:;)n aP-spective of the behavior of the expansion scale factor. How-
proach to investigate inhomogeneous variationgsiand a ever, if the equation is linearized if, this is no longer true

as the universe expands. . . if attention is not confined to the smad} regime where
We assume that the expansion scale factor is that of th8xq—2¢h]~1—2¢h>o and spurious oscillations af (and
Friedmann model «) in time can appear to arise at late timespifgrows. It is
a=t" (10) of particular interest that this proof that, cannot have a
maximum applies to recollapsing universé&s=(+1) as well
and solve the wave equation in one of its appropriate forms2s to ever-expanding universek<(0). It also means that
oscillations of o with redshift should not be observed in
Friedmann universe. This might prove an interesting predic-
Dy=——pmexd —2¢] (11 tion for future observations to test.
Substituting Eq(14) into Eq. (13) we get

..+3a. 1V2 2 X " g
vty a2 Y= PrexH—2Y] (12 a(5&13)—aV25=NeX|c[—2¢h]{eX|c[—25]—1}.
d . 5
E(d/a y—aVey=Nexd —2¢] (13)  So for smalls
whereN is a constant, defined by d£(5a3)—aV25= —2NSexd — 2¢,]+0(82).
t
_ ng 3
==, P2 >0 Now look for separable solutions
We can see in a general way that the effects of small s=T()D(x)

inhomogeneities in the density of electromagnetically

coupled matter will create a spatial variatiori\lloi) and this  gnd we have
will create small spatial variations ia~2N(§)Int during

the dust era. It is also possible for inhomogeneit\ito be T T 2N
created by variations in the value offor the form of matter ?a2+ 3aa_—|_ + ?exp: —2¢p]=— ,U«ZZT (15
that dominates on any particular scale. Our assumption of

{m<0 applies only to the dominant dark matter. On small 5 ) _ )

scales the luminous matter might dominate and there will b&vherex” is a separation constant with a sign chosen to en-
a variation in the effective valu@nd even the sigrof  but ~ sure nongrowing, oscillatory, inhomogeneitylr(x) at spa-

we will not explore these possibilities further here. tial infinity. In this equation we can always neglect
We seek a general solution of E@.3) of the form 2Na texd —2¢4] with respect tou? ast—x becausey
never falls with time (in the dust erayy, grows as
=+ S(X,1) (14 3IN[2NIn(t)] ast— <, for example[2]). This is an important

feature of the variation of}, and «, in BSBM varying«

where ¢, (t) is the solution to the space-independent prob-theories when?<0. It ensures that the kinetic term and the
lem (V¢=0), so by definitiony,(t) is an exact solution of  {.exd —2] terms can be neglected in the Friedmann equa-
tion asymptotically and the expansion scale factor can self-
consistently be assumed to be of the same form as when
does not vary(this is not true if £>0). Note that in the
Friedmann cased=0) we can evaluate the corrections to

We note immediately an important general property ofthe test-motion approximation by calculating the leading or-
this equation, that applies to all Friedmann universes withder corrections to the Friedmann equation if we use the so-
varying a: lution for ¢ found from the solution of the wave equation.

No-oscillation theorem: In the BSBM theorg cannot  These corrections are largest for the dust universe but even
display oscillatory behavior in time in a Friedmann universe there we find the next-order correction to the first-order as-

d . o _
a(lﬁha )=Nexd —2¢].

of any curvature sumption thata(t)=t?? is a(t)=t?3(Int)<"® with |£|/3
The proof is simple: WherN is positive (negativeé the  ~0.3—0.03 and so is small.
right-hand side of Eq(7) is positive (negative; #;, cannot Hence, in this approximation we have
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. 3a. wlT 1 1
+ 7+ 2 oo (16) Yn=>10g(8N) + 7 log(1). (25
a a2
and Substituting Eq(25) in Eq. (15) we find
VZD:_ ZD 1
a T(0) = A2t +BI (2082
so we have the standard separable spherical oscillator solu-
tion in spherical polar coordinates: where
D(f,B,SD):Izo CuY1(0,0)r Y22, p(par) m:%§

where Z is a cylindrical function andy the spherical har-
monic function. If we specialize to spatially flat cosmologies
with perfect fluid equations of state for pressprand den-
sity p of the form

and we see explicitly that there is agreement with the asymp-
tote (23) of the approximated equation when=1/2. The
boundary condition for transition to the homogeneous prob-
lems requires that we plB=0 and again the late-time os-
cillations are recognized as arising purely from the lineariza-
tion process. Similar exact solutions can be found for all

then the expansion scale factor will have a power law formuniverses with 1/3n<2/3.
The cosmological constant casepf 0 is distinct, with
a=t" (17

p=(y—1)p,

a=exd Hot]
with n=2/3y. In these cases we have
i . which gives
tT+3nT+ 2Tt 2"=0. (18
s . 5 s .
We are interested in inhomogeneous solutions which intro- 0=T+3HoT+u T exd —2Hot]~T+3HoT
duce new behavior as a result of including inhomogeneitygst_ o 50
Therefore we impose a boundary condition tiat0 for u

=0 since wherD =0 the time-dependent solution is already 1
included inyy(t). Thus, forn<1, T—Te— —3HOeXF[—3Ho(t+to)]—>Toc-
T(t):t(l3n)/2clzy( H tln), (19) This pehavior is in accord with Fhe expectati(_)ns qf a cosmic
1-n no hair theorem. It means that if a period of inflation occurs

in the very early universe then large scale inhomogeneity
= |1—3n| (20 will appear increasingly negligible with time within the
2(1-n)’ event horizon of a geodesically moving observer. In the late
stages of a universe like our own, which displays evidence of
whereZ() is a cylindrical function, while for the curvature- peing accelerated by the presence of a positive cosmological
dominated expansion with=1: constant[27], it ensures that time variations i will not
grow. This is to be expected since the inhomogeneities in

q
et @D density are also prevented from growing by the effects of the
logical .
q=—1+1— 2 22) cosmological constant
and we choose the- solution to satisfy the boundary con- IV. THE CASE OF {>0

dition. The late-time behavior is easily determined asx»: When the dark matter is dominated by electric field en-

T(t)«t™" X oscillations; n#1, (23 ergy, we havel>0, and the behavior of Eq7) is very
different from that obtained whefi<<0. Most crucially, the
T(t)xt,lﬁrﬂz; n=1 (24) f[est-motion approximation used above to analyze the _behav-
ior of Eq. (7) does not apply, even for the purely time-
and decaysT«a !, ast—. However, as we have already dependent) evolution in a Friedmann universe. The solu-
pointed out, the oscillatory behavior is an artifact of the lin-tions obtained fors by assuming the scale factor evolution
earization process and the Bessel-like oscillations are ndt=t" of general relativitywith constante) lead to solutions
reached by the solution fap. for  (and«) which do not increase with time. For example,
In the radiation era we can find a solution of E#5) for ~ We havea=t™* in the curvature era andIn(to/t) in the
T(t) without neglecting the termia‘exd —2¢,] since the  dust era. These contribute kineti¢q) and magnetic contri-
radiation universe has the simple exact solution bution (¢ exd —2¢]) terms which dominate the underlying
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Friedmann equatioi6) at large times and the expansion of for n# 1. Hence, denotingr,=exd 2¢,], the spatial varia-
the universe is not well approximated by that obtained intion in « decays in time in th@+ 1 universes as
general relativistic cosmologies with the same equation of

state and constant except over finite non-asymptotic inter-
vals of time. This leads to problems accommodating obser- — =

o

Sa  a—ay N B
~2t IEO CuYi(0,0)r "Y2Z, ().

o ah

vational constraints, notably the results of studies of the

structure of the microwave background at last scatterin\nalogous expressions can be written down after the neces-
[9,10] and big bang nucleosynthesikl] in the radiation era sary changes have been made daf/« in then=0,1 cases.

because the value at then is significantly different from
today, unlike in the cases @f<0. Cosmologies withy>0

have been discussed in REE9] in a theory that is similar in
structure to the BSBM theory discussed here. We will dis-
cuss thel>0 version of the theory in more detail elsewhere.
It is less well behaved and does not seem to provide th
smooth and simple perturbation of the standard cosmolog

with constanta as seen in the negativiecase.

V. DISCUSSION

It is important to compare the evolution of the fine struc-
ture constant(t) in the BSBM theory in the homogeneous
case with that for the situation admitting inhomogeneous

motions of the fine structure “constant(t,x), here. To

leading order, the overall pattern of time evolution studied in
E&efs.[l,Z] is unaffected by the presence of small inhomoge-
Heities. However, small spatial variations of an oscillatory
character are expected to exist in the value of the fine struc-
ture constant over astronomical scales, reflecting the non-
linear self-interaction of thex(y) field which carries the

We have shown that the time-dependent solutions to th¥ariations ina. Thg sp_atial variation.amplitudeéa/a, are
Friedmann model are stable against the effects of inhomogdound to decay with time as the universe expands and will
neous motions of the field. In the case of inhomogeneous Not be as significant as the overall variation in time of the
variation the cosmological solutions in universes with scalenean value ofx(t)=In(t) during the dust-dominated phase

factora(t) =t" to leading order take the form
M 1-n
J”( I-n' ”

X |:20 CuaYi(0,0)r ~Y2Z, 1 (1))

P(X,1) = (1) + Cyt 3072

whenn#1, and

PX,1) = g (1) + AL TV

X |20 CuY1(0,0)r Y22, 1 par)

whenn=1, while for the case o= exgHqt]:
Y(X,1) = (1) + O(exy — 3Hot]).
Thus in all cases we have

P(X,0) = (1)

ast—oo and at late times spatial variations in the fine struc

ture constant decay as

a=eXF[21ﬂh]| l+2t_n|20 CM’|Y|(0,QD)

X1 Y27, 4 () + - - ]

of a spatially flat universe. Inhomogeneous test motions of
the ¢ field will have been decaying in amplitude throughout
the period when the universe was dominated by dust if
<0. Therefore we would not expect any significant inhomo-
geneities to survive at the astronomically interesting epoch
z~1-4 where the value of the fine structure constant can be
probed spectroscopically with high precision. However, our
discussion has not considered three situations where more
significant spatial variations might arise. The first is the situ-
ation within gravitationally bound matter inhomogeneities of
large scale which separate out from the expansion of the
Universe and collapse to form superclusters and clusters of
galaxies. These behave in a manner similar to that expected
of separate closed universes until deviations from spherical
symmetry become significant. Our analysis is not applicable
here because the dynamics of the bound inhomogeneities
will differ significantly after they separate off from the back-
ground expansion. The second situation of interest is that in
which perturbations of the Friedmann metric are included in
the problem and allowed to couple to spatial variationgjn

or a. This coupling will lead to small temperature fluctua-
tions in the microwave background radiation. Finally, the
“variation in the value and sign dfwith scale for the domi-
nant form of matter could introduce a distinctive inhomoge-
neity. These problems will be discussed elsewhere.
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