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Variations of alpha in space and time
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We study inhomogeneous cosmological variations in the fine structure ‘’constant’’a in Friedmann universes.
Inhomogeneous motions of the scalar field driving changes ina display spatial oscillations that decrease in
amplitude with increasing time. The inhomogeneous evolution quickly approaches that found for exact Fried-
mann universes. We prove a theorem to show that oscillations ofa in time ~or redshift! cannot occur in
Friedmann universes in the Bekenstein-Sandvik-Barrow-Magueijo theories considered here.
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I. INTRODUCTION

Elsewhere@1,2# we have discussed the behavior of a cla
of cosmologies in an exact theory in which the fine struct
‘‘constant’’ varies in time. This theory of Sandvik, Barro
and Magueijo is an extension, to include the self-gravitat
of the dielectric medium, of Bekenstein’s prescription@3# for
generalizing Maxwell’s equations to incorporate varyi
electron charge. We will refer to it as the Bekenste
Sandvik-Barrow-Magueijo~BSBM! theory. The fine struc-
ture ‘‘constant’’a varies through the space-time dynamics
a scalar ‘‘dielectric’’ field c ~where a5exp@2c#) in these
theories. However the overall behavior is significantly
fected by the form of the coupling. Even though the requi
ment that the energy inc be positive definite fixes the sig
of the coupling constantv, we find thatc is driven by a term
of the form Lem/v, whereLem is the electromagnetic La
grangian. In general,Lem can be positive or negative, a fa
we parametrize in terms ofz5Lem/r, wherer is the energy
density. The sign ofz for the dark matter in the univers
turns out to be of exceptional significance.

In our earlier studies@1,2# we have focused on the cas
wherez,0 and the dark matter in the universe is domina
by magnetic field couplings. This was motivated by the d
covery thatz,0 matter leads to a slow~logarithmic! in-
creasein the value ofa with cosmic time during the matte
era of the universe and constant behavior during any pe
in which the expansion is curvature dominated, accelera
or is dominated by radiation in universes with a matt
radiation balance such as our own. Thus forz,0 we find
slow time-evolution of the fine structure ’constant’ that
consistent with the observations of Webb et al.@4–6# of
Da/a5(20.7260.18)31025 at z5123.5. They are also
consistent with the low-redshift,z;0.1, upper limits on time
variation ofa provided by Oklo@7,8#, and high-redshift con-
straints imposed by the microwave background tempera
fluctuations @9,10#, and primordial nucleosynthesis@11#.
Other hints of varying constants in astronomical studies h
recently been reported by Ivanchik et al.@12#.

All of the studies described above have been performe
the context of an exact isotropic and homogeneous Fr
mann universe. All variations in the fine structure ‘‘constan
therefore depend only on cosmic time. However, the rate
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variation that is suggested by recent astronomical obse
tions of quasar spectra, or allowed by geophysical data
recent times, is very small,Da/a;1025, and spatial varia-
tions in the rate of time variation could easily be of simil
order @13#. It is therefore important to determine if spati
variations in the rate of change ofa are significant in the
BSBM theory and whether they allow different modes
time variation to occur in addition to those studied in t
purely homogeneous variations found in Refs.@1,2#.

II. THE BSBM THEORY

There are a number of possible theories allowing for
variation of the fine structure constant,a. In the simplest
cases one takesc and \ to be constants~see however
@15,16#! and attributes variations ina to changes in the elec
tron charge,e, or the permittivity of free space~see Ref.@14#
for a discussion of the meaning of this choice!. This is done
by letting e take on the value of a real scalar field whic
varies in space and time~for more complicated cases, resor
ing to complex fields undergoing spontaneous symme
breaking, see the case of fast tracks discussed in@15#!. Thus
e0→e5e0e(xm), wheree is a dimensionless scalar field an
e0 is a constant denoting the present value ofe. This opera-
tion implies that some well established assumptions, l
charge conservation, must give way@17#. Nevertheless, the
principles of local gauge invariance and causality are ma
tained, as is the scale invariance of thee field ~under a suit-
able choice of dynamics!. In addition there is no conflict with
local Lorentz invariance or covariance. With this setup
mind, the dynamics of our theory is then constructed as
lows. Sincee is the electromagnetic coupling, thee field
couples to the gauge field aseAm in the Lagrangian and the
gauge transformation which leaves the action invarian
eAm→eAm1x ,m , rather than the usualAm→Am1x ,m . The
gauge-invariant electromagnetic field tensor is therefore

Fmn5
1

e
@~eAn! ,m2~eAm! ,n#, ~1!

which reduces to the usual form whene is constant. The
electromagnetic part of the action is still
©2002 The American Physical Society15-1
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Sem52
1

4E d4xA2gFmnFmn , ~2!

and the dynamics of thee field are controlled by the kinetic
term

Se52
1

2

\c

l 2 E d4xA2g
e ,me ,m

e2
, ~3!

as in dilaton theories. Here,l is the characteristic length sca
of the theory, introduced for dimensional reasons. This c
stant length scale gives the scale down to which the elec
field around a point charge is accurately of Coulomb ty
The corresponding energy scale,v5\c/ l , has to lie between
a few tens of MeV and Planck scale,;1019 GeV, to avoid
conflict with experiment.

Our generalization of the scalar theory proposed by B
enstein@3# described in Ref.@1# includes the gravitationa
effects ofc5 loge. It gives the field equations

Gmn58pG~Tmn
m 1Tmn

c 1Tmn
eme22c!, ~4!

where the variousTmn are the matter,c and electromagnetic
stress energy tensors. Recall thec Lagrangian isLc5
2(v/2)]mc]mc and thec field obeys the equation of mo
tion

hc5
2

v
e22cLem, ~5!

where we have defined the coupling constantv5(\c)/ l 2.
This constant is of order;1 if, as in @1#, the energy scale is
similar to the Planck scale. It is clear thatLem vanishes for a
sea of pure radiation since thenLem5(E22B2)/250. We
therefore expect the variation ina to be driven by electro-
static and magnetostatic energy-components rather than
tromagnetic radiation. In order to make quantitative pred
tions we need to know how much of the nonrelativis
matter contributes to the right-hand side~RHS! of Eq. ~5!.
This is parametrized byz[Lem/r, wherer is the energy
density, and for baryonic matterLem5E2/2. For protons and
neutrons,zp and zn can beestimatedfrom the electromag-
netic corrections to the nucleon mass, 0.63 MeV an
20.13 MeV, respectively@18,19#. This correction contains
theE2/2 contribution~always positive!, but also terms of the
form j mam ~wherej m is the quarks’ current! and so cannot be
used directly. Hence we take a guiding valuezp'zn;1024.
Furthermore the cosmological value ofz ~denotedzm) has to
be weighted by the fraction of matter that is nonbaryonic
point ignored in the literature@3,20#. Hence,zm depends
strongly on the nature of the dark matter and can take b
positive and negative values depending on whether
Coulomb-energy or magnetostatic energy dominates the
matter of the Universe. It could be thatzCDM'21 ~super-
conducting cosmic strings, for whichLem'2B2/2), or
zCDM!1 ~neutrinos!. Big-bang nucleasynthesis~BBN! pre-
dicts an approximate value for the baryon density ofVB
'0.03 with a Hubble parameter ofh0'0.6, implying
VCDM'0.3. Thus depending on the nature of the dark m
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ter, zm can be virtually anything between21 and11. The
uncertainties in the underlying quark physics and especi
the constituents of the dark matter make it difficult to impo
more certain bounds onzm .

We should not confuse this theory with other simil
variations. Bekenstein’s theory@3# does not take into accoun
the stress energy tensor of the dielectric field in Einste
equations. Dilaton theories predict a global coupling betwe
the scalar and all other matter fields. As a result they pre
variations in other constants of nature, and also a differ
dynamics to all the matter coupled to electromagnetism. T
model may be seen as a more conservative alternativ
varying-speed-of-light scenarios@14,22–26#. An interesting
application of our approach has also recently been mad
braneworld cosmology by Youm@21#. Assuming a homoge-
neous and isotropic Friedmann metric with expansion sc
factor a(t) and curvature parameterk in Eq. ~4!, we obtain
the field equations (c[1)

S ȧ

a
D 2

5
8pG

3 S rm~11uzmuexp@22c#!

1r rexp@22c#1
v

2
ċ2D2

k

a21
L

3
, ~6!

whereL is the cosmological constant. For the scalar field
have the propagation equation

c̈13Hċ52
2

v
exp@22c#zmrm , ~7!

whereH[ȧ/a is the Hubble expansion rate. Note that t
sign of the evolution ofc is dependent on the sign ofzm .
Since the observational data are consistent with asmaller
value ofa in the past, we will in this paper confine our stud
to negativevalues ofzm , in line with our recent discussion
in Ref. @1#. The conservation equations for the noninteract
radiation and matter densities are

ṙm13Hrm50 ~8!

ṙ r14Hr r52ċr r , ~9!

and sorm}a23 andr re
22c}a24, respectively. If additional

noninteracting perfect fluids satisfying the equation of st
p5(g21)r are added to the universe then they contrib
density termsr}a23g to the RHS of Eq.~6! as usual.

III. INHOMOGENEOUS SOLUTIONS WITH VARYING a

The Friedmann models with varyinga have shown that
when zm,0 the homogeneous motion of thec does not in
general create significant metric perturbations at late tim
and we can safely assume that the expansion scale fact
that of the usual Friedmann universe for the appropri
fluid. The behavior ofc then follows from a solution of the
c conservation equation in which the expansion scale fa
is taken to be that of the Friedmann universe for matter w
the same equation of state in general relativity (c5z50).
5-2
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VARIATIONS OF ALPHA IN SPACE AND TIME PHYSICAL REVIEW D66, 043515 ~2002!
Our earlier analyses found thatc is approximately constan
during the radiation era, anda increases as 2Nln(t) during
the dust dominated era when spatial curvature is negligi
and tends to a constant in any subsequent era dominate
negative spatial curvature or a positive cosmological c
stant @2#. When z,0 we can use the same test-motion a
proach to investigate inhomogeneous variations inc anda
as the universe expands.

We assume that the expansion scale factor is that of
Friedmann model

a5tn ~10!

and solve the wave equation in one of its appropriate for

hc52
2z

v
rmexp@22c# ~11!

c̈1
3ȧ

a
ċ2

1

a2
¹2c52

2z

v
rmexp@22c# ~12!

d

dt
~ ċa3!2a¹2c5N exp@22c# ~13!

whereN is a constant, defined by

N[2
2zm

v
rma3.0.

We can see in a general way that the effects of sm
inhomogeneities in the density of electromagnetica
coupled matter will create a spatial variation inN(xW ) and this
will create small spatial variations ina;2N(xW )ln t during
the dust era. It is also possible for inhomogeneity inN to be
created by variations in the value ofz for the form of matter
that dominates on any particular scale. Our assumption
zm,0 applies only to the dominant dark matter. On sm
scales the luminous matter might dominate and there wil
a variation in the effective value~and even the sign! of z but
we will not explore these possibilities further here.

We seek a general solution of Eq.~13! of the form

c5ch1d~xW ,t ! ~14!

wherech(t) is the solution to the space-independent pro
lem (¹c[0), so by definitionch(t) is an exact solution of

d

dt
~ ċha3!5N exp@22ch#.

We note immediately an important general property
this equation, that applies to all Friedmann universes w
varying a:

No-oscillation theorem: In the BSBM theory, a cannot
display oscillatory behavior in time in a Friedmann univer
of any curvature.

The proof is simple: WhenN is positive ~negative! the
right-hand side of Eq.~7! is positive ~negative!; ch cannot
04351
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have an expansion maximum~minimum! since ċh50 and
c̈h,0(.0) there. Thereforech cannot oscillate in time and
so neither cana5exp@2c#.

We see that in the case of interest, whenN.0, c can
have a minimum but thereafter it must always increase i
spective of the behavior of the expansion scale factor. Ho
ever, if the equation is linearized inch this is no longer true
if attention is not confined to the smallc regime where
exp@22ch#'122ch.0 and spurious oscillations ofc ~and
a) in time can appear to arise at late times ifc grows. It is
of particular interest that this proof thatch cannot have a
maximum applies to recollapsing universes (k511) as well
as to ever-expanding universes (k<0). It also means tha
oscillations of a with redshift should not be observed i
Friedmann universe. This might prove an interesting pred
tion for future observations to test.

Substituting Eq.~14! into Eq. ~13! we get

d

dt
~ ḋa3!2a¹2d5N exp@22ch#$exp@22d#21%.

So for smalld

d

dt
~ ḋa3!2a¹2d522Nd exp@22ch#1O~d2!.

Now look for separable solutions

d5T~ t !D~xW !

and we have

T̈

T
a213aȧ

Ṫ

T
1

2N

a
exp@22ch#52m25

¹2D

D
~15!

wherem2 is a separation constant with a sign chosen to
sure nongrowing, oscillatory, inhomogeneity inD(xW ) at spa-
tial infinity. In this equation we can always negle
2Na21exp@22ch# with respect tom2 as t→` becausech
never falls with time „in the dust erach grows as
1
2 ln@2N ln(t)# ast→`, for example,@2#…. This is an important
feature of the variation ofc, and a, in BSBM varying-a
theories whenz,0. It ensures that the kinetic term and th
zmexp@22c# terms can be neglected in the Friedmann eq
tion asymptotically and the expansion scale factor can s
consistently be assumed to be of the same form as whea
does not vary~this is not true if z.0). Note that in the
Friedmann case (d50) we can evaluate the corrections
the test-motion approximation by calculating the leading
der corrections to the Friedmann equation if we use the
lution for c found from the solution of the wave equatio
These corrections are largest for the dust universe but e
there we find the next-order correction to the first-order
sumption that a(t)5t2/3 is a(t)5t2/3(ln t)uzu/3 with uzu/3
;0.320.03 and so is small.

Hence, in this approximation we have
5-3
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T̈1
3ȧ

a
Ṫ1

m2T

a2
50 ~16!

and

¹2D52m2D

so we have the standard separable spherical oscillator s
tion in spherical polar coordinates:

D~r ,u,w!5(
l 50

`

cm,lYl~u,w!r 21/2Zl 1(1/2)~mr !

where Z is a cylindrical function andY the spherical har-
monic function. If we specialize to spatially flat cosmologi
with perfect fluid equations of state for pressurep and den-
sity r of the form

p5~g21!r,

then the expansion scale factor will have a power law fo

a5tn ~17!

with n52/3g. In these cases we have

tT̈13nṪ1m2Tt122n50. ~18!

We are interested in inhomogeneous solutions which in
duce new behavior as a result of including inhomogene
Therefore we impose a boundary condition thatT50 for m
50 since whenD50 the time-dependent solution is alrea
included inch(t). Thus, forn,1,

T~ t !5t (123n)/2C1ZnS m

12n
t12nD , ~19!

n[
u123nu
2~12n!

, ~20!

whereZ( ) is a cylindrical function, while for the curvature
dominated expansion withn51:

T}tq ~21!

q5216A12m2 ~22!

and we choose the1 solution to satisfy the boundary con
dition. The late-time behavior is easily determined ast→`:

T~ t !}t2n 3 oscillations; nÞ1, ~23!

T~ t !}t211A12m2
; n51 ~24!

and decays,T}a21, ast→`. However, as we have alread
pointed out, the oscillatory behavior is an artifact of the l
earization process and the Bessel-like oscillations are
reached by the solution forc.

In the radiation era we can find a solution of Eq.~15! for
T(t) without neglecting the term 2Na21exp@22ch# since the
radiation universe has the simple exact solution
04351
lu-

-
y.

-
ot

ch5
1

2
log~8N!1

1

4
log~ t !. ~25!

Substituting Eq.~25! in Eq. ~15! we find

T~ t !5
1

t1/4
$AJm~2mt1/2!1BJ2m~2mt1/2!%

where

m5
iA3

2

and we see explicitly that there is agreement with the asy
tote ~23! of the approximated equation whenn51/2. The
boundary condition for transition to the homogeneous pr
lems requires that we putB50 and again the late-time os
cillations are recognized as arising purely from the lineari
tion process. Similar exact solutions can be found for
universes with 1/3,n,2/3.

The cosmological constant case ofg50 is distinct, with

a5exp@H0t#

which gives

05T̈13H0Ṫ1m2T exp@22H0t#'T̈13H0Ṫ

as t→`, so

T→T`2
1

3H0
exp@23H0~ t1t0!#→T` .

This behavior is in accord with the expectations of a cosm
no hair theorem. It means that if a period of inflation occu
in the very early universe then large scale inhomogen
will appear increasingly negligible with time within th
event horizon of a geodesically moving observer. In the l
stages of a universe like our own, which displays evidence
being accelerated by the presence of a positive cosmolog
constant@27#, it ensures that time variations ina will not
grow. This is to be expected since the inhomogeneities
density are also prevented from growing by the effects of
cosmological constant.

IV. THE CASE OF zÌ0

When the dark matter is dominated by electric field e
ergy, we havez.0, and the behavior of Eq.~7! is very
different from that obtained whenz,0. Most crucially, the
test-motion approximation used above to analyze the beh
ior of Eq. ~7! does not apply, even for the purely time
dependentc evolution in a Friedmann universe. The sol
tions obtained forc by assuming the scale factor evolutio
a5tn of general relativity~with constanta) lead to solutions
for c ~anda) which do not increase with time. For exampl
we havea}t21 in the curvature era anda} ln(t0 /t) in the
dust era. These contribute kinetic (ċ2) and magnetic contri-
bution (z exp@22c#) terms which dominate the underlyin
5-4
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Friedmann equation~6! at large times and the expansion
the universe is not well approximated by that obtained
general relativistic cosmologies with the same equation
state and constanta except over finite non-asymptotic inte
vals of time. This leads to problems accommodating obs
vational constraints, notably the results of studies of
structure of the microwave background at last scatter
@9,10# and big bang nucleosynthesis@11# in the radiation era
because the value ofa then is significantly different from
today, unlike in the cases ofz,0. Cosmologies withz.0
have been discussed in Ref.@19# in a theory that is similar in
structure to the BSBM theory discussed here. We will d
cuss thez.0 version of the theory in more detail elsewher
It is less well behaved and does not seem to provide
smooth and simple perturbation of the standard cosmol
with constanta as seen in the negativez case.

V. DISCUSSION

We have shown that the time-dependent solutions to
Friedmann model are stable against the effects of inhomo
neous motions of thec field. In the case of inhomogeneou
variation the cosmological solutions in universes with sc
factor a(t)5tn to leading order take the form

c~xW ,t !5ch~ t !1C1t (123n)/2FJnS m

12n
t12nD G

3(
l 50

`

cm,lYl~u,w!r 21/2Zl 1(1/2)~mr !

whennÞ1, and

c~xW ,t !5ch~ t !1At211A12m2

3(
l 50

`

cm,lYl~u,w!r 21/2Zl 1(1/2)~mr !

whenn51, while for the case ofa5exp@H0t#:

c~xW ,t !5ch~ t !1O~exp@23H0t# !.

Thus in all cases we have

c~xW ,t !→ch~ t !

as t→` and at late times spatial variations in the fine stru
ture constant decay as

a5exp@2ch#H 112t2n(
l 50

`

cm,lYl~u,w!

3r 21/2Zl 1(1/2)~mr !1•••J ~26!
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for nÞ1. Hence, denotingah[exp@2ch#, the spatial varia-
tion in a decays in time in thenÞ1 universes as

da

a
[

a2ah

ah
'2t2n(

l 50

`

cm,lYl~u,w!r 21/2Zl 1(12)~mr !.

Analogous expressions can be written down after the ne
sary changes have been made forda/a in the n50,1 cases.

It is important to compare the evolution of the fine stru
ture constanta(t) in the BSBM theory in the homogeneou
case with that for the situation admitting inhomogeneo
motions of the fine structure ‘‘constant,’’a(t,xW ), here. To
leading order, the overall pattern of time evolution studied
Refs.@1,2# is unaffected by the presence of small inhomog
neities. However, small spatial variations of an oscillato
character are expected to exist in the value of the fine st
ture constant over astronomical scales, reflecting the n
linear self-interaction of thea(c) field which carries the
variations ina. The spatial variation amplitudes,da/a, are
found to decay with time as the universe expands and
not be as significant as the overall variation in time of t
mean value ofa(t)} ln(t) during the dust-dominated phas
of a spatially flat universe. Inhomogeneous test motions
the c field will have been decaying in amplitude througho
the period when the universe was dominated by dust iz
,0. Therefore we would not expect any significant inhom
geneities to survive at the astronomically interesting ep
z;124 where the value of the fine structure constant can
probed spectroscopically with high precision. However, o
discussion has not considered three situations where m
significant spatial variations might arise. The first is the si
ation within gravitationally bound matter inhomogeneities
large scale which separate out from the expansion of
Universe and collapse to form superclusters and cluster
galaxies. These behave in a manner similar to that expe
of separate closed universes until deviations from spher
symmetry become significant. Our analysis is not applica
here because the dynamics of the bound inhomogene
will differ significantly after they separate off from the bac
ground expansion. The second situation of interest is tha
which perturbations of the Friedmann metric are included
the problem and allowed to couple to spatial variations inc,
or a. This coupling will lead to small temperature fluctu
tions in the microwave background radiation. Finally, t
variation in the value and sign ofz with scale for the domi-
nant form of matter could introduce a distinctive inhomog
neity. These problems will be discussed elsewhere.
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