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Cosmic strings in a braneworld theory with metastable gravitons

Arthur Lue*
Department of Physics, New York University, New York, New York 10003

~Received 11 December 2001; published 15 August 2002!

If the graviton possesses an arbitrarily small~but nonvanishing! mass, perturbation theory implies that
cosmic strings have a nonzero Newtonian potential. Nevertheless in Einstein gravity, where the graviton is
strictly massless, the Newtonian potential of a cosmic string vanishes. This discrepancy is an example of the
van Dam–Veltman–Zakharov~VDVZ ! discontinuity. We present a solution for the metric around a cosmic
string in a braneworld theory with a graviton metastable on the brane. This theory possesses those features that
yield a VDVZ discontinuity in massive gravity, but nevertheless is generally covariant and classically self-
consistent. Although the cosmic string in this theory supports a nontrivial Newtonian potential far from the
source, one can recover the Einstein solution in a region near the cosmic string. That latter region grows as the
graviton’s effective linewidth vanishes~analogous to a vanishing graviton mass!, suggesting the lack of a
VDVZ discontinuity in this theory. Moreover, the presence of scale dependent structure in the metric may have
consequences for the search for cosmic strings through gravitational lensing techniques.

DOI: 10.1103/PhysRevD.66.043509 PACS number~s!: 98.80.Cq
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I. INTRODUCTION

General relativity is a theory of gravitation that support
massless graviton with two degrees of freedom. Howeve
one were to describe gravity with a massive tensor fie
general covariance is lost and the graviton would poss
five degrees of freedom. In the limit of vanishing mass, th
five degrees of freedom may be decomposed into a mas
tensor~the graviton!, a massless vector~a graviphoton which
decouples from any conserved matter source! and a massles
scalar. This massless scalar persists as an extra degr
freedom in all regimes of the theory. Thus, a massive gra
theory is distinct from Einstein gravity, even in the lim
where the graviton mass vanishes. This discrepancy is a
mulation of the van Dam–Veltman–Zakharov~VDVZ ! dis-
continuity @1–3#.

The most accessible physical consequence of the VD
discontinuity is the gravitational field of a star or other co
pact, spherically symmetric source. The ratio of the stren
of the static~Newtonian! potential to that of the gravitomag
netic potential is different for Einstein gravity compared
massive gravity, even in the massless limit. Indeed the r
is altered by a factor of order unity. Thus, such effects
light deflection by a star or perihelion precession of an or
ing body would be affected significantly if the graviton ha
even an infinitesimal mass.

This discrepancy appears for the gravitational field of a
compact object. An even more dramatic example of
VDVZ discontinuity occurs for a cosmic string. A cosm
string has no static potential in Einstein gravity; however,
same does not hold for a cosmic string in massive ten
gravity. One can see why by using the momentum sp
perturbative amplitudes for one-graviton exchange betw
two sourcesTmn and T̃mn :

Vmassless~q2!;2
1

M P
2

1

q2S Tmn2
1

2
hmnTa

aD T̃mn ~1.1!

*Email address: lue@physics.nyu.edu
0556-2821/2002/66~4!/043509~8!/$20.00 66 0435
if
,

ss
e
ss

of
y

r-

Z
-
th

io
s
-

y
e

e
or
e
n

Vmassive~q2!;2
1

M P
2

1

q21m2S Tmn2
1

3
hmnTa

aD T̃mn.

~1.2!

The potential between a cosmic string withTmn5diag(T,
2T,0,0) and a test particle withT̃mn5diag(2M̃2,0,0,0) is

Vmassless50, Vmassive;2
TM̃

M P
2

ln r , ~1.3!

where the last expression is taken in the limitm→0. Thus in
a massive gravity theory, we expect a cosmic string to att
a static test particle, whereas in general relativity, no s
attraction occurs. The attraction in the massive case ca
attributed to the exchange of the remnant light scalar m
that comes from the decomposition of the massive grav
modes in the massless limit.

Nevertheless, the presence of the VDVZ discontinuity
more subtle than just described. Vainshtein suggests tha
discontinuity is derived from only the lowest order, tree-lev
approximation and that this discontinuity does not persis
the full classical theory@4#. However, doubts remain@5#
since no self-consistent theory of massive tensor gravity
ists. One can shed light on the issue of nonperturbative c
tinuity versus perturbative discontinuity by studying a rece
class of braneworld theories1 with a metastable graviton on
the brane@10–12#. The theory we wish to consider has
four-dimensional brane embedded in a five-dimensional,

1There has been a recent revival of interest in the VDVZ disc
tinuity in the context of braneworld theories. These studies h
focused on variations of the Randall-Sundrum braneworld scen
where the brane tension is slightly detuned from the bulk cosm
logical constant. The localized four-dimensional graviton acquire
small mass, allowing one to study the VDVZ problem in an effe
tive massive four-dimensional gravity theory. For examples rela
to such work, see@6–9#.
©2002 The American Physical Society09-1
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finite volume Minkowski bulk, where the graviton is pinne
to the brane by intrinsic curvature terms induced by quan
fluctuations of the matter. The metastable graviton has
same tensor structure as that for a massive graviton and
turbatively has the same VDVZ problem in the limit that t
graviton linewidth vanishes. In this model the momentu
space perturbative amplitude for one-graviton exchange

V~q2!;2
1

M P
2

1

q21 iqr 0
21 S Tmn2

1

3
hmnTa

aD T̃mn,

~1.4!

where the scaler 0 is the scale over which the gravito
evaporates off the brane. But unlike a massive gravity the
this braneworld model provides a self-consistent, gener
covariant environment in which to address the nonpertur
tive solutions in the limit asr 0→`. Indeed, exact cosmo
logical solutions@13# in this theory already suggest that the
is no VDVZ discontinuity at the nonperturbative classic
level @14#.

We would like to continue this program and investiga
the gravitational field of compact objects in the same bra
world theory with a metastable brane graviton. In this rega
one would ideally like to identify the nonperturbative metr
of a spherical, Schwarzschild-like source. That proble
however, possess considerable, though not insuperable,
putational difficulties.

Instead, we investigate the metric of a cosmic string a
close alternative formulation of the VDVZ problem for
compact source. The advantage of this system is its rela
simplicity, as well as the clarity with which the VDVZ dis
continuity manifests itself. After laying out the framework
which the problem is phrased, we identify various regim
where one can linearize the cosmic string metric. We th
argue that there exists a region where these cosmic s
solutions are simultaneously valid and that they are ident
up to a coordinate redefinition. The resulting cosmic str
metric indicates there is no discontinuity in the fully nonpe
turbative theory. It also provides an understanding as to h
different phases appear in different regions near and far a
from the string source. We conclude with some comme
regarding the consequences of this solution.

II. THE SOLUTION

A. Preliminaries

We wish to address the issues raised in the previous
tion using a braneworld theory of gravity with an infini
volume bulk and a metastable brane graviton@10#. Consider
a four-dimensional braneworld embedded in a fiv
dimensional spacetime. The bulk is empty; all energy m
mentum is isolated on the brane. The action is

S(5)52
1

2
M3E d5xAuguR̃1E d4xA2g(4)Lm1SGH .

~2.1!

The quantityM is the fundamental five-dimensional Plan
scale. The first term in Eq.~2.1! corresponds to the Einstein
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Hilbert action in five dimensions for a five-dimensional me
ric gAB ~bulk metric! with Ricci scalarR. The termSGH is
the Gibbons-Hawking action. In addition, we consider
intrinsic curvature term which is generally induced by rad
tive corrections by the matter density on the brane@10#:

2
1

2
M P

2E d4xA2g(4)R(4). ~2.2!

Here,M P is the observed four-dimensional Planck scale~see
@10–12# for details!. Similarly, Eq. ~2.2! is the Einstein-
Hilbert action for the induced metricgmn

(4) on the brane,R(4)

being its scalar curvature. The induced metric is

gmn
(4)5]mXA]nXBgAB , ~2.3!

whereXA(xm) represents the coordinates of an event on
brane labeled byxm.

We wish to find the spacetime around a perfectly straig
infinitely thin cosmic string. With Lorentz boost symmetr
and translational invariance along the cosmic string, as w
as rotational symmetry around the string axis, the most g
eral time-independent metric can be written with the follo
ing line element:

ds25N2~r ,z!~dt22dx2!2A2~r ,z!dr2

2B2~r ,z!@dz21sin2 z df2#, ~2.4!

where the string is located atr 50 for all (t,x). These coor-
dinates are depicted in Fig. 1. If spacetime were flat~i.e.,
N5A51, B5r ), we would choose the brane to be locat
at z5p/2. In general, one can choose coordinates within
context of the line element Eq.~2.4! such that the brane is
located atz5p/2, even when spacetime is not flat. Howev
we will find it useful to apply a less stringent constrain
considering coordinates where the brane is located az
5pa/2, where the parametera is to be specified by the
brane boundary conditions. Again, one can find a set of
ordinates within the ansatz Eq.~2.4! in which this is possible
in general.

Assuming the cosmic string dominates the ener
momentum content of the spacetime, we ignore the ma

FIG. 1. A schematic representation of a spatial slice throug
cosmic string located atA. The coordinatex along the cosmic string
is suppressed. The coordinater represents the 3-dimensional di
tance from the cosmic stringA, while the coordinatez denotes the
polar angle from the vertical axis. In the no-gravity limit, the bran
world is the horizontal plane,z5p/2. The coordinatef is the
azimuthal coordinate. Note that everywhere except at the cos
string, the unit vector in the direction of thez coordinate extends
perpendicularly from the brane into the bulk.
9-2
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COSMIC STRINGS IN A BRANEWORLD THEORY WITH . . . PHYSICAL REVIEW D66, 043509 ~2002!
effects of the brane itself, except through the intrinsic cur
ture term Eq.~2.2!. Using the coordinate system specified
Eq. ~2.4!, the energy momentum of the system is2

Ttt52Txx5N2~r ,z!
T d~r !

2pA~r ,z!B2~r ,z!sinz
, ~2.5!

where the parameterT denotes the string tension and a
other components of the energy-momentum tensor are z
The Einstein equations dictated by the action Eqs.~2.1! and
~2.2! are

1

2r 0
GAB1

1

B~r ,z!
dS z2

pa

2 DGAB
(4)5

1

M P
2 TAB , ~2.6!

where GAB is the five-dimensional Einstein tensor,GAB
(4) is

the induced four-dimensional Einstein tensor on the bra
TAB is the energy-momentum on the brane Eq.~2.5!, and we
have defined a crossover scale

r 05
M P

2

2M3 . ~2.7!

This scale characterizes that distance over which metric fl
tuations propagating on the brane dissipate into the b
@10#.

We assume aZ2-symmetric brane acrossz5pa/2. Under
this circumstance, one may solve Eqs.~2.5!, ~2.6! by solving
GAB50 in the bulk, i.e., whenz,pa/2 andrÞ0, such that
the following brane boundary conditions apply atz5pa/2:

S Nz

N
1

Az

A
1

Bz

B D5
r 0r

A2 FNrr

N
2

Nr

N

Ar

A
1

1

r S Nr

N
2

Ar

A D G
2

A12b2

b
1

r 0T/M P
2

2pb

1

A
d~r !

S 2
Nz

N
1

Bz

B D5
r 0r

A2 FNr
2

N2 1
2

r

Nr

N G2
A12b2

b
~2.8!

S 2
Nz

N
1

Az

A D5
r 0r

A2 F2
Nrr

N
1

Nr
2

N222
Nr

N

Ar

A G
where we have definedb5sin(pa/2) and where the sub
script represents partial differentiation with respect to
corresponding coordinate. Equations~2.8! follow from Gtt ,
Grr andGff , respectively, and are generated by the intrin
curvature term induced by the action Eq.~2.2!. We also im-
pose boundary conditions to ensure continuity of the me
and its derivatives atz50, and to fix a residual gauge degre
of freedom by choosingB(z5pa/2)5r .

We wish to find the full five-dimensional spacetime me
ric induced by a thin cosmic string situated within the bran

2Throughout this paper, we define the distributionald(x) of the
variable x, such that given any well-behaved functionf (x),
*dx d(x) f (x)5 f (0).
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world. The problem defined by Eqs.~2.5!, ~2.6! is dependent
only on the scaler 0 and the dimensionless parameterT/M P

2 .
We are interested in the problem whenr 0→` with all other
parameters held fixed. Sincer 0 represents the only scale i
the problem, this statement implies we are interested in
system whenr !r 0 with T/M P

2 fixed.

B. The Einstein solution

Before we attempt to solve the full five-dimensional pro
lem given by Eqs.~2.5!, ~2.6! and Eq.~2.8!, it is useful to
review the cosmic string solution in simply four-dimension
Einstein gravity@15,16#. For a cosmic string with energy
momentum Eq.~2.5!, the exact metric may be represented
the line element:

ds25dt22dx22S 12
T

2pM P
2 D 22

dr22r 2df2. ~2.9!

This represents a flat space with a deficit angleT/M P
2 . Thus,

there is no Newtonian potential between a cosmic string
a static test particle. However, a test particle~massive or
massless! suffers an azimuthal deflection ofT/M P

2 when
scattered around the cosmic string. With a different coor
nate choice, the line element can be rewritten as

ds25dt22dx22~y21z2!2T/2pM P
2
@dy21dz2#.

~2.10!

Again, there is no Newtonian potential between a cosm
string and a static test particle. However, in this coordin
choice, the deflection of a moving test particle can be in
preted as resulting from a gravitomagnetic force genera
by the cosmic string. We can ask whether this Einstein so
tion is recovered on the brane in the limit of the theory whe
the graviton linewidth vanishes. In this limit, gravity fluctua
tions originating on the brane are pinned on that surface
definitely, implying that gravity should resemble a fou
dimensional theory. However, the question remains whe
the four-dimensional theory that results is Einstein gravity
some massless scalar-tensor theory instead.

C. Linearized five-dimensional Einstein equations

Let us examine the linearized form of the Einstein equ
tions ~2.6!. We will see that the trick is to find an appropria
background~including boundary conditions! around which
linearize. We take the following:

N~r ,z!511n~r ,z!1•••

A~r ,z!511a~r ,z!1••• ~2.11!

B~r ,z!5r @11b~r ,z!1•••#,

where it is assumed that the function
$n(r ,z),a(r ,z),b(r ,z)%!1 in the regimes of interest. Takin
the Rtt component of the Einstein equations, one finds t
the partial differential equation~PDE! for n(r ,z)
9-3
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r 2nrr 12rnr1nzz1
cosz

sinz
nz50, ~2.12!

may be decoupled from the others. Equation~2.12! is simply
Laplace’s equation for the Newtonian potential,n(r ,z), re-
ducing the determination ofg00 to a linear static potentia
problem~albeit, with unusual boundary conditions resultin
from the presence of the brane!. In order to determinea(r ,z)
and b(r ,z), one can directly integrate theGzz and theGzz
components of the Einstein equations, leaving

a~r ,z!522n~r ,z!1r f 8~r !cosz1rg8~r !1g~r ! ~2.13!

b~r ,z!522n~r ,z!1 f ~r !cosz1g~r !. ~2.14!

The functionsf (r ) and g(r ) are to be determined by th
brane boundary conditions, as well as the last remaining
sidual gauge. This technique for decomposing the lineari
Einstein equations is the direct analog of that used in@17#.

The brane boundary conditions Eqs.~2.8! in the linearized
Einstein equations may be used to complete the determ
tion of the metric components. The second two equation
Eqs.~2.8! both yield

b f ~r !5
A12b2

b
22r 0nr~r !usin z5b . ~2.15!

Combining this equation forf (r ) and fixing the gauge choic
b(r )usin z5b50 gives

g~r !52n~r !usin z5b1
A12b2

b
r 0nr~r !usin z5b2

12b2

b2 .

~2.16!

The remaining equation in Eqs.~2.8! is then used to set th
brane condition for the Newtonian potentialn(r ,z):

nzusin z5b5r 0F S r 1
2r 0

3

A12b2

b D nrr 1nr G
sin z5b

1
r 0

3b2 d~r !

3Fb1S T

2pM P
2 21D G , ~2.17!

where the coefficient of thed-function contribution to this
condition comes from the matter source@as reflected in the
first equation of Eqs.~2.8!# and from the step inA(r ,z) at
r 50 necessary to maintain elementary flatness at the l
tion of the string. Once one determinesn(r ,z) using Eq.
~2.12! and the boundary conditions Eq.~2.17! as well as
nz(r )uz5050, then one can automatically read offa(r ,z)
andb(r ,z) using Eqs.~2.13!–~2.16!.

D. The weak brane limit

Let us first identify the solution to Eqs.~2.5!, ~2.6! and
Eq. ~2.8! in the weak field limit. Here, we presume that th
metric deviates from a flat metric with a flat brane where
perturbations~of the bulk and the brane! are proportional to
the strength of the source,T/M P

2 , assuming this parameter
04350
e-
d

a-
in

a-

e

small. With the coordinate choice under consideration, o
may keep the brane atz5p/2 while still allowing for a
brane extrinsic curvature ofO(T/M P

2 ). We refer to this limit
where the extrinsic curvature of the brane is perturb
around af lat brane as the weak brane limit.

In this limit one may use the linearized equations est
lished in the last subsection. The explicit solution to E
~2.12! and ~2.17! with b51 is

n~r ,z!52
r 0

3 S T

2pM P
2 D E

0

` dk

11r 0k
e2kr coszJ0~kr sinz!,

~2.18!

whereJ0 is the usual Bessel function of the first kind. On
can then solve fora(r ,z) and b(r ,z) directly using Eqs.
~2.13!–~2.16!. One may also arrive at this result by applyin
the graviton propagator@10,14# and approximating the gravi
tational potential through one-particle graviton exchange
tween the cosmic string source and a test particle in
Minkowski spacetime with a flat braneworld.

Two limits are of interest. The regime wherer @r 0 repre-
sents the crossover from four-dimensional to fiv
dimensional behavior expected at the scaler 0. Graviton
modes localized on the brane evaporate into the bulk o
distances comparable tor 0. The presence of the brane b
comes increasingly irrelevant asr /r 0→` and a cosmic
string on the brane acts as a codimension-three object in
full bulk. Here the metric is asymptotically spherically sym
metric ~i.e., z-independent! while the Newtonian potentia
Eq. ~2.18! becomes

n~r ,z!52
1

3 S T

2pM P
2 D r 0

r
1O~r 0

2/r 2!. ~2.19!

Using the metric Eq.~2.4!, we find the metric on the brane i
specified by the line element

ds25N2~r !usin z51~dt22dx2!2A2~r !usin z51dr22r 2df2

~2.20!

with

N~r !usin z51512
1

3S T

2pM P
2 D r 0

r
1O~r 0

2/r 2! ~2.21!

A~r !usin z51511
2

3S T

2pM P
2 D r 0

r
1O~r 0

2/r 2!,

~2.22!

recovering the Schwarzschild-like solution for
codimension-three object in five-dimensional spacetime w

r G5
r 0T

2pM P
2 5

T

4pM3 ~2.23!

acting as the effective Schwarzschild radius.
In the complementary limit whenr !r 0, we find that Eq.

~2.18! becomes
9-4
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n~r ,z!5
1

3 S T

2pM P
2 D lnF r

r 0
~11cosz!G1OS T2

M P
4 D . ~2.24!

Using the metric Eq.~2.20! on the brane, we find

N~r !usin z51511
1

3S T

2pM P
2 ln

r

r 0
D 1OS T2

M P
4 D ~2.25!

A~r !usin z51511
2

3

T

2pM P
2 1OS T2

M P
4 D , ~2.26!

which represents a conical space with deficit angle2
3 T/M P

2 .
Recall that for pure four-dimensional Einstein gravity, th
metric is N(r )51 and A(r )5(12T/2pM P

2 )21, which
again represents a flat conical space with deficit angleT/M P

2 .
Thus in the weak brane limit, we expect not only an ex
light scalar field generating the Newtonian potential found
N(r ), but also a discrepancy in the deficit angle with resp
to the Einstein solution. Moreover, since Eqs.~2.25!, ~2.26!
deviate from the four-dimensional Einstein solution, t
brane boundary conditions Eq.~2.8! imply that the brane
itself possess an extrinsic curvature whose magnitude
O(T/M P

2 ).
We can ask the domain of validity of the solution Eq

~2.25!, ~2.26!. Examining the boundary conditions Eqs.~2.8!
and the bulk Einstein equationsGAB50 and comparing the
size of terms neglected with respect to those included, we
that on the brane this solution is only valid when

r 0A T

M P
2 !r !r 0 . ~2.27!

The left-hand inequality of Eq.~2.27! is the one of interest
For values ofr violating this condition, nonlinear contribu
tions to the Einstein tensor become important and the w
brane approximation breaks down. But this is precisely
regime we are interested in, since we wish to underst
what happens whenr and T/M P

2 are fixed andr 0→`. We
need to find a solution in this regime.

E. The r Õr 0\0 limit

The weak brane approximation breaks down when
condition Eq.~2.27! does not apply. Outside this domain
validity, nonlinear contributions to the Einstein equations b
come important. However, by relaxing the condition that
braneworld be located at sinz51, a perturbative solution to
the Einstein equations Eqs.~2.5!, ~2.6! with the boundary
conditions Eq.~2.8! can be found in the limit of interes
when r !r 0 with T/M P

2 held fixed. We are still interested i
the limit of a weak source, i.e.,T/M P

2 !1, so that using the
linearized equations establish in Sec. II C is still applicab

Recall that the coordinatez into the bulk acts as a pola
angle, but where the space it parametrizes has a deficit p
angle. The bulk is characterized by that part of space wh
sinz,b @i.e., 0<z,pa/2 andp(12a/2),z<p# and the
two surfaces where sinz5b are identified and together rep
resent the braneworld. The identification of these two s
04350
a

t

is

.

ee

k
e
d

e

-
e
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lar
re

r-

faces induces an extrinsic curvature contribution on
brane which is compensated by the braneworld’s intrin
curvature. Note that the bulk isZ2 symmetric across the
brane. The key difference between the analysis in this ba
ground and that in the previous subsection is the inclusion
nonperturbative extrinsic curvature in the background bra
Figure 2 depicts a spatial slice through the cosmic string

One begins by solving the linearized Newtonian poten
problem Eq.~2.12! with the boundary conditions Eq.~2.17!
and nz(r )uz5050. Additional boundary conditions are nec
essary. In order to avoid the divergence of the fie
$n(r ,z),a(r ,z),b(r ,z)% near the origin that leads to the im
portance of nonlinear contributions in the weak brane lim
we choose

n~z!ur 5050. ~2.28!

By specifying this boundary condition, one is required
constrainb ~with the brane located at sinz5b) for consis-
tency with the brane boundary condition, Eq.~2.17!. In order
to maintain consistency, the delta-function term must van
requiring3

b512
T

2pM P
2 . ~2.29!

One last boundary condition needs to be specified for largr.
We choosen(r ,z) to match asymptotically onto the form

3The divergence inn(r ,z) as r→0 seen in the weak brane ap
proximation is avoided because the matter source delta functio
matched by a step in the metric functionA(r ,z) rather than a loga-
rithmic divergence inN(r ,z).

FIG. 2. A spatial slice through the cosmic string located atA. As
in Fig. 1 the coordinatex along the cosmic string is suppressed. T
solid angle wedge exterior to the cone is removed from the sp
and the upper and lower branches of the cone are identified.
conical surface is the braneworld (z5pa/2 or sinz5b). The bulk
space now exhibits a deficit polar angle~cf. Fig. 1!. Note that this
deficit in polar angle translates into a conical deficit in the bra
world space.
9-5
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n~z!ur 5R5
1

3 S T

2pM P
2 D lnF R

r 0
~11cosz!G , ~2.30!

for someR such thatr 0AT/M P
2 !R!r 0. We choose this spe

cific asymptotic form for reasons that will become clear
the next section. This boundary value problem for a sta
solution to Laplace’s equation Eq.~2.12! is well posed, albeit
in an unusual geometry and with unusual boundary con
tions.

Unlike when sinz51, this solution to Laplace’s equatio
does not possess a simple closed form. However, one
articulate the dominant contributions to the Newtonian p
tential in several key limits. Whenr !r 0AT/M P

2

n~r ,z!5F1

2
coszG r

r 0
2F1

2
Pq~cosz!G S r

r 0
D q

1•••,

~2.31!

with q511AT/pM P
2 andPq(x) is the Legendre function o

the first kind of orderq. Whenr @r 0AT/M P
2 ,

n~r ,z!5
1

3 S T

2pM P
2 D lnF 3

2

r

r 0A T

2pM P
2

~11cosz!G1•••.

~2.32!

Indeed, one can arrive at an explicit form for the leadi
contribution to the Newtonian potential on the brane itse

n~r !5
1

3 S T

2pM P
2 D lnF 11

3

2

r

r 0A T

2pM P
2
G1•••,

~2.33!

when r !r 0. One may ascertaina(r ,z) and b(r ,z) by di-
rectly using Eqs.~2.13!–~2.16!. By comparing the full Ein-
stein equations and brane boundary conditions, Eqs.~2.6!–
~2.8!, with the linearized equations, Eqs.~2.11!–~2.17!, one
can confirm that the Newtonian potentialn(r ,z) is valid in
theentire regionr !r 0, while the expressions fora(r ,z) and
b(r ,z) using Eqs. ~2.13!–~2.16! are valid when r
!r 0AT/M P

2 and whenr @r 0AT/M P
2 .

When r !r 0AT/M P
2 , the metric on the brane is dete

mined by the line element

ds25N2~r !usin z5b~dt22dx2!2A2~r !usin z5bdr22b2r 2df2

~2.34!

with

N~r !usin z5b511
r

2r 0
A T

2pM P
2 1O~r 2/r 0

2! ~2.35!

A~r !usin z5b512
r

2r 0
A T

2pM P
2 1O~r 2/r 0

2!, ~2.36!
04350
ic

i-

ay
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where b512AT/2pM P
2 . The brane solution, Eqs.~2.35!,

~2.36!, is distinct from the weak brane solution, Eqs.~2.25!,
~2.26!. In particular, the extrinsic curvature of the brane
the first case is nonperturbative in the string tension, i
O(AT/M P

2 ), whereas extrinsic curvature of the brane in t
weak brane approximation is perturbative in the string t
sion, i.e.,O(T/M P

2 ).
The deficit polar angle in the bulk isp(12a) where

again sin(pa/2)5b, while the deficit azimuthal angle in th
brane itself is 2p(12b). In the limit when r 0→`, the
graviton linewidth vanishes and we recover a flat coni
space with a deficit angle 2p(12b)5T/M P

2 , the solution
for a cosmic string in four-dimensional Einstein gravity E
~2.9!. Consequently, the cosmic string solution Eqs.~2.35!,
~2.36! does not suffer from a VDVZ discontinuity, suppor
ing the results found for cosmological solutions@14# in this
braneworld theory with a metastable brane graviton.

III. MATCHING BETWEEN PHASES

We wish to address the matching of the Einstein pha
Eqs. ~2.35!, ~2.36! to the weak brane phase, Eqs.~2.25!,
~2.26!. These two solutions are in distinct coordinate sy
tems. Nevertheless, when the cosmic string source stre
T/M P

2 is small, there exists a region inr, namelyr 0AT/M P
2

!r !r 0, where both solutions are valid. In this section w
show that there exists a coordinate transformation that ta
the Einstein phase into the weak brane phase in this reg
implying that these phases are simply different parts of
same solution.

In the regionr 0AT/M P
2 !r !r 0, the Einstein phase take

the form

n~r ,z!5
1

3 S T

2pM P
2 D lnF 3

2

r

r 0A T

2pM P
2

~11cosz!G1•••

a~r ,z!5
2

3

r 0

r S T

2pM P
2 D cosz1••• ~3.1!

b~r ,z!5SA T

2pM P
2 2

2r 0

3r

T

2pM P
2 D cosz1•••,

where the brane is located at sinz512T/2pMP
2 ~or cosz

5AT/2pM P
2 ), and neglecting contributions ofO(T/M P

2 ) but
keeping leading order contributions, e.g.,;(T/2pM P

2 )
(r 0 /r ). The weak brane phase in the same region has
form

n~r ,z!5
1

3 S T

2pM P
2 D lnF r

r 0
~11cosz!G1••• ~3.2!

a~r ,z!5
2

3

r 0

r S T

2pM P
2 D cosz1•••
9-6
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b~r ,z!52
2

3

r 0

r S T

2pM P
2 D cosz1•••,

where the brane is located at cosz50, and where again con
tributions ofO(T/M P

2 ) are neglected.
We have chosen a region,r 0AT/M P

2 !r !r 0, such that the
solution Eqs.~3.1! remains a valid solution to the linearize
Einstein equations while undergoing the following linear c
ordinate transformation. Take a new polar variable,Z, such
that

Z5z1A T

2pM P
2 sinz1OS T

2pM P
2 D . ~3.3!

Since

sinZ5sinzF11A T

2pM P
2 coszG1•••, ~3.4!

the metric functions are still in the ansatz Eq.~2.4! with the
new polar coordinate,Z:

ds25N2~r ,Z!~dt22dx2!2A2~r ,Z!dr22B2~r ,Z!

3@dZ 21sin2Z df2#. ~3.5!

Under this coordinate redefinition, when the brane is loca
at cosz5AT/2pM P

2 , it is now located at

cosZ5cosz2A T

2pM P
2 1•••501OS T

2pM P
2 D ~3.6!

and with a time renormalization

t5
t

12
1

6 S T

2pM P
2 D ln

T

2pM P
2

~3.7!

the Einstein phase takes the form

n~r ,Z!5
1

3 S T

2pM P
2 D lnF r

r 0
~11cosZ!G1•••

a~r ,Z!5
2

3

r 0

r S T

2pM P
2 D cosZ1••• ~3.8!

b~r ,Z!52
2

3

r 0

r S T

2pM P
2 D cosZ1•••,

with the brane located at cosZ50, which is identical to Eq.
~3.2! up to O(T/M P

2 ). Thus, one can match the Einste
phase solution with the weak brane solution using the co
dinate transformation Eq.~3.3! and the time redefinition Eq
~3.7!, implying that the Einstein phase in Sec. II E and t
04350
-

d

r-

weak brane phase in Sec. II D are parts of the same solut4

IV. DISCUSSION

In different parametric regimes, we find different qualit
tive behaviors for the brane metric around a cosmic stri
For an observer at a distancer @r 0 from the cosmic string,
where r 0

21 characterizes the graviton’s effective linewidt
the cosmic string appears as a codimension-three objec
the full bulk. The metric is Schwarzschild-like in this regim
Whenr !r 0, brane effects become important, and the cosm
string appears as a codimension-two object on the bra
When the source is weak~i.e., when the tension,T, of the
string is much smaller than the square of the fo
dimensional Planck scale,M P

2 ), the Einstein solution with a
deficit angle of T/M P

2 holds on the brane whenr
!r 0AT/M P

2 . In the region on the brane whenr @r 0AT/M P
2

~but still wherer !r 0), the weak brane approximation pre
vails, the cosmic string exhibits a nonvanishing Newton
potential and space suffers a deficit angle different fr
T/M P

2 .
We identified a coordinate transformation connecting

weak brane phase, Eqs.~2.25!, ~2.26!, and the Einstein
phase, Eqs.~2.35!, ~2.36!. Each phase is a linear solutio
which becomes strongly nonlinear outside of its domain
validity simply because the corresponding coordinate sys
in which each solution is linear differs from the other. Th
full nonlinear solution in this light is reminiscent of the an
satz introduced by Vainshtein@4# for the Schwarzschild so
lution in a massive gravity theory. Moreover, the presence
this weak brane phase at large distances from the cos
string may have non-negligible consequences for the ob
vational search for cosmic strings through gravitational le
ing techniques@18#. For a GUT scale (1016 GeV) cosmic
string, the Einstein deficit angle for the string is;1025. This
implies that the light deflection by the string differs signi
cantly from the predictions of general relativity at distanc

r;r 0AMGUT
2

M P
2

;3 Mpc, ~4.1!

wherer 0 is taken to be today’s Hubble radius. Such a see
ingly peculiar choice ofr 0 is intriguing cosmologically
@13,19#. Detailed discussion on how such a correspondin
small fundamental Planck scale is possible without seri
phenomenological obstacles may be found in@11,12#.

The solution presented here supports the Einstein solu
near the cosmic string in the limit thatr 0→`. This observa-
tion suggests that the braneworld theory under considera
does not suffer from a VDVZ discontinuity, corroboratin
the findings for cosmological solutions in the same the
@14#. Far from the source, the gravitational field is weak, a

4On the brane itself, the coordinate transformation is applica
including O(T/2pM P

2 ). One can confirm this by comparing Eq
~2.25!, ~2.26! with Eq. ~2.33! and Eqs.~2.13!, ~2.15!, and ~2.16!
using the time renormalization Eq.~3.7!.
9-7
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the geometry of the brane within the bulk is not substantia
altered by the presence of the cosmic string. Propagatio
the light scalar mode is permitted. However near the sou
the gravitational fields induce a nonperturbative extrin
curvature in the brane. That extrinsic curvature suppres
the coupling of the scalar mode to matter and only the ten
mode remains, thus Einstein gravity is recovered. As
takes r 0→`, the region where the source induces a la
brane extrinsic curvature grows withr 0, implying Einstein
gravity is strictly recovered in this limit.

In this paper, we investigate the spacetime around a
mic string on a brane in a five-dimensional branewo
theory that supports a metastable brane graviton. This sys
has the advantage of offering a semianalytic solution to
metric around a compact object, while still providing a cle
. B

s

04350
y
of
e,
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or
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e
r

example in which the VDVZ discontinuity manifests itse
The result may help shed light on the more difficult, mo
immediately relevant problem of a Schwarzschild-li
spherical source in this braneworld theory. At the same tim
the cosmic string solution is itself interesting and, shou
these objects exist in nature, would have testable phen
enological consequences.
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