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Cosmic strings in a braneworld theory with metastable gravitons
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If the graviton possesses an arbitrarily sm@ut nonvanishing mass, perturbation theory implies that
cosmic strings have a nonzero Newtonian potential. Nevertheless in Einstein gravity, where the graviton is
strictly massless, the Newtonian potential of a cosmic string vanishes. This discrepancy is an example of the
van Dam-Veltman—ZakharofwDVZ) discontinuity. We present a solution for the metric around a cosmic
string in a braneworld theory with a graviton metastable on the brane. This theory possesses those features that
yield a VDVZ discontinuity in massive gravity, but nevertheless is generally covariant and classically self-
consistent. Although the cosmic string in this theory supports a nontrivial Newtonian potential far from the
source, one can recover the Einstein solution in a region near the cosmic string. That latter region grows as the
graviton’s effective linewidth vanishe@nalogous to a vanishing graviton massuggesting the lack of a
VDVZ discontinuity in this theory. Moreover, the presence of scale dependent structure in the metric may have
consequences for the search for cosmic strings through gravitational lensing techniques.
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General relativity is a theory of gravitation that supports a
massless graviton with two degrees of freedom. However, if
one were to describe gravity with a massive tensor field . . . .
general covariance is lost and the graviton would possesvghe potential between _a COS_T'C stn_ng wf!‘r)z‘,,—dlag_(l',
five degrees of freedom. In the limit of vanishing mass, these™ 7.0,0) and a test particle withi ,, = diag(2M*,0,0,0) is
five degrees of freedom may be decomposed into a massless

tensor(the graviton, a massless vect¢a graviphoton which M
decouples from any conserved matter souerel a massless Viassles¥ 0, Vmassie™ — —> InT, (1.3
scalar. This massless scalar persists as an extra degree of Mp

freedom in all regimes of the theory. Thus, a massive gravity
theory is distinct from Einstein gravity, even in the limit where the last expression is taken in the limit>0. Thus in
where the graviton mass vanishes. This discrepancy is a fos massive gravity theory, we expect a cosmic string to attract
mulation of the van Dam—Veltman—Zakhar¢¥DVZ) dis- a static test particle, whereas in general relativity, no such
continuity [1-3]. attraction occurs. The attraction in the massive case can be
The most accessible physical consequence of the VDVattributed to the exchange of the remnant light scalar mode
discontinuity is the gravitational field of a star or other com-that comes from the decomposition of the massive graviton
pact, spherically symmetric source. The ratio of the strengthnodes in the massless limit.
of the static(Newtonian potential to that of the gravitomag-  Nevertheless, the presence of the VDVZ discontinuity is
netic potential is different for Einstein gravity compared to more subtle than just described. Vainshtein suggests that the
massive gravity, even in the massless limit. Indeed the ratigjscontinuity is derived from only the lowest order, tree-level

is altered by a factor of order unity. Thus, such effects as,nnrgximation and that this discontinuity does not persist in
!lght deflection by a star or pe_rlh_el_lon precession of_an orblt-,[he full classical theony4]. However, doubts remaif]
ing body would be affected significantly if the graviton had since no self-consistent theory of maésive tensor gravity ex-

even an infinitesimal mass. o : ists. One can shed light on the issue of nonperturbative con-
This discrepancy appears for the gravitational field of any. ™. . . D )
tinuity versus perturbative discontinuity by studying a recent

compact object. An even more dramatic example of the i :
VDVZ discontinuity occurs for a cosmic string. A cosmic class of braneworld theoriesvith a metastable graviton on

string has no static potential in Einstein gravity; however, thén€ Prane[10-12. The theory we wish to consider has a
same does not hold for a cosmic string in massive tensgpPur-dimensional brane embedded in a five-dimensional, in-
gravity. One can see why by using the momentum space

perturbative amplitudes for one-graviton exchange between

=~ There has been a recent revival of interest in the VDVZ discon-
two sourcesT ,, and T,

tinuity in the context of braneworld theories. These studies have

1 1 ~ focused on variations of the Randall-Sundrum braneworld scenario
Vinassiestq?) ~ — M2 ?( T, — > WMVTZ) THY (1.7 where the brane tension is slightly detuned from the bulk cosmo-
P

logical constant. The localized four-dimensional graviton acquires a
small mass, allowing one to study the VDVZ problem in an effec-

tive massive four-dimensional gravity theory. For examples related
*Email address: lue@physics.nyu.edu to such work, se¢6—9].
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finite volume Minkowski bulk, where the graviton is pinned

to the brane by intrinsic curvature terms induced by quantum

fluctuations of the matter. The metastable graviton has the :

same tensor structure as that for a massive graviton and per- ; 7
¢

braneworld

turbatively has the same VDVZ problem in the limit that the
graviton linewidth vanishes. In this model the momentum
space perturbative amplitude for one-graviton exchange is

1 FIG. 1. A schematic representation of a spatial slice through a
(T —=7 Ta)fruv, cosmic string located &. The coordinate along the cosmic string
A is suppressed. The coordinateepresents the 3-dimensional dis-
(1.4 tance from the cosmic string, while the coordinate denotes the
polar angle from the vertical axis. In the no-gravity limit, the brane-
where the scalg is the scale over which the graviton world is the horizontal planez=x/2. The coordinatep is the
evaporates off the brane. But unlike a massive gravity theoryazimuthal coordinate. Note that everywhere except at the cosmic
this braneworld model provides a self-consistent, generauytring, the unit vector in the direction of tteecoordinate extends
covariant environment in which to address the nonperturbaperpendicularly from the brane into the bulk.
tive solutions in the limit ag,—~. Indeed, exact cosmo- o ) _ ] _ ]
logical solutiong13] in this theory already suggest that there Hilbert action in five dimensions for a five-dimensional met-
is no VDVZ discontinuity at the nonperturbative classical"ic 9ag (bulk metrig with Ricci scalarR. The termSgy, is
level [14]. the Gibbons-Hawking action. In addition, we consider an
We would like to continue this program and investigateintrinSiC curvature term which is generally induced by radia-
the gravitational field of compact objects in the same branetive corrections by the matter density on the brahe@l:
world theory with a metastable brane graviton. In this regard,
one would iQeaIIy like to iden_tify Fhe nonperturbative metric _ EME’j d“me(“). 2.2
of a spherical, Schwarzschild-like source. That problem, 2
however, possess considerable, though not insuperable, com- ) . )
putational difficulties. Here,Mp is the o_bserv_ed_four-dlmen5|on:_;ll Planck_ sc(atgae
Instead, we investigate the metric of a cosmic string as 4:0—12 for details. Similarly, Eq..(24.2) is the Einstein-
close alternative formulation of the VDVZ problem for a Hilbert action for the induced metrig(y)) on the braneR™*)
compact source. The advantage of this system is its relativeing its scalar curvature. The induced metric is
simplicity, as well as the clarity with which the VDVZ dis- 4 _ A B 5
continuity manifests itself. After laying out the framework in 9ur =9 X", X"Gns, 23
which the problem is phrased, we identify various regimes .
where onepcan Iinearige the cosmic strir% metric. Wg the hereX*(x*) repLesents the coordinates of an event on the
argue that there exists a region where these cosmic strin%fane labeled by*.

solutions are simultaneously valid and that they are identicahfi\r/]\i/tee;'\"i’ﬁi;Oggnsﬁitesiﬁﬁcewti alfg:JenndtZag)()e;;etcélyr:rgziltgrht,
up to a coordinate redefinition. The resulting cosmic stringI y 9- y y

metric indicates there is no discontinuity in the fully nonper- and translational invariance along the cosmic string, as well
turbative theory. It also provides an understanding as to hoi> ro.tat|o.na| symmetry aroynd the string axis, the most gen-
different phases appear in different regions near and far awa al .t|me-|ndepelndent metric can be written with the follow-
from the string source. We conclude with some comment{'Y line element:

V(g?)~— !
(@) M5 g2+iqrg

regarding the consequences of this solution. d2=N2(r,z)(dt?— dx?) — A(r,z)dr?
II. THE SOLUTION —B¥(r,z)[dZ+sirz d¢?], 2.4
A. Preliminaries where the string is located at=0 for all (t,x). These coor-

We wish to address the issues raised in the previous seflinates are depicted in Fig. 1. If spacetime were fiat.,
tion using a braneworld theory of gravity with an infinite N=A=1, B=r), we would choose the brane to be located
volume bulk and a metastable brane gravif]. Consider atz= /2. In general, one can choose coordinates within the
a four-dimensional braneworld embedded in a five-context of the line element E¢2.4) such that the brane is

dimensional Spacetime_ The bulk is empty; all energy mojocated az= /2, even when Spacetime is not flat. However,

mentum is isolated on the brane. The action is we will find it useful to apply a less stringent constraint,
considering coordinates where the brane is located at
1 ~ =mal2, where the parameter is to be specified by the
—— ~m3 | d5y. Al 4y [ @ ' = ) ;
Sts)= 2 M f d°x |9|R+f d*%XV=g" L+ Seh- brane boundary conditions. Again, one can find a set of co-

(2.2 ordinates within the ansatz E@.4) in which this is possible
in general.
The quantityM is the fundamental five-dimensional Planck  Assuming the cosmic string dominates the energy-
scale. The first term in Eq2.1) corresponds to the Einstein- momentum content of the spacetime, we ignore the matter
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effects of the brane itself, except through the intrinsic curvaworld. The problem defined by Eq&.5), (2.6) is dependent
ture term EQ(2.2). Using the coordinate system specified by only on the scale, and the dimensionless parameTéM,%.
Eq. (2.4), the energy momentum of the systerfi is We are interested in the problem whep— with all other
parameters held fixed. Sineg represents the only scale in
T a(r) (2.5 the problem, this statement implies we are interested in the
27A(r,2)B(r,z)sinz’ ' system whem <r o with T/M2 fixed.

Tiw=—Tw= Nz(r 4

where the parametef denotes the string tension and all
other components of the energy-momentum tensor are zero.
The Einstein equations dictated by the action Egsl) and Before we attempt to solve the full five-dimensional prob-
(2.2 are lem given by Eqgs(2.5), (2.6) and EQ.(2.9), it is useful to
review the cosmic string solution in simply four-dimensional
Einstein gravity[15,16. For a cosmic string with energy
momentum Eq(2.5), the exact metric may be represented by
the line element:

B. The Einstein solution

lG+15 T
2rg AT B(r2%\ % 2

1
GiB= WTABv (2.6)
P

where G,z is the five-dimensional Einstein tens@,(A‘B is

the induced four-dimensional Einstein tensor on the brane, dszzdtz—dx2—<1—
Tag is the energy-momentum on the brane Ef5), and we

have defined a crossover scale

-2
dr’—r2d¢?. (2.9

27M3

2 This represents a flat space with a deficit angls! %. Thus,
Fo= Mp 2.7) there is no Newtonian potential between a cosmic string and
IVES ' a static test particle. However, a test parti¢ieassive or

massless suffers an azimuthal deflection df/ME, when

This scale characterizes that distance over which metric flucs.,ttered around the cosmic string. With a different coordi-
'Euaicions propagating on the brane dissipate into the bulk s choice, the line element can be rewritten as
10].

We assume &,-symmetric brane acrogs= wa/2. Under 02 42 2t o T2aMZr 4.2
this circumstance, one may solve E(&5), (2.6) by solving ds?=dt*—dx*~ (y*+2?) Pldy*+dZ’]. 210
Gag=0 in the bulk, i.e., wher<7a/2 andr #0, such that :

the following brane boundary conditions applyzat wa/2: Again, there is no Newtonian potential between a cosmic

N, A, B, rof[N, N A 1[N, A strir]g and a static_test particle._ However, i_n this coord_inate
NtTAtEITAN TN K+ ANTA choice, the deflection of a moving test particle can be inter-
preted as resulting from a gravitomagnetic force generated
\/1_—ﬂz rOT/Mé 1 by the cosmic string. We can ask whether this Einstein solu-
— + — tion is recovered on the brane in the limit of the theory where
5 A ioni d he b in the limit of the th h

B B the graviton linewidth vanishes. In this limit, gravity fluctua-

- tions originating on the brane are pinned on that surface in-
2 [ 2

(2&+E _fof & E&}_ 1-B definitely, implying that gravity should resemble a four-

N B/ A?N° r N B dimensional theory. However, the question remains whether

(2.9 the four-dimensional theory that results is Einstein gravity or
some massless scalar-tensor theory instead.

2Ly L2 T

N, A ror[ N, N NA
(2_z+ z)_o rr r r r}

N A/ AZ|°N "NZ N A C. Linearized five-dimensional Einstein equations
where we have define@=sin(ma/2) and where the sub- Let us examine the linearized form of the Einstein equa-
script represents partial differentiation with respect to thelions(2.6). We will see that the trick is to find an appropriate
corresponding coordinate. Equatiof@s) follow from G,  Packground(including boundary conditionsaround which

G, andG,,, respectively, and are generated by the intrinsiclinearize. We take the following:
curvature term induced by the action Eg.2). We also im- _

pose boundary conditions to ensure continuity of the metric N(r.z)=1+n(r,2)+
and its derivatives at=0, and to fix a residual gauge degree

of freedom by choosin@(z= 7wa/2)=r. Alr,z)=1+a(r,z)+- - (2.13
We wish to find the full five-dimensional spacetime met-
ric induced by a thin cosmic string situated within the brane- B(r,z)=r[1+b(r,2)+ -],

where it is assumed that the functions
2Throughout this paper, we define the distributiongk) of the ~ {n(r.2),a(r,z),b(r,z);<1 in the regimes of interest. Taking
variable x, such that given any well-behaved functidi{x), the R;; component of the Einstein equations, one finds that
Jdx 8(x)f(x)=1(0). the partial differential equatiofPDE) for n(r,z)
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) cosz small. With the coordinate choice under consideration, one
N +2rn,+n,,+ —on,=0, (212  may keep the brane a= /2 while still allowing for a
brane extrinsic curvature c@(T/ME,). We refer to this limit

may be decoupled from the others. Equatidri? is simply ~ where the extrinsic curvature of the brane is perturbed
Laplace’s equation for the Newtonian potentia{y,z), re- around aflat brane as the weak brane limit.
ducing the determination afy, to a linear static potential  In this limit one may use the linearized equations estab-
problem (albeit, with unusual boundary conditions resulting lished in the last subsection. The explicit solution to Egs.
from the presence of the branén order to determina(r,z) ~ (2.12 and(2.17) with g=1 is
and b(r,z), on;a r(:an directly integrate tlkﬁzz and theG,, o T - dk
components of the Einstein equations, leavin -_ 90 a—kr cosz i
p q g n(r,z) 3 (277'\/"23) fo Trr ke Jo(kr sinz),
a(r,z)=-2n(r,z)+rf'(rycosz+rg’(r)+g(r) (2.13 (2.18

b(r,z)=—-2n(r,z)+ f(r)cosz+g(r). (2.149  wherel is the usual Bessel function of the first kind. One
can then solve for(r,z) and b(r,z) directly using Egs.

The functionsf(r) andg(r) are to be determined by the (2.13—(2.16. One may also arrive at this result by applying
brane boundary conditions, as well as the last remaining rethe graviton propagatdd0,14] and approximating the gravi-
sidual gauge. This technique for decomposing the linearizethtional potential through one-particle graviton exchange be-
Einstein equations is the direct analog of that useflifi. tween the cosmic string source and a test particle in a

The brane boundary conditions E@®.8) in the linearized  Minkowski spacetime with a flat braneworld.
Einstein equations may be used to complete the determina- Two limits are of interest. The regime whearer, repre-
tion of the metric components. The second two equations iBents the crossover from four-dimensional to five-

Egs.(2.8) both yield dimensional behavior expected at the scaje Graviton
N modes localized on the brane evaporate into the bulk over
1-8 distances comparable t@. The presence of the brane be-
Bi(r)= — 2, (Nlsnpeg. (215 parable Ta. The P

B comes increasingly irrelevant agro—o~ and a cosmic
string on the brane acts as a codimension-three object in the
Combining this equation foir(r) and fixing the gauge choice full bulk. Here the metric is asymptotically spherically sym-

b(r)|smz=ﬁ:0 gives metric (i.e., zindependent while the Newtonian potential
Eqg. (2.18 becomes
Vi-p? 1-p2
g(r)=2n(r)|sinzzﬁ+Tronr(rﬂsinz:ﬁ_?- 1 T ro 2 o
(2.16 n(r,z)——§ —27TM|% T+O(r0/r ). (2.19
The remaining equation in Eq&2.8) is then used to set the sing the metric Eq(2.4), we find the metric on the brane is
brane condition for the Newtonian potenti#(r,z): specified by the line element
nz|sinz:ﬁ:r0 <r+ﬁﬂ Ny + N, +r_025(r) d52=Nz(r)|sin2=1(dt2—dxz)—AZ(r)|sz=1dr2—r2d¢>2
3 B sinz=p 38 (2.20
X| B+ 1 2.1 with
B+ gz 1| (2.1
N ST oz 2.2
where the coefficient of thé-function contribution to this (Dlsinz=1=1=3 27M2) 1 (rg/r") (2.29

condition comes from the matter souraes reflected in the

first equation of Eqs(2.8)] and from the step iA(r,z) at T \ro )
r=0 necessary to maintain elementary flatness at the loca- A(r)|sn=1=1+ 3\ 27M2 T+O(r°/r2)’
P

tion of the string. Once one determine$r,z) using Eq. (2.2
(2.12 and the boundary conditions EQ.17 as well as '
n,(r)|,—o=0, then one can automatically read aftr,z)

) recovering the Schwarzschild-like solution for a
andb(r,z) using Eqs(2.13—(2.16).

codimension-three object in five-dimensional spacetime with

D. The weak brane limit roT T

Let us first identify the solution to Eq$2.5), (2.6) and fo 27-rM§, 47M3
Eq. (2.8 in the weak field limit. Here, we presume that the
metric deviates from a flat metric with a flat brane where theacting as the effective Schwarzschild radius.
perturbationgof the bulk and the braneare proportional to In the complementary limit when<r,, we find that Eq.
the strength of the sourc& M2, assuming this parameter is (2.18 becomes

(2.23
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2

T
+0O M_‘,i) . (229

1 r
n(r,z)= 5(277—'\/'2';)'“ E(l‘l‘COSZ)

Using the metric Eq(2.20 on the brane, we find

1 r T?
N(r)|sinz:l:1+§ m'ﬂa +0 M_g) (2.2H
braneworld
2 T2
A(r)|sinz:1:1+§m+0 M_é)’ (2.26

which represents a conical space with deficit a@TdM%.
Recall that for pure four-dimensional Einstein gravity, this
metric is N(r)=1 and A(r)z(l—T/ZTrM,%)*l, which
again represents a flat conical space with deficit amgme% .
Thus in the _Weak brang limit, we expgct not on!y an extl_'a FIG. 2. A spatial slice through the cosmic string located.aks
light scalar field gt_eneratlng th_e Newton_lam potentlgl found Nin Fig. 1 the coordinat& along the cosmic string is suppressed. The
N(r), but also a discrepancy in the deficit angle with respeckig angle wedge exterior to the cone is removed from the space,
to the Einstein solution. Moreover, since E¢®.25, (2.261  anq the upper and lower branches of the cone are identified. This
deviate from the four-dimensional Einstein solution, thecgnical surface is the braneworld= wa/2 or sinz=g). The bulk
brane boundary conditions E2.8) imply that the brane  space now exhibits a deficit polar angt. Fig. 1). Note that this
itself possess an extrinsic curvature whose magnitude igeficit in polar angle translates into a conical deficit in the brane-
O(TIM %). world space.

We can ask the domain of validity of the solution Egs.
(2.25), (2.26. Examining the boundary conditions E@2.8) faces induces an extrinsic curvature contribution on the
and the bulk Einstein equatio3,g=0 and comparing the brane which is compensated by the braneworld’s intrinsic
size of terms neglected with respect to those included, we semurvature. Note that the bulk i€, symmetric across the

that on the brane this solution is only valid when brane. The key difference between the analysis in this back-
ground and that in the previous subsection is the inclusion of
[T nonperturbative extrinsic curvature in the background brane.

Fo —%<r<ro. (2.27) Figure 2 depicts a spatial slice through the cosmic string.

One begins by solving the linearized Newtonian potential

The left-hand inequality of Eq2.27) is the one of interest. Problem Eq.(2.12 with the boundary conditions E¢2.17)

For values ofr violating this condition, nonlinear contribu- andn,(r)|,—o=0. Additional boundary conditions are nec-
tions to the Einstein tensor become important and the weaRssary. In order to avoid the divergence of the fields
brane approximation breaks down. But this is precisely thdn(r,z),a(r,z),b(r,z)} near the origin that leads to the im-
regime we are interested in, since we wish to understangortance of nonlinear contributions in the weak brane limit,
what happens when and T/M32 are fixed andrg—o. We  We choose

need to find a solution in this regime.
g n(z)|,—o=0. (2.28

E. The r/ro—0 limit By specifying this boundary condition, one is required to

The weak brane approximation breaks down when the&onstraing (with the brane located at sisg) for consis-
condition Eq.(2.27 does not apply. Outside this domain of tency with the brane boundary condition, E8.17). In order
validity, nonlinear contributions to the Einstein equations beto maintain consistency, the delta-function term must vanish,
come important. However, by relaxing the condition that therequiring®
braneworld be located at sis1, a perturbative solution to
the Einstein equations Eg§2.5), (2.6) with the boundary
conditions EQ.(2.8) can be found in the limit of interest BZl_TMg,' (2.29
whenr <r with T/M32 held fixed. We are still interested in

the limit of a weak source, i.eT/M2<1, so that using the One last boundary condition needs to be specified for large

linearized equations establish in Sec. I C is still applicable.we choosen(r,z) to match asymptotically onto the form
Recall that the coordinateinto the bulk acts as a polar

angle, but where the space it parametrizes has a deficit polar———

angle The bulk |S CharaCterlzed by that part Of Space Where3'|'he divergence |m(rlz) asr—0 seen in the weak brane ap-

sinz<g [i.e., 0sz<wal/2 andm(1l—a/2)<z<] and the proximation is avoided because the matter source delta function is

two surfaces where si=g are identified and together rep- matched by a step in the metric functigir,z) rather than a loga-

resent the braneworld. The identification of these two sursithmic divergence iN(r,z).
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where B=1—\/T/27TM2P. The brane solution, Eq$2.35),
, (2.30 (2.306), is distinct from the weak brane solution, E@2.25),
(2.26). In particular, the extrinsic curvature of the brane in

for someR such tharo\/wg<R<ro. We choose this spe- the first case is nonpertgrb_atlve in the string ten5|or1, ie.,
cific asymptotic form for reasons that will become clear in@(YT/Mp), whereas extrinsic curvature of the brane in the
the next section. This boundary value problem for a statidvéak brane approximation is perturbative in the string ten-
solution to Laplace’s equation E€@.12) is well posed, albeit ~ Sion, i.e.,O(T/Mg). _ _
in an unusual geometry and with unusual boundary condi- The deficit polar angle in the bulk is(1—«) where
tions. again sinfra/2)= g, while the deficit azimuthal angle in the
Unlike when sire=1, this solution to Laplace’s equation brane itself is 2r(1—p). In the limit whenro—c, the
does not possess a simple closed form. However, one mayaviton linewidth vanishes and we recover a flat conical
articulate the dominant contributions to the Newtonian po-space with a deficit angle1—8)=T/M3, the solution

1 T R
n(z)|r=R=§ 2’77—M2F_. In a(l‘l‘COSZ)

tential in several key limits. When<r,yT/M?2 for a cosmic string in four-dimensional Einstein gravity Eq.
(2.9). Consequently, the cosmic string solution E¢&35),

1 1 r\a (2.36) does not suffer from a VDVZ discontinuity, support-
n(r,z)=|5 cosz o 5 Pq(cosz) (G +o ing the results found for cosmological solutiofist] in this

(2.31) braneworld theory with a metastable brane graviton.

with g=1+ \/qu-erP andP(x) is the Legendre function of Ill. MATCHING BETWEEN PHASES

the first kind of order. Whenr=>royT/Mp, We wish to address the matching of the Einstein phase,

Egs. (2.35, (2.36 to the weak brane phase, Eq2.25),
n(r z)=£( T ) n E r (1+cosz) | +---. (2.26.. These two solutions are in d_istinc_t coordinate sys-
’ 3\27M3 2 / tems. Nevertheless, when the cosmic string source strength
Mo 27M2 T/M,% is small, there exists a region im namelyro\/T/MZP
P (2.32 <r<rqy, where both solutions are valid. In this section we
' show that there exists a coordinate transformation that takes
Indeed, one can arrive at an explicit form for the leadingt"® Einstein phase into the weak brane phase in this region,
contribution to the Newtonian potential on the brane itself: IMPlying that these phases are simply different parts of the
same solution.
3 " In the regionro\/T/M2P<r<ro, the Einstein phase takes
)m 14— — | 4+... the form

2 T
el
N 27zM2

1/ T
nr=-{-—-
(N=3 2mM3

1 T r
(2.33 n(r,z) 3(2#M§,)In 2 \/T(Hcosz) +
whenr<r,. One may ascertaia(r,z) and b(r,z) by di- fo Zq-rM,%
rectly using Eqs(2.13—(2.16. By comparing the full Ein-
stein equations and brane boundary conditions, Ej§)— 2
(2.8), with the linearized equations, Eq®.11)—(2.17), one a(r,z)= —_°< —2) cosz+ - - - (3.2
can confirm that the Newtonian potentig(r,z) is valid in 3 r\2mMp

the entire regionr <r, while the expressions fa(r,z) and

b(r,z) using Egs. (2.13—(2.16 are valid when r T 2rp T

<ro\T/M3 and whenr 1o\ T/M3. b(r,z)= 27M2 3r 27M32 cosz+---,
When r<r0\/T/M2P, the metric on the brane is deter-

mined by the line element

where the brane is located at ginl—T/27M3 (or cosz

d<2= N2 A= dx®) — A2 o dAr2— B%r2d 2 —\/T/27-rl\/|2p),and neglecting contributions 6¥(T/M3) but

(1) sinz=( X2) = A1) |sinz=pdr*— B r(2.<?j’>4> keeping leading order contributions, e.gx(T/27M3)
(ro/r). The weak brane phase in the same region has the

with form
= ' ! 2/y2 nrz)—E ! In| —(1+ z) |+ (3.2
NUNQMZR—L+ZG\/ZWM§+00-M& (2.35 (r2)=3 M o (1+cosz) |+ _
A -1 r T 10 2/ 2 23 _ 2 Mo T N
(N|sinz=p= Z—ro‘\/m (re/rg), (2.39 a(r,z)—§T P cosz+ - - -
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2ro[ T weak brane phase in Sec. 11 D are parts of the same soltition.
b(r,z)=— 37 27T—|\/|2p_ cosz+ - - -,

IV. DISCUSSION

where the brane is 2Iocated at @s0, and where again con- | giferent parametric regimes, we find different qualita-
tributions of O(T/Mp) are neglected. tive behaviors for the brane metric around a cosmic string.
We have chosen a regiony\ T/Mp<r <r, such thatthe For an observer at a distance-r from the cosmic string,
solution Egs(3.1) remains a valid solution to the linearized wherer,* characterizes the graviton's effective linewidth,
Einstein equations while undergoing the following linear co-the cosmic string appears as a codimension-three object in
ordinate transformation. Take a new polar variatesuch  the full bulk. The metric is Schwarzschild-like in this regime.
that Whenr <r, brane effects become important, and the cosmic
string appears as a codimension-two object on the brane.

T ] When the source is wealke., when the tensionl, of the
Z=z+ \/TM%S'”ZJFO ZWM%)' (33 string is much smaller than the square of the four-
dimensional Planck scall2), the Einstein solution with a
Since deficit angle of T/M2 holds on the brane wher

<ro\T/M2. In the region on the brane whes>r,\T/M32

_ _ T (but still wherer<r), the weak brane approximation pre-
sinZ=sinz| 1+ \/5——zcosz|+-- -, (3.4  vails, the cosmic string exhibits a nonvanishing Newtonian
27Mp . . -
potential and space suffers a deficit angle different from
TIM3.

the metric functions are still in the ansatz Eg.4) with the

) ) We identified a coordinate transformation connecting the
new polar coordinateZ:

weak brane phase, Eq$2.25, (2.26, and the Einstein
2 2 1y A2 2 02 phase, Egs(2.395, (2.36. Each phase is a linear solution
ds®=N2(r, 2)(dt*—dx*) —A%(r, Z)dr’~B(r, 2) which becomes strongly nonlinear outside of its domain of
X[dZ2+sitZ d¢?]. (3.5  Vvalidity simply because the corresponding coordinate system
in which each solution is linear differs from the other. The

Under this coordinate redefinition, when the brane is locatedt!!l nonlinear solution in this light is reminiscent of the an-
at coz=\T/27M2, it is now located at satz introduced by Vainshteid] for the Schwarzschild so-

lution in a massive gravity theory. Moreover, the presence of
T this weak brane phase at large distances from the cosmic
C0SZ=c0SZ— \/=——=+---=0+0
ZWM%

T ) (3.6) string may have non-negligible consequences for the obser-
277M§, vational search for cosmic strings through gravitational lens-
ing techniqueq18]. For a GUT scale (1§ GeV) cosmic

and with a time renormalization string, the Einstein deficit angle for the string~s10™°. This
implies that the light deflection by the string differs signifi-
t cantly from the predictions of general relativity at distances
B EVEHAL YV
6|\27M5) 27M3 r~ro G;T~3 Mpc, (4.1

the Einstein phase takes the form
wherer is taken to be today’s Hubble radius. Such a seem-
ingly peculiar choice ofrg is intriguing cosmologically
te- [13,19. Detailed discussion on how such a correspondingly
small fundamental Planck scale is possible without serious
phenomenological obstacles may be foundlih,12.

The solution presented here supports the Einstein solution
near the cosmic string in the limit theg— <. This observa-
tion suggests that the braneworld theory under consideration

210 T does not suffer from a VDVZ discontinuity, corroborating
b(r,2)=- ——(—5) CoSZ+ -, the findings for cosmological solutions in the same theory
3 ri2nMp [14]. Far from the source, the gravitational field is weak, and

r
—(14+cosZ2)

ST
n(r,Z)—§ TM% In

e 2y
A 2)=3712.m2

)

)COSZ+ o (3.8

with the brane located at cé&&=0, which is identical to Eq.

(3.2 up to _O(T/M%)- Thus, one can match the Einstein “on the brane itself, the coordinate transformation is applicable
phase solution with the weak brane solution using the coorincluding O(T/27M2). One can confirm this by comparing Egs.
dinate transformation Eq3.3) and the time redefinition Eq. (2.25, (2.26 with Eq. (2.33 and Egs.(2.13, (2.15, and (2.16
(3.7), implying that the Einstein phase in Sec. IIE and theusing the time renormalization E¢.7).
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the geometry of the brane within the bulk is not substantiallyexample in which the VDVZ discontinuity manifests itself.
altered by the presence of the cosmic string. Propagation dfhe result may help shed light on the more difficult, more
the light scalar mode is permitted. However near the sourcémmediately relevant problem of a Schwarzschild-like
the gravitational fields induce a nonperturbative extrinsicspherical source in this braneworld theory. At the same time,
curvature in the brane. That extrinsic curvature suppressdbe cosmic string solution is itself interesting and, should
the coupling of the scalar mode to matter and only the tensathese objects exist in nature, would have testable phenom-
mode remains, thus Einstein gravity is recovered. As onenological consequences.

takesry—, the region where the source induces a large
brane extrinsic curvature grows witty, implying Einstein
gravity is strictly recovered in this limit.

In this paper, we investigate the spacetime around a cos- The author would like to thank C. Deffayet, G. Dvali, A.
mic string on a brane in a five-dimensional braneworldGruzinov, M. Porrati, R. Scoccimarro and E. J. Weinberg for
theory that supports a metastable brane graviton. This systehelpful discussions. This work is sponsored in part by NSF
has the advantage of offering a semianalytic solution to thé&rant No. PHY-9996137 and the David and Lucille Packard
metric around a compact object, while still providing a clearFoundation.
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