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Null string evolution in black hole and cosmological spacetimes
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We discuss the problem of the motion of classical strings in some black hole and cosmological spacetimes.
In particular, the null string limit~zero tension! of tensile strings is considered. We present some new exact
string solutions in a Reissner-Nordstro¨m black hole background as well as in the Einstein static universe and
in the Einstein-Schwarzschild~a black hole in the Einstein static universe! spacetime. These solutions can give
some insight into the general nature of the propagation of strings~cosmic and fundamental! in curved back-
grounds.
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I. INTRODUCTION

Fundamental string theory is undoubtedly the most s
ous candidate for unification of gauge interactions with gr
ity @1#. Its effects should clearly be visible in extremely hig
gravitational fields of black holes and in the early universe
is not an easy task to study quantum string propagatio
these background fields and this gives us motivation to st
the motion of classical strings in these fields first in order
determine some really ‘‘stringy’’ properties of a quantu
theory. On the other hand, the classical motion of strin
gives an appropriate formalism to study the dynamics of c
mic strings which appear naturally in grand unified theo
~GUT! models@2#. This is why we will study the classica
motion of strings in some black hole and cosmologi
spacetimes.

The classical motion of strings which evolve in curv
spacetimes can be described by a system of the second-
nonlinear coupled partial differential equations@3,4#. The
nonlinearity of these equations causes a complication wh
leads to their nonintegrability and possibly chaos@5#. It is
well known that various types of nonlinearities appear
Newtonian as well as relativistic systems and so they
deliver chaos. On the other hand, some types of nonlin
equations can be integrable and their solutions are not
otic. It seems that the theory of relativity is ideal for produ
ing chaotic behavior since its basic equations are highly n
linear. However, the problem is not as easy as one wo
think, because most of the systems under study possess
symmetries which simplify the problem. This also refers to
single particle obeying either Newtonian or relativistic equ
tions. Simply, a single particle which moves in the gravi
tional field of a source of gravity cannot move chaotica
However, two particles which form a three-body system
cluding the source can move in a chaotic way, though s
not for all possible configurations.

The admission of extended objects such as strings ca
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another complication which, roughly, can be compared to
fact that now we have a many-body system which can ob
ously be chaotic on the classical level. An extended chara
of a string is reflected by the equations of motion whi
become a very complicated nonlinear system from the v
beginning. Thus, no wonder chaos can appear for class
evolution of strings around the simplest sources of grav
such as Schwarzschild black holes. This, in fact, was exp
itly proven @6,7#. However, in a similar way as for othe
types of nonlinear sets of equations, there exist integra
configurations. The investigation of such explicit configur
tions can give an interesting insight into the problem of t
general evolution of extended objects in various sources
gravity. Of course, it is justified, provided we do not consid
back reaction of these extended objects onto the source fi
i.e., if we consider test strings in analogy to test partic
which do not ‘‘disturb’’ sources’ gravitational fields.

Studies of exact configurations can give much insight i
the problem. One useful example is when unstable perio
orbits~UPO! appear. Their emergence becomes a signal f
possible chaotic behavior of the general system@8#.

The task of this paper is to study some exact configu
tions for strings moving in simple spacetimes of general re
tivity. Unfortunately, for strings, the main complication re
fers to their self-interaction reflected in the equations
motion by a nonzero value of tension~tensile strings!. How-
ever, one is able to study simpler extended configurations
which tension vanishes called null~tensionless! strings
@9–11#. Their equations of motion are null geodesic equ
tions of general relativity appended by an addition
‘‘stringy’’ constraint. Many exact null string configuration
in various curved spacetimes have already been studied@11–
18#. One of the advantages of the null string approach is
fact that one may consider null strings as null approximat
in various perturbative schemes for tensile strings@10,19–
21#.

In Sec. II we present tensile and tensionless string eq
tions of motion. In Sec. III we obtain exact null string co
figurations both in Reissner-Nordstro¨m and Schwarzschild
spacetime while in Sec. IV we derive string configurations
a static Einstein universe. In Sec. V we discuss the evolu
©2002 The American Physical Society08-1
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of strings in the Einstein-Schwarzschild~Vadiya! universe.
In Sec. VI we discuss our solutions.

II. TENSILE AND NULL STRINGS IN CURVED
SPACETIMES

A free string which propagates in a flat Minkowski spac
time sweeps out a world-sheet~two-dimensional surface! in
contrast to a point particle, whose history is a world line. T
world-sheet action for a free, closed string is given by
formula @22#

S5
T

2E dtdsA2hhabhmn]aXm]bXn, ~1!

whereT51/2pa8 is the string tension,a8 the Regge slope
t ands are the~spacelike and timelike, respectively! string
coordinates,hab is a two-dimensional world-sheet metr
(a,b50,1), h5det(hab), Xm(t,s) (m,n50,1, . . . ,D21)
are the coordinates of the string world sheet
D-dimensional Minkowski spacetime with metrichmn .

If instead of the flat Minkowski background one takes a
curved spacetime with metricgmn , then the action~1!
changes into

S52
T

2E dtdsA2hhabgmn]aXm]bXn. ~2!

The action~2! is usually called the Polyakov action@22#. It is
fully equivalent to the so-called Nambu-Goto action whi
contains a square root and is simply the surface area of
string world-sheet

S5TE dtdsA2h. ~3!

It is useful to present the relation between the backgro
~target space! metricgmn and the induced world-sheet metr
hab embedded ingmn :

hab5gmn]aXm]bXn. ~4!

In Eq. ~2! one can then apply the conformal gauge

A2hhab5hab, ~5!

which allows the two-dimensional world-sheet metrichab to
be taken as flat metrichab. This is because the action
invariant under Weyl ~conformal! transformations h8ab

5 f (s)hab and thehab dependence can be gauged aw
However, Weyl transformations rescale invariant interva
hence there is no invariant notion of distance between
points. In conformal gauge the action~2! takes the form

S5
T

2E dtdshabgmn]aXm]bXn. ~6!

In fact, the action~6! describes a nontrivial quantum fiel
theory ~QFT!, known as the nonlinears model @22,23#.
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The variation of the action~6! gives equations of motion
of a tensile string (TÞ0) and the conformal gauge conditio
~5! gives the constraints equations.

However, the action~6! has a disadvantage. Alike th
point particle case with its zero mass limit, one cannot ta
the limit of zero tensionT→0 here. In order to avoid this
one has to apply a different action which contains a Lagra
multiplier E(t,s) @19,20#:

S5
1

2E dtdsF gmnhab]aXm]bXn

E2~t,s!
2

E~t,s!

a82
G . ~7!

Varying this action~7! with respect toE gives the condition

E5a8A2h. ~8!

Substiting Eq.~8! back into Eq.~7! gives simply the Nambu-
Goto action~3!.

By the introduction of a new constantg with the dimen-
sion of (length)2 we define a parameter

«5
g

a8
. ~9!

Finally, after imposing the gauge

E52g~gmnX8mX8n!, ~10!

together with the orthogonality condition

gmnẊmX8n50, ~11!

we get the equations of motion and the constraint for
action ~7! @13,15,19,20#

Ẍm1Gnr
m ẊnẊr5«2~X9m1Gnr

m X8nX8r!, ~12!

gmnẊmẊn52«2gmnX8mX8n, ~13!

where: (•••) .[]/]t, (•••)8[]/]s, and m,n,r50,1,2,3
from now on.

Now it makes sense to take the limits:

~i! «2→0 (T→0) for tensionless~null! strings whose
world-sheet is placed on the light cone.

~ii ! «2→1 for tensile strings whose world-sheet is plac
inside the light cone.

~iii ! «5g/a8!1 for the perturbative scheme for the te
sile strings expanded out of the null strings@19–21#.

These equations can also be obtained using the gaug
proposed by Bozhilov@24#. Another approach to the nul
string expansion has been performed in@10,11#.

An important characteristic for both null and tensi
strings is their invariant size defined by~for closed strings!
@22#

S~t!5E
0

2p

S~t,s!ds, ~14!
8-2
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where

S~t,s!5A2gmnX8mX8n. ~15!

III. THE EVOLUTION OF STRINGS IN BLACK HOLE
SPACETIMES

We start with the study of the evolution of strings in
charged black hole spacetime or Reissner-Nordstro¨m space-
time which generalizes Schwarzschild spacetime@26#.
Reissner-Nordstro¨m spacetime is a spherically symmetr
charged black hole with metric (t,r ,u,f spacetime coordi-
nates!:

ds25S 12
2M

r
1

Q2

r 2 D dt22S 12
2M

r
1

Q2

r 2 D 21

dr2

2r 2~du21sin2udw2!, ~16!

where M is the mass,Q is the charge. In order to ge
the Schwarzschild black hole one has to putQ50. For
Q2,M2 there exists an event horizon atr 5r 15M
1AM22Q2 and a Cauchy horizon atr 5r 25M
2AM22Q2. For Q25M2,r 15r 25M , and for Q2.M2

there are no horizons@25#.
Using the notation X05t(t,s), X15r (t,s), X2

5u(t,s), X35w(t,s), the equations of motion for a strin
ra

04350
in Reissner-Nordstro¨m spacetime are

ẗ2«2t91
2M

r 3 S 12
2M

r
1

Q2

r 2 D 21S r 2
Q2

M D
3~ ṙ ṫ2«2r 8t8!50, ~17!

r̈ 2«2r 91
M

r 3 S 12
2M

r
1

Q2

r 2 D S r 2
Q2

M D ~ ṫ22«2t82!

2
M

r 3 S 12
2M

r
1

Q2

r 2 D 21S r 2
Q2

M D ~ ṙ 22«2r 82!

2r S 12
2M

r
1

Q2

r 2 D ~ u̇22«2u82!

2r sin2uS 12
2M

r
1

Q2

r 2 D ~ ẇ22«2w82!50, ~18!

ü2«2u91
2

r
~ ṙ u̇2«2r 8u8!2sinu cosu~ẇ22«2w82!50,

~19!

ẅ2«2w91
2

r
~ ṙ ẇ2«2r 8w8!12 cotu~u̇ẇ2«2u8w8!50,

~20!

whereas the constraints are given by
S 12
2M

r
1

Q2

r 2 D ṫ22S 12
2M

r
1

Q2

r 2 D 21

ṙ 22r 2~ u̇21sin2uẇ2!

52«2F S 12
2M

r
1

Q2

r 2 D t822S 12
2M

r
1

Q2

r 2 D 21

r 822r 2~u821sin2uw82!G , ~21!

S 12
2M

r
1

Q2

r 2 D ṫ t82S 12
2M

r
1

Q2

r 2 D 21

ṙ r 82r 2~ u̇u81sin2uẇw8!50. ~22!
y

If one takesQ50 one gets the equations for the neut
Schwarzschild spacetime@13#.

For a null circular string («2→0) with circular ansatz:

t5t~t!, r 5r ~t!, u5u~t!, w5s,

one gets, from Eqs.~17!–~20!,

ṫ5
E~s!

12
2M

r
1

Q2

r 2

, ~23!
l
ṙ 22E2~s!1S 12

2M

r
1

Q2

r 2 D 1

r 2
@K~s!1L2~s!#50,

~24!

u̇25r 24sin22u@K~s!sin2u2L2~s!cos2u#, ~25!

ẇ5
L~s!

r 2sin2u
, ~26!

whereK(s) is Carter’s constant of motion~a constant which
refers to coordinateu @13#!. It is easy to notice that an energ
8-3
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E, an angular momentumL, and a constantK for a null string
do not depend on coordinates.

A. A circular null string with KÄLÄ0 in Reissner-Nordström
spacetime

First, we study the evolution of a null circular string fo
K5L50. From Eqs.~23!–~26! we obtain

ṫ5
E

12
2M

r
1

Q2

r 2

, ~27!

ṙ 25E2, ~28!

u̇50, ~29!

ẇ50, ~30!
on
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04350
and the constraints are automatically satisfied.
In analogy with a null circular string that moves i

Schwarzschild spacetime@13#, we notice that Eqs.~27!–~30!
describe a ‘‘cone’’ string and its trajectory is, forQ2.M2

given by

u5const, ~31!

r 2r 01M lnUr 222Mr 1Q2

r 022Mr 1Q2U1
2M22Q2

AQ22M2

3S arctan
r 2M

AQ22M2
2arctan

r 02M

AQ22M2D 56~ t2t0!,

~32!

for Q2,M2 given by
u5const, ~33!

r 2r 01M lnUr 222Mr 1Q2

r 022Mr 1Q2U1
2M22Q2

2AM22Q2
lnU~r 2M2AM22Q2!~r 02M1AM22Q2!

~r 2M1AM22Q2!~r 02M2AM22Q2!
U56~ t2t0!, ~34!
ir-
r
as
and forQ25M2 given by

u5const, ~35!

r 2r 02M12M lnU r 2M

r 02MU2 M2

r 2M
1

M2

r 02M
56~ t2t0!.

~36!

Cone strings start with a finite size and sweep out a c
of a constant angleu ~Fig. 1!. An observer traveling togethe
with a ‘‘cone’’ string would approach the event horizon
r 5r 1 after a finite time and then he would fall onto th
singularity ~which, in fact, can be escaped from since it
timelike in Reissner-Nordstro¨m spacetime!. On the other
hand, an observer at spatial infinity is not able to notice
moment of passing the event horizon by the string. The
server sees that the string moves more and more slowl
fact, an infinite time to pass the event horizon, or eventua
fall.

The ‘‘cone’’ string is an analogue of a point particle mo
ing on a radial geodesic; however, it does not move in
plane through the origin of coordinatesr 50 but it moves
perpendicularly to the equatorial plane, except for the m
ment when it is captured. Moreover, one can find that ro
tion of such a string is forbidden by the constraints.

Taking the limit Q50, Eq. ~34! gives exactly the same
result for a cone string as in Schwarzschild spacetime@13#.
The equations of motion for Kerr spacetime have been s
ied in @16#.
e

e
-
in
y,

a

-
-

d-

B. A circular null string with KÅ0, LÄ0
in Reissner-Nordström spacetime

Another interesting example of an exact solution is a c
cular null string withKÞ0, L50 and the impact paramete
D53A3M ~the impact parameter for strings is defined
D[AL21K/E) @13#. For D53A3M there exists a photon
sphere with radiusr ph ~an unstable photon orbit! in a
Reissner-Nordstro¨m spacetime. In fact, when

r 5r ph51,5MF11S 12
8Q2

9M2D 1/2G , ~37!

FIG. 1. The evolution of a cone string in a black hole~BH!
spacetime.
8-4
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Q2,
9

8
M2, ~38!

one obtains that equations of motion of a string~17!–~20! are
solved by

t53Et1
2Q2Et

3M213M2S 12
8Q2

9M2D 1/2

22Q2

, ~39!
v-

e
.

e
ng
o
r-

th

he
a

04350
u56
Et

F1,5M211,5M2S 12
8Q2

9M2D 1/2

2Q2G 1/21u0 ,

~40!

w5s. ~41!

The string oscillates an infinite number of times between
poles of the photon sphere. Its coordinate radius is given
Eq. ~37! with the restriction~38! and its invariant size~14! is
given by
S~t!52pr phsinH 6
Et

F1.5M211.5M2S 12
8Q2

9M2D 1/2

2Q2G 1/21u0J . ~42!
ent
n

on

an

te
In the limit Q→0 one gets the solution for a string mo
ing on the photon sphere in Schwarzschild spacetime@13#. In
analogy to a point particle case one is able to say that th
solutions are unstable with respect to small perturbations

In the special caseQ25M2, r ph52M , r 15M , the Eqs.
~39!, ~40! vastly simplify to give~Fig. 2!

t54Et, ~43!

u56
Et

M
1u0 , ~44!

and the invariant string size is

S~t!54pM sinS 6
Et

M
1u0D , ~45!

so that it reduces to zero at poles and to a maximum valu
the equatorial plane. Note that we have to consider the a
u as a multiply covering angle for the Reissner-Nordstr¨m
coordinateu in metric ~16! because the string timelike coo
dinate extends from2`,t,`.

Let us stress that the solution for a string moving on
photon sphere is not the only one with a constantr. We can
find another solution given as

t5t, ~46!

r 5r 15M1AM22Q2, ~47!

u5const5u0 , ~48!

w5s, ~49!

which is analogous to the solution for a null string on t
event horizon@12# in Schwarzschild spacetime which is
se

at
le

e

stable solution. Such a string is placed exactly on the ev
horizonr 5r 1 . Contrary to a string moving dynamically o
the photon sphere, the string described by the Eqs.~46!–~49!
is stationary. A similar solution exists for a string placed
the Cauchy horizon

t5t, ~50!

r 5r 25M2AM22Q2, ~51!

FIG. 2. The evolution of a string on the photon sphere in
extreme Reissner-Nordstro¨m spacetime withQ25M2: ~a! a string
in a moment of passing the equatorial plane,~b! a point of the string
moving all the time in the plane through the origin of coordina
r 50. BH is the black hole singularity~here timelike!, r 52M is a
radius of the photon sphere,r H5M is the event horizon.
8-5
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MARIUSZ P. DA̧BROWSKI AND IZABELA PRÓCHNICKA PHYSICAL REVIEW D 66, 043508 ~2002!
u5const5u0 , ~52!

w5s, ~53!

which is unstable. This is possible since both surfaces of
event horizon and the Cauchy horizon are null~isotropic!.
The problem of the evolution of strings in Reissne
Nordström spacetime has been studied in both tensile
null context in Refs.@11,27,28#. It has been shown that insid
the horizon instabilities appear due to the repulsive effec
a charge. However, for an extreme black hole (Q25M2)
instabilities do not appear.

IV. THE EVOLUTION OF STRINGS IN THE STATIC
EINSTEIN UNIVERSE

The metric of the static Einstein universe is@25#

ds25dt22R2F dr2

12r 2
1r 2~du21sin2udw2!G ~54!

5dt22R2@dx21sin2x~du21sin2udw2!#, ~55!

whereR5const is a radius of the universe,r 5sinx and the
proper distance in the universe isl 5Rx, where 0<x<p
which corresponds to 0<r<1. The easiest way to stud
model~54! is when one introduces the spherical coordina

x5R sinx sinu cosf, ~56!

y5R sinx sinu sinf, ~57!

z5R sinx cosu, ~58!

w5R cosx, ~59!

where 0<u<p,0<f<2p. In these coordinates one is ab
to embed the 4-spherex21y21z21w25R2 in a four-
dimensional Euclidean space with metricdS25dx21dy2

1dz21dw2, or, if one includes a time coordinate, in a fiv
dimensional space with metricdS̃252dt21dS2. In such a
background the equations of motion for a propagating str
are, in general, given as

ẗ5«2t9, ~60!

r̈ 1
r

12r 2
ṙ 22r ~12r 2!u̇22r ~12r 2!sin2uẇ2

5«2F r 91
r

12r 2
r 822r ~12r 2!u822r ~12r 2!sin2uw82G ,

~61!
04350
e

d

f

s

g

ü2«2u91
2

r
~ ṙ u̇2«2r 8u8!2sinu cosu~ẇ22«2w82!

50 ~62!

ẅ2«2w91
2

r
~ ṙ ẇ2«2r 8w8!12

cosu

sinu
~ẇu̇2«2w8u8!

50. ~63!

The parameter«2, as before, distinguishes between null a
tensile strings. The constraints are

ṫ22
R2

12r 2
ṙ 22R2r 2u̇22R2r 2sin2uẇ2

52«2F t822
R2

12r 2
r 822R2r 2u822R2r 2sin2uw82G ,

~64!

ṫ t82
R2

12r 2
ṙ r 82R2r 2u̇u82R2r 2sin2uẇw850. ~65!

The invariant size~15! of a string in the Einstein static uni
verse is given by

S~t!5E
0

2pS 2t821
R2

12r 2
r 821R2r 2u82

1R2r 2sin2uw82D 1/2

ds. ~66!

For the null circular stringt5t(t),r 5r (t),u5u(t),w5s
one gets

S~t!52pRr sinu. ~67!

First, we consider the following ansatz:

t5t~t!, r 5r ~t!5sinx~t!, u5const, w5s ~68!

~a null circular string with a variabler ). The solution of the
field equations~60!–~63! is

t5Et, ~69!

w5s, ~70!

u5const5u0 , ~71!

x56
Et

R
1x0 , ~72!

where we have explicitly used the metric~55! and the con-
straints~64!, ~65! which are, in fact, automatically fulfilled
The invariant string size is

S~t!52pRFsinS 6
Et

R
1x0D Gsinu0 . ~73!
8-6
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The solution~69!–~72! is a cosmological analogue of th
solution~37!, ~39!–~41! @or in simpler form~43!# which rep-
resented a null string on the photon sphere in Schwarzsc
spacetime. It has gotten the following physical interpretati
suppose we send a bunch of photons in all spatial direct
from the point x50(r 50) ~assuming thatx050) at the
momentt50. These photons form a spherical wave-front
which we consider only a circular bunch of constantu0—a
null string. The string~the bunch! then starts from zero siz
at x50(r 50), expands to a maximum sizeS52pR sinu0
that happens for

t57
R

E S p

2
2x0D , ~74!

and finally contracts to zero size again when it reaches
antipodal point atx5p. Then the string starts from the an
tipodal point, reaches maximum size, and eventually com
back to the initial pointx50 it started with. This means i
returned to the place it was sent after it has traveled throu
out the whole universe. This cycle can then be repeated
finitely many times. Since the Einstein static universe can
represented as a cylinder in flat space it can be reminded
each individual point of string will move on a spiral whic
winds around this cylinder@25#. Using the embedding equa
tions ~56! one can show, for instance, that the pointw5s
50 is rotating in the hypersurface (x,z,w) while the point
w5s5p/2 is rotating in the hypersurface (y,z,w), etc.

Now, starting with the equations of motion~60!–~63! we
consider the possibility of having tensile strings («251)
with a constant radial coordinater 5sinx5const ~circular
ansatz!. Imposing this condition the equations~60!–~63!
simplify to

ẗ5«2t9, ~75!

u̇21sin2uẇ25«2@u821sin2uw82#, ~76!

ü2sinu cosuẇ25«2@u92sinu cosuw82#, ~77!

ẅ12
cosu

sinu
~ẇu̇2«2w8u8!5«2w9, ~78!

although the constraints~64!, ~65! do not reduce so vastly.
The analysis of the equations~75!–~78! shows that tensile

strings with a constant radial coordinate cannot exist. Thi
due to self-interaction of strings~cf. @13#!.

V. STRINGS IN EINSTEIN-SCHWARZSCHILD SPACETIME

In this section we consider the evolution of strings in t
Einstein-Schwarzschild~Vadiya! spacetime@29,30#. It de-
scribes a point massm which is placed in the static Einstei
universe of Sec. IV. The metric reads as
04350
ild
:

ns

f

e

s

h-
n-
e
at

is

ds25F12
2m

R
cotS r

RD Gdt22
dr2

12
2m

R
cotS r

RD
2R2sin2S r

RD ~du22sin2udw2!. ~79!

It is easy to notice that the coordinatex in Eq. ~54! now
reads asx5r /R and the role of the radial coordinate simila
as in Reissner-Nordstro¨m or Einstein solution is now played
by

r̄ 5sin
r

R
. ~80!

Another point is that the Einstein metric~55! is obtained in
the limit m→0 while the Schwarzschild metric is allowed i
the limit R→`. The properties of spacetime~79! have been
discussed carefully in@30#. It is interesting to learn that ther
exist two curvature singularities: one atr 50 and another at
r 5pR. The former is spacelike in full analogy to Schwarz
child singularity while the latter is timelike~naked! in anal-
ogy to Reissner-Nordstro¨m singularity of Sec. III. Therefore
the metric ~79! describes the Einstein static universe w
two antipodal black hole singularities: a spacelike and
timelike singularity.

The equations of motion~12!, ~13! for a string moving in
the field of metric~79! are given by

ẗ2«2t912
m

R2sin2S r

RD F12
2m

R
cotS r

RD G ~ ṫ ṙ 2«2t8r 8!50,

~81!

r̈ 2«2r 91
m

R2sin2S r

RD F12
2m

R
cotS r

RD G ~ ṙ 22«2r 82!

1
m

R2

F12
2m

R
cotS r

RD G
sin2S r

RD ~ ṫ22«2t82!

2R sin
r

R
cos

r

R F12
2m

R
cotS r

RD G~ u̇22«2u82!

2R sinS r

RD cosS r

RD F12
2m

R
cotS r

RD G
3sin2u~ẇ22«2w82!50, ~82!

ü2«2u92sinu cosu~ẇ22«2w82!

1
2

R
cotS r

RD ~ ṙ u̇2«2r 8u8!50, ~83!
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ẅ2«2w912 cotu~ẇu̇2«2w8u8!

1
2

R
cotS r

RD ~ ṙ ẇ2«2r 8w8!50. ~84!

The constraints read as

2F12
2m

R
cotS r

RD G~ ṫ21«2t82!

1F12
2m

R
cotS r

RD G21

~ ṙ 21«2r 82!1R2 sin2
r

R
@ u̇2

1«2u821sin2u~ẇ21«2w82!#50, ~85!

2F12
2m

R
cotS r

RD G ṫ t81F12
2m

R
cotS r

RD G21

ṙ r 8

1R2sin2
r

R
~ u̇u81sin2uẇw8!50. ~86!

For the null strings («250), one has

ẗ12
m

R2 sin2S r

RD F12
2m

R
cotS r

RD G ṫ ṙ 50, ~87!

r̈ 1
m

R2 sin2S r

RD F12
2m

R
cotS r

RD G ṙ
2

1
m

R2

F12
2m

R
cotS r

RD G
sin2S r

RD ṫ2

2R sinS r

RD cosS r

RD F12
2m

R
cotS r

RD G
3~ u̇21sin2uẇ2!50, ~88!

ü2sinu cosuẇ21
2

R
cotS r

RD ṙ u̇50, ~89!

ẅ12 cotuẇu̇1
2

R
cotS r

RD ṙ ẇ50, ~90!

and

2F12
2m

R
cotS r

RD G ṫ21F12
2m

R
cotS r

RD G21

ṙ 2

1R2 sin2
r

R
~ u̇21sin2uẇ2!50, ~91!
04350
2F12
2m

R
cotS r

RD G ṫ t81F12
2m

R
cotS r

RD G21

ṙ r 8

1R2 sin2
r

R
~ u̇u81sin2uẇw8!50. ~92!

The first integrals of Eqs.~87!–~90! are ~compare@13#!

ṫ5
E~s!

12
2m

R
cotS r

RD , ~93!

ẇ5
L~s!

sin2u sin2S r

RD , ~94!

sin4S r

RD sin2uu̇252L2~s!cos2u1K~s!sin2u, ~95!

and

ṙ 21V~r !50, ~96!

where

V~r !52E2~s!1
R2

sin2S r

RD F12
2m

R
cotS r

RD G
3@L2~s!1K~s!#. ~97!

There exists a solution with a constantr given by

t5t, ~98!

r 5r H5R arctanS 2m

R D , ~99!

u5const5u0 , ~100!

w5s, ~101!

which is analogous to the solution for a null string on t
event horizon~so that it should be stable! in the Reissner-
Nordström spacetime given by Eqs.~46!–~49!. Here the
event horizon is atr H .

It is interesting to notice that apparently there should ex
another solution with a constantr which would be for the
photon spherer ph in Einstein-Schwarzschild spacetim
given by

t53Et, ~102!

r 5r ph5R arctanS 3m

R D , ~103!
8-8
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u5
Et

A3m
A11

9m2

R2
:, ~104!

w5s, ~105!

which would be analogous to the solution for a null string
the photon sphere in Schwarzschild spacetime@13# which
can be obtained in the limitR→` @or by takingQ→0 in the
solution ~46!–~49! for a null string on the photon sphere
Reissner-Nordstro¨m spacetime#. However, it is a simple ex-
ercise to show thatthis solution is a contradiction, namely
there is a conflict between the field equation~87! and the
constraint ~91!. The physical reason for this is similar t
those which produce stationary strings in the de Sitter sp
time ~cf. @31#!—since there is no string tension which ca
balance local gravity a stationary or better static string c
not exist.

On the other hand, there exists a solution for a ‘‘con
string given by

t5EE dt

12
2m

R
cotS 6

E

R
t D , ~106!

r 56Et, ~107!

u5const5u0 , ~108!

f5s. ~109!

This is analogous to the solution~69!–~72! in the Einstein
static universe. It is also easy to prove in the same way a
Schwarzschild and Reissner-Nordstro¨m and Einstein space
times that there exist no tensile circular strings of const
radius.

VI. CONCLUSION

In this paper we have found some exact string configu
tions in black hole and cosmological spacetimes which ap
both for fundamental and for cosmic strings. We generali
previously found solutions of Ref.@13# for a ‘‘cone’’ string
and for a string moving on the photon sphere into a Reiss
Nordström spacetime which is also related to the discuss
of the behavior of strings in this spacetime given in Re
@11,27,28#. We also generalized an event horizon soluti
and presented a Cauchy horizon solution for the Reiss
Nordström spacetime. We found a solution for a null strin
moving around the Einstein static universe and two co
pletely new solutions for strings evolving in the Einstei
Schwarzschild spacetime~a black hole in the Einstein stati
universe!.

First, we briefly presented a formalism which allowed
r

04350
e-

-

’’

in

t

-
ly
d

r-
n
.

r-

-

to take the limit of null strings in an appropriate actio
Then, we studied the evolution of strings in Reissn
Nordström, Einstein static, and Einstein-Schwarzsch
spacetimes. The exact configurations we found can
grouped geometrically into a couple of classes. There
class of solutions which describe null strings residing on
null surfaces of these spacetimes, i.e., event and Cauchy
rizons. There is also a class of solutions which descr
strings sweeping out the light cones of a particular spa
time. Another class is for strings which reside on the surfa
of the photon sphere~an unstable periodic orbit for zer
point particles!. This class exists both in Schwarzschild a
Reissner-Nordstro¨m spacetimes and, in an adapted form,
the Einstein static universe, but not in the Einste
Schwarzschild spacetime.

As far as the physical properties are concerned we fo
that some of our solutions are unstable~for instance, a string
on the photon sphere in Reissner-Nordstro¨m spacetime! and
some are stable~e.g., a string on the event horizon!. Accord-
ing to Ref. @31#, multistring solutions appear whenever th
world-sheet timet is a multivalued function of the physica
time and they are possible, for instance, in the positive c
mological constant models such as the de Sitter space. In
paper only the Einstein static universe admits a positive c
mological constant and because of that one should perh
expect some multistring solutions admissible. However,
solutions of Secs. IV and V do not possess this property.
the other hand, some of our solutions@a string on the photon
sphere@Eqs. ~39!–~41!# and a string in the Einstein stati
universe@Eqs. ~69!–~72!## have an invariant string size de
scribed by multiply covering an azimuthal angle because
an infinite domain of the timelike string coordinatet.

The existence of the photon sphere, i.e., an unstable p
odic orbit ~UPO!, together with other special solutions su
gests that a general evolution of a tensile~or perhaps even a
null! string in these simple curved backgrounds is chao
This statement is obviously true for Schwarzschild spacet
@7#, and the solutions we have found are straightforward g
eralizations of exact configurations in Schwarzschild spa
time.

The results we gained can give some insight into the
ture of motion of strings in extremely high gravitation
fields of black holes and in the early universe in fully qua
tum string theory.
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