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Null string evolution in black hole and cosmological spacetimes
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We discuss the problem of the motion of classical strings in some black hole and cosmological spacetimes.
In particular, the null string limi{zero tensioh of tensile strings is considered. We present some new exact
string solutions in a Reissner-Nordstidlack hole background as well as in the Einstein static universe and
in the Einstein-Schwarzschil@ black hole in the Einstein static universpacetime. These solutions can give
some insight into the general nature of the propagation of sticgsmic and fundamentain curved back-
grounds.
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[. INTRODUCTION another complication which, roughly, can be compared to the
fact that now we have a many-body system which can obvi-

Fundamental string theory is undoubtedly the most seriously be chaotic on the classical level. An extended character

ous candidate for unification of gauge interactions with grav-of a string is reflected by the equations of motion which
ity [1]. Its effects should clearly be visible in extremely high become a very complicated nonlinear system from the very
gravitational fields of black holes and in the early universe. Itbeginning. Thus, no wonder chaos can appear for classical
is not an easy task to study quantum string propagation ievolution of strings around the simplest sources of gravity,
these background fields and this gives us motivation to studguch as Schwarzschild black holes. This, in fact, was explic-
the motion of classical strings in these fields first in order toitly proven [6,7]. However, in a similar way as for other
determine some really “stringy” properties of a quantum types of nonlinear sets of equations, there exist integrable
theory. On the other hand, the classical motion of stringsonfigurations. The investigation of such explicit configura-
gives an appropriate formalism to study the dynamics of costions can give an interesting insight into the problem of the
mic strings which appear naturally in grand unified theorygeneral evolution of extended objects in various sources of
(GUT) models[2]. This is why we will study the classical gravity. Of course, it is justified, provided we do not consider
motion of strings in some black hole and cosmologicalback reaction of these extended objects onto the source field,
spacetimes. i.e., if we consider test strings in analogy to test particles

The classical motion of strings which evolve in curved which do not “disturb” sources’ gravitational fields.

spacetimes can be described by a system of the second-orderStudies of exact configurations can give much insight into
nonlinear coupled partial differential equatiofi3,4]. The the problem. One useful example is when unstable periodic
nonlinearity of these equations causes a complication whicbrbits (UPO) appear. Their emergence becomes a signal for a
leads to their nonintegrability and possibly chdé$ It is  possible chaotic behavior of the general sysfémn

well known that various types of nonlinearities appear in  The task of this paper is to study some exact configura-
Newtonian as well as relativistic systems and so they cations for strings moving in simple spacetimes of general rela-
deliver chaos. On the other hand, some types of nonlinedivity. Unfortunately, for strings, the main complication re-
equations can be integrable and their solutions are not chders to their self-interaction reflected in the equations of
otic. It seems that the theory of relativity is ideal for produc- motion by a nonzero value of tensi¢tensile strings How-

ing chaotic behavior since its basic equations are highly nonever, one is able to study simpler extended configurations for
linear. However, the problem is not as easy as one woul@vhich tension vanishes called nultensionless strings
think, because most of the systems under study possess sofi®e-11]. Their equations of motion are null geodesic equa-
symmetries which simplify the problem. This also refers to ations of general relativity appended by an additional
single particle obeying either Newtonian or relativistic equa-“stringy” constraint. Many exact null string configurations
tions. Simply, a single particle which moves in the gravita-in various curved spacetimes have already been stiidliee
tional field of a source of gravity cannot move chaotically. 18]. One of the advantages of the null string approach is the
However, two particles which form a three-body system in-fact that one may consider null strings as null approximation
cluding the source can move in a chaotic way, though stilin various perturbative schemes for tensile strifg8,19—

not for all possible configurations. 21].

The admission of extended objects such as strings causes In Sec. Il we present tensile and tensionless string equa-
tions of motion. In Sec. Il we obtain exact null string con-
figurations both in Reissner-Nordstmoand Schwarzschild

*Electronic address: mpdabfz@uoo.univ.szczecin.pl spacetime while in Sec. IV we derive string configurations in
TElectronic address: ipro@ift.uni.wroc.pl a static Einstein universe. In Sec. V we discuss the evolution
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of strings in the Einstein-Schwarzschi(fadiya) universe. The variation of the actio6) gives equations of motion
In Sec. VI we discuss our solutions. of a tensile string T#0) and the conformal gauge condition
(5) gives the constraints equations.
Il. TENSILE AND NULL STRINGS IN CURVED However, the action6) has a disadvantage. Alike the
SPACETIMES point particle case with its zero mass limit, one cannot take

the limit of zero tensionT—0 here. In order to avoid this

A free string which propagates in a flat Minkowski space-one has to apply a different action which contains a Lagrange
time sweeps out a world-she@wo-dimensional surfagén  multiplier E(7,o) [19,20:
contrast to a point particle, whose history is a world line. The

world-sheet action for a free, closed string is given by the 1 9,,h®9,X X" E(7,0)
formula[22] S= —f drdo 5 - . 7
2 E*(r,0) 2
_ T drd \/_hhab m v . . . . . .
S= o | UTHONT NurdaX X", 1) Varying this action(7) with respect tcE gives the condition
whereT=1/27ra’ is the string tensiong’ the Regge slope, E=a’y-h. ®)

7 and o are the(spacelike and timelike, respectivelsgtring
coordinates,h?® is a two-dimensional world-sheet metric
(a,b=0,1), h=det(,y), X*(7,0) (u,»=0,1,...D—1)
are the coordinates of the string world sheet in
D-dimensional Minkowski spacetime with metrig,,, .

If instead of the flat Minkowski background one takes any

Substiting Eq(8) back into Eq(7) gives simply the Nambu-
Goto action(3).

By the introduction of a new constantwith the dimen-
sion of (length} we define a parameter

curved spacetime with metricg,,, then the action(1) e=-L. 9)
changes into a’
T ab , Finally, after imposing the gauge
S=- Ef drdoy—hh®g,,,d,X*3,X". (2

E:_Y(guvx,ﬂx,y)! (10)

The action(2) is usually called the Polyakov acti¢@2]. It is
fully equivalent to the so-called Nambu-Goto action which
contains a square root and is simply the surface area of the
string world-sheet

together with the orthogonality condition
9, XMX'"=0, (12)

we get the equations of motion and the constraint for the

S=T f drdo =T, (3 action(7) [13,15,19,20
XEA T XIXP=g2(X 4+ T4 X VX'P), (12)

It is useful to present the relation between the background
(target spacemetricg,,, and the induced world-sheet metric

NNV — 2 ’ rv
hap embedded irg,, 9 XK= =870, X" #X"7, (13)

where: (--)=dldr, (---)' =dldo, and u,v,p=0,1,2,3
from now on.
Now it makes sense to take the limits:

hab: g#vaaxﬂabxv' (4)

In Eqg. (2) one can then apply the conformal gauge

(i) €2—0 (T—0) for tensionless(null) strings whose
V—hh?*= 7", ©) world-sheet is placed on the light cone.

. ) ) o (i) 2—1 for tensile strings whose world-sheet is placed
which allows the two-dimensional world-sheet metii® to  jngide the light cone.

be taken as flat metrio;ab. This is because the action is (iii) s = yla'<1 for the perturbative scheme for the ten-
invariant under Weyl (conforma) transformationsh’aP sile strings expanded out of the null string9—21.
=f(o)h?® and theh®" dependence can be gauged away.

However, Weyl transformations rescale invariant intervals, These equations can also be obtained using the gauge as
hence there is no invariant notion of distance between tw@roposed by Bozhilo\f24]. Another approach to the null
points. In conformal gauge the acti¢®) takes the form string expansion has been performed 10,11].

An important characteristic for both null and tensile

T , strings is their invariant size defined Iffor closed strings
S=5 f drdo72°g,,,daX IpX". ©®  [27]
In fact, the action(6) describes a nontrivial quantum field S(r)= 278(7 o)do (14)
theory (QFT), known as the nonlinear model[22,23. 0 ' ’
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where in Reissner-Nordstra spacetime are
-1
. 2M 2M Q2 Q?
— Py v o2 L= <
S(Tio-) g,uvx X", (15) t—et"+ r3 1 r rz) <r M
Ill. THE EVOLUTION OF STRINGS IN BLACK HOLE X (rt—e?r't’)=0, 17)
SPACETIMES
. . . . . 2 2M Q2 Q2 $2 2412
We start with the study of the evolution of strings in a r—er’+—| 1- ey | Ly (t°—et'?)
charged black hole spacetime or Reissner-Nordstspace- r r

time which generalizes Schwarzschild spacetif].

. B . . . 2 71 2
Reissner-Nordstra spacetime is a spherically symmetric _M _m Q_ (r—Q—)(rz £2r'?)
charged black hole with metrid f,6,¢ spacetime coordi- r3 r r2 M
nates:

M 2
N —r 1——+Q— (6°—&20'?)
QZ Q2 rZ
ds’=|1- —+ — [dt?~| 1-—+—| dr’
' ' 2M Q2
. —rsifg| 1- —+ — | (¢?—e%0'H)=0 (18)
—r?(d#%+sirfode?), (16) rr2 ’
where M is the_mass,Q is the charge. In order to get 9—320”+E(fb—szr’0’)—sinacosa(¢2—82¢’2)=0,
the Schwarzschild black hole one has to @t0. For r
Q?<M? there exists an event horizon at=r,=M (19
+yM?2-=Q? and a Cauchy horizon atr=r_=M 2 .
—JM?=Q? For Q°=M?r,=r_=M, and for Q>>M? o—e%0"+ —(re—e’r' @' )+2 cotfd(fp—e20'¢')=0,
there are no horizon25]. r (20)
Using the notation X°=t(r,0), X'=r(r0), X2
=0(r,0), X3=¢(7,0), the equations of motion for a string whereas the constraints are given by
|
2M Q2. oM Q2| h . .
(1——+Q— t2—<1——+Q— r2—r2(6%+sirf¢?)
r r2 r r2
2M Q2 oM Q2| 7
=—¢” (1——+Q— 2 (1——+Q—> r'2—r2(9'>+sifoe’?) |, (21)
r r2 r r2
M Q2 oM Q2 . . .
(1——+Q—2 r— 1——+Q— ' —r2(00' +sirfdee’)=0. (22)
r rr2
|
If one takesQ=0 one gets the equations for the neutral Q?\ 1
Schwarzschild spacetinj@3]. r’—E%(0)+| 1- —+ — | 5[K(0) +L?*(0)]=0,
For a null circular string £2—0) with circular ansatz: r re;r 24
t=t(r), r=r(7), 6=0(7), ¢=o0, 6?=r"*sin"26[K(o)sirf6—L2(o)cosd], (25
one gets, from Eq9417)—(20),
o= La) (26)
r2sirfg’
. E(o)
t=— (23
1— 2_M +Q_ whereK (o) is Carter’s constant of motiofa constant which
r r2 refers to coordinat® [13)). It is easy to notice that an energy
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E, an angular momentuin, and a constar for a null string  and the constraints are automatically satisfied.

do not depend on coordinate

In analogy with a null circular string that moves in

Schwarzschild spacetinjé 3], we notice that Eqg27)—(30)
A. A circular null string with K=L=0 in Reissner-Nordstian  describe a “cone” string and its trajectory is, f@?>M?2

spacetime given by
First, we study the evolution of a null circular string for
K=L=0. From Eqs(23)—(26) we obtain 6= const, (31
o= (27) r2-2Mr+Q?  2M2-Q?
2M Q% r—ro+Min +
1—T+Q—2 ° ro—2Mr+Q? JQZ—M?2
r
_ r—m ro—M
I‘2=E2, (28) arcta.w arctalm = i(t_to),
=0, (29) (32
¢=0, (300  for Q2<M? given by
|
6= const, (33
. r2—2Mr+Q2‘+ MP-Q* (r=M—VMZ=Q?)(ro— M+ M?=Q?)| A a0
r—r n n =+ (t—ty),
° ro—2Mr+Q?  2yM?2—Q2 | (r—M+yMZ-Q?)(ro—M—M2-Q?) °

and forQ?=M? given by

0= const, (35

r—ro—M+2MIn

B. A circular null string with K#0, L=0

in Reissner-Nordstrom spacetime

Another interesting example of an exact solution is a cir-
r—M ‘ M2 M2 cular null string withK#0, L=0 and the impact parameter
Fo— M\_r—M + fo—M =*(t—tp). D=3\/§M (the impact parameter for strings is defined as

(36) D=/L?+K/E) [13]. For D=3/3M there exists a photon
sphere with radiusrp, (an unstable photon orbitin a

Cone strings start with a finite size and sweep out a con&eissner-Nordstra spacetime. In fact, when

of a constant anglé@ (Fig. 1). An observer traveling together
with a “cone” string would approach the event horizon at
r=r, after a finite time and then he would fall onto the
singularity (which, in fact, can be escaped from since it is
timelike in Reissner-Nordsim spacetimg On the other
hand, an observer at spatial infinity is not able to notice the
moment of passing the event horizon by the string. The ob-
server sees that the string moves more and more slowly, ir
fact, an infinite time to pass the event horizon, or eventually,
fall.

The “cone” string is an analogue of a point particle mov-
ing on a radial geodesic; however, it does not move in a

802\ 12
) e

plane through the origin of coordinates=0 but it moves
perpendicularly to the equatorial plane, except for the mo-
ment when it is captured. Moreover, one can find that rota-
tion of such a string is forbidden by the constraints.

Taking the limitQ=0, Eqg. (34) gives exactly the same
result for a cone string as in Schwarzschild spacefiir8.

The equations of motion for Kerr spacetime have been stud- FIG. 1. The evolution of a cone string in a black hg@H)

ied in[16]. spacetime.
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one obtains that equations of motion of a strii@)—(20) are
solved by

2Q%E~

1——) —2Q?
oM

3M2+3M?

PHYSICAL REVIEW D 66, 043508 (2002

Er
o== 807 2t 0o,
2 2| 4 _ _02?
{1,5M +1,5M (1 oz
(40)
o=o0. (47

The string oscillates an infinite number of times between the
poles of the photon sphere. Its coordinate radius is given by
Eq. (37) with the restriction(38) and its invariant sizél4) is
given by

S(7)=27r ppsin T 7t 6| - (42

In the limit Q— 0 one gets the solution for a string mov- stable solution. Such a string is placed exactly on the event
ing on the photon sphere in Schwarzschild spacefit3¢ In horizonr =r, . Contrary to a string moving dynamically on
analogy to a point particle case one is able to say that thesbe photon sphere, the string described by the Eif3—(49)
solutions are unstable with respect to small perturbations. is stationary. A similar solution exists for a string placed on

In the special cas®?=M?, r,,=2M, r. =M, the Egs. the Cauchy horizon
(39), (40) vastly simplify to give(Fig. 2

t=4Er, 43) t=r, (50)
Er r=r,=M—\/M7—Q2, (51
0=*+17+ 0o, (44)

and the invariant string size is

S(7)=47M sin , (45) t=t,

Er
iv-i- 0

so that it reduces to zero at poles and to a maximum value a
the equatorial plane. Note that we have to consider the angl
0 as a multiply covering angle for the Reissner-Nordstro [
coordinates in metric (16) because the string timelike coor- =t
dinate extends from- oo < 7<co. ‘\

Let us stress that the solution for a string moving on the
photon sphere is not the only one with a constai/e can

find another solution given as o =
t=r, (46) ;
r=r,=M+\M?-Q?, @7 t=t, < N, .
0=const= 6, (48)

FIG. 2. The evolution of a string on the photon sphere in an
extreme Reissner-Nordstrospacetime wittQ?=M?2: (a) a string
in a moment of passing the equatorial plafi®,a point of the string
moving all the time in the plane through the origin of coordinate
which is analogous to the solution for a null string on ther=0. BH is the black hole singularitthere timelikg, r=2M is a
event horizon[12] in Schwarzschild spacetime which is a radius of the photon spherg,=M is the event horizon.

=0, (49
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6=const= 6, (52

(53

¢=0,

which is unstable. This is possible since both surfaces of the

event horizon and the Cauchy horizon are rigbtropio.

The problem of the evolution of strings in Reissner-
Nordstran spacetime has been studied in both tensile and

null context in Refs[11,27,28. It has been shown that inside

the horizon instabilities appear due to the repulsive effect o

a charge. However, for an extreme black ho@?& M?)
instabilities do not appear.

IV. THE EVOLUTION OF STRINGS IN THE STATIC
EINSTEIN UNIVERSE

The metric of the static Einstein universe[&5]

2

ds?=dt*— R? +r2(d#%+ sinfode?)

12 (54)

=dt*—R’[dy?+sirtx(d?+sirfode?)], (55

whereR=const is a radius of the universes siny and the
proper distance in the universe liss Ry, where Gsy<m
which corresponds to €r<1. The easiest way to study

model (54) is when one introduces the spherical coordinates

X=Rsiny sinf cosg, (56)
y=Rsinysingsing, (57
z=Rsiny cos¥, (58)
w=Rcosy, (59

PHYSICAL REVIEW D 66, 043508 (2002

. 2 .. .
6—e20"+ —(r 6—¢e?r'0')—sinf cos(p?—2¢'?)

0 (62)

2. n

2 ..
e+ o (ro—e'e’)

0.

(63

he parameteg?, as before, distinguishes between null and
ensile strings. The constraints are

2

t2- 2 Rer2p? - R %sif0?
1—r
2
:—82 t/2_ 2r’2—R2r26’2—R2r25in26(p’2 ,
1—r
(64)
. R? . . )
tt'— ——rr' —Rr?00' —Rr’sif0pe’ =0. (65

1—r

The invariant siz€15) of a string in the Einstein static uni-
verse is given by
R2
412

r'2+R?r2g'2

S(T):fo277 1-r

1/2
+R?r?sirf0¢’?| do. (66)

For the null circular string=t(7),r=r(7),0=6(7),p=0
one gets

S(7)=2mRrsiné. (67)
First, we consider the following ansatz:
t=t(r), r=r(r)=siny(r), 6=const, ¢o=0c (68

(a null circular string with a variable). The solution of the

where O< 6= m,0= ¢<27. In these coordinates one is able fig|q equationg60)—(63) is

to embed the 4-spher&®+y?+z2+w?=R? in a four-
dimensional Euclidean space with metiikS?=dx?+dy?
+dZ+dw?, or, if one includes a time coordinate, in a five-

dimensional space with metritS’= —dt>+d<?. In such a

background the equations of motion for a propagating string

are, in general, given as

t=g2t", (60)

r+

r2—r(1—r?)6?—r(1-r?)sirffp?
1-r?

2"+ r'2—r(1-r2)0'°>—r(1-r?sirfbe’'?|,

2

(61)

t=Er, (69

p=0, (70)

6= const= 6, (7D
Er

X=*R& *Xo (72)

where we have explicitly used the metfi5) and the con-
straints(64), (65) which are, in fact, automatically fulfilled.
The invariant string size is

Er

S(7)=27R = +X0)

siné. (73

sin( +

043508-6



NULL STRING EVOLUTION IN BLACK HOLE AND . . . PHYSICAL REVIEW D 66, 043508 (2002

The solution(69—(72) is a cosmological analogue of the 2m r dr?
solution(37), (39)—(41) [or in simpler form(43)] which rep- dSZ:[l— ?COI( ﬁ) }dtz——
resented a null string on the photon sphere in Schwarzschild [( )
spacetime. It has gotten the following physical interpretation:

suppose we send a bunch of photons in all spatial directions r
from the pointxy=0(r=0) (assuming thaty,=0) at the —stinz(—
momentt=0. These photons form a spherical wave-front of R
which we consider only a circular bunch of constégt—a

null string. The string(the bunch then starts from zero size It is easy to notice that the coordinatein Eg. (54) now
at y=0(r=0), expands to a maximum si&=2x7Rsing, reads ax=r/R and the role of the radial coordinate similar

(d#%—sirfod¢?). (79

that happens for as in Reissner-Nordstno or Einstein solution is now played
by
=R ( - ) (74 ‘
TTTE\2 X r=sing. (80)

and_ finally cpntracts to zero size again when it reaches thﬁ\nother point is that the Einstein metr{g5) is obtained in
antipodal point afy = . Then the string starts from the an- ye jimit m— 0 while the Schwarzschild metric is allowed in
tipodal pomt_, r.e_ache.s maximum size, apd eveptually COMEfe limit R— 0. The properties of spacetin{@9 have been
back to the initial p0|_ntX=0 it started _W'th' This means it discussed carefully if30]. It is interesting to learn that there
returned to the place it was sent after it has traveled throughs i<t two curvature singularities: one &t 0 and another at
out the Whole.umvers.e. This cy_cle can th(_an b‘? repeated = 7R. The former is spacelike in full analogy to Schwarzs-
finitely many times. Since the Einstein static universe can bey,;q singylarity while the latter is timelikénaked in anal-
repres'en_te.d asa cylmder in flat space it can be r(_amlnde'd th@by to Reissner-Nordstno singularity of Sec. Ill. Therefore,
e"?‘cg |nd|V|dLCJiatIhpomtl'o;sltggg l\jv'l.l ms[)r\]/e onba dsg!ral which the metric(79) describes the Einstein static universe with
winds around this cylin el ]'. sing the embedding equa- antipodal black hole singularities: a spacelike and a
tions (56) one can show, for instance, that the point o timelike singularity

=01is rotati.ng in the hypersurface(,(z,w) while the point The equations of motiofil2), (13) for a string moving in
¢=o0=ml2 is rotating in the hypersurface z,w), etc. the field of metric(79) are given by
Now, starting with the equations of motid60)—(63) we

consider the possibility of having tensile strings®€1)

with a constant radial coordinate=siny=const (circular P 2740 m (tF—s2t/r')=0
ansatz. Imposing this condition the equation$0)—(63) o o T 2m r '
simplify to RPsir’ R/I1™ ROl R
(82)
t=g%t", (75)
. m :
' . r_82rn+ . 5 . (r2_82r72)
0+ sirt0p?=e?[ 0’ +sirf ' ?], (76) R2%sirel — 11— Z—cof —
R R R
6—sin 6 cosf¢p?=c?[ 0" —sindcosbp’'?], (77) 1- z—mco r
m R R +2 2412
— ("=t
p +2C030 ) 0 2 19" = 2 n 78 R Slnz(i)
o2 gled—ee 0")=e%", (78 R
Rsi r r 1 2m r o oo
although the constraint$4), (65) do not reduce so vastly. ~Rsingeosgl 1= prcot g | |(67=70")
The analysis of the equatioiig5)—(78) shows that tensile
strings with a constant radial coordinate cannot exist. This is _ Rsin( L) cos(i 1- Z—mcot( L)
due to self-interaction of string&f. [13]). R R R R
X sinfd(p?—e2¢'2) =0, (82
V. STRINGS IN EINSTEIN-SCHWARZSCHILD SPACETIME
In this section we consider the evolution of strings in the ~ §—£26” —sin 6 cosH( p?— e2¢’?)
Einstein-SchwarzschildVadiya) spacetime[29,30. It de-
scribes a point mass which is placed in the static Einstein i Eco r (Fh—g2r'0')=0 (83)
universe of Sec. IV. The metric reads as R R '
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o—c2¢"+2 cotd(ph—c2p'0')
+Eco L (re—&%r'¢')=0 (84)
R1R :

The constraints read as

1 2m r
“RR

1 2m r
RONR

('t2+82t72)

-1

+ ('r2+82r’2)+stian§[i92
+ 6202+ sir0( 9%+ e2¢'?)]=0, (85)
—[1—2—mcot<i) tt’ + 1—2—mcot(L”_l'rr’
R IR R IR
+R23in2r§(i90’+sir120£p<p’)=0. (86)

For the null strings £2=0), one has

m

tr=0, (87)
R? sinZ(LR)[l— 2chot< L”

t+2

o[ Foold]

+E -
S|n2<§)
Rsi r r 1 2m r
— R SIN ﬁ co ﬁ —ﬁCO ﬁ
X (%+sinf8¢?) =0, (88)
6—sing 0'2+2 " ib=0 89
sind cosfe RcoRr—, (89
c 12 .. 2 r L0 90
¢+2 cotfpf+ 5cof = |1 =0, (90)

and
L 2m r 2. [4 2m r ‘1.2
ST ROR/VH T RR)] T

+R? sin2r§(92+sin29¢2)=o, (91)

PHYSICAL REVIEW D 66, 043508 (2002

L 2m [r . 2m [r ‘1.,
1T RR TRER/| T

r . .
+stinz§(00’+sin20<pgo’)=0. (92)

tt’ +

The first integrals of Eq987)—(90) are (compare[13])

) E(o)

= T[(r) 3
1—300 ﬁ

. L

P (94

sin“(rﬁ) Sif06°=—L%(o)cog0+K(a)sirtd, (95

and
r2+V(r)=0, (96)
where
R? 2m |r
V(r)=—E*o)+ —r{l— Fcot(ﬁﬂ
X[L%(0)+K(0)]. 97

There exists a solution with a constangiven by

t=r, (99
2m

r=ry=R arctarE F) , (99

0= const 6, (100

p=0, (101

which is analogous to the solution for a null string on the
event horizon(so that it should be stablén the Reissner-
Nordstran spacetime given by Eqg46)—(49). Here the
event horizon is aty .

It is interesting to notice that apparently there should exist
another solution with a constantwhich would be for the
photon spherer, in Einstein-Schwarzschild spacetime
given by

t=3Er, (102

3m
r=rpn=R arctar{ F) , (103
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Er om? to take the limit of null strings in an appropriate action.
9= 14+ —, (104 Then, we studied the evolution of strings in Reissner-
V3m R? Nordstran, Einstein static, and Einstein-Schwarzschild

(105 spacetimes. The exact configurations we found can be
grouped geometrically into a couple of classes. There is a

which would be analogous to the solution for a null string onclass of solutions which describe null strings residing on the
the photon sphere in Schwarzschild spacet[h& which n_uII surfaces of_ these spacetimes, i.e., event an.d Cauchy_ ho-
can be obtained in the limR— o [or by takingQ—0 inthe  ZOns. Therells also a cI.ass of solutions wh_|ch describe
solution (46)—(49) for a null string on the photon sphere in Strings sweeping out the light cones of a particular space-
Reissner-Nordstra spacetimg However, it is a simple ex- time. Another class is for strings which reside on the surface
ercise to show thathis solution is a contradictionnamely ~ Of the photon spheréan unstable periodic orbit for zero
there is a conflict between the field equati@v) and the POInt particles. This class exists both_ in Schwarzschild an_d
constraint(91). The physical reason for this is similar to Reissner-Nordstro spacetimes and, in an adapted form, in
those which produce stationary strings in the de Sitter spacdbe Einstein static universe, but not in the Einstein-
time (cf. [31])—since there is no string tension which can Schwarzschild spacetime. _
balance local gravity a stationary or better static string can- AS far as the physical properties are concerned we found
not exist. that some of our solutions are unstalfier instance, a string
On the other hand, there exists a solution for a “cone”0n the photon sphere in Reissner-Nordstrspacetimgand
string given by some are stablé.g., a string on the event horizorccord-
ing to Ref.[31], multistring solutions appear whenever the
t= Ef dr (106) world-sheet timer is a multivalued function of the physical
2m [( . E T) ' time and they are possible, for instance, in the positive cos-
R

p=o0,

1—300

mological constant models such as the de Sitter space. In our
paper only the Einstein static universe admits a positive cos-
r==Er, (107 mological constant and because of that one should perhaps
9= const= , (108 expect some multistring solutions admissible.. However, our
solutions of Secs. IV and V do not possess this property. On
p=0. (109 the other hand, some of our solutidmsstring on the photon
o i ) ) , sphere[Egs. (39)—(41)] and a string in the Einstein static
This is analogous to the solutidB9)—(72) in the Einstein iy erse[Eqgs. (69)—(72)]] have an invariant string size de-
static universe. It is also easy to prove in the same way as ifcriped by multiply covering an azimuthal angle because of
Schwarzschild and Reissner-Nordstrand Einstein space- o infinite domain of the timelike string coordinate
times that there exist no tensile circular strings of constant The existence of the photon sphere, i.e., an unstable peri-

radius. odic orbit (UPO), together with other special solutions sug-
gests that a general evolution of a tengde perhaps even a
VI. CONCLUSION null) string in these simple curved backgrounds is chaotic.
In this paper we have found some exact string configura:rh's statement is obviously true for Schwarzschild spacetime

tions in black hole and cosmological spacetimes which appl)m' _and_ the solutions we have f_ound_are stralghtfor\_/vard gen-

both for fundamental and for cosmic strings. We generalize(?ral'zat'ons of exact configurations in Schwarzschild space-

previously found solutions of Ref13] for a “cone” string . . L

and for a string moving on the photon sphere into a Reissner- The resul_ts we ga|r_1ed can give some 'F‘S'gh‘ |nt_o the ha-

Nordstran spacetime which is also related to the discussiori.ure of motion of strings in extremely high gravitational

of the behavior of strings in this spacetime given in Refs.I€lds of black holes and in the early universe in fully quan-

[11,27,28. We also generalized an event horizon solutiontym String theory.

and presented a Cauchy horizon solution for the Reissner-

Nordstr'im spacetime. We found a solution for a null string ACKNOWLEDGMENTS

moving around the Einstein static universe and two com-
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