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Generalized Chaplygin gas, accelerated expansion, and dark-energy-matter unification
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We consider the scenario emerging from the dynamics of a generalized Born-Infeld theory. The equation of
state describing this system is given in terms of the energy depsityd pressur@ by the relationship=
—A/p®, whereA is a positive constant and<Ox<1. We discuss the conditions under which homogeneity
arises and show that this equation of state describes the evolution of a universe evolving from a phase
dominated by nonrelativistic matter to a phase dominated by a cosmological constant via an intermediate
period where the effective equation of state is giverpbyap.
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[. INTRODUCTION stead of the form of the potential, thereby avoiding the above
mentioned fine-tuning problems. This is achieved via the in-
There is mounting evidence that the Universe at present igoduction, within the framework of Friedmann-Robertson-
dominated by a smooth component with negative pressurdValker (FRW) cosmology, of an exotic background fluid, the
the so-called dark energy, leading to accelerated expansiofhaplygin gas, described by the equation of state
While the most obvious candidate for such a component is
vacuum energy, a plausible alternative is dynamical vacuum =_ i
. . p a 1)
energy[1,2], or quintessence. These models most often in- P
volve a single field2—-11] or, in some cases, two coupled N ] ) )
fields [12—14. However, these models usually face fine- with 01=1_ andA a positive constant. Inserting tr_us equation
tuning problems, notably the cosmic coincidence probIenPf state into the relativistic energy conservation equation
i.e. the question of explaining why the vacuum energy orf€ads to a density evolving as
scalar field dominates the Universe only recently. In its
tracker version, quintessence models address this problem in p=\/A+ E )
that the evolution of the quintessence energy density is fairly a®
independent of initial conditions; however, this seems to be
achieved at the expense of fine-tuning the potential paraniherea is the scale factor of the Universe aBds an inte-
eters so that the quintessence energy density changes beh&tation constant. This simple and elegant model smoothly
ior around the epoch of matter-radiation equality so as tdnterpolates between a dust dominated phase where
overtake the matter energy density at present, driving the=VBa 3, and a de Sitter phase whepe-—p, through an
Universe into accelerated expansion. Moreover, for quintesintermediate regime described by the equation of state for
sence models with shallow potentials, the quintessence fielstiff matter,p=p [16]. Interestingly, this setup admits a well
has to be nearly massless and one expects radiative corregstablished brane interpretation as Eb), for a=1, is the
tions to destabilize the ratio between this mass and the oth@quation of state associated with the parametrization invari-
known scales of physics; on the other hand, the couplings cint Nambu-Gotod-brane action in ad+1,1) spacetime.
such a light field to ordinary matter give rise to long-rangeThis action leads, in the light-cone parametrization, to the
forces, which should have been detected in precision tests &alileo-invariant Chaplygin gas in al(1) spacetime and to
gravity within the solar system, and time dependence of théhe Poincarénvariant Born-Infeld action in ad,1) space-
constants of naturgl5]. time (see[17] and references therein for a thorough discus-
Recently, it has been suggested that the change of behasion). Moreover, the Chaplygin gas is the only gas known to
ior of the missing energy density might be regulated by theadmit a supersymmetric generalizatidtv].
change in the equation of state of the background fluid in- It is clear that this model has a bearing on the observed
accelerated expansion of the Univefd®] as it automati-
cally leads to an asymptotic phase where the equation of
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*Email address: anjan@x9.ist.utl.pt der conditions, an inhomogeneous generalization which can
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be regarded as a unification of dark matter and dark energgo that on the mass sh&l“U ,=1. It then follows that the
[18]. The unification idea has received much attention re€nergy-momentum tensor built from the Lagrangian density
cently[20—23. For instance, in Ref21] it is suggested that Eq. (6) takes the form of a perfect fluid whose thermody-
dark matter might consist of quintessencesmon lumps, namic variables can be written as

and in Ref[22] it is shown that spintessence-like models are

generally unstable to formation & balls which behave as $? ,

pressureless matter. p=ZV'+V, (10
In this work, we consider the case of a genericonstant

in the range 8Za<1 and show that it interpolates between a #?

universe dominated by dust and a de Sitter one via a phase p= 7V’ -V. (12)

described by a “soft” matter equation of state=ap («
=1). We show that the model can be easily accomodated ip . . .
the standard structure formation scenarios and does not leay&P9S"9 the covariant conservation of . the energy-
any undesirable signature on the cosmic microwave bacK'omentum tensor for an homogeneous and isotropic space-
ground power spectrum. Furthermore, we show that thdme
model corresponds to a generalized Nambu-Goto action .
which can be interpreted as a perturbedrane in a ¢ p+3H(p+p)=0, (12
+1,1) spacetime. )

whereH = a/a is the expansion rate of the Universe, we get,

Il. THE MODEL for the generalized Chaplygin gas equation of state,(Eq.
a generalized version of ER)
Our starting point is the Lagrangian density for a massive

complex scalar field®, )1’(“ )
p=| A+ ——— (13
L=g"" D7D, V(P[), ) a®tre)
which, as suggested in RéfL8], can be expressed in terms From Egs.(10) and(11), we obtain
of its masssm, as® = (¢/\/2m)exp(~imé). The Lagrangian
density(3) can then be rewritten as d(p—
y(3) din ¢2:—(p p), (14
1 1 ptp
L==g"" $%0 ,0 ,+ — L=V(e?2). (4
297 P0u00 T T b, (¢°72) @ which, together with Eq(1), leads to a relationship between
2 .
andp:
This sets the scale of the inhomogeneity since, assuming théﬁ P
spacetime variations op correspond to scales greater than d2(p)=p%(ptte—A)I-L+a) (15)

m~1, then

“m () Further algebraic manipulation, introducing Ed40),
b .u ¢. (11) and(14) into the Lagrangian densit), shows that it is

This is in contrast with the work of Ref16], where spatial possible to establish a brane connection to this setting, as the

homogeneity is assumed, and it is clearly a quite relevar€SUlting Lagrangian density has the form ogeneralized

contribution to generalize the use of the Chaplygin gas equaz°rn-Infeld theory:
tion of state into the cosmological description. In this

i . > ) ; — _aAlU(l+a)q v (1+a)2ayal(1+ )
(Thomas-Ferm)i approximation, the resulting Lagrangian L A [1-(9""0,.06.,) ] '

density can now be written as (16)
$? which clearly reproduces the Born-Infeld Lagrangian density
LTF=7gW0,M9,V—V(¢2/Z). (6) for a=1. This Lagrangian density can be regarded as a

d-brane plus soft correcting terms; indeed, expanding the

The corresponding equations of motion are given by root in Eq.(16) arounda=1, one obtains

g,u,,elue V:V,(¢2/2), (7) [1_X(l+a)/2a]a/(l+a)
(¢*N—-gg""0,) ,=0, (8) :m+X|og(X)+(1—X)|og(1—X)(1_a)
whereV’ (x)=dV/dx. The field # can be regarded as a ve- 4yl-X
locity field providedV'>0, i.e.
E+F+G , .
U g"'e,, © +32(T)()3’2(1_a) +O0(1-@)”),
W (17)
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that were dominant before recombination. These clearly do
" not affect any of the features of the scenario we propose
L=(1-(¢" o, @)% ) here. Less trivial, however, is the treatment of the inhomo-
(@=1: d_brane) geneities we have allowed in our setting. We analyze this
issue in what follows.
Our starting point is Eq8), which can be shown to admit

Generalized d-brane

i

Generalized Chaplygin gas as first integral a position dependent functiff), after a
A convenient choice of comoving coordinates where the veloc-
S ity field is given byU*= &5/+/gqo [18]. Taking for the metric
(@ = 1: Chaplygin gas) gu» the proper timedr= VgodX°, and y=—g/gq, as the
determinant of the induced 3-metric, then
J l ~ Y090
p<<p p=ap p=-p ij— Joo —Yij - (25)

Dust De Sitter
(o =1: stiff matter)

Since for the relevant scales, functiBrQF) can be regarded

FIG. 1. Cosmological evolution of a universe described by aaS approximately constant, we get

generalized Chaplygin gas equation of state.

A+ (26)

U(1+a)

whereX=g*"¢ ,6 , and NCEDL:

E=X(X~2)log*(X), (18 This result suggests that the Zeldovich method for consider-

ing inhomogeneities can be implemented through the defor-
F=—2X(X=Dlog(X)[log(1—X)—2], (19 mgtion tensgo{18,24,25}: P ’
G=(X—1)[log(1—X)—4]log(1—X). (20)

The potential arising from this model can be written as @7

a%(d))

D,J=a(t)(5”—b(t) P
Jqdq

pl+a+A_1

(21) whereﬁ are generalized Lagrangian coordinates so that
2p® 2 ,

A
— (‘PZIQ—’_W

Yij = 5mnDimDJ!1 ) (28)
whereWw =B~ (1~ @1+ a)g3(1=a) 42 \which reduces to the du-
ality invariant, >— A/ ¢2, and scale-factor independent po- andh is a perturbation
tential for the Chaplygin gas.

The effective equation of state in the intermediate regime h=2b(t)(pi’i , (29
between the dust dominated phase and the de Sitter phase
can be obtained expanding E@3) in subleading order: with b(t) parametrizing the time evolution of the inhomoge-
neities. Hence, using the equations above and 28s.(23),
B it follows that
~ AV(1+a) - a-3(1+a)
p=A +(1+a Acl(1+a) (22
_ A
p=p(1+9), p=—=(1-ad), (30
p=— AV+a) | @B s p
1+ a Aa/(l+a) !

(23) Where;is given by Eq.(13) and the density contrass, is
related toh through
which corresponds to a mixture of vacuum energy density

AY(* @) and matter described by the “soft” equation of h
state: 6= 5(1+W), (31
p=ap. (249 andw reads
In broad terms, the comparison between the cosmological A
setting we propose and the one emerging from the Chaplygin W= P__ - (32)
gas, discussed in Refgl6,18, is exhibited in Fig. 1. Natu- P pltea

rally, a complete cosmological scenario involves the inclu-
sion of radiation, which is related to the massless degrees of The metric(28) leads to the following 0-0 component of
freedom of the standard model at a given temperature anithe Einstein equations:
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FIG. 2. Evolution ofb(a)/b(a.) for the generalized Chaplygin FIG. 3. Evolution ofb(a)/b(ae) for the generalized Chaplygin
gas model, for different values ef, as compared with CDM and gas model, for different values ef, as compared witth CDM.
ACDM.

constant ACDM) only recently g=1) and that, in any

case, they yield a density contrast that closely resembles, for

any value ofa#0, the standard CDM before the present.
(33 Notice that theA CDM corresponds effectively to setting

=0 in Eq.(37) and removing the factor13aw in Eq. (36).
where the unperturbed part of this equation corresponds tpigure 3 shows also that, far=1, b(a) saturates as in the
the Raychaudhuri equation ACDM case.

As for the density contrass, we can see, using EqR9),

a 1. . —
=3_+ Sh+Hh=47Gp[(1+3w)+(1-3aw)d],

B é_ — (31) and (37), that the ratio between this quantity in the
3a =4mGp(1+3w). (34) Chaplygin and the\ CDM scenarios is given by
Using the Friedmann equation for a flat space section Schap  Donap  1—Q,+0,a°
= : 38)
, 8mG— Oxcom  bacom 1-Q,+Q a3t (
H*=—3—p, (35

meaning that their difference diminishesasvolves. In Fig.
Eq. (33) can be written as a differential equation fofa): 4, we have plotted as a function of for different values of
«a; hence, we verify for any the claim of Refs[18,27), for
2 ., , a=1, that the density contrast decays for laegd-igure 4
§a b"+(1-w)ab’'—(1+w)(1-3aw)b=0, (36

3500

. - . ACDM ——
where the primes denote derivatives with respect to the scale o=2/3
factor, a. 00r aslis |
Finally, from Egs.(13) and(32), we derive an expression 2500 ey
for w as a function of the scale factor, using the observational
input thatQ , +Q =1, whereQ) ,=2/3 andQ,=1/3 [26] 2000
are, respectively, the fractional vacuum and maftirk +
baryons energy densities w1500
QAa3(1+ a) 1000
e 1-0,+0,a%0 9 37 500
We have used this expression to integrate 8%) nu- 0
merically, for different values ofr. We have sefq= 104
for matter-radiation equilibrium and,=1 at present, taking -500 ' ' ' :
. AL o ; 0.0001 0001 001 0.1 1 10
as an initial conditiorb’(asg) =0. Our results are shown in
Figs. 2 and 3. 2

We find that generalized Chaplygin scenarios start differ- FIG. 4. Density contrast for different values ef as compared
ing from the cold dark matter model with a cosmological with ACDM.
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also shows the main difference in behavior of the densitythe model and shown that these evolve consistently with the
contrast between a universe filled with matter with a “soft” observations as the density contrast they introduce is smaller
or “stiff” equation of state as the former resembles morethan the one typical of CDM scenarios and closer to the ones

closely theACDM. predicted by theACDM in comparison to the Chaplygia
=1 case.
Il. DISCUSSION AND CONCLUSIONS Hence, given the fundamental nature of the underlying

i _ o physics behind the Chaplygin gas and its generalizations, it
In this work, we have considered a generalization of the;ppears that it contains some of the key ingredients in the

Chaplygin equation of statp=—A/p®, with 0<a=<1.We  gescription of the Universe dynamics at early as well as late
have shown that, as in the case of the Chaplygin gas, whefgnes.

a=1, the model admits @-brane connection as its Lagrang-

ian density corresponds to the Born-Infeld action plus some

soft logarithmic corrections. Furthermore, spacetime is ACKNOWLEDGMENTS
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